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Key Points:7

• This work proposes a simple definition of non-stationary records and offers a method8

to assess the likelihood of record event changes.9

• We analyze annual maxima of daily precipitation, whose statistical features strongly10

depart from a Gaussian probability distribution.11

• IPSL-CM6A-LR climate model highlights that by 2023 signals of rainfall yearly12

maxima decadal records have emerged on the half of the globe.13
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Abstract14

In the context of climate change, assessing how likely a particular change or event was15

caused by human influence is important for mitigation and adaptation policies. In this16

work we propose an extreme event attribution (EEA) methodology to analyze yearly max-17

ima records, key indicators of climate change that spark off media attention and research18

in the EEA community. Although they deserve a specific statistical treatment, algorithms19

tailored to record analysis are lacking. This is particularly true in a non-stationarity con-20

text. This work aims at filling this methodological gap by focusing on records in tran-21

sient climate simulations. We apply our methodology to study records of yearly max-22

ima of daily precipitation issued from the numerical climate model IPSL-CM6A-LR. Il-23

lustrating our approach with decadal records, we detect in 2023 a clear human induced24

signal in half the globe, with probability mostly increasing, but decreasing in the south25

and north Atlantic oceans.26

Plain Language Summary27

The increase of frequency and strength of climate extremes raises the interest in28

quantifying the extent to which these changes are influenced by climate change. In this29

work we propose an Extreme Event Attribution (EEA) methodology allowing us to as-30

sess whether climate records are attributable to climate change. Records have been typ-31

ically studied by considering climate unvarying in some time span, despite the fact that32

climate is constantly changing. This work aims at filling this methodological gap by fo-33

cusing on records in time-varying climate simulations. We apply our methodology to study34

records of yearly maxima of daily precipitation issued from the latest version of the In-35

stitute Pierre Simon Laplace climate model. Illustrating our approach with decadal records,36

we detect in 2023 a clear human induced signal in almost half of the globe. Even though37

decadal record probability mostly increases, we observe a decrease of record probabil-38

ity in the south and north Atlantic oceans.39

1 Introduction40

In its recent media release on January 23rd 2023, the European Copernicus pro-41

gram highlighted that 2022 was a year of climate extremes, with record-high tempera-42

tures and rising concentrations of greenhouse gases. This statement underlines the cur-43

rent interest in records changes and records breaking. This can be explained by their high44

societal and economic impacts, the question of mitigation and the attribution to anthro-45

pogenic forcings. Assessing how likely a particular extreme event has been caused by hu-46

man influence has been an active field of research (IPCC, 2014). Changes in various cli-47

mate events have been well documented (Gulev et al., 2021), for example concerning the48

frequency and intensity of extreme precipitation at continental to global scales (Dong49

et al., 2021; Alexander, 2016).50

To attribute changes in any extreme climate variable, the field of extreme event at-51

tribution (EEA) (see, e.g., Stott et al., 2016; Naveau et al., 2020) specifically aims at com-52

paring the probability of the same extreme climate event within two different realities:53

a factual world that mimics the conditions observed around the time of the event (i.e,54

a world that contains the effect of human influence on climate) and a counterfactual world,55

in which anthropogenic emissions have never occurred (Angélil et al., 2017). This de-56

sign of experiment can only be tested via numerical climate models as a world without57

anthropogenic forcing does not exist (Hegerl & Zwiers, 2011). This numerical setup seeks58

to address the following question: can we attribute the change of likelihood of a partic-59

ular extreme event to the difference between the factual and counterfactual worlds? Math-60

ematically, most EEA studies compare the following two probabilities of exceeding some61
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high threshold u for a given year t;62

p0,u(t) = P (Xt > u) and p1,u(t) = P (Zt > u), (1)

where the notations Xt and Zt represent the same real-valued variable of interest (e.g.,63

annual maxima of daily precipitation in our application) but Xt corresponds to its coun-64

terfactual version while Zt denotes its factual one. The temporal index t will correspond65

to the years from 1850 to 2100 in our application, see Section 3. The choice of the thresh-66

old u that defines the extreme event is usually delicate and depends on the case study67

at hand. 1−p1,u(t)
p0,u(t)

has been called the fraction of attributable risk by Stott et al. (2016).68

This type of ratio can be interpreted within Pearl’s counterfactual theory of causality69

(Hannart et al., 2016; Hannart & Naveau, 2018). By leveraging multivariate extreme value70

theory (EVT), this relative ratio can be optimized to highlight causality (see, e.g., Kir-71

iliouk & Naveau, 2020).72

It is important to notice that, given a fixed u and a year of interest t, the proba-73

bilities defined by (1) do not directly provide relevant information concerning records.74

In this article we provide a methodology to analyze record events in a non-stationary con-75

text. The meaning of records is not based on a fixed threshold. Instead, it is rooted in76

the comparison between the current value and past observations. For example, the state-77

ment that 2016 was the warmest global temperature on record can only be understood78

with respect to a reference period, here since the moment when reliable instrumental mea-79

surements were available. Mathematically, the probability of being a record with respect80

to a given period ℜ can be generically defined as81

P (Y > max(Xt : t ∈ ℜ)), (2)82

where the event {Y > max(Xt : t ∈ ℜ)} means that the value Y is larger than any83

value from the sample X obtained during the reference period ℜ. As highlighted pre-84

viously, EEA is rooted in the comparison between factual and counterfactual data, the85

later being considered as the baseline. Regarding this yardstick, it is natural to wonder86

what is the probability of observing a record in the counterfactual world, i.e. taking Y =87

Xt+1 in (2) with respect to a given reference period ℜ = {1, . . . , T}. A similar but more88

complex question is to estimate the probability that the factual observation at time T+89

1, i.e. taking Y = Zt+1 in (2), would have been a record in the counterfactual world.90

This leads to our two new definitions of record probabilities91

p0,r(t) := P (Xt > max(Xt−1, ..., Xt−r+1)),92

(3)93

p1,r(t) := P (Zt > max(Xt−1, ..., Xt−r+1)),94

where, given the r−1 counterfactual observations before the year t, p0,r(t) represents95

the probability of the counterfactual value being the largest at time t, and p1,r(t) is the96

same quantity but when the last value comes from the factual world. This setup is sim-97

ilar to return level computations. For example, the 100-year return period in risk anal-98

ysis is given to a risk manager and the task is to estimate the corresponding 100-year99

return level from a sample of data. The record length r can be arbitrarily set in our study.100

The simplest form of this definition arises when setting r = 2. This special case was101

studied in (Naveau & Thao, 2022). It comes down to comparing the central part of the102

factual and counterfactual distributions with one statistic. In this paper, our goal is to103

estimate p1,r(t) for any positive integers r. We would like to highlight that it is possi-104

ble to find two factual worlds, Zt and Z∗
t such that P (Zt > Xt−1) = P (Z∗

t > Xt−1)105

and P (Zt > max(Xt−1, Xt−2)) ̸= P (Z∗
t > max(Xt−1, Xt−2)). So checking p1,2(t) is106

not sufficient to capture other changes in r, (see example in the Supplementary mate-107

rial, section 1.108

To understand the difference between p0,r(t) and p1,r(t) in a non-stationarity con-109

text, we compare them in Figure 1 for r = 50 years and two different years, t = 1950110
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in panel (a) and t = 2050 in panel (b). The sequence of blue-colored dots indicates a111

simulated example of a counterfactual time series Xt with t varying from 1850 to 2100,112

while the sequence of red-colored points represents a factual trajectory. The upper panel113

highlights the year t = 1950 with the grey vertical band enlighting its associated ref-114

erence period from 1900 to 1949. The probability p1,50(1950) assesses how often the red115

diamond of the year 1950 could have been above the maximum of the blue solid dots.116

During the time window 1900−1950, the effect of the anthropogenic forcing is not very117

apparent in this example, and p1,50(1950) should be close to the value of p0,50(1950). In118

contrast, observing a factual record in 2050 with respect to the counterfactual world of119

2000−2050 should be much more probable, i.e. p1,50(2050) is much greater than p0,50(1950)120

in this artificial example. The bottom panel (b) highlights this phenomenon as the non-121

stationarity of Zt increases the likelihood of the red diamond of 2050 to be above the largest122

value of Xt with t spanning 2000−2050. In this simulated example, this can be clearly123

seen with the probability density functions (pdf) displayed on the right side of Figure124

1. The red pdf in panel (a) that corresponds to the pdf of Zt for year t = 1950 has been125

switched up in year t = 2050. This non-stationarity in the factual world explains the126

change in 50-year records and highlights the necessity of interpreting records with re-127

spect to a chosen time window.128

Figure 1. Schematic example to interpret the 50-year record probabilities (i.e. r = 50 in

Equation (3)) in a non-stationary context. The upper panel highlights the year t = 1950 and

the lower panel, the year t = 2050. The blue and red colors represent a simulated counter-

factual trajectory, Xt, and a factual one, Zt, respectively. The solid blue dots correspond to

(Xt−1, ...Xt−49). On the right side of the plot, the probability density functions of Zt, Xt and

max(Xt−1, ...Xt−49) are displayed in red, blue and light blue, respectively.

As already pointed out, one advantage of prefering records over exceedances is that129

there is no need to choose a threshold u like in (1), but this is not the only one. Record130
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analysis relies on their relative nature. For each climate model the reference value of com-131

parison is derived from the model’s own outputs, allowing us to easily compare the re-132

sults. In some instances, this allows to bypass the bias correction steps in multi-model133

error analysis (Naveau & Thao, 2022). More importantly, the interpretation of p0,r(t)134

corresponds to the classical understanding of records for the general public. The expres-135

sion of p0,r(t) is also very simple136

p0,r(t) =
1

r
, for all years t in a reference period of length r, (4)137

under the assumption of exchangeability in the counterfactual world (Chow & Teicher,138

2003). For example, yearly maxima of daily precipitation, due to their high temporal vari-139

ability at the yearly scale, can be considered independent and identically distributed (iid)140

at the yearly scale in the counterfactual world, and therefore exchangeable.141

(4) 2 For illustration purposes, Figure 2,panel (a) shows how Equation (4) can be142

derived from the exchangeability assumption. It displays the bivariate pdf of exchange-143

able max-stable variables (Xt, Xt−1) (see Supplementary material, section 2) (Beirlant144

et al., 2005; Coles, 2001). Since Xt and Xt−1 are exchangeable, P (Xt > Xt−1) = P (Xt−1 >145

Xt), and consequently p0,2(t) = 1/2.146

This can be visually understood by noticing the symmetric nature of panel (a) around147

the diagonal. The zone highlighted in red represent the event {Xt > Xt−1}, which un-148

der the exchangeability assumption, represents half of the mass of the pdf. In contrast,149

(b) focuses on the couple (Zt, Xt−1) for t = 2050, which represents the case of r = 2150

in the factual world, here p1,2(t) = P (Zt > Xt−1) = .71. We notice that the bivari-151

ate pdf is no longer symetric with respect to the {Zt = Xt−1} line. The event {Zt >152

Xt−1}, represented in red contains more mass than in panel (a), meaning that the prob-153

ability of this event is higher. Then, for r = 2 exchangeability of the counterfactual world154

allow us to do attribution by comparing p1,2(t) to 1/2. For r = 3, exchangeability pro-155

vides P (Xt > max(Xt−1, Xt−2)) = P (Xt−1 > max(Xt, Xt−2)) = P (Xt−2 > max(Xt, Xt−1)),156

and leads to p0,3(t) = 1/3. This argument can be repeated for any r in an exchange-157

able counterfactual world. 2 In panel (c), we now consider the decadal records proba-158

bility p0,10 by looking at a bivariate density of the vector (Xt,max(Xt−1, ..., Xt−9)). The159

zone in red represents the event Xt > max(Xt−1, ..., Xt−9) and contains 1/10 of the mass160

of the bivariate pdf. In contrast, panel (d) shows p1,10(t) = .18 for t = 2050 as prob-161

ability for the factual value Zt to become a decadal record with respect to max(Xt−1, ..., Xt−9).162

Therefrom, the main problem we would like to address in this work is how to efficiently163

and rapidly estimate p1,r(t) for any given year t and for any given record length r in a164

non-stationary context.165

This article is organized as follows. In Section 2, we propose a new methodology166

that handles non-stationary situations when attributing records. In Section 3, we apply167

this transient record approach to analyze yearly maxima of daily precipitation issued from168

climate model IPSL-CM6A-LR from the CMIP6 inter-comparison projet. Finally, in Sec-169

tion 4, we summarize the added value of this methodology and discuss the results.170

2 Inference of non-stationary record probabilities171

Our inference goal is to estimate p1,r(t) for any record period length r. This means172

that r can even be larger than the length of time series under study, i.e. our approach173

should be able to extrapolate beyond the largest record ever observed in either the fac-174

tual or counterfactual worlds. Similarly to the computation of high return levels in hy-175

drology (Katz et al., 2002), the developed approach here is unconditional in the sense176

that there is not need to observe a realization of the event of interest (a record) to com-177

pute its probability of occurrence. Performing such unconditional extrapolation implies178

that a parametric model needs to be imposed, theoretically justified and tested.179
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Figure 2. Joint distribution of Xt and max(Xt−1, ...Xt−r+1) and of Zt and

max(Xt−1, ...Xt−r+1) in 2050. (a) and (b) illustrate the case r = 2, where our probability of

interest is p1,2(t) = P (Zt > Xt−1),(c) and (d) illustrate the case r = 10, where our probability

of interest is p1,10(t) = P (Zt > max(Xt−1, ...Xt−9)), the reddish zones represent our events of

interest and the intersection between these zones and the pdf its probability.

The variable of interest in our study corresponds to annual block maxima (of daily180

rainfall). According to EVT, the classical three-parameter extreme generalized distri-181

bution (GEV) (Coles, 2001; Beirlant et al., 2005) should represent a mathematically sound182

distribution for such variables. Within this framework, one modeling possibility would183

be to fit a three parameter GEV to the counterfactual time series, and a different three184

parameter GEV to the factual temporal sequence. By noticing that records are relative185

quantities, Worms and Naveau (2022) showed, that under the conditions stated in their186

Lemma 1, the estimation of the six GEV parameters can be reduced to inferring only187

the two parameters of the following Weibull random variable defined as188

Wt = − logG(Zt) ∼ Weibull (kt, λt), (5)189

where G(x) = P (Xt ≤ x) corresponds to the cumulative distribution function of Xt.190

Weibull (kt, λt) denotes a Weibull distribution, with positive parameters kt and λt,
that can be defined by its Laplace transform

E [exp(−uWt)] =

∫ ∞

0

e−ux kt
λt

(
x

λt

)kt−1

e−(x/λt)
kt
dx.

A bivariate vector (Xt, Zt) satisfying (5) is said to belong to the so-called W-class. Un-191

der this class, we can make the link between the computation of p1,r(t) and the Weibull192

Laplace transform.193
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As previously mentioned, in our application the sequence (X1, ..., Xt) can be as-194

sumed independent, and consequently195

p1,r(t) = E(exp(−(r − 1)Wt)),196

whenever Zt is independent of (X1, . . . , Xt−1). This info and a reparametrization of the197

Laplace integral lead to the following expression of p1,r(t)198

p1,r(t) =

∫ 1

0

exp(−(r − 1)λt(− log x)1/kt) dx. (6)199

A key element of our approach is that, for a given year t, record probabilities can be de-200

duced from the Weibull distribution with parameters (kt, λt). Hence, checking the Weibull201

hypothesis has to be done only once. If not rejected, any p1,r(t) can be inferred for any202

r. So, our inference strategy is to first infer these two parameters and then plug their203

estimates in (6). Concerning the first step, it can be implemented by coupling a Nadaraya-204

Watson kernel regression method with a method of moments to estimate λ̂t and k̂t (see205

Section 3 of the Supplementary material and Naveau & Thao, 2022). We call p̂1,r(t) the206

estimator obtained by this method. Its theoretical properties can be found in Section207

4 of the supplementary material. It is noteworthy that proposition 3 and 5 from Worms208

& Naveau (2022) states that the parametric estimator based on the Weibull assumption209

has lower relative error than the non-parametric estimator. Thus, whenever the Weibull210

assumption can be checked, a parametric approach is preferable for the inference of record211

probabilities associated to large values of r.212

3 Analysis of yearly maxima of daily precipitation213

We use our methodology to study annual maxima of daily precipitation, a variable214

for which the W-class assumption is usually reasonable (see Supplementary material, Sec-215

tion 5). The climate model used here is the IPSL-CM6A-LR from the CMIP6 inter-comparison216

project. Our factual trajectory of yearly maxima of daily precipitation corresponds to217

the historical global run over the period 1850 - 2014 combined with the SSP5-8.5 sce-218

nario over the period 2015 - 2100. Our counterfactual trajectory is represented by a global219

run with only natural forcings over the period 1850 – 2020.220

To illustrate our approach, we first focus on the analysis of decadal and centennial221

record probability evolution, i.e. p1,10(t) and p1,100(t) for t ∈ {1850, . . . , 2100}, at a ran-222

domly selected grip point near Richmond in Virginia (USA). From Equation (4), we ex-223

pect to have p̂1,10(t) near 1/10 and p̂1,100(t) near 1/100 during the pre-industrial period.224

This is confirmed by Figure 3 that displays the decadal (panel (a)) and centennial (panel225

(b)) record probability estimates of p1,10(t) and p1,100(t) as a function of the year (x-axis).226

From this grid point near Richmond, a clear climate change signal emerges on decadal227

records from the year 2002, year from which the confidence interval no longer contains228

1/10. By the year 2100, decadal record are almost four times more likely than in a world229

without climate change.230

For the centennial record period, see panel (b), observing a record in 2100 is about231

ten times more likely than in world without climate change, with a clear climate change232

signal emerging in 2045. It’s noteworthy that this centennial signal emerges more than233

40 years later than the signal observed for decadal records. This is due to the fact that234

the relative error increases as a function of r (see Proposition 5 from Worms and Naveau,235

2022 for details). This results in wider confidence intervals and a later detection of a sig-236

nificant signal. This is consistent with our calculations (see Supplementary material, sec-237

tion 4). Smoothing bandwidth is h = 60.5 as previously defined by (Naveau & Thao,238

2022).239

This analysis at a specific location begs the question of when and where a signif-240

icant attributable signal emerges at the global scale. To answer this question, we lever-241

age Equation (4) and we define record emergence time associated with a given record242
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Figure 3. Decadal (a) and centennial (b) record probability of yearly maxima of daily precip-

itation at Richmond, Virginia grid-point (latitude 37.5, longitude -77.5), using the IPSL-CM6A-

LR climate model and the scenario SSP5-8.5, with spatial resolution of 5 x 5 degrees. The light

blue zones represent the asymptotic confidence intervals of confidence level 95%.

length r as the first year when p̂1,r(t) is significantly different from its counterfactual value,243

i.e. different from p0,r(t) = 1/r, with confidence level of 95%. Mathematically, this brings244

the following definition245

τ0.95(r) = min

{
t such that for all t′ ≥ t,

1

r
/∈ [p̂1,r(t

′)± 1.96 σ̂rt′ ]

}
, (7)246

where σ̂rt represents the estimation of the asymptotic standard deviation and 1.96 cor-247

responds to the Gaussian significance level 0.95 (see Section 4 of the supplementary ma-248

terial for details). Equation (7) allows us to identify the emergence year of any gridpoint.249

Panel (a) of Figure 4 highlights decadal record probability ratio on 2050 in the zones where250

by that year there is already a clear signal of climate change. By 2050, there is a clear251

signal on 80% of the globe, we expect decadal records on tropical latitudes to be up to252

seven times more likely than in a world without anthropogenic forcing. We do not only253

observe an increase of decadal record probability, we can also identify a clear decrease254

in the south and north Atlantic ocean and the south Pacific ocean, which is consistent255

with previous studies showing a decline of precipitation in these zones (Pfahl et al., 2017).256

Between these zones of increasing and decreasing probability we observe transition zones,257

where climate change effect is not clear. When analyzing centennial records, even if cli-258

mate change signal is less clear, the increase and decrease of probability patterns remain259

unchanged. Equation (7) also brings out climate change signal timeline. Panel (b) of Fig-260

ure 4 shows decadal record emergence times, i.e. τ0.95(10) over the globe. 26% of climate261

change signal emerged between 2000 and 2023, adding up to this last year 57% of the262

globe. An equivalent analysis for centennial records can be found in section 6 of the sup-263

plementary material.264
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Figure 4. (a) Decadal record probability ratio on 2050 with respect to the counterfactual

world, the white zones represent the gridpoints where by 2050 climate change signal has still not

emerged, using (7) as criteria. (b) Emergence record times defined by (7), the white zones rep-

resent the gridpoints where by 2100 climate change signal has still not emerged, the grey points

represent the gridpoints where p̂1,10(t)’s confidence interval does not contains 1/10 during the

pre-industrial period, these points are left out of our analysis as considered poorly represented.

Results obtained using the IPSL-CM6A-LR climate model and the scenario SSP5-8.5, with a

spatial resolution of 72 x 36 grid points.

4 Conclusion and discussion265

To summarize, we proposed and studied a new EEA record analysis in a transient266

setup to estimate record probability at each time step t and for any record length r. Our267

approach accounts for the non-stationarity of the factual world without constraining the268

shape parameter of the GEV distributions to be constant. This represents an added value269

compared to methods based on return periods where non-stationarity is not fully cap-270

tured. Additionnaly, it fills a methodological gap for record analysis, as records have usu-271

ally been studied in a stationary context, with limited advances on non-stationary times272

series. Furthermore, our approach has a straightforward interpretation and it bypasses273

–9–
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the separate estimation of both distributions Xt and Zt separately. By focusing on rel-274

ative changes between the counterfactual and factual worlds (see Equation (1) of (Naveau275

& Thao, 2022), we mitigate the underestimation bias of climate models on the climate276

change signal associated with extreme precipitation (Min et al., 2011; Fischer & Knutti,277

2015). In our framework (X1, ..., Xt) are considered independent. Yet, our approach is278

still valid in a dependent scenario, if the sequence corresponds to any max-stable time279

series.280

Our analysis of yearly maxima of daily precipitation obtained from the IPSL-CM6A-281

LR (scenario SSP5-8.5) indicates that precipitation records are affected all over the world,282

with a clear climate change signal on decadal records before the year 2050. The trop-283

ical latitudes and the polar circles appear to be the zones where record probabilities will284

increase the most and the north and south Atlantic ocean those where they clearly de-285

crease. This result is consistent with previous studies on changes of precipitation (Pfahl286

et al., 2017; Tandon et al., 2018; Dong et al., 2021). However, our conclusions are only287

valid for the IPSL-CM6A-LR climate model. As improvements of this methodology, it288

would be interesting to incorporate multi-model climate error. For example, the tech-289

nique proposed by Naveau and Thao (2022) may be used to handle this type of error.290

In addition, our analysis was made independently for each grid and it is likely that the291

signal in record emergence times will be enhanced by incorporating spatial information292

at a regional scale. Although more statistically complex, multivariate EVT used in EEA293

(Kiriliouk & Naveau, 2020) could be implemented to perform this task.294
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using R. The code developed in this work is available on GitHub https://github.com/308

PaulaFlorencia/A-statistical-method-to-model-non-stationarity-in-precipitation309

-records-changes310
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