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ABSTRACT

LiteBIRD is a planned JAXA-led cosmic microwave background (CMB) B-mode satellite experiment aiming for launch in the late 2020s, with
a primary goal of detecting the imprint of primordial inflationary gravitational waves. Its current baseline focal-plane configuration includes
15 frequency bands between 40 and 402 GHz, fulfilling the mission requirements to detect the amplitude of gravitational waves with the total
uncertainty on the tensor-to-scalar ratio, δr, down to δr < 0.001. A key aspect of this performance is accurate astrophysical component separation,
and the ability to remove polarized thermal dust emission is particularly important. In this paper we note that the CMB frequency spectrum falls
off nearly exponentially above 300 GHz relative to the thermal dust spectral energy distribution, and a relatively minor high frequency extension
can therefore result in even lower uncertainties and better model reconstructions. Specifically, we compared the baseline design with five extended
configurations, while varying the underlying dust modeling, in each of which the High-Frequency Telescope (HFT) frequency range was shifted
logarithmically toward higher frequencies, with an upper cutoff ranging between 400 and 600 GHz. In each case, we measured the tensor-to-scalar
ratio r uncertainty and bias using both parametric and minimum-variance component-separation algorithms. When the thermal dust sky model
includes a spatially varying spectral index and temperature, we find that the statistical uncertainty on r after foreground cleaning may be reduced
by as much as 30–50% by extending the upper limit of the frequency range from 400 to 600 GHz, with most of the improvement already gained
at 500 GHz. We also note that a broader frequency range leads to higher residuals when fitting an incorrect dust model, but also it is easier to
discriminate between models through higher χ2 sensitivity. Even in the case in which the fitting procedure does not correspond to the underlying
dust model in the sky, and when the highest frequency data cannot be modeled with sufficient fidelity and must be excluded from the analysis, the
uncertainty on r increases by only about 5% for a 500 GHz configuration compared to the baseline.

Key words. ISM: general – cosmology: observations – cosmic background radiation – polarization – cosmological parameters – Galaxy: general

1. Introduction

One of the key predictions of the current cosmological
inflationary paradigm is the existence of a stochastic back-
ground of primordial gravitational waves created shortly after
the Big Bang (Starobinsky 1980; Sato 1981; Guth 1981;
Albrecht & Steinhardt 1982; Linde 1982, 1983). If such waves

? Corresponding author: U. Fuskeland,
e-mail: unnif@astro.uio.no

do exist, they should induce a particular and unique polariza-
tion signature in the cosmic microwave background (CMB)
on large angular scales, corresponding to so-called B-mode
or divergence-free polarization (Kamionkowski et al. 1997).
Detecting this imprint in the CMB ranks among the top observa-
tional priorities in modern cosmology, and huge efforts are cur-
rently being made to develop the necessary instrumentation, data
analysis techniques, and theoretical modeling required for this
task.
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Among the leading international B-mode efforts is LiteBIRD
(the Lite (Light) satellite for the study of B-mode polarization
and Inflation from cosmic background Radiation Detection), a
satellite concept chosen by JAXA as one of their top prior-
ities for the coming decade, aiming for a launch from 2028
to 2029 (Hazumi et al. 2020; LiteBIRD Collaboration 2022).
The development of LiteBIRD has already been ongoing for
more than 13 years, evolving gradually from a relatively sim-
ple and light-weight concept that originally included only six
frequency channels between 60 and 280 GHz (Hazumi et al.
2012; Matsumura et al. 2014) into the current baseline config-
uration spanning 15 frequency bands between 40 and 402 GHz
(Hazumi et al. 2020). This increased sophistication came as
a direct response to observational insights gained regarding
the astrophysical sky as measured by CMB experiments such
as Planck (Planck Collaboration I 2020) and BICEP2/Keck
(Ade et al. 2016). These observations pointed toward a complex
reality in which both polarized synchrotron and thermal dust
emission must be modeled and subtracted with exquisite preci-
sion, while simultaneously accounting for unpolarized compli-
cations such as carbon monoxide and time-dependent zodiacal
light emission.

In the following, we revisit the upper limit of the LiteBIRD
frequency range, and examine its implications for the instru-
ment’s ability to distinguish between CMB and astrophysical
foregrounds. While LiteBIRD Collaboration (2022) has already
demonstrated that the baseline configuration fully achieves the
primary mission goal – namely to constrain the tensor to scalar
ratio with the total uncertainty, δr, down to δr < 0.001 – it is still
desirable to optimize the uncertainties from component separa-
tion, which corresponds to one-third of the total budget error on
r, in order to increase the overall mission margins. Exploring that
is the main motivation for the current work. At the same time,
we emphasize that this paper only considers the raw sensitiv-
ity and component separation aspects of the instrumental design.
We need to perform a comprehensive trade study before the col-
laboration can decide on a baseline change. The scope of the
current paper is simply to determine whether sufficiently signif-
icant gains are available to warrant such a study.

To this end, we compared the current baseline configuration
with five alternative configurations in which the upper limit was
varied between 400 and 600 GHz in steps of 40 GHz. The abso-
lute upper center frequency limit of 600 GHz was dictated by the
current bolometer design, which has a hard cutoff at 680 GHz
(Novotny & Meincke 1975). To additionally minimize the num-
ber of changes required for the overall satellite design, we chose
to only modify one of the three LiteBIRD telescopes, namely the
High-Frequency Telescope (HFT); the Low- and Mid-Frequency
Telescopes (LFT and MFT) have been left unchanged. Frequen-
cies up to 600 GHz can be considered only because LiteBIRD is
a space mission, while ground-based experiments are restricted
to frequencies below 300 GHz due to the atmospheric windows
(Liebe 1981; Pardo et al. 2001).

The main question considered in this paper is the quantita-
tive relationship between the frequency range and the tensor-to-
scalar ratio uncertainty marginalized over polarized thermal dust
emission. Previous analyses (e.g., Remazeilles et al. 2016) have
suggested that a low cutoff on the high frequency side only sup-
ports very limited ability to constrain the spectral energy dis-
tribution (SED) of thermal dust emission. At the same time,
it is well known that the CMB SED falls nearly exponen-
tially above 300 GHz relative to the thermal dust SED (see e.g.,
Fig. 35 of Planck Collaboration IV 2020), and therefore even
relatively small changes in the cutoff frequency may have a

dramatic impact on the confusion between CMB and thermal
dust. Quantifying the importance of including frequencies higher
than where the CMB SED drops off in a realistic setting is the
main goal of the current paper. We note that while we sub-
sequently address LiteBIRD in particular, the main arguments
are instrument-agnostic, and the primary conclusions are there-
fore generally applicable to any future space mission or balloon-
borne experiment. Indeed, similar analyses have recently been
published for both the PICO (Aurlien et al. 2023) and ECHO
(Sen et al. 2022) CMB satellite concepts with consistent results.

This challenge of optimizing the frequency range may
be separated into two important and complementary aspects,
namely optimizing our sensitivity to the tensor-to-scalar ratio
overall and maximizing our ability to reject wrong sky models.
The following analysis is organized accordingly. To address the
first question, we analyze ideal foreground simulations in which
the fitting model matches the simulated sky, and estimate the
tensor-to-scalar ratio uncertainty as a function of frequency cov-
erage. In this case, we adopt a standard one-component modi-
fied blackbody (MBB) thermal dust model with spatially vary-
ing spectral parameters, following closely in the footsteps of
LiteBIRD Collaboration (2022). In order to ensure robustness in
terms of analysis-dependent details, we employed five indepen-
dent component-separation methods for this task, three of which
implement different variations of parametric fitting (Commander
– Eriksen et al. 2008, FGBuster – Errard & Stompor 2019, and
Moment Expansion – Vacher et al. 2022), while the last two
implement (semi)blind internal linear combination (ILC) fit-
ting (Needlet ILC, NILC and constrained moment ILC, cMILC
– Remazeilles et al. 2011, 2021).

To assess the capability of rejecting incorrect data models,
we analyzed simulations based on an extended thermal dust
model, namely the physically motivated silicate-iron-carbon
model (SiFeC; Hensley & Draine 2017). We evaluated the resid-
ual χ2, and compared this with the derived tensor-to-scalar esti-
mates. For this study, we note that only Commander currently
provides χ2-based goodness-of-fit estimates, and we therefore
only reported results for that code in this part of the paper. How-
ever, we note that work is currently ongoing on implementing
similar statistics for other methods, and those results will be
reported elsewhere.

It is also important to note that the foreground sky in this
paper was approximated as a “single layer model,” and no
attempt was made to take into account the full 3D structure
of the Milky Way. Full line-of-sight integration of 3D effects
would introduce additional frequency-decorrelation effects
(Tassis & Pavlidou 2015; Chluba et al. 2017; Pelgrims et al.
2021; Ritacco et al. 2023; Vacher et al. 2023a), and the follow-
ing results therefore represent an optimistic view of the true
sky in terms of complexity. In reality, there will be additional
structures, both spatially and spectrally, and fully resolving these
would in principle require even more data than considered here,
for instance in terms of additional frequency bands, wider fre-
quency range, or dedicated 3D constraints on the Galactic mag-
netic field. The following optimization results should therefore
be considered as a lower bound on what is actually needed for a
future production analysis.

The paper is organized as follows. In Sect. 2 we provide a
brief overview of the LiteBIRD concept and current baseline,
and we define a set of alternative configurations to be considered.
In Sect. 3 we describe the simulations used for the present anal-
ysis, and in Sect. 4 we briefly survey the component-separation
methods used in this paper; algorithmic details are deferred to
the Appendices. In Sect. 5, we present the results derived from
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Table 1. Summary of LiteBIRD HFT instrument configurations considered in this paper in terms of frequency, beam size, and sensitivity.

Parameter Model Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

Frequency (GHz) M0 195.0 235.0 280.0 337.0 402.0
M1 214.5 258.5 308.0 370.7 442.2
M2 234.0 282.0 336.0 404.4 482.4
M3 253.5 305.5 364.0 438.1 522.6
M4 273.0 329.0 392.0 471.8 562.8
M5 292.5 352.5 420.0 505.5 603.0

Beam FWHM (arcmin) M0 28.6 24.7 22.5 20.9 17.9
M1 27.7 24.3 22.0 20.5 17.5
M2 26.0 23.1 21.2 19.9 17.1
M3 24.6 22.1 20.6 19.4 16.5
M4 23.5 21.4 20.1 18.6 15.6
M5 22.6 20.8 19.7 17.1 13.9

NET array (µK
√

s) M0 5.2 5.3 6.8 11 24
M1 5.9 6.4 9.2 16 37
M2 6.7 8.0 12 23 60
M3 7.8 9.9 16 34 100
M4 9.1 13 22 50 170
M5 11 16 30 75 280

Notes. M0 denotes the baseline configuration, while Mi indicates a hypothetical instrument for which each HFT frequency range is scaled by a
constant factor of (1 + i/10).

an ideal model analysis, while in Sect. 6 we consider modeling
errors. Final conclusions are drawn in Sect. 7.

2. Baseline and extended LiteBIRD instrument
configurations

In this section, we discuss the LiteBIRD mission character-
istics that are relevant to the present analysis. A compre-
hensive review of the instrument concept can be found in
LiteBIRD Collaboration (2022). First, the LiteBIRD detector
arrays are populated with a total of 4508 lenslet- or horn-coupled
transition edge sensor (TES) bolometers fabricated on silicon
wafers, covering 15 frequency bands between 40 and 402 GHz.
The LiteBIRD bolometers provide exquisite sensitivity across
this full frequency range, but the technology itself is limited
to frequencies <678 GHz, corresponding to the superconducting
gap of niobium – the material used for mm-wave transmission
lines on the detectors (Novotny & Meincke 1975). This value
therefore naturally defines a clear upper limit for the feasible
frequency range of the LiteBIRD instrument in any modification
to the baseline.

As a second consideration, to ensure robust separation
between the actual polarization signal and a wide range of
intensity-specific contaminants, LiteBIRD will employ half-
wave plates (HWPs) spinning at a rate of 0.5 to 0.8 Hz. Important
strengths of mesh filter-based HWPs are low mass requirements
and high transmission. However, an important drawback is finite
effective bandwidth, typically corresponding to a ratio between
its maximum and minimum effective frequency of about 2.3
(LiteBIRD Collaboration 2022). As such, the full relative Lite-
BIRD frequency range of 402 GHz/40 GHz≈ 10 cannot be sup-
ported within a single telescope, but rather three separate tele-
scopes are required. For LiteBIRD these are called the Low-,
Mid-, and High-Frequency Telescopes, respectively, or LFT,
MFT, and HFT as a short-hand. While this organization comes
at a significant cost in terms of system complexity, it also allows
significant optimization of each system, and different technolo-
gies may be used as appropriate.

In total, the three telescopes span 22 independent frequency
channels, covering 15 frequency bands; there is an overlap of
three channels inside the LFT, three channels between the LFT
and MFT, and an overlap of one channel between the MFT and
HFT. These overlaps represent important cross-checks against
systematic errors in any of the three telescopes. Each frequency
band overlaps the adjacent bands by approximately half the
bandwidth. The radiation is detected by seven different wafer
types, each containing one or two types of multichromatic pixels.
Each pixel, for each polarization state, distributes power through
one, two, or three different bandpass filters to independent TES
detectors. The HFT detectors are implemented in terms of three
different detector modules; one with 3-color pixels, one with 2-
color pixels, and the highest frequency band on single-color pix-
els (Montier et al. 2020).

The main goal of the current paper is to investigate the opti-
mal LiteBIRD frequency range with respect to the removal of
the thermal dust from the CMB polarization signal. Given the
mature state of the current baseline, modifications must be real-
istic and the scientific improvements for doing this must be sub-
stantial. One of the parameters that may still be adjusted, how-
ever, is the effective HFT frequency range. Specifically, it is
possible to shift the entire frequency range by a constant fac-
tor, which ensures that the relative factor between the highest
and lowest frequency bands is unchanged, as required by the
mesh-filter HWP. In this paper, we therefore defined a set of
extended HFT configurations parametrized by a scaling factor, f ,
that varied between 1.0 and 1.5 in steps of 0.1, and shifted
the entire HFT frequency range. These models were denoted
Mi, such that M0 corresponded to the baseline, while M5 cor-
responded to an extended model with a highest frequency of
1.5 × 402 GHz ≈ 603 GHz. For each modified frequency chan-
nel, we calculated new instrumental parameters, such as sensi-
tivity or beam size, using the same methodology as used for the
baseline in LiteBIRD Collaboration (2022). This included eval-
uating the system temperature through ray tracing from the feed
to terminals, either inside the telescope or the sky. The beam full
width at half maximum (FWHM) values were estimated via the
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Fig. 1. Sensitivity versus frequency for the various LiteBIRD configura-
tions listed in Table 1. The black crosses indicate LFT or MFT frequen-
cies that are not modified in this paper, while colored symbols indicate
the various modified HFT frequencies.

edge taper at the telescope aperture, as calculated from the feed
far-field pattern. The resulting values are summarized numeri-
cally in Table 1, while Fig. 1 shows the sensitivity as a function
of frequency for the extended bands.

It is interesting to note that the sensitivity of two channels
in different configurations can vary significantly, despite the fact
that both their center frequencies and detector counts are nearly
identical; a typical example of this is channel 1 in M2 and chan-
nel 2 in M0. The reason for this is that the optics for the HFT
are optimized for the telescope’s full frequency bandwidth, not
any single channel. Frequencies near the edge of the telescope
bandwidth typically have poorer optical absorption and reflec-
tion properties than frequencies nearer the center of the band.

We also note that the LFT and MFT are left unchanged in
this exercise, and their instrumental parameters are not listed in
Table 1. The primary motivation for this choice is programmatic;
changing the baseline at this late stage will carry a nonnegli-
gible cost, and it is therefore highly desirable to make as few
changes as possible. At the same time, it is important to note
that this choice does come at a cost in the form of weaker sys-
tematics cross-check between the MFT and HFT, since the two
telescopes no longer have overlapping frequency ranges. Thus,
these modified configurations may be considered as trading off
robustness toward “unknown unknowns” (for instance, subtle
HWP frequency effects) against robustness to a known unknown
(polarized thermal dust emission). If this issue is considered suf-
ficiently important at a programmatic level, it is of course also
possible to modify the lower-frequency telescopes, albeit at a
somewhat higher cost.

3. Simulations

The LiteBIRD simulations considered in this paper are gener-
ated directly in pixel space, and account only for sky signal and
white noise. The sky emission components for all 22 frequency
channels are generated using the PySM (Python Sky Model;
Thorne et al. 2017) package. The LFT and MFT channels are
defined according to the baseline instrument configuration in
LiteBIRD Collaboration (2022), while the HFT channels are
generated in six versions, called M0–M5, as tabulated in
Table 1. Here, M0 is the LiteBIRD baseline, and M1–M5 are

the frequency extended data sets. The instrumental summary
parameters listed in this table are derived from first principles
using the same methodology as the baseline configuration in
LiteBIRD Collaboration (2022), properly accounting for realis-
tic optics, bandpass, and bolometer effects.

We simulate the polarized microwave emission considering
three different components, namely a cosmological CMB signal
and both diffuse synchrotron and thermal dust radiation from our
own Galaxy. The CMB component is simulated as a Gaussian
random realization of the Planck 2018 ΛCDM best-fit power
spectrum (Planck Collaboration VI 2020). In the following, we
set the tensor-to-scalar ratio, r, to zero. Obviously, a main goal
of LiteBIRD is to actually measure a non-zero value of r, and
it could therefore be of interest to also consider non-zero values
of this parameter. However, this paper is primarily concerned
with the relative performance of different instrument configura-
tions. This comparison is not sensitive to the exact value of r,
and then for the purpose of our analyses we decided to use r = 0
as reference, which also provides the benefit of not having to
deal with the cosmic variance noise term. Future work focusing
on absolute detection level performance should obviously revisit
this with a range of alternative cosmological parameter values,
including r, the optical depth of reionization τ, and others.

Galactic synchrotron radiation is physically generated by
cosmic-ray electrons that are accelerated by the Galactic mag-
netic field. This signal is highly polarized with a polarization
fraction that can reach 20% at intermediate and high Galactic
latitudes (Planck Collaboration XXV 2016; Kogut et al. 2007).
Synchrotron emission represents the dominant foreground at
frequencies below about 70 GHz (Krachmalnicoff et al. 2016;
Planck Collaboration IX 2016). As a first approximation, the
synchrotron SED follows a power law with a spatially vary-
ing spectral index (Lawson et al. 1987; Platania et al. 1998;
Bennett et al. 2003). Recent analyses support a spectral index
of βs ≈ −3 (Fuskeland et al. 2014, 2021), with variations on
the order of 10% across the sky on degree angular scales
(Krachmalnicoff et al. 2018). In the following, we adopt the
s1 PySM model for synchrotron emission, corresponding to a
strict power-law spectral behavior with spatially varying spectral
index. We note that synchrotron emission is largely irrelevant for
the highest LiteBIRD frequencies, and any conclusions regard-
ing the optimal HFT frequency range will be largely independent
of the synchrotron model.

The same does, however, not hold true for thermal
dust emission, which is the dominant foreground compo-
nent at frequencies above 70 GHz (Krachmalnicoff et al. 2016;
Planck Collaboration IX 2016). Thermal dust emission is gen-
erated by vibrating nonspherical dust grains in the interstellar
medium (ISM), and is polarized because the small axes of the
grains are preferentially aligned parallel to the local magnetic
field (Hoang & Lazarian 2016; Hensley & Draine 2023). The
detailed physical processes involved in this are, however, more
complicated than for synchrotron emission, and the predicted
emission from any region of the ISM will depend on a wide
range of local properties, including dust grain composition, the
local radiation field and magnetic field structure. For robustness,
we therefore consider two different thermal dust SED models
in the following, namely; (1) a phenomenologically motivated
single modified blackbody parametrized by a spatially vary-
ing spectral index and temperature (1 MBB; PySM model d1);
and (2) a physically motivated silicate-iron-carbon model
(SiFeC; PySM model d8; Hensley & Draine 2017). The 1 MBB
model is very often used in the literature. The second model is
more exotic, and is physically motivated rather than data-driven.
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Fig. 2. SEDs of the two dust models considered in this work, the
1 MBB, (red line) and the physical dust model SiFeC, (green line). The
black line shows the SED of the CMB, while the gray refers to syn-
chrotron emission. All the SEDs are in brightness temperature units and
are computed considering the rms of Stokes Q and U maps on 70% of
the sky. Sky masks are obtained by retaining the cleanest fraction of
the sky in polarized intensity at 100 GHz. Vertical gray lines show the
central frequency of the baseline LiteBIRD frequency channels, and in
blue dashed lines we report the central frequency of the HFT M5 exten-
sion. The bottom panel shows the percentage difference of SiFeC with
respect to MBB.

They also differ in complexity in terms of spatial variation. The
d1 model has both a spatially varying spectral index and tem-
perature, while d8 has spatially constant spectral parameters.
Future work should also consider models that include physically
motivated frequency decorrelation, for instance by implement-
ing proper multi-layer 3D models. This is however beyond the
scope of the current paper.

Figure 2 shows the dust SEDs for the two different mod-
els computed on 70% of the sky. Sky masks are obtained by
retaining the cleanest fraction of the sky in polarized intensity at
100 GHz. As seen in the bottom panel, the relative difference
between the two models can reach tens of percent across the
LiteBIRD frequency range, and properly accounting for these
variations will be essential for making a robust CMB extrac-
tion. For comparison, the gray and black curves show the syn-
chrotron and CMB SEDs. The near exponential drop-off of the
CMB spectrum is clearly seen above about 300 GHz, leading to
a rapidly increasing ratio between thermal dust and CMB emis-
sion between 400 and 600 GHz.

Instrumental effects are modeled under highly idealized
assumptions, since these are considered to be subdominant
regarding the central question of frequency range versus ther-
mal dust reconstruction, and rather only add computational
complexity and cost. In particular, we model all instrumental
bandpasses in terms of Dirac δ functions, all instrumental beams
as azimuthally symmetric Gaussians, and the noise is assumed
to be uncorrelated, Gaussian, and spatially isotropic. Center fre-
quencies, beam FWHMs, and array noise equivalent tempera-
tures (NETs) are all listed in Table 1. Under these assumptions,
the simulation procedure is very straightforward, and does not
require any low-level time-domain processing.

The data model for a given frequency band ν may be
described as

dν = sν + nν, (1)

where d represents a given (simulated) sky map, s denotes the
sky signal, and n is instrumental noise. The simulated sky maps
analyzed in this paper are based on two different thermal dust
emission models. For the baseline model, we only fit the one-
component MBB model, while the SiFeC model is used to assess
modeling errors and is therefore only present in the simulations,
and not in the data model in the methods. Including also CMB
and synchrotron emission, Eq. (1) may then be written in the
following explicit form, adopting thermodynamic CMB temper-
ature units,

dν = aCMB (2)

+ as(ν) γ(ν)
(
ν

ν0,s

)βs

(3)

+ ad(ν) γ(ν)
e

hν0,d
kTd − 1

e
hν

kTd
−1

(
ν

ν0,d

)βd+1

(4)

+ nν, (5)

where {aCMB, as, ad} are the signal amplitudes relative to the
reference frequency ν0 for each signal, γ(ν) is the conversion
factor between the Rayleigh-Jeans brightness temperature and
the CMB thermodynamic temperature, {βs, βd} are the spectral
indices, Td is the temperature for thermal dust, and h and k
are the Planck and Boltzmann constants, respectively. In prin-
ciple, this sky model is valid for both intensity and polarization,
with individual parameters fitted for each Stokes parameter. In
practice, however, we only include CMB, synchrotron and ther-
mal dust emission in polarization, and we additionally assume
βQ = βU .

All simulations are generated both at full angular resolution
(adopting a HEALPix pixelization with a resolution parameter
of Nside = 512; Górski et al. 2005) and at low angular reso-
lution (10◦ FWHM, Nside = 16). The former set is used by
the Moment expansion, FGBuster and NILC/cMILC analyses,
while the latter is used by the Commander analysis. We note
that the low-resolution maps do not include subpixel (or sub-
beam) structure, but are generated natively at the target resolu-
tion. The motivation for this choice is that sub-pixel structure
may excite spurious B-mode power, both from beam averaging
and from parallel transport inaccuracies during HEALPix down-
grading. At the same time, a future LiteBIRD Commander analy-
sis will be performed in the time-domain with full angular reso-
lution data, following a methodology similar to that described by
BeyondPlanck Collaboration (2023), and this complication will
therefore not be relevant for the final LiteBIRD analysis.

4. Component-separation algorithms

In order to ensure that the general results are robust with
respect to algorithmic details, we employ a total of five
different component-separation algorithms in the following.
These may be divided into two main groups, namely para-
metric (Commander, FGBuster, and Moment Expansion) and
(semi)blind methods (NILC and cMILC).
Commander (Eriksen et al. 2008) is a Bayesian Gibbs sam-

pler that has been successfully applied to Planck, WMAP, Lite-
BIRD, and many other data sets (e.g., Planck Collaboration IX
2016). The defining feature of this method is an explicit joint
parametric model that simultaneously accounts for cosmolog-
ical and astrophysical parameters, and this global model is
explored by textbook Markov chain Monte Carlo methods. A
major strength of this method is the availability of well-defined
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goodness-of-fit χ2 statistics and realization-specific uncertainty
estimates, while a major weakness is a high computational cost.
In this paper we only apply this method to low-resolution simu-
lations; for further details, see Appendix A.1.
FGBuster (Puglisi et al. 2022) is based on a similar statis-

tical foundation as Commander, but uses nonlinear optimization
to explore the likelihood function rather than Monte Carlo sam-
pling. It further speeds up the estimation process by first esti-
mating all nonlinear spectral foreground parameters marginally
with respect to linear amplitude parameters; then it estimates
amplitudes conditionally with respect to the spectral parameters.
Finally, angular power spectra are computed from the amplitude
maps. This method has been used extensively for LiteBIRD fore-
casting and optimization (e.g., LiteBIRD Collaboration 2022).
For further details, see Appendix A.2.

The moment-expansion method (Chluba et al. 2017;
Vacher et al. 2023b) also has a similar statistical foundation as
Commander and FGBuster but it allows for Taylor-expansion-
based distortions in the SED models for each foreground to
account for nonlinear averaging effects, for instance from line-
of-sight integration, beam convolution or harmonic expansion.
This method has already been applied to baseline LiteBIRD
simulations by Vacher et al. (2022). For further details, see
Appendix A.3.

While each of the above methods is based on explicit and
nonlinear parametric foreground models, the Needlet Internal
Linear Combination (NILC; Delabrouille et al. 2009) method
takes a fundamentally different approach, and assumes simply
that the total foreground signal may be written as a linear com-
bination of the true CMB signal and the total foreground signal
at each frequency channel, and then form the linear combination
of frequency maps that minimizes the variance of the final prod-
uct, see Appendix B.1. To account for possible spatial variations
in the foreground SED, the linear combination weights are com-
puted separately in needlet space, allowing for localized opti-
mization both in terms of sky position and angular scale. This
method has been applied to a wide range of data sets, including
Planck (e.g., Planck Collaboration IX 2016) and LiteBIRD. For
further details, see Appendix B.2.

Finally, we consider the more recently developed constrained
moments ILC method (cMILC; Remazeilles et al. 2021), which
combines the moment-expansion and NILC methods. Specifi-
cally, additional constraints are imposed on the ILC weights that
explicitly cancels out individual foreground components through
their Taylor-expanded SEDs. Each moment corresponds to one
additional linear constraint in the ILC solution, and the combina-
tion of foreground-specific and the variance constraints is solved
through a single Lagrange multiplier system. For further infor-
mation, see Appendix B.3.

5. Ideal model analysis: Estimation of statistical
uncertainties

When contemplating a major modification of a satellite’s base-
line design, there are at least two aspects that must be considered
carefully. The first aspect is sensitivity – we must investigate how
much stronger (or weaker) constraints on the tensor-to-scalar
ratio the proposed modification will lead to. The second aspect
is goodness-of-fit – we must also investigate whether the pro-
posed modification will affect our sensitivity to modeling errors
or our ability to detect such errors. These two main aspects are
addressed individually in this and the next section.

Starting with the sensitivity aspect, we approach this by ana-
lyzing the simulations summarized in Sect. 3 for each of the

Fig. 3. Comparison of the reconstructed CMB B-mode maps from NILC
for the M0 (top row) and M5 (bottom row) instrument configurations.
The two panels in each row show opposite hemispheres aligned with
the Galactic plane along the equator, and the north and south Galactic
poles at the top and bottom, respectively. The left and right panels are
centered on the Galactic center and anticenter.

instrument configurations described in Sect. 2. In this section,
we primarily focus on the simplest foreground model, namely
the one-component MBB thermal dust model, for which model-
ing errors are minor (it is worth noting that they are by no means
nonexistent, since both informative priors and spatial variations
in the fitted parameters can lead to biases).

We also note that each of the five component-separation
methods discussed in Sect. 4 have their particular strengths and
weaknesses, and our goal in this paper is not to perform a head-
to-head component-separation algorithm comparison, but it is
rather to assess the capabilities and limitations of the LiteBIRD
frequency selection itself. In the following, we therefore present
selected results from among the five methods, depending on
which product is most convenient for a particular application.
In general, however, we note that all five methods provide qual-
itatively similar results.

5.1. Map residuals

First, to build intuition regarding the overall impact of the fre-
quency range, we show in Fig. 3 the reconstructed B-mode
NILC1 map for one arbitrarily selected simulation and each of
the two most extreme instrument configurations, M0 (top row)
and M5 (bottom row). While residual foreground contamination
is clearly visible in the Galactic disk region of the CMB B-mode
map for M0, we see that these residuals are significantly reduced
for the M5 configuration, with a wider frequency range.

1 Note that NILC, unlike the parametric methods, is defined natively in
EB space rather than Stokes QU space.
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Fig. 4. Commander residual (output minus input) maps for selected parameters and instrument configurations for one arbitrarily selected Monte
Carlo sample. Columns show, from left to right: (1) CMB Stokes Q; (2) CMB Stokes U; (3) thermal dust spectral index; and (4) thermal dust
temperature. Rows show M0, M2, and M5. The maps show one typical realization. Gray pixels indicate the masked pixels with fsky = 90%.
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Fig. 5. Power spectrum of residual foreground contamination (left panel) and noise (right panel) with NILC (solid lines) and cMILC (dashed lines)
on fsky = 50% of the sky for the M0 (blue) and M5 (orange) configurations. For reference, we show the input CMB B-mode signal (r = 0, black
dash-dotted line), the primordial B-mode signal expected from theory for values ranging from r = 10−2 down to r = 10−3 (gray-shaded area), and
the residual lensing cosmic variance (yellow-shaded area) for no delensing (AL = 1) up to 90% delensing (AL = 0.1). All the spectra are binned
with a multipole bin size of ∆` = 16.

A complementary view from the parametric Commander
code is shown in Fig. 4 in the form of residual (output-minus-
input) maps for four key quantities, namely the Stokes Q and
U CMB maps and the thermal dust spectral index and tempera-
ture for the M0, M2, and M5 instrument configurations2. In all
cases, we see that the quality of the fit improves with increas-
ing maximum frequency. In the CMB maps, this is most clearly
seen in the form of reduced scatter around the Galactic plane,
while for Td the dark blue area in the high Galactic latitudes
systematically fade from M0 to M5; correspondingly, the dark
red area in βd also gradually fade away. These observations may
be understood intuitively by noting that an increased frequency

2 For visualization purposes, the gray pixels in this figure indicate a
90% analysis mask, which is significantly smaller than the default 73%
confidence mask adopted by Commander for the likelihood analysis.

range improves the ability to break the well-known degeneracy
between βd and Td (e.g., Juvela & Ysard 2012) that arises when
fitting for them jointly.

5.2. Power spectrum uncertainties

Next, we consider the impact of changing the instrument config-
uration from M0 to M5 in terms of residual foreground and noise
angular power spectra. This is shown in Fig. 5 for both NILC
(solid lines) and cMILC (dashed lines). The left panel shows
the projected foreground power spectrum, while the right panel
shows the noise sample variance. First, we see that cMILC pro-
vides a significantly lower residual foreground contamination
than NILC across a wide range of multipoles for both instru-
ment configurations. This is due to the additional deprojection
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of foreground moments, which is more efficient at suppressing
true foreground residuals. However, this additional foreground
reduction performance does come at a significant price in the
form of higher noise uncertainties caused by the same additional
degrees of freedom. This noise penalty is greatly reduced when
extending the LiteBIRD frequency range from 402 to 603 GHz,
to the point that it is comparable to the CMB cosmic variance. In
addition, the overall level of residual foreground contamination
is also greatly reduced for the extended frequency range, both
for NILC and cMILC, across all multipoles.

5.3. Tensor-to-scalar ratio constraints

We now turn our attention to tensor-to-scalar ratio constraints,
and we start with probability distributions as derived using the
NILC and cMILC methods. These are summarized in Fig. 63.
These distributions are derived by averaging over an ensemble
of simulations, and therefore correspond inherently to ensemble
averages. The top and bottom panels show the results for the
M0 and M5 configurations, respectively. Solid and dotted lines
show recovered tensor-to-scalar ratio distributions for NILC and
cMILC, while red and black lines show results with and without
delensing.

Since the fiducial value of the tensor-to-scalar ratio in these
simulations is r = 0, any apparent bias (r , 0, defined by
the peak of the likelihood) is due to the power spectrum of the
residual foreground contamination that projects into the CMB
B-mode maps shown in Fig. 3. In contrast, the width of the dis-
tribution, that is σr, receives contributions from the cosmic vari-
ance of the lensed CMB signal, the sample variance of projected
foregrounds, and noise.

Starting with the unlensed NILC results (solid black lines),
we first note that both M0 and M5 have a well-defined nonzero
peak, which is indicative of a nonnegligible foreground residual,
consistent with the nonnegligible foreground power seen in the
left panel of Fig. 5. For the delensed case (red curve), this spu-
rious detection is statistically significant at the 5σ level for M0,
while for the lensed case it is nearly consistent with zero at the
2σ level; however, this difference is simply due to the additional
uncertainty added by lensing, and not lower foreground residuals
as such. For M5, the overall NILC bias is reduced by about 30%
in both cases, while the uncertainty remains unchanged, since
this is dominated by cosmic variance.

Being a more constrained version of the ILC, the semi-
blind cMILC method allows further foreground deprojec-
tion, and thereby suppresses some of the residual biases
that NILC suffers from. Specifically, by assuming an MBB
fdust(ν) = ν βd+1/(ehν/kT d − 1) with pivots βd = 1.5,T d = 20 K and
a power-law fsync(ν) = ν βs with pivot βs = −3 as the baseline
zeroth-order SEDs for dust and synchrotron, cMILC imposes
four nulling constraints to deproject the zeroth-order moments
of dust and synchrotron and the first-order moments of dust,
whose respective SEDs are fsync(ν), fdust(ν), ∂ fdust(ν)/∂βd, and
∂ fdust(ν)/∂T d.

The recovered distributions of the tensor-to-scalar ratio from
cMILC are shown as dotted lines in Fig. 6. In contrast to NILC,
cMILC shows unbiased recovery of r = 0 thanks to deprojection
of foreground moments. However, for M0 the extra cMILC con-
straints also significantly increase the noise contribution to σr.

3 Although r posterior plots are shown in terms of a logarithmic x-axis,
the actual distributions are defined in linear units; this choice is made
for plotting purposes only.
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Fig. 6. Comparison of recovered tensor-to-scalar ratio distributions
from NILC (solid lines) and cMILC (dotted lines) for the M0 (top
panel) and M5 (bottom panel) instrument configurations. Results with-
out delensing are shown as black curves, while results with full delens-
ing are shown as red lines.

On the other hand, for M5 cMILC provides unbiased recovery of
r = 0, with a negligible increase in noise. Thus, while M0 does
not provide enough constraining power to allow deprojection of
thermal dust temperature moments at a useful level, M5 does
support this.

All the above results correspond to ensemble-averaged dis-
tributions derived with blind internal linear combination meth-
ods. To understand the behavior for individual realizations,
Fig. 7 shows corresponding posterior distributions as derived
with Commander for 20 realizations, plotted as thin lines for each
of the six instrument configurations. No delensing is applied in
any of these cases, and a uniform prior on r > 0 is assumed.
The red vertical lines show the mean of the upper 68% con-
fidence limits. Firstly, we note that these distributions appear
(at least visually) statistically consistent with the input value of
r = 0. Secondly, we also see that the upper limit decreases mono-
tonically with instrument configuration, with M5 providing the
tightest overall constraints. Thirdly, the internal scatter between
individual realizations is notably smaller with a higher maximum
frequency, resulting in an overall lower sample variance.

These general observations are summarized more quantita-
tively in Fig. 8, which shows σr as a function of instrument
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Fig. 7. Tensor-to-scalar ratio posterior distributions for the single MBB
component model (for both simulating and modeling) as derived with
Commander using multipoles ` = [2, 12] and a sky fraction of fsky =
73% for 20 independent simulations (black lines), each drawn from a
ΛCDM spectrum with r = 0. The red vertical lines correspond to the
mean upper 68% confidence limit, σr.

Fig. 8. Tensor-to-scalar ratio uncertainty, σr, as a function of instrument
configuration for the component separation methods considered in this
paper.

configuration, as derived using the different component-
separation methods. We note that σr for NILC is dominated
by the cosmic variance of the bias, so this method is omitted
from the figure. We note again that each of the methods involve
different masks, different multipole ranges, and different fore-
ground models, and the relative absolute shift between the curves
is therefore entirely expected. Furthermore, we also note that
the baseline configuration does reach the target sensitivity of
σr < 0.001 for both the FGBuster and Commander methods, as
already reported by LiteBIRD Collaboration (2022); even lower
absolute uncertainties can be achieved by exploiting additional
sky coverage (which is particularly relevant for FGBuster) or
multipole range (which is particularly relevant for Commander).

More importantly for the main topic of this paper, however, is
the relative behavior between different configurations when we
shift the entire HFT toward higher frequencies, and this is qual-
itatively similar for all methods: the uncertainty on r decreases

Fig. 9. Ratio between the tensor-to-scalar ratio uncertainties for M5 and
M0 for different analysis choices and component-separation methods.
The black points are Commander analyses using different masks and
sky fractions.

monotonically for all methods over the frequency range consid-
ered in this paper.

In Fig. 9 we plot the ratio σM5
r /σM0

r for different sky frac-
tions and analysis methods. Overall, we see that M5 typically
has 30–50% smaller uncertainties than M0, and the gains are
larger when more sky is included in the analysis. This makes
intuitive sense, since accurate component-separation is relatively
more important near the Galactic plane.

5.4. Excluding the highest frequency channel

As seen in the above calculations, extending the LiteBIRD fre-
quency range from 402 to 603 GHz leads to a substantially
smaller σr. However, as discussed in greater detail in the next
section, an extended frequency range is also associated with
a potentially larger bias from modeling errors, since the over-
all component separation process becomes more dependent on
assumptions regarding the thermal dust SED, both in terms of
its specific parametric shape and its general spatial coherence
between different frequency channels.

Recognizing these challenges, it is interesting to investigate
how much the uncertainty on r degrades if we exclude the high-
est frequency channel. This represents the scenario in which we
are unable to model thermal dust at frequencies above 500 GHz.
In this exercise, we adopt the M2 configuration, with the high-
est frequency channel at 482 GHz, as a worked example. When
excluding the highest frequency channel in this particular con-
figuration, we recover an instrument model that is very similar
in frequency coverage to the baseline, M0, except with slightly
lower sensitivity in the remaining HFT channels.

Analyzing this truncated data set with Commander in the
same manner as those above, we find σr = 9.8 × 10−4, which
is to be compared with σr = 9.2 × 10−4 for the nominal M0
configuration with otherwise identical settings, or an increase
of about 5%. The potential loss in sensitivity is thus relatively
modest for this scenario. However, it is important to note that an
additional effect of this modification is that there is no frequency
overlap between the MFT and HFT in the extended M2 config-
uration, while there is such overlap in the baseline M0 config-
uration. Effectively, the extended instrument configurations thus
trade off control of unknown systematics in the overlap between
the MFT and HFT at the 195 GHz band for additional sensitivity
to thermal dust emission at the highest frequencies.
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Fig. 10. Commander residual maps (rν = dν − sν) for four different frequency channels and three different instrument configurations. The top
section show residual maps for the ideal one-component MBB model, while the bottom section show results for the nonideal SiFeC model, where
a model mismatch was included.

6. Non-ideal model analysis: Sensitivity to
modeling errors

We now turn our attention to the issue of modeling errors, and
we consider two different types. The first type consists of SED
modeling errors, in which the fitted SED model is significantly
different from the SED of the true sky signal. Being able to
reject a spurious foreground-induced detection is key for a robust
instrument design. The second type arises from over-smoothing
of spatially varying SED parameters, which also can introduce
biases.

6.1. Detectability of SED model errors

To assess the ability to detect SED modeling errors as a func-
tion of instrument configuration, we employ the parametric
Commander method, which provides various goodness-of-fit

quantities in terms of residual maps and χ2 statistics among its
output products. Specifically, we analyze simulations based on
the complex SiFeC model summarized in Sect. 3, but using a
simple one-component MBB dust model for fitting. For each
instrument configuration and simulation, we compute both the
tensor-to-scalar ratio posterior distributions, as in Sect. 5.3, and
the map-level reduced normalized χ2 statistic as defined by

χ2
red =

∑
ν,p(dν,p − sν,p)2/σ2

ν,p − nd.o.f.
√

2nd.o.f.
. (6)

In this expression, the sum runs over all unmasked pixels, p,
and all frequencies, ν, and nd.o.f. is the total number of degrees
of freedom per pixel. Since the χ2 distribution converges to a
Gaussian with mean nd.o.f. and variance 2nd.o.f. for large nd.o.f.,
this quantity measures statistical outliers in units of standard
deviations. In this section, both the posterior distributions and
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Fig. 11. Tensor-to-scalar ratio posterior distributions with a fiducial
tensor-to-scalar ratio of r = 0, as derived with Commander when fit-
ting SiFeC simulations using the one-component MBB model for six
different instrument configurations. A χ2 statistic is reported for each
configuration, indicating the map-level goodness of fit. All results are
derived from a sky fraction of fsky = 60%. The red dashed lines corre-
spond to the median distribution from the ideal one-component MBB
fit to an MBB simulation shown in Fig. 7 and serves as a reference.

the χ2 statistics are evaluated on the unmasked pixels encom-
passing fsky = 60%. However, we note that the choice of sky
fraction is arbitrary, as the main topic of this section is the impact
of modeling errors; a smaller sky fraction will necessarily lead
to smaller biases, but larger uncertainties, and vice versa. The
choice adopted here is simply chosen as a representative com-
promise between minimizing both bias and uncertainties.

To build intuition regarding the following results, we show
in the top section of Fig. 10 residual maps (rν = dν − sν) for
one arbitrarily selected realization and four frequency channels
for the ideal one-component MBB model. In this case we see
no significant residuals in any frequency channels or instrument
configurations, simply because the fitted SED model matches the
actually simulated sky. All these maps are thus consistent with
white noise, and the corresponding χ2 statistic is also consistent
with the Gaussian noise expectation.

In the bottom section of Fig. 10, we show similar resid-
ual maps for the complex SiFeC simulations. Here we first see
that the baseline M0 configuration appears visually consistent
with the ideal MBB simulation in the top panel, and the param-
eter estimation algorithm will clearly not be able to identify
the intrinsic model mismatch. Extending the frequency range to
482 GHz (M2), however, leaves noticeable residuals tracing high
dust emission regions in the Galactic plane, and at 603 GHz (M5)
the model mismatch is obvious.

The effect of these mismatches in terms of the tensor-to-
scalar ratio posterior distributions is quantified in Fig. 11. Each
panel shows 20 realizations as black lines, while the red line
shows the median of the ideal one-component MBB simulations
as a reference; since the overall foreground levels of the two sky
models are comparable, and both the fitted model and the instru-
mental noise parameters are identical between the SiFeC and
MBB models, the corresponding posterior distributions should
also be roughly equal.

Starting with the baseline configuration in the top panel,
we see that the tensor-to-scalar ratio is biased high by a fac-
tor of about two (as seen in the shift between the black and

red lines), even though each distribution is individually consis-
tent with zero. The χ2 statistic is completely consistent with the
Gaussian hypothesis, with a deviation of only −1.2σ. The M1
configuration behaves very similarly.

For the case M2, we see that the bias in r is greatly increased,
to the point that this configuration would have reported more
than a 3σ detection of nonzero B-mode power. At this point, the
χ2 value has also increased somewhat, but is still only 2σ high
compared to the Gaussian expectation. It is only with frequency
ranges equal to or higher than 523 GHz that χ2 is sufficiently
deviant that we are able to conclusively detect the model mis-
match, with a statistical significance of 9σ or more.

While the combination of a significant bias of r and the sta-
tistical acceptance of M2 appear disconcerting, it is important to
recall that these results are obtained with a relatively conserva-
tive sky fraction of 60%. For an analysis of real data, one would
also exploit the information in the high dust emission regions to
identify a statistically acceptable parametric model, and then fit
that also at high latitudes. As seen in the residual maps in Fig. 10,
such an analysis would indicate that the one-component MBB is
sufficient for M0, while for M2 and higher configurations the
residuals are an obvious red flag. From a model selection point
of view, frequencies higher than ≈500 GHz are critically impor-
tant for identifying poor thermal dust models.

6.2. Resolution of spatially varying SED parameters

Next, we consider the impact of different smoothing scales for
SED spectral parameters. In this case, we analyze the single
MBB simulations using the FGBuster algorithm, which sup-
ports tuned pixel sizes for each spectral parameter as part of its
basic implementation, quantified in terms of the HEALPix res-
olution parameter, Nside. To disentangle the SED error effects
from the spatial resolution effect, we once again consider the
ideal one-component MBB simulations, but fit coarsely pix-
elized spectral index maps, while the true spectral index maps
are smoothly varying on the sky. In particular, we focus on the
thermal dust temperature, which is key for the highest Lite-
BIRD frequencies, and we allow this to take on different reso-
lutions at low, intermediate, and high Galactic latitudes, denoted
NTd

side = {N low
side,N

int
side,N

high
side }; see Appendix A.2 for details.

We are now interested in quantifying the recovery accuracy
of r as a function of NTd

side, and the results from this analysis are
summarized in Fig. 12 in terms of the recovered mean tensor-to-
scalar ratio r (black crosses) and its uncertainty (bars). Groups
along the horizontal axis indicate different NTd

side combinations,
while colors indicate different LiteBIRD configurations.

The first thing to note is that when the HFT channels are
shifted to higher frequencies, the uncertainty on the spectral
indices decreases, and this leads to a decrease of the statistical
residuals, and therefore also to an improvement in σr; this is the
same effect as was illustrated in Fig. 8, but now we also see that
this holds true almost independently of NTd

side.
At the same time, we see that low values of NTd

side lead to a
strong bias in r, and this effect increases rapidly with increasing
frequency range. On the other hand, this bias can be mitigated by
increasing NTd

side at the expenses of an increase in the statistical
uncertainty. In particular, for NTd

side = [32, 32, 32], all LiteBIRD
configurations lead to a bias O(3 × 10−4), with an uncertainty
σr ≈ O(6 × 10−4). In general, a maximum central frequency
above 500 GHz requires at least NTd

side = 16, even for the cleanest
20% of the sky in order to keep the bias under control.
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Fig. 12. Fisher uncertainty (bars) and bias (black crosses) on r for different instrumental (colors) and FGBuster component-separation configura-
tion (bar groups). The values on the horizontal axis define the Nside resolution at which the temperature of the thermal dust component is fitted for
in the best 20%, 20–40% and 40–60% sky fractions.

7. Discussion and conclusions

One of the most important challenges for next-generation CMB
B-mode experiments is astrophysical foregrounds, and in partic-
ular polarized thermal dust emission from our own Milky Way.
Properly choosing the frequency range is thus one of the key
decisions to be made for any given B-mode space mission or
balloon-borne experiment. In this paper, we have revisited this
issue for LiteBIRD. Although the established baseline configu-
ration has already been shown to achieve the main mission goals
(LiteBIRD Collaboration 2022), it is still desirable to optimize
the overall uncertainties to increase the overall system margins.

In this paper, we have addressed this issue by analyzing
simulations to measure the recovered uncertainty on the tensor-
to-scalar ratio using several different component-separation algo-
rithms for six different possible instrument configurations, where
the entire HFT frequency range is shifted toward higher frequen-
cies. We find that the total statistical uncertainty on the tensor-
to-scalar ratio, r, after foreground cleaning may be reduced by
30–50% by extending the current maximum frequency from the
current baseline of 402 GHz to 500 GHz, or higher for the single
MBB dust model, also depending on the sky fraction.

A wider frequency range also increases the instrument’s sen-
sitivity to the shape of the foreground SED, and this has two
important consequences. On the one side, a wider frequency range
imposes stronger requirements on the foreground model itself,
since modeling errors may more easily contaminate the CMB
results. For instance, if a given component-separation algorithm
(explicitly or implicitly) assumes that the high-frequency chan-
nels correlate perfectly with the thermal dust emission at lower
frequencies, while the true sky exhibits frequency decorrelation
due to the 3D structure of the Milky Way, some fraction of the
difference between the assumed and real sky model will leak into
the CMB (Tassis & Pavlidou 2015). It is therefore essential that
the method of choice allows for sufficient flexibility to capture
such uncertainties and model mismatches.

At the same time, a wider frequency range also provides the
tools for actually identifying and constraining that model in the
first place. Indeed, one of the most important concerns regarding
a limited frequency range is the possibility of having low-level
foreground residuals that mildly bias cosmological parameters,
but still result in an acceptable goodness-of-fit, (for instance
as measured by a χ2 statistic). Higher frequency channels pro-
vide important safe-guards against this type of error. Addition-
ally, having access to higher frequency information increases the
number of basis functions that can be used to model the ther-
mal dust emission as a function of frequencies. A particularly
important example of such a mode is the spatial distribution of
the thermal dust temperature, which is useful for both blind and
nonblind methods.

An important intuition that underlies all the results discussed
in this paper is simply the fact that the CMB SED falls nearly
exponentially (relative to dust) above 300 GHz. This implies that
even relatively small modifications of the frequency range can
lead to significant improvements in a given instrument’s ability
to separate CMB from thermal dust. In particular, at the sensitiv-
ity level of LiteBIRD, a 402 GHz channel has a non-negligible
signal-to-noise ratio for CMB fluctuations, while at 500 GHz this
is essentially zero. For an extended configuration, the highest
frequency channel therefore represents essentially a pure ther-
mal dust map, while for the baseline configuration it represents
a weighted sum of CMB and thermal dust emission. As shown
quantitatively in this paper, a clean foreground tracer substan-
tially improves tensor-to-scalar constraints for both parametric
and nonparametric (ILC) component-separation methods.

In this paper we have primarily addressed the impact of
Galactic foregrounds from the point of view of CMB confu-
sion. An important lesson learned from both WMAP and Planck,
however, is that Galactic foregrounds also play a key role in
understanding and mitigating low-level instrumental systematic
effects. For instance, confusion between transmission imbal-
ance factors and foregrounds turned out to be an important
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uncertainty for WMAP (Page et al. 2007; Watts et al. 2023),
while confusion between gain calibration and foregrounds was
a key limitation for Planck LFI (Planck Collaboration I 2020;
BeyondPlanck Collaboration 2023; Gjerløw et al. 2023). One
may therefore argue that experience shows that the most robust
approach to mitigating the full effect of astrophysical fore-
grounds is not by avoiding them, but rather by measuring them.
In addition to improving CMB constraints, a wide frequency
range will also increase the amount of Galactic science that
may be derived from these observations, and it will thereby also
increase the overall legacy value of the mission for other fields
of astronomy.

While the various instrumental setups studied in this paper
appear as possible options, we would like to stress that their
technical feasibility has not been performed in depth yet. This
would have to include both aspects of optical design and detec-
tion chains, but also the potential impacts on the needs for optical
modeling and calibration facilities. This trade-off study would
also have to deal with the impact of such modifications of the
HFT design on the overall systematics effects, which should
be propagated into systematics uncertainties on r. As noted in
the introduction, performing such a full trade-off study lies far
beyond the scope of this paper. Rather, the goal of this paper is
to understand whether sufficiently significant gains are achiev-
able under ideal conditions to motivate a proper detailed study
– and with typical gains at the 30–50% level in the statistical
uncertainty on r after foreground cleaning, the results do appear
interesting enough to be investigated further.
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Appendix A: Parametric component-separation
methods

A.1. Commander

Commander is a standard parametric Bayesian component-
separation framework for CMB observations (Eriksen et al.
2004, 2008) that has been used extensively by Planck (e.g.,
Planck Collaboration XII 2014; Planck Collaboration IX 2016;
Planck Collaboration IV 2020; Planck Collaboration Int. LVII
2020). In the current analysis we employ the first implemen-
tation of this framework, typically referred to as Commander1,
which was used in the Planck 2013 data release. The main
advantage of this framework is a very high computational effi-
ciency, which is important when analyzing an ensemble of sim-
ulations; at the same time, the main drawback is its requirement
of identical angular resolution of all frequency bands, which lim-
its its use to low-resolution data sets. In our current analysis,
all input maps are at Nside = 16, with a common resolution
of 10◦ FWHM. Another option would be to use Commander3
(BeyondPlanck Collaboration 2023), which supports both mul-
tiresolution component separation and low-level time-ordered
data analysis, but this would increase the computational expense
of the analysis by orders of magnitude, without actually provid-
ing valuable new information regarding the central question of
frequency range considered in this paper.

The starting point of any parametric Bayesian analysis
is to define an explicit parametric data model, described in
Eqs. (1)– (5), and in Commander1, every parameter is fitted
per pixel. The main goal is now to fit the parameters θ =
{aCMB, as, ad, βs, βd,Td}, which within a Bayesian framework
means computing the posterior distribution P(θ|d), and then
using this to estimate the cosmological parameter r. Using
Bayes’ theorem, the posterior distribution may be written as

P(θ|d) =
P(d|θ)P(θ)

P(d)
(A.1)

∝ P(d|θ)P(θ), (A.2)

where P(d) is a normalization factor, P(d|θ) is the likelihood,
and P(θ) represents some set of priors. In this work, we apply
loose Gaussian priors on the spectral parameters, but no priors on
the amplitude parameters. Specifically, we adopt a synchrotron
prior of P(βs) = N(−3.0, 0.3), where N(µ, σ) denotes a stan-
dard Gaussian distribution with mean µ and standard deviation
σ. For thermal dust emission, we adopt P(βd) = N(1.54, 0.20)
and P(Td) = N(23 K, 7 K) where we fit for the one MBB
component.

To map out the distribution in Eq. (A.2), we use Gibbs sam-
pling as implemented in Commander. That is, rather than sam-
pling directly from P(θ|d), which is computationally unfeasible,
we iteratively sample from each of the corresponding conditional
probability distributions. For the purposes of this paper, this can
be written as

{aCMB, as, ad}
i+1 ← P(aCMB, as, ad|β

i
s, β

i
d,T

i
d, d), (A.3)

{βs, βd,Td}
i+1 ← P(βs, βd,Td|ai+1

CMB, a
i+1
s , ai+1

d , d). (A.4)

Here← indicates that the parameters to the left are sampled from
the distribution on the right-hand side. All amplitude parame-
ters are sampled jointly together with the CMB sky signal to
avoid excessive Monte Carlo correlation lengths. The nonlinear
parameters, the spectral indices and dust temperature, are sam-
pled using a standard inversion sampler.

We run this iterative Gibbs sampler until convergence, which
in the current analysis requires about 40 000 samples after reject-
ing a burn-in period of about 500 samples. We repeat this analy-
sis for 20 different CMB and noise realizations.4 Based on the
samples from each simulation, we compute a posterior mean
CMB map, âCMB, and the corresponding covariance matrix,
N, and these are subsequently fed into a standard Gaussian
likelihood;

L(r) ∝
e−

1
2 ât

CMB(S(r)+N)−1 âCMB

√
|S(r) + N|

. (A.5)

Here S(r) is the CMB signal covariance matrix for a given value
of r and the best-fit ΛCDM parameters described in Sect. 3. The
low pixel resolution of Nside = 16 used for Commander in this
paper is dictated by the CPU time and RAM required to eval-
uate this equation, as well as the number of samples needed to
establish a robust noise covariance matrix.

We adopt a uniform prior for all positive values of r, and
the posterior distribution is therefore numerically identical to the
likelihood in Eq. (A.5) for r > 0. This function is mapped out by
gridding Eq. (A.5) over a precomputed library of angular power
spectra, C`(r), which are computed into covariance matrices in
pixel space, S(r), including only multipoles in the range ` =
[2, 12], as dictated by the low pixel resolution of Nside = 16.
The Commander results thus only probe the low-` reionization
peak of the B-mode power spectrum, not the recombination peak
around ` ≈ 100. However, this is also where diffuse component
separation is most challenging, and the question of frequency
optimization is most important.

The main analysis mask used for the Commander anal-
ysis is the fsky = 73% polarization mask discussed in
Planck Collaboration IV (2020). To visualize the impact of sky
fraction, other masks have been used in Fig. 9, such as masks
based on high latitude cuts, χ2, and by thresholding the 402 GHz
polarization amplitude (P =

√
Q2 + U2) map, which primarily

suppresses thermal dust emission. This latter is used for the 60%
mask in Sect. 6.

A.2. FGBuster

A second implementation of parametric component separation
is called FGBuster.5 This method is based on the same para-
metric modeling as defined by Eqs. (1)–(5), but uses a com-
putationally efficient non-linear optimization procedure to per-
form the fit, as opposed to brute-force Monte Carlo sampling
as implemented in Commander. Following Stompor et al. (2009),
Errard et al. (2011), Errard & Stompor (2019), and Puglisi et al.
(2022), FGBuster proceeds in three steps. These are: first the
estimation of the spectral parameters {βd,Td, βs} through the
optimization of a so-called spectral likelihood; second, the esti-
mation of the component maps {aCMB, ad, as} introduced in
Appendix A.1; and third, the estimation of the angular power
spectra for the residual foregrounds (i.e., the difference between
the input and recovered CMB map), as well as the estimation
of the tensor-to-scalar ratio r with a Gaussian likelihood defined
by the previous quantities, the theoretical BB spectrum, and the
noise after component separation.

4 This large number of samples is the main motivation for using
Commander1 rather than Commander3; producing O(106) posterior
samples at full angular resolution would require tens of millions of CPU
hours. While feasible for a final production analysis of real data, such a
cost is not justified for the current exploratory analysis.
5 https://github.com/fgbuster/fgbuster
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Fig. A.1. Example of the results from the FGBuster component-
separation runs. Two instrumental configurations are considered: the
baseline M0 (blue) and the high frequency extension M3 (red). The
solid lines represent the post-component-separation noise and fore-
ground residuals S `, computed by averaging 1000 simulations for the
baseline, and averaging 10 simulations for the extension. Together with
the power from gravitational lensing and primordial B-modes, they
define the error bars on the CMB power spectrum (boxes).

Regarding the first step, we note that FGBuster supports dif-
ferent resolutions (as defined by the HEALPix resolution param-
eter, Nside) for each spectral parameter, while the corresponding
amplitudes are fitted at full angular resolution. Choosing a low
Nside implies that few foreground parameters are fitted for, result-
ing in low post-component-separation noise; however, this may
also result in a high bias due to sky complexity that the model
is not allowed to capture. Optimizing Nside for each parameter
is an important point of the algorithm, and we quantify these
two competing effects by splitting the foreground residuals into
two categories. First, the systematic residuals, as obtained from
a noiseless simulation, are driven by the mismatch between input
sky and the assumed parametric model, and its power spectrum,
B`, defines the bias on r. Second, the statistical residuals are
computed as the average power spectrum from 10 noisy simu-
lations, S `, which are driven by the statistical error while esti-
mating spectral parameters, and by coaddition of the noise at
different frequencies.

We consider the following approximate likelihood for the
power spectrum:

−2 lnL(r) = fsky

∑
`

(2` + 1)
(

D`

C`
+ ln C`

)
+ const, (A.6)

where fsky = 0.49, D` = L` + S ` + B`, C` = rT` + L` + S `, L` is
the BB power spectrum from gravitational lensing, and T` is the
tensor power spectrum for r = 1. The bias on r is estimated by
maximizing this likelihood, while we define σr to be the Fisher
estimate obtained by assuming B` = 0. We prefer this choice
over computing σr from the width of Eq. (A.6), because the lat-
ter procedure produces values of σr that are strongly dependent
on the bias, while here we want it to reflect only the statistical
constraining power of a given configuration. The various spectra
involved in the FGBuster analysis are illustrated in Fig. A.1.

The free parameters of our setup are the Nside values of the
spectral parameters, and the LiteBIRD instrumental configura-
tion. Regarding the former, we follow LiteBIRD Collaboration
(2022), and split the sky into three (almost) iso-Galactic-latitude
regions, each covering approximately 20% of the sky. In each

region, every parameter can have different values of Nside, tuned
according to its local signal-to-noise ratio. We define the three
regions using Planck post-processing masks adopted for temper-
ature component separation (Planck Collaboration IV 2020), the
so-called GAL20, GAL40, and GAL60. We find this (arbitrary)
choice to significantly help coping with the varying signal-to-
noise, but the use of more of these separate regions is certainly
possible and could further improve the post-component separa-
tion performance – especially if specialized for dust polarization.
Regarding the choice of the Nside values of the spectral param-
eter, we find that an accurate estimation of βd is particularly
essential for the LiteBIRD configuration, due to a small statis-
tical uncertainty but potentially large biases coming from spatial
variability; we use Nβd

side = 64 in all the regions. Less accurate
estimation of βs and Td are usually tolerable as was experienced
with foreground-only simulations, and following the preliminary
results from Errard & Stompor (2019). For synchrotron emis-
sion, we adopt Nβs

side = [4, 2, 2] for the three regions (counting
from lower latitudes), and this is kept constant for all instru-
mental configurations; we do not expect changes at the high
frequencies to significantly affect the fit of the low-frequency
foreground.6 In contrast, increasing the HFT frequencies does
increase the constraining power for the dust SED, and there-
fore requires a more precise modeling of the spatial variabil-
ity of Td to keep the systematic residuals under control. The
analysis sky mask covers fsky = 49% of the sky as introduced
in LiteBIRD Collaboration (2022). In addition to the Galactic
plane, this mask removes regions with high residuals.

A.3. Moment expansion

A third parametric component-separation method is referred to
as the “moment-expansion method,” which models the com-
plexity of the polarized dust SED using parametric fitting with
moment expansion coefficients in harmonic space. This formal-
ism was introduced by Chluba et al. (2017) and generalized to
polarization in Vacher et al. (2023b,a) and at the cross-frequency
power spectra level in Mangilli et al. (2021). An application of
this formalism for component separation with the LiteBIRD mis-
sion at high frequencies can be found in Vacher et al. (2022).
The formalism and the pipeline developed in this last study will
be applied identically in the present work.

In true experimental conditions, averaging over different
SEDs emitted from distinct regions with different physical prop-
erties is unavoidable. They appear along the line of sight in
the 3D sky, between different lines of sight, inside the beam
of the instrument, or when performing a spherical harmonic
decomposition to calculate the angular power spectra over large
regions of the sky. Since SEDs depend of the frequency in a
non-linear fashion, summing over them when spectral parame-
ters are varying will lead to distortions that should be understood
and modeled. The moment-expansion method aims at account-
ing for SED distortions from a canonical model by introducing
new terms coming from a Taylor-inspired expansion of the SED
around a pivot value and with respect to its spectral parameters
(e.g., βd and Td for an MBB). One can generalize this expansion
at the cross-frequency power spectra levelD`(νi × ν j), providing
an analytical model that can be fitted over the foreground signal.

6 Note that the formalism does not assume or exploit possible correla-
tions between the components. In addition to the very different spectral
dependence, this should further mitigate the impact of dust and dust-
synchrotron correlations on the synchrotron fit.
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As discussed in Vacher et al. (2022), providing a correct
model for the distortions due to spatial variations of the dust
temperature is critical for a mission like LiteBIRD, while it
could safely be ignored for missions like Simons Observa-
tory (Azzoni et al. 2021), with different frequency coverage and
lower sensitivity. If the dust signal in every Galactic pixel is
indeed a modified black-body, reaching higher frequencies will
ease component separation by breaking degeneracies between
the moments in βd and Td, providing a better characterization of
the impact of the dust temperature variations on the shape of the
power spectra SED.

For the present application, we extract the cross-frequency
power spectra of Nsim = 500 simulations, including different
realizations of Gaussian noise and CMB lensing, with all the
high-frequency configurations from M0 to M5. The only fore-
ground component considered is thermal dust with a single
MBB. The simulation maps are produced at Nside = 512 and
masked in order to keep a sky fraction of fsky = 70%, using
a raw mask made from Planck intensity data at 353 GHz as in
Vacher et al. (2022). Only the nine highest frequencies above
100 GHz are considered, leading to 13 bands (counting the ones
sharing the same frequency) and thus 91 cross-spectra. The spec-
tra are binned up to ` = 200 with bins of ∆` = 10. Since we
expect it to be the only fitting procedure allowing us to recover
an unshifted r posterior for the standard LiteBIRD configura-
tion, we shall only consider the rβ–T fitting scheme, using the
moment coefficients up to order 1 in both βd and Td (Vacher et al.
2022). For each simulation, a χ2 minimization is done at the
cross-frequency power spectra level

χ2 =
1

Nd.o.f.
RTM−1R, (A.7)

with the residual R`(νi × ν j) = Dsim
` (νi × ν j) −

Dmodel
` (νi × ν j) and the covariance matrix: Mi× j,k×l

`,`′
=

cov
(
Dsim
` (νi × ν j),Dsim

`′ (νk × νl)
)
, allowing us to extract

one best-fit value for the tensor-to-scalar ratio r̂ per simulation.
A histogram is built out of the Nsim best fit values of r̂, which
gives us the final posteriors, with associated standard deviation
σr̂ found by fitting a Gaussian curve over it.

Appendix B: Minimum variance
component-separation methods

B.1. Internal linear combinations

Generally speaking, internal linear combination (ILC) methods
perform a weighted linear combination of the data dν across fre-
quencies:

ŝ =
∑
ν

wν dν = wTd , (B.1)

which is designed to minimize the overall variance due to
foregrounds and noise without altering the CMB signal. More
explicitly, the ILC weights w ≡ {wν} are the solution of a con-
strained minimization problem that can be formulated by the
Lagrangian,

L (w, λ) = wTCw + λ
(
1 − wTa

)
, (B.2)

in which the matrix C collects the elements Cνν′ = 〈dν dν′〉 of the
data covariance matrix for all pairs of frequencies (ν, ν′) and the
vector a ≡ {aν} collects the frequency spectrum of the CMB

component across the channels. The Lagrange multiplier λ is
used to ensure that the overall variance wTCw of the ILC esti-
mate ŝ is minimized under the constraint

∑
ν wν aν = 1 for the

preservation of the CMB signal. The ILC weights are thus given
by the saddle point of the Lagrangian defined in Eq. (B.2):

wT =
(
aTC−1a

)−1
aTC−1 , (B.3)

and as such they do not rely on any explicit parametric fore-
ground model.

B.2. NILC

The Needlet ILC (NILC; Delabrouille et al. 2009) method is a
specific version of the ILC approach that performs this opti-
mization using a needlet (i.e., spherical wavelet) vector basis.
In the NILC method, the ILC weights, Eq. (B.3), are com-
puted independently in different regions of the sky and differ-
ent ranges of angular scales using a wavelet decomposition of
the data. Needlets have excellent localization properties, both on
the sphere (pixel space) and in harmonic space (Narcowich et al.
2006; Guilloux et al. 2009), which allows the NILC algorithm to
adjust the ILC weights depending on the local variations of the
foreground and noise contaminations across the sky and across
different scales.

B.3. cMILC

The Constrained Moment ILC (cMILC; Remazeilles et al. 2021)
method is an extension of the NILC method that includes addi-
tional nulling constraints to deproject spectral moments of the
foreground emission arising from line-of-sight integration and
beam convolution. It combines the so-called constrained ILC
approach (Remazeilles et al. 2011) and the moment expansion
technique for dealing with foreground emission (Chluba et al.
2017). Because of spectral variations of foreground emission
along the line-of-sight and/or inside the beam, the line-of-sight
integration and beam convolution effects in sky observations
cause spectral distortions to the baseline SEDs of thermal dust
and synchrotron, and thus induce partial decorrelation across
frequencies. Such higher-order corrections to the baseline fore-
ground emission can be significant compared to the CMB B-
mode signal at low tensor-to-scalar ratio values.

These effects are addressed by cMILC through moment
expansion of the foreground emission Iν(n̂) beyond the leading-
order SED:

Iν(n̂) = A(n̂) f
(
ν,β

)
+

∑
i

A(n̂)
(
βi(n̂) − βi

) ∂

∂βi

f
(
ν,β

)
+

1
2!

∑
i, j

A(n̂)
(
βi(n̂) − βi

) (
β j(n̂) − β j

) ∂2

∂βi∂β j

f
(
ν,β

)
+ · · · , (B.4)

where f (ν,β) is the baseline SED evaluated at fixed pivot values
β ≡ {βi} for a set of spectral parameters β ≡ {βi(n̂)} (e.g., dust
spectral index and temperature) that vary with the direction n̂ on
the sky and along the line of sight. The expansion defined by
Eq. (B.4) highlights the foreground moment components,

mα(n̂) = A(n̂)

(
β1(n̂) − β1

)α1
· · ·

(
βn(n̂) − βn

)αn

α1! · · ·αn!
, (B.5)
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which have homogeneous SEDs given by the derivatives of the
baseline SED with respect to spectral parameters:

bα(ν) =
∂α1

∂β
α1

1

· · ·
∂αn

∂β
αn

n

f
(
ν,β

)
, (B.6)

where α = (α1, · · · , αn) ∈ Nn.
cMILC enables us to deproject several moments of the fore-

ground emission from the recovered CMB B-mode map by gen-
eralizing the Lagrangian in Eq. (B.2) as

L (w, λ, {µα}) = wTCw + λ
(
1 − wTa

)
+

∑
α

µα w
Tbα , (B.7)

in which extra Lagrange multipliers µα are introduced to impose
several nulling constraints on the ILC weights,

∑
ν wν bα(ν) = 0,

with respect to the moment SEDs in Eq. (B.6). The cMILC
weights are thus given by the saddle point of the extended
Lagrangian in Eq. (B.7),

wT = eT
(
ATC−1A

)−1
ATC−1 , (B.8)

where the mixing matrix A = (a b1 · · · bm) contains the CMB
SED vector a in the first column, the moment SED vectors,
b1, · · · , bm, as defined by Eq. (B.6) in the other columns, and
eT = (1 0 · · · 0). The unconstrained foregrounds (i.e., high-order
moments), which are not deprojected by cMILC, are simply
mitigated through blind variance minimization, as in the NILC
algorithm.

For both NILC and cMILC, we transform the Stokes Q and U
full-sky simulations defined in Sect. 3 into full-sky B-mode maps

before computing the fits described above, resulting in pure B-
mode constraints. We then apply these methods to the two most
extreme instrument configurations defined in Table 1, namely
M0 and M5. Foreground cleaning is performed on the full sky for
both NILC and cMILC, while the power spectra and r estimates
are computed after masking fsky = 50% of the NILC and cMILC
B-mode maps, where the mask is obtained by thresholding the
observed 402 GHz B-mode map until 50% of the sky is masked.

The r estimates are derived from the angular power spec-
trum of the NILC/cMILC B-mode map using the Gaussian
likelihood

−2 lnL(r) =
∑
`

(
ĈBB
` −C` (r, AL) − N̂`

)2

Ξ̂ 2
`

, (B.9)

where ĈBB
` is the B-mode power spectrum of the reconstructed

NILC/cMILC map, N̂` is the post-component-separation noise,
and C` (r, AL) is the theoretical B-mode power spectrum as a
function of r that we fit to the data, with lensing amplitude fixed
to AL = 1 or 0, depending on either no delensing or full delens-
ing assumptions. The covariance matrix is given by

Ξ̂` =

√
2

(2` + 1) fsky
ĈBB
` , (B.10)

which implicitly includes the sample variance of the resid-
ual foregrounds and noise that are left in the reconstructed
NILC/cMILC map.
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