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Introduction First, this document illustrates with an example that checking p1,2(t) is

not sufficient to capture changes on record probabilities associated to other r. In a second

time, it details the equations used to create Figure 2. In a third time, it presents the

estimation algorithm for p1,r(t). Next, it defines the asymptotic confidence intervals of

our parametric estimator p̂1,r(t). Later, we evaluate the validity of the W-class assumption

in our application. Finally we develop a supplementary analysis of centennial records.

1. Example: p1,2(t) is not sufficient for detecting changes on record

probabilities

Let X and Zt follow Generalized Extreme Value (GEV) distributions, characterized

by the parameters (µx, σx, ξx) and (µzt , σzt , ξzt). The parameters λt and kt encompass the

relative behavior between X and Zt and can be expressed as kt =
ξx
ξzt

and λt = (kt
σzt

σx
)−1/ξx

(see Lemma 1 in Worms & Naveau; 2022). In the stationary scenario where Zt
d
=X,

the relative behavior is characterized by λt = 1 and kt = 1, and record probabilities

for r = 2 and r = 3 are p1,2(t) = 1/2 and p1,3(t) = 1/3 respectively. To define the

second hypothetical scenario (factual and counterfactual are different), we set ξx = 1/4,

ξzt = 1/2, σx = 1 and σzt ∼ 1.86, which yields λt = 1.33 and kt = 1/2. In this case,

the record probability for r = 2 remains unchanged with p1,2(t) = 1/2, but we point out

that p1,3(t) = 0.39. So testing P (X ≤ Zt) = .5 is not sufficient to differentiate record

probabilities for r > 2. Furthermore, as r increases record probability p1,r(t) continues to

diverge from 1/r. This brings to mind the scenario where two random variables can share

the same median but have different upper quantiles. Conversely, having kt ̸= 1 and/or

λt ̸= 1 1 only tells us that the random variables X and Zt follow different probability
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distributions. It does not imply that ∀r, p1,r(t) ̸= 1/r. For a given record length r, it is

still possible to have p1,r = 1/r when kt ̸= 1 and/or λt ̸= 1.

As mentioned in the previous paragraph, for a given year t, record probabilities can be

deduced from a Weibull distribution with parameters (kt, λt). This is a key element of our

approach. If this hypothesis is not rejected, (kt, λt) fully characterizes record probability

p1,r(t) for any year t and record length r. Our inference strategy (see Section 3 of the

supplementary material) is to use the statistics p1,2(t) and p1,3(t) to estimate λt and kt.

Yet, the extent of changes in record probabilities does not directly unravel from (kt, λt).

Plugging these Weibull distribution parameters into equation (6) (in the article) translates

to communicating in terms of return periods.

2. Equations for Figure 2

Let X and Z follow Generalized Extreme Value (GEV) distributions, with G and F

their cumulative distribution functions

G(x;µG, σG, ξG) = exp

(
−
(
1 + ξG

(
x− µG

σG

))−1/ξG
)

F (z;µF , σF , ξF ) = exp

(
−
(
1 + ξF

(
z − µF

σF

))−1/ξF
)
.

Figure 2 illustrates the joint probability density between X or Z and the maxima of a

number d of random variables X, i.e max(X1, ..., Xd). This joint density is defined by

f(x, z) =
d

σGσF

(
1 + ξG

(
x− µG

σG

))−α/ξG−1(
1 + ξF

(
z − µF

σF

))−α/ξF−1

V 1−α(V 1−α + (1− α)V −α) e−V ,

August 2, 2024, 8:56pm



X - 4 GONZALEZ ET AL.: SUPPORTING INFORMATION

where α mesures correlation between X and Z and V is the dependence structure, here

the logistic model

V (x, y) =

(
1

xα
+

1

yα

)1/α

.

Densities of figure 2 where obtained using α = 1. In panel a) and c) we visualize the joint

probability densites of X and max(X1, ..., Xd), with µG = 0, σG = 1 and ξG = 0.2, in b)

and d) the ones of Z and max(X1, ..., Xd), with µG = 0, σG = 1, ξG = 0.2, µF = 1, σG = 1

and ξG = 0.2.

3. Estimation algorithm for p1,r(t)

Defining I and J as the lengths of the counterfactual and factual trajectories, tj is the

time step j with j ∈ {1, . . . , J} and Xtj and Ztj the random variables associated with the

counterfactual and factual worlds at time tj.

The estimation process of p1,r(t), when we assume the W-class assumption for all t, is

a three step algorithm. The first step is to estimate p1,2(t) and p1,3(t), for this we use

the non-parametric estimation method developed in Naveau et al. (2018); Naveau and

Thao (2022), which locally averages G(Zt) and G2(Zt) by using the Nadaraya-Watson

kernel regression method (Härdle, 1991), where G is the CDF of Xt. Hence we use GI ,

the empirical estimator of G and Kh, the renormalized Epanechnikov kernel function of

bandwidth h, to estimate p1,2(t) and p1,3(t) as

p̂1,2(t) =
J∑

j=1

Kh(t− tj)GI(Ztj)

p̂1,3(t) =
J∑

j=1

Kh(t− tj)G2
I(Ztj),
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where,

Kh(t− tj) =
k((t− tj)/h)

1
J

∑J
l=1 k((t− tl)/h)

,

The second step is to use (p̂1,2(t), p̂1,3(t)) and the method of moments to estimate λ̂t

and k̂t, for a chosen t, via the following estimating equations, issued from Equation (6)

(on the article) and the W-class assumption :{
p̂1,2(t) =

∫ 1

0
exp(−λ̂t(− log x)1/k̂t) dx

p̂1,3(t) =
∫ 1

0
exp(−2λ̂t(− log x)1/k̂t) dx .

Finally, plugging the parameters λ̂t and k̂t in Equation (6) (on the article) we can

compute p̂1,r(t) for any chosen value of r. In summary, starting from a counterfactual

and factual trajectory and a given r, this methodology allows us to estimate the record

probability p1,r(t) at any chosen time t, taking into account the non-stationarity of Zt.

4. Asymptotic confidence intervals

The following theorem is a non-stationary generalization of Worms and Naveau (2022)

(Proposition 4).

Theorem 1 When I and J go to infinity, if
√
J/I converges to some finite constant, then

for any Xt and Zt belonging to the W-class and any fixed r ≥ 3, the parametric estimator

p̂1,r(t) satisfies

√
J
p̂1,r(t)− p1,r(t)

σrt

d
≈ N (0, 1)

with

σrt =
√

Jr−1(θt)(J1,2(θt))−1Σt (JT
1,2(θt))

−1(Jr−1(θt))T ,
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where θt = (λt, kt) is a vector containing the parameters of the Weibull distribution at

time t. Jj(θt) is the Jacobian matrix of gj(θt) =
∫ 1

0
exp(−jλt(− log x)1/kt)dx at time t for

any integer j ≥ 1, J1,2(θt) the Jacobian matrix associated to θt 7→ (g1(θt), g2(θt))
T at time

t and Σt the asymptotic covariance matrix of (p̂1,2(t)− p1,2(t), p̂1,3(t)− p1,3(t))
T .

We can then compute the confidence intervals of significance level 1− α as follows

[p̂1,r(t)± zασ̂rt] ,

simply issued from the replacement of σrt by σ̂rt and with zα the Gaussian threshold

associated to significance level 1− α.

Proof. Recalling that I and J are the lengths of our counterfactual and factual trajec-

tories, the first step is to compute the variance-covariance matrix of the bivariate vector

NI,J = (p̂1,2(t)− p1,2(t), p̂1,3(t)− p1,3(t))
T , where p̂1,2(t) and p̂1,3(t) are the non-parametric

estimators of p1,2(t) and p1,3(t) obtained using the method developped in Naveau et al.

(2018); Naveau and Thao (2022).

For this first step we divide NI,J in the two following independent vectors

NI,J =

(
p̂1,2(t)− p1,2(t)
p̂1,3(t)− p1,3(t)

)
=

(
p̂1,2(t)− p̃1,2(t)
p̂1,3(t)− p̃1,3(t)

)
+

(
p̃1,2(t)− p1,2(t)
p̃1,3(t)− p1,3(t)

)
=: NA +NB

where

p1,r(t) = E(Gr−1(Zt))

p̃1,r(t) =
1

J

J∑
j=1

Kh(t− tj)G
r−1(Ztj)

p̂1,r(t) =
1

J

J∑
j=1

Kh(t− tj)Gr−1
I (Ztj)

withKh a renormalized kernel function of bandwidth h (see Section 3 of the supplementary

material) and p̃1,r(t) a version of p̂1,r(t) where the cdf G is considered known. Thereby,
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NA is a vector that represents the fluctuations between GI and G and NB is a vector

that contains the error generated by the estimation of the expectation. We study the

behaviours of each of these vectors separately.

Let us first deal with NA. This first component can be rewritten approximately as

ÑA ≈ 1√
IJ

J∑
j=1

Kh(t− tj)

(
B(G(Ztj))

2G(Ztj)B(G(Ztj))

)
,

where s 7→ B(s) is a brownian bridge on [0, 1] . Thanks to the independence between

the brownian bridge B and the factual world observations Ztj , ÑA follows a Gaussian

distribution. Then, asymptotically

NA =

(
p̂1,2(t)− p̃1,2(t)
p̂1,3(t)− p̃1,3(t)

)
≈ N

(
E(ÑA),ΣA

)
.

Using brownian bridge’s properties, we find the expectation of NA = (NA,1, NA,2)
T

E(NA,1) ≈ E

(
1√
IJ

J∑
j=1

Kh(t− tj) E(B(G(Ztj)|Ztj)

)
= 0

and

E(NA,2) ≈ E

(
2

1√
IJ

J∑
j=1

Kh(t− tj)G(Ztj) E(B(G(Ztj))|Ztj)

)
= 0.

Before starting the computations of its covariance matrix, we define the vector

Vtj =

(
B(G(Ztj))

2G(Ztj)B(G(Ztj))

)
.

With this notation, the covariance matrix of NA can be rewritten as follows

Cov(NA) ≈
1

IJ2

J∑
j=1

J∑
i=1

Kh(t− tj)Kh(t− ti) Cov(Vtj , Vti),

where the Cov on the left-hand side refers to the variance-covariance matrix of a random

vector, and the Cov on the right-hand side refers to the covariance matrix between the

two random vectors Vtj and Vti .
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Similarly to E(NA) ≈ 0, we can prove that E(Vtj) = 0. Hence, the covariance can be

rewritten as an expectation

Cov(Vtj , Vti) = E(VtjV
t
ti
) =

(
Aji Cji

Cij Bji

)
.

The components of the matrix can be written as

Aji = E
(
E(B(G(Ztj))B(G(Zti))|Ztj , Zti)

)
= E

(
min(G(Ztj), G(Zti))−G(Ztj)G(Zti)

)

Bji = E
(
E
(
4G(Ztj)G(Zti)B(G(Ztj))B(G(Zti))|Ztj , Zti

))
= 4 E

(
G(Ztj)G(Zti)

[
min(G(Ztj), G(Zti))−G(Ztj)G(Zti)

])

Cji = E
(
E
(
2G(Ztj)B(G(Ztj))B(G(Zti))|Ztj , Zti

))
= 2E

(
G(Ztj)

[
min(G(Ztj), G(Zti))−G(Ztj)G(Zti)

])
,

and we summarize these formulas by

Aji = M2,j,i − p1,2(tj) p1,2(ti)

Bji = 4(M3,j,i − p1,3(tj) p1,3(ti))

Cji = 2(Eji − p1,3(tj) p1,2(ti)),

where we define

Mr,j,i = E
[
Gr−2(Ztj)G

r−2(Zti)min
(
G(Ztj), G(Zti)

)]
and

Eji = E
[
G(Ztj)min

(
G(Ztj), G(Zti)

)]
.

August 2, 2024, 8:56pm



GONZALEZ ET AL.: SUPPORTING INFORMATION X - 9

Now we deal with the second vector, NB, which can be written as follows

NB =

(
p̃1,2(t)− p1,2(t)
p̃1,3(t)− p1,3(t)

)
=

1

J

J∑
j=1

Kh(t− tj)

(
G(Ztj)− p1,2(t)
G2(Ztj)− p1,3(t)

)
.

For large I and J , NB approximately follows a bivariate Gaussian distribution. Introduc-

ing

p1,2(t) = E(p̃1,2(t)) =
1

J

J∑
j=1

Kh(t− tj)p1,2(t)

p1,3(t) = E(p̃1,3(t)) =
1

J

J∑
j=1

Kh(t− tj)p1,3(t),

the covariance matrix of NB can then be calculated as

Cov(NB) =
1

J2

J∑
j=1

Kh(t− tj)
2

(
p1,3(tj)− p1,2(tj)

2 p1,4(tj)− p1,2(tj)p1,3(tj)
p1,4(tj)− p1,2(tj)p1,3(tj) p1,5(tj)− p1,3(tj)

2

)
.

Now we can calculate the approximate variance-covariance matrix of NI,J . Starting from

Σt, the standard M-estimation theory allows us to find the variance-covariance matrix of

our estimators (λ̂t, k̂t). Additionally, the delta method allows us to find the asymptotic

variance of our the parametric estimator p̂1,r(t). We first notice that

√
J
(
(λ̂t, k̂t)− (λt, kt)

)
=

√
J
(
g−1(p̂1,2(t), p̂1,3(t))− g−1(p1,2(t), p1,3(t))

)
,

where g : (λt, kt) 7→ (g1(λt, kt), g2(λt, kt)), with gj(λt, kt) =
∫ 1

0
exp(−jλt(− log x)1/kt)dx

a locally one-to-one function. Then, for (Xt, Zt) belonging to the W-class, the MOM

estimators (λ̂t,k̂t) asymptotically follow a normal distribution

√
J((λ̂t, k̂t)

T − (λt, kt)
T ) ∼ N

(
0, (J1,2(λt, kt))

−1Σt(J
T
1,2(λt, kt))

−1)
)
,

J1,2(λt, kt) denotes the Jacobian matrix associated to (g1(λt, kt), g2(λt, kt))
T at time t.
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Finally, via the delta method we find that the parametric estimator p̂1,r(t) asymptoti-

cally satisfies

√
J
p̂1,r(t)− p1,r(t)

σrt

d
≈ N (0, 1)

with

σrt =
√

Jr−1(λt, kt)(J1,2(λt, kt))−1Σt (JT
1,2(λt, kt))−1(Jr−1(λt, kt))T ,

where Jr−1(λt, kt) is the transposed gradient of gr−1(λt, kt) and J1,2(λt, kt) and Σt the same

as before. This because
√
J (p̂1,r(t)− p1,r(t)) =

√
J
(
gr−1(λ̂t, k̂t)− gr−1(λt, kt)

)
.

5. W-class assumption

In the field of statistical climatology, the most commonly used framework when dealing

with block maxima is to assume that our variables follow Generalized Extreme Value

(GEV) distributions with distinct parameters, as outlined by Li et al. (2021). Building

upon this, Worms and Naveau (2022) showed that the Weibullity hypothesis of W is

equivalent to the hypothesis of the same support for X and Z. In particular, for extreme

precipitation it is common to have ξx > 0 and ξz > 0, indicating that both X and Z follow

distributions with infinite upper bound, which reassures the viability of your assumption.

The W-class assumption still relies on the assumption that lower bounds won’t diverge

significantly.

In this section we verify that the Weibullity of the variable Wt = − logG(Zt) is a

proper assumption. We recall that Zt is the variable associated to the factual world at

time t and G the empirical cumulative distribution function of the counterfactual worldX.
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To asses the validity of the Weibullity assumption, we use the following procedure. We

re-scaled our data into a Weibull(1,1) distribution by applying the transformation

Tt(w) = (w/λt)
kt

on Ŵt, where λt and kt are approximated by the estimates λ̂t and k̂t. Next we visualize

the qqplot between the rescaled Ŵt and the quantiles of a Weibull(1,1) distribution (which

is also an exponential). For the sake of conciseness, we have decided to only present our

assessments for 16 randomly chosen grid-points, Figure S1 indicates that the Weibullity

of Ŵt is not an inappropriate assumption.

6. Application on centennial records

To complement the application of Section 3, in this supplementary section we ana-

lyze the yearly maxima of daily precipitation from IPSL-CM6A-LR climate model with

scenario SSP5-8.5 by looking at centennial records probability in 2050 and the time of

emergence of centennial records, rather than decadal as in the main paper.

We define the emergence time associated with a given record length r as the first year

when p̂1,r(t) is significantly different from its counterfactual value, i.e. different from

p0,r(t) = 1/r, with confidence level of 95%. Mathematically, this brings the following

definition

τ0.95(r) = min

{
t such that for all t′ ≥ t,

1

r
/∈ [p̂1,r(t

′)± 1.96 σ̂rt′ ]

}
, (1)
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where σ̂rt represents the estimation of the asymptotic standard deviation and 1.96 corre-

sponds to the Gaussian significance level 0.95

For centennial records, a clear climate change signal emerges when the confidence inter-

vals of our estimator no longer contain 1/100. Panel (a) of Figure S2 highlights centennial

record probability ratio on 2050 in the zones where by that year there is already a sig-

nificant signal of climate change. By 2050, there is a clear signal on 43% of the globe,

which is more than 30% less coverage than what is observed for decadal records, where

the climate change signal is present on 80% of the globe.

While the coverage of the climate change signal is less for centennial than for decadal

records, the signal on significant gridpoints is stronger. For example, we expect centennial

records on tropical latitudes on 2050 to be more than 10 times more likely than in a world

without anthropogenic forcing. It is important to add that behavior aligns for decadal

and centennial records on points where climate change signal emerges before the end

of the century. For a gridpoint where decadal record probability increases, centennial

record probability increases too, and the same holds for gridpoints where decadal record

probability decreases. Furthermore, the centennial record emergence time map from panel

(b) shows that only 12% of the climate change signal emerged between 2000 and 2023,

adding up to this last year 17% of the Earth’s surface. This coverage represent a 40% less

globe surface than for decadal records, where by 2023 the signals already manifested over

57% of the globe.
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Figure S1. QQplot comparing the theoretical Weibull(1,1) quantiles and empirical

quantiles of the normalized Ŵt, for 16 random gridpoints.
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Figure S2. (a) Centennial record probability ratio on 2050 with respect to the coun-

terfactual world, the white zones represent the gridpoints where by 2050 climate change

signal has still not emerged, using (1) as criteria. (b) Emergence centennial record times

defined by (1), the white zones represent the gridpoints where by 2100 climate change

signal has still not emerged, the grey points represent the gridpoints where p̂1,100(t)’s

confidence interval does not contains 1/100 during the pre-industrial period, these points

are left out of our analysis as considered poorly represented. Results obtained using the

IPSL-CM6A-LR climate model and the scenario SSP5-8.5, with a spatial resolution of 72

x 36 grid points.
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