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Abstract

In the context of climate change, assessing how likely a particular change or event has
been caused by human influence is important for mitigation and adaptation policies. In
this work we propose an extreme event attribution (EEA) methodology to analyze yearly
maxima records, key indicators of climate change that spark media attention and research
in the EEA community. Although they deserve a specific statistical treatment, algorithms
tailored to record analysis are lacking. This is particularly true in a non-stationarity con-
text. This work aims at filling this methodological gap by focusing on records in tran-
sient climate simulations. We apply our methodology to study records of yearly max-
ima of daily precipitation issued from the numerical climate model IPSL-CM6A-LR. II-
lustrating our approach with decadal records, we detect in 2023 a clear human induced
signal in half of the globe, with probability mostly increasing, but decreasing in the south
and north Atlantic oceans.

Plain Language Summary

The increase of frequency and strength of climate extremes raises the interest of
quantifying the extent to which these changes are influenced by climate change. In this
work we propose an Extreme Event Attribution (EEA) methodology allowing us to asses
whether climate records are attributable to climate change. Records have been typically
studied by considering climate unvarying in some time span, however climate is constantly
changing. This work aims at filling this methodological gap by focusing on records in
time varying climate simulations. We apply our methodology to study records of yearly
maxima of daily precipitation issued from the latest version of the Institute Pierre Si-
mon Laplace climate model. Illustrating our approach with decadal records, we detect
in 2023 a clear human induced signal in almost half of the globe. Even though decadal
record probability mostly increases, we observe a decrease of record probability in the
south and north Atlantic oceans.

1 Introduction

In its recent media release on January 23rd 2023, the European Copernicus pro-
gramme highlighted that 2022 was a year of climate extremes, with record high temper-
atures and rising concentrations of greenhouse gases. This statement underlines the cur-
rent interest in records changes and records breaking. This can be explained by their high
societal and economical impacts, the question of mitigation and the attribution to an-
thropogenic forcings. Assessing how likely a particular extreme event has been caused
by human influence has been an active field of research (IPCC, 2014). Changes in var-
ious climate events have been well documented (Gulev et al., 2021), for example concern-
ing the frequency and intensity of extreme precipitation at continental to global scales
(Dong et al., 2021; Alexander, 2016).

To attribute changes in any extreme climate variable, the field of extreme event at-
tribution (EEA) (see, e.g., Stott et al., 2016; Naveau et al., 2020) specifically aims at com-
paring the probability of the same extreme climate event but within two different real-
ities: a factual world which mimics the conditions observed around the time of the event
(i.e, a world that contains the effect of human influence on climate) and a counterfac-
tual world, in which anthropogenic emissions have never occurred (Angélil et al., 2017).
This design of experiment can only be tested via in-silico numerical climate models as
a world without anthropogenic forcing does not exist (Hegerl & Zwiers, 2011). This nu-
merical setup seeks to address the following question: can we attribute the change of like-
lihood of a particular extreme event to the difference between the factual and counter-
factual worlds? Mathematically, most EEA studies compare the following two probabil-



ities of exceeding some high threshold u for a given year t;
pou(t) =P(Xy >u) and p1(t) = P(Z > u), (1)

where the notations X; and Z; represent the same real-valued variable of interest (e.g.,
annual maxima of daily precipitation in our application) but X; corresponds to its coun-
terfactual version while Z; denotes its factual one. The temporal index ¢ will correspond
to the years from 1850 to 2100 in our application, see Section 3. The choice of the thresh-
old u that defines the extreme event is usually delicate and depends on the case study

at hand. The relative ratio between pg ,(t) and p1 () has been called the fraction of
attributable risk by Stott et al. (2016). This type of ratio can be interpreted within Pearl’s
counterfactual theory of causality (Hannart et al., 2016; Hannart & Naveau, 2018). By
leveraging multivariate extreme value theory (EVT), this relative ratio can be optimized
to highlight causality (see, e.g., Kiriliouk & Naveau, 2020).

It is important to notice that, given a fixed u and a year of interest ¢, the proba-
bilities defined by (1) do not directly provide relevant information concerning records.
The meaning of records is not based on a fixed threshold. Instead, it is rooted in the com-
parison between the current value and past observations. For example, the statement
that 2016 was the warmest global temperature on record can only be understood with
respect to a reference period, here since the moment when reliable instrumental mea-
surements were available. Mathematically, the probability of being a record with respect
to a given period R can be generically defined as

P(Y > max(X; : t € R)), (2)

where the event {Y > max(X; : t € R)} means that the value Y is larger than any
values from the sample X obtained during the reference period R. As highlighted pre-
viously, EEA is rooted in the comparison between factual and counterfactual data, the
later being considered as the baseline. With respect to this yardstick, it is natural to won-
der what is the probability of observing a record in the counterfactual world, i.e. tak-

ing Y = X; in (2) with respect to a given reference period. A similar but more com-

plex question is to estimate what is the probability that the factual observation at time

t, i.e. taking Y = Z; in (2), would have been a record in the counterfactual world. This
leads to our two new definitions of record probabilities

pO,r(t) = P(Xt > max(Xt,l, ...,Xt,rJrl)),

p1,r(t) = P(Z; > max(X;_1, ..., Xi—r11)),

where, given the r—1 counterfactual observations before the year ¢, po () represents

the probability of the counterfactual value being the largest at time ¢, and pq ,(¢) is the
same quantity but with the last value coming from the factual world. To understand the
difference between pg .. (t) and p1 ,(t) in a non-stationarity context, we compare them in
Figure 1 for r = 50 years and two different years, ¢ = 1950 in panel (a) and ¢ = 2050

in panel (b). The sequence of blue color dots indicates a simulated example of a coun-
terfactual times series X; with ¢ varying from 1850 to 2100, while the sequence of red
color points represents a factual trajectory. The upper panel highlights the year ¢ = 1950
and its associated reference period from 1900 to 1949, the gray vertical band. The prob-
ability p1,50(1950) assesses how often the red diamond of the year 1950 could have been
above the maximum of the blue solid dots. During the time window 1900 — 1950, the
effect of the anthropogenic forcing is not very apparent in this example and p; 50(1950)
should be close to the value of pg 50(1950). In contrast, observing a factual record in 2050
with respect to the counterfactual world of 2000 — 2050 should be much more proba-

ble, i.e. p1,50(2050) is much greater than pg 50(1950) in this artificial example. The bot-
tom panel (b) highlights this phenomenon as the non-stationarity of Z; increases the like-
lihood of the red diamond of 2050 to be above the largest value of X; with ¢ spanning



2000 — 2050. In this simulated example, this can be clearly seen with the probability
density functions (pdf) displayed on the right side of Figure 1. The red pdf in panel (a)
that corresponds to the pdf of Z; for year t = 1950 has been switched up in year t =
2050. This non-stationarity in the factual world explains the change in 50-year records
and highlights the necessity to interpret records with respect to a chosen time window.

What are the odds that 1950 could have beaten a 50-year counterfactual record ?
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Figure 1. Schematic example to interpret the 50-year record probabilities (i.e. r = 50 in
Equation (3)) in a non-stationary context. Panel (a) highlights the year ¢ = 1950 and panel (b)
the year t = 2050. The blue and red colors represent a simulated counterfactual trajectory, X,

and a factual one, Z;, respectively. The solid blue dots correspond to (X¢—1,...X¢+—49). On the
right side of the plot, the probability density functions of Z;, X; and max(X¢—1,...X¢—49) are
displayed in red, blue and light blue, respectively.

As already pointed out, one advantage of preferring records over exceedances is that
there is no need to choose a threshold w like in (1), but this is not the only one. Record
analysis rely on their relative nature and, in some instances, this allows to bypass the
bias correction steps in multi-model error analysis (Naveau & Thao, 2022). More impor-
tantly, the interpretation of py ,(¢) corresponds to the classical understanding of records
for the general public. The expression of pg ,(¢) is also very simple

1
por(t) = —, for all years ¢ in a reference period of length r, (4)
r

under the assumption of exchangeability in the counterfactual world (Chow & Teicher,
2003). For example, yearly maxima of daily precipitation, due to their high spatial and
temporal variability at the yearly scale, can be considered independent and identically
distributed (iid) at the yearly scale in the counterfactual world, and therefore exchange-
able. To understand the link between exchangeability and Equation (4), and its utility
for the attribution of records, panel (a) of Figure 2 displays in greys, for illustration pur-
poses, the bivariate pdf of a simulated couple (X, X;_1), which represents the case of



r = 2 in the counterfactual world where maxima are distributed as an exchangeable
max-stable logistic distributions (see Supplementary material) (Beirlant et al., 2005; Coles,
2001). As exchangeable variables, P(X; > X;_1) = P(X;—1 > X;) and consequently
Po,2(t) = 1/2. This can be visually understood by noticing the symmetric nature of panel
(a) around the diagonal, where the reddish zone represents the event {X; > X;_1}, here
half of mass of the pdf is on this zone. In contrast, (b) focuses on the couple (Z;, X;—1)
for t = 2050, which represents the case of = 2 in the factual world, here p; 2(t) =

P(Z; > X;_1) = .71. Visually the red zone represents the event {Z; > X;_1}, we no-

tice that the bivariate pdf is no longer symmetric with respect to the reddish zone and
that it contains more mass of the density than panel (a), meaning that the probability

of this event is higher. Then, for r = 2 exchangeability of the counterfactual world al-

low us to do attribution by comparing p1 2(t) to 1/2. For r = 3, exchangeability pro-
vides P(X; > max(X;—1, X¢—2)) = P(Xt—1 > max(X, X;—2)) = P(X¢—2 > max(Xy, X¢-1)),
and leads to pp 3(t) = 1/3. This argument can be repeated for any r in an exchange-

able counterfactual world. For example, going from panel (a) to panel (c) in Figure 2
shows how the bivariate pdf of the couple (X, X;—1) has been transformed into the bi-
variate vector of (X, max(X;_1,...,X;—9)) and this setup gives the decadal record prob-
ability po10(t) = 1/10, where the reddish zone represents the event X; > max(X;_1, ..., X;—g).
In contrast, panel (d) shows py10(t) = .18 for ¢ = 2050 as probability for the factual
value Z; to become a decadal record with respect to max(X;_1, ..., X;—g). Therefrom,

the main problem we would like to address in this work is how to efficiently and rapidly
estimate p; (t) for any given year ¢ and for any given record length r in a non-stationary
context.

Joint distribution of (X; or Z;) and max(Xt_1,...,Xt_r+1)

(a) Counterfactual (b) Factual with t = 2050
X > Xiq ] Zy> Xt
P1.2=05 p1.2=0.71
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X
(c) Counterfactual (d) Factual with t = 2050
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Figure 2. Joint distribution of X; and max(X:_1, ...Xt,,.+1) and of Z; and

max(X¢—1,...Xt—r41) in 2050. (a) and (b) illustrate us the case r = 2, where our probability
of interest is p1,2(t) = P(Z: > Xi—1),(c) and (d) illustrate the case r = 10, where our probability
of interest is p1,10(t) = P(Z: > max((X¢—1,...X¢—9))), the reddish zones represents our events of

interest and the intersection between these zones and the pdf its probability.



This article is organized as follows. In Section 2, we propose a new methodology
that handles non-stationary situations when attributing records. In Section 3, we apply
this transient record approach to analyze yearly maxima of daily precipitation issued from
climate model IPSL-CM6A-LR from the CMIP6 inter-comparison projet. Finally, in Sec-
tion 4, we summarize the added value of this methodology and discuss the results. The
Appendix contains details of the estimation process and the asymptotic confidence in-
tervals for our estimators.

2 Inference of non-stationary record probabilities

Our inference goal is to estimate py ,(t) for any record period length 7. This means
that r can even be larger than the length of time series under study, i.e. our approach
should be able to extrapolate being the largest record ever observed in either the fac-
tual or counterfactual worlds. Similarly to the computation of high return levels in hy-
drology (Katz et al., 2002), the developed approach here is unconditional in the sense
that there is not need to observe a realization of the event of interest (a record) to com-
pute its probability of occurrence. Performing such unconditional extrapolation implies
that a parametric model needs to be imposed, theoretically justified and tested.

The variable of interest in our study corresponds to annual block maxima (of daily
rainfall). According to EVT, the classical three-parameter extreme generalized distri-
bution (GEV) (Coles, 2001; Beirlant et al., 2005) should represent a mathematically sound
distribution for such variables. Within this framework, one modeling possibility would
be to fit a three parameter GEV to the counterfactual time series, and a different three
parameter GEV to the factual temporal sequence. By noticing that records are relative
quantities, Worms and Naveau (2022) showed, that under the conditions stated in their
Lemma 1, the estimation of the six GEV parameters can be reduced to only inferring
the two parameters of the following Weibull random variable defined as

W, = —log G(Z) ~ Weibull (5, \r), (5)

where G(z) = P(X; < x) corresponds to the cumulative distribution function of X;
and Weibull (k;, A¢) denotes a Weibull distribution, with positive parameters k; and A,
that can be defined by its Laplace transform

> k? xr ke—1 k
E [exp(—uW?)] Z/ e UL () e @/ A" dy,
0 Ar \ Ae

A bivariate vector (X¢, Z;) satisfying (5) is said to belong to the so-called W-class. Un-
der this class, we can make the link between the computation of py ,(t) and the Weibull
Laplace transform.

As previously mentioned, in our application the sequence (X7, ..., X;) can be as-
sumed independent, and consequently

pir(t) = E(exp(=(r — )W),

whenever Z; is independent of (X1,..., X;—1). This info and a reparametrization of the
Laplace integral lead to the following expression of pq . (¢)

pLT(t):/O exp(—(r — 1)As(— log ) /%) da. (6)

We deduce that the knowledge of the two parameters (kt, \;) fully characterizes the record
probability py ,(t) for any year ¢ and any record length r. So, our inference strategy is

to first infer these two parameters and then plug their estimates in (6). Concerning the
first step, it can be implemented by coupling a Nadaraya-Watson kernel regression method
with a method of moments to estimate A, and k; (see Appendix A and Naveau & Thao,
2022). We call py ,(t) the estimator obtained by this method and its theoretical prop-
erties can be found in the Appendix and the supplementary material.



3 Analysis of yearly maxima of daily precipitation

The climate model used here is the IPSL-CM6A-LR from the CMIP6 inter-comparison
project. Our factual trajectory of yearly maxima of daily precipitation corresponds to
the historical global run over the period 1850 - 2014 combined with the rcp8.5 scenario
over the period 2015 - 2100. Our counterfactual trajectory is represented by a global run
with only natural forcings over the period 1850 — 2020.

To illustrate our approach, we first focus on the analysis of decadal and centennial
record probability evolution, i.e. p1 10(¢) and p1 100(t) for ¢ € {1850,...,2100}, at a ran-
domly selected grip point near Richmond in Virginia (USA). From Equation (4), we ex-
pect to have Py 10(¢) near 1/10 and p1,100(¢) near 1/100 during the pre-industrial period.
This is confirmed by Figure 3 that displays the decadal (panel (a)) and centennial (panel
(b)) record probability estimates of p1,10(t) and p1,100(t) as a function of the year (x-axis).
From this grid point near Richmond, a clear climate change signal emerges from the year
2002, year from which the confidence interval no longer contains 1/10. By the year 2100,
decadal record are almost four times more likely than in a world without climate change.
For the centennial record period, see panel (b), observing a record is about ten times more
likely than in world without climate change in 2100, with a clear climate change signal
emerging in 2045. Relative confidence intervals are much wider for » = 100 than r =
10 (panel (a)), this increase of the estimation uncertainty in function of r is consistent
with our calculations (see Appendix B). This is a statistical feature but not a climate
one.

(a) Decadal record probability (b) Centennial record probability
o | S |
— Pt — Proo(t)
a || = Po,10 (t) o | Po,100 (t)
o o
Lat=37.5 Lat=37.5
o | Lon=-775 o | Lon=-775
= ° Model = IPSL-CMBA-LR = O Model = IPSL-CMBA-LR
= 8
<£ = s < |
o o
o N
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=4l S
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Figure 3. Decadal (a) and centennial (b) record probability of yearly maxima of daily pre-
cipitation at Richmond, Virginia grid-point, using the IPSL-CM6A-LR climate model and the
scenario rcp8.5. The light blue zones represent the asymptotic confidence intervals of confidence
level 95%.



This analysis at a specific location leads to wonder when and where a significant
attributable signal emerges at the global scale. To answer this question, we leverage Equa-
tion (4) and we define record emergence time associated with a given record length r as
the first year when p; ,(¢) is significantly different from its counterfactual value, i.e. dif-
ferent from pg ,(t) = 1/r, with confidence level of 95%. Mathematically, this brings the
following definition

1 ~
T0.05(7) = min {t such that for all ¢’ > ¢, - ¢ [p1,-(t") £ 1.96 crrt/]} , (7)

where 7,; represents the estimation of the asymptotic standard deviation and 1.96 cor-
responds to the Gaussian significance level 0.95 (see Appendix B for details). Equation

(7) allows us to identify the emergence year of any gridpoint. Panel (a) of Figure 4 high-
lights decadal records probability ratio on 2050 in the zones where by that year there

is already a clear signal of climate change. By 2050, there is a clear signal on 80% of the
globe, we expect decadal records on tropical latitudes to be up to seven times more likely
than in a world without anthropogenic forcing. We do not only observe an increase of
decadal record probability, we can also identify a clear decrease in the south and north
Atlantic ocean and the south Pacific ocean, which is consistent with previous studies show-
ing a decline of precipitation in these zones (Pfahl et al., 2017). In between these zones

of increasing and decreasing probability we observe transition zones, where climate change
effect is not clear. When analyzing centennial records, even if climate change signal is

less clear, the increase and decrease of probability patterns remain unchanged. Equa-

tion (7) also brings out climate change signal timeline. Panel (b) of Figure 4 shows decadal
record emergence times, i.e. 79.95(10) over the globe. 26% of climate change signal emerged
between 2000 and 2023, adding up to this last year 57% of the globe.

4 Conclusion and discussion

To summarize, we proposed and studied a new EEA record analysis in a transient
setup to estimate record probability at each time step ¢ and for any record length r. Our
approach allows non-linear trends of the factual world by allowing our two Weibull pa-
rameters to be time dependent. This record approach has a straightforward interpreta-
tion and it bypasses the estimation of both distributions X; and Z; separately. In our
framework (X1, ..., X;) are considered independent. Yet, this approach is still valid in
a dependent scenario, if the sequence corresponds to any max-stable time series.

Our analysis of yearly maxima of daily precipitation obtained from the IPSL-CM6A-
LR (scenario rcp8.5) indicates that precipitation records are affected all over the world,
with a clear climate change signal on decadal records before the year 2050. The trop-
ical latitudes and the polar circles appear to be the zones where record probabilities will
increase the most and the north and south Atlantic ocean those where they clearly de-
crease. This result is consistent with previous studies on changes of precipitation (Pfahl
et al., 2017; Tandon et al., 2018; Dong et al., 2021). However, our conclusion are only
valid for the IPSL-CM6A-LR climate. As improvements of this methodology, it would
be interesting to incorporate multi-model climate error. For example, the technique pro-
posed by Naveau and Thao (2022) may be used to handle this type of error. In addition,
our analysis was made independently for each grid and it is likely that the signal in record
emergence times will be enhanced by incorporating spatial information at a regional scale.
Although more statistically complex, multivariate EVT used in EEA (Kiriliouk & Naveau,
2020) could be implemented to perform this task.

Appendix A Estimation algorithm for p, ()

Defining I and J as the lengths of the counterfactual and factual trajectories, t;
is the time step j with j € {1,...,J} and X;, and Z;, the random variables associated
with the counterfactual and factual worlds at time t;.
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Figure 4. (a) Decadal record probability ratio on 2050 with respect to the counterfactual
world, the white zones represent the gridpoints where by 2050 climate change signal has still not
emerged, using (7) as criteria. (b) Emergence record times defined by (7), the white zones rep-
resent the gridpoints where by 2100 climate change signal has still not emerged, the grey points
represent the gridpoints where p1,10(¢)’s confidence interval does not contains 1/10 during the
pre-industrial period, these points are left out of our analysis as considered poorly represented.
Results obtained using the IPSL-CM6A-LR climate model and the scenario rcp8.5, with a spatial

resolution of 72 x 36 grid points.

The estimation process of py ,-(t), when we assume the W-class assumption for all
t, is a three step algorithm. The first step is to estimate pq 2(t) and p1 3(¢), for this we
use the non-parametric estimation method developed in Naveau et al. (2018); Naveau
and Thao (2022), which locally averages G(Z;) and G*(Z;) by using the Nadaraya-Watson
kernel regression method (Hardle, 1991), where G is the CDF of X;. Hence we use Gy,
the empirical estimator of G and K}, the renormalized Epanechnikov kernel function of
bandwidth &, to estimate py 2(t) and pq 3(t) as



J
ﬁ1,2(t) = ZKh(t - tj) G[(th)

jl
Prs(t) = Y Ki(t—t;)Gi(Z,),
where,
Kh(t—t]’) k((t_tj)/h)

CIY k(- /)

The second step is to use (p1,2(t), p1,3(t)) and the method of moments to estimate
At and ky, for a chosen t, via the following estimating equations, issued from Equation
(6) and the W-class assumption :

Iy 1 3 i

P12(t) = fo exp(—A¢(—log z)Y/kt) da

. 1 Q P

p1s(t) = fo exp(—2X¢(—log )/ %) da .
Finally, plugging the parameters \; and k; in Equation (6) we can compute p; () for
any chosen value of r. In summary, starting from a counterfactual and factual trajec-

tory and a given r, this methodology allows us to estimate the record probability p; ,(t)
at any chosen time ¢, taking into account the non-stationarity of Z;.

Appendix B Asymptotic confidence intervals

The following theorem is a non-stationary generalization of Worms and Naveau (2022)
(Proposition 4).

Theorem

When I and J go to infinity, if \/J/I converges to some finite constant, then for
any Xy and Z; belonging to the W-class and any fized r > 3, the parametric estima-
tor p1,r(t) satisfies

\/jﬁl,r(t) _pl,r(t) é/\/‘(o,l)

Ort
with

Oy = \/Jv-—1(9t)(J1,2(9t))‘12t (J{2(06)) " (Jr—1(0:))",
where 0; = (A, ki) is a vector containing the parameters of the Weibull distribution at
time t. J;(6;) is the Jacobian matriz of g;(6;) = fol exp(—jA (= log ) /*)dz at time
t for any integer j > 1, J1 2(0;) the Jacobian matriz associated to 0y — (g1(0), g2(0:))T
at time t and 3, the asymptotic covariance matriz of (p1.2(t)—p12(t),p1.3(t)—p1.3(t))”
(see Supplementary material). Then, we can compute the confidence intervals of signif-
icance level 1 — « as follows

[ﬁl,r (t) + Zozart] )

simply issued from the replacement of o,; by 7,4 and with z, the Gaussian threshold as-
sociated to significance level 1 — a.
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