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Nowadays, drones can be developed for a wide range of use cases, from infrastructure
monitoring to sea rescue, urban mobility or military purposes. Which drone design is best suited
for a specific mission? To answer this question, we need to solve a constrained optimization
problem based on a multi-disciplinary design model that takes the mission into account. The
model generally being a computationally expensive numerical model whose gradients are not
available all the time encourages us to consider a Bayesian optimization approach. Such
strategy is well known to achieve a trade-off between exploitation and exploration in order to
find interesting minimal area with a reduced number of function evaluations. A multi-fidelity
approach can improve even more the computational efficiency of the Bayesian optimization
strategy. In this work, we aim at designing a fixed-wing drone (fully electric) for long range
surveillance mission. Two fidelity level electric drone models are developed. For a given mission
requirement, the final battery state of charge is optimized with respect to drone design variables.
Optimizations are performed on several missions using both a mono and a multi-fidelity Bayesian
optimization strategy. The interest of using a multi-fidelity method for overall drone design
has been assessed. The multi-fidelity super-efficient global optimization algorithm (MFSEGO)
appeared to need less budget to reach convergence than the mono-fidelity algorithm and to be
more robust to the initial design of experiments.

I. Nomenclature

𝐶𝐷 = Drag coefficient
𝐶𝐿 = Lift coefficient
𝐷 = Drag force (N)
𝑒𝑏 = Battery specific energy (Wh.kg−1)
𝐸𝑆𝐶 = Electronic speed controller
[𝐸𝑆𝐶 = ESC efficiency
[𝑚 = motor efficiency
[𝑝 = propeller efficiency
[𝑡𝑜𝑡 = total efficiency
𝑔 = Gravity acceleration (m.s−2)
𝛾 = Flight path angle
𝐿 = Lift force (N)
𝑚 = Total drone mass (kg)
𝑚batt = Battery mass (kg)
𝑀𝐷𝐴 = Multidisciplinary Analysis
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𝑀𝐷𝑂 = Multidisciplinary optimization
𝑂𝐷𝐸 = Ordinary differential equation
𝑃batt = Battery output power
𝑃𝐸𝑆𝐶 = ESC output power
𝑃𝑚 = Motor output power
𝑃prop = Propeller output power
𝑄batt = Capacity of the battery (Coulomb)
𝑆𝑂𝐶 = State of charge (%)
𝑇 = Thrust force (N)
𝑇𝐴𝑆 = True airspeed (s)
𝑈𝐴𝑉 = Unmanned aerial vehicle
𝑈batt = Total electric tension of the battery (V)
𝑈cell = Electric tension of a single cell of the Lithium-Polymer (LiPo) battery (V)
𝑊 = Weight force (N)

II. Introduction

Optimization of systems with strong multidisciplinary interactions is one of the current challenges in the aircraft
design community. This context of multidisciplinary design analysis and optimization (MDAO) [1] is reflected in

this work. Of the various disciplines that could fit into a multidisciplinary Unmanned Aerial Vehicle (UAV) model, the
mission discipline is important but not the easiest to consider at a detailed level. In this paper, we have endeavored to
achieve a high fidelity mission discipline. Regarding the optimization strategy, Bayesian technique [2] was chosen to
solve the problem, it is a well-known approach in the field of expensive black box optimization as it does not need the
gradient information. In this work, we focus on the value of multi-fidelity. When multiple sources of information are
available, we can take advantage of the characteristics of each source. In general, cheap but inaccurate information
sources are used to explore the design space, while expensive and accurate sources are used for exploitation. First, a
brief state of the art on multi-fidelity Kriging and Bayesian optimization is provided in Section III. Next, Section IV
describes the two developed high-fidelity (HF) and low-fidelity (LF) UAV models that take into account the mission.
Section V presents the four test cases experimented in this paper. Each test case corresponds to a geometric drone
design for a specific mission. In Section VI, the results for each test case are outlined. Finally, the conclusion and
perspectives are given in Section VII.

III. State of the art
This section presents the multi-fidelity framework used in this paper. We want to solve an optimization problem

with inequality or/and equality constraints:

min
𝑥∈Ω

𝑓 (𝑥)

such that
{
𝑔𝑖 (𝑥) ≤ 0
𝑔𝑒 (𝑥) = 0 (1)

where the objective function 𝑓 , the inequality constraint functions 𝑔𝑖 and the equality constraint functions 𝑔𝑒 are
evaluated with a Multidisciplinary Design Analysis (MDA) costly to evaluate. In a multi-fidelity context, the 𝑓 , 𝑔𝑖 and
𝑔𝑒 can be obtained by different MDAs associated to different fidelity levels. To solve this multidisciplinary optimization
(MDO) problem with expensive black-box functions, Bayesian optimizers [2, 3] are used to minimize the number of
function evaluations. First Section III.A shows how to construct a multi-fidelity Gaussian process surrogate model. Then,
in Section III.B, the current Bayesian optimization approach is adapted to multi-fidelity by defining a criterion to choose
the fidelity level to query. We assume here that the reader is familiar both with Gaussian processes (GP) interpolation
also denoted Kriging models [4–6] and with the classical mono-fidelity Kriging based Bayesian optimization methods
like the Efficient Global Optimization (EGO) [7] algorithm for unconstrained problems and the Super Efficient Global
Optimization (SEGO) algorithm [8–10] for constrained problems.
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A. Multi-fidelity Kriging
The first extension of the Kriging model for multivariate functions, called co-Kriging, was first developed in

geostatistics (see [11, 12]). Next, [13] figured that making assumptions to relate different levels of fidelity is a way to
simplify multi-fidelity problems. In this section, focus will be made on Le Gratiet’s [14] recursive formulation that we
used to construct multi-fidelity Kriging models. Let’s suppose that 𝐿 + 1 fidelity levels 𝑓0, ..., 𝑓𝐿 sorted from the lowest
to the highest are available to approach the function 𝑓 (the same philosophy could be applied to the constraint functions
𝑔𝑖 and 𝑔𝑒) and that we dispose of 𝐿 + 1 design of experiments (DoE), one for each fidelity level, denoted (𝐷𝑖)𝑖=0...𝐿
with 𝐷𝑖 = ((𝑥0, 𝑓𝑖 (𝑥0)), ..., (𝑥 𝑗 , 𝑓𝑖 (𝑥 𝑗 )), ..., (𝑥𝑁𝑖

, 𝑓𝑖 (𝑥𝑁𝑖
)))𝑇 , 𝑁𝑖 being the number of points in 𝐷𝑖 . We assume that

we build some nested DoE: each point evaluated at a fidelity level is also evaluated at all the lowest fidelity levels:
𝐷𝑥

𝐿
⊆ 𝐷𝑥

𝐿−1 ⊆ . . . ⊆ 𝐷𝑥
0 where 𝐷𝑥

𝑖
= (𝑥0, ..., 𝑥 𝑗 , ..., 𝑥𝑁𝑖

)𝑇 corresponds to the inputs part of 𝐷𝑖 . The nested DoE
provides some properties useful to express the surrogate model variance in closed form. The following assumption first
introduced by [13] in the bi-fidelity case is used to link the fidelity levels:

𝑓𝑙+1 (𝑥) = 𝜌𝑙 𝑓𝑙 (𝑥) + 𝛿𝑙+1 (𝑥) such that 𝑓𝑙 ⊥ 𝛿𝑙+1 ∀𝑙 = 0, ..., 𝐿 − 1 (2)

where 𝛿𝑙+1 (𝑥) is a discrepancy function that captures the difference between the 𝑙 + 1-th and the 𝑙-th fidelity levels while
𝜌𝑙 is a scaling factor applied to 𝑓𝑙 .
Le Gratiet [14] proposed to add the lowest fidelity function to the basis function set (ℎ𝑖)𝑖=1...𝑝 used in the universal
Kriging regression term to get:

`(𝑥) =
∑︁

𝑖=1,..., 𝑝

(
𝛽𝑖ℎ𝑖 (𝑥)

)
+ 𝛽𝜌0 𝑓0 (𝑥) (3)

where 𝛽𝜌0 is an estimation of 𝜌0 and (𝛽𝑖)𝑖=1...𝑝 is a set of unknown coefficients to be multiplied by the basis functions.
Estimations of these coefficients are done by maximizing the likelihood [15, 16]. Since we used a nested DoE
structure, the independence between fidelity levels of the surrogate model is assumed. Then the following recursive
formulation [14] for the mean ( ˆ̀𝑙+1) and variance (�̂�2

𝑙+1) of each fidelity level GP surrogate model can be written:

∀𝑙 = 0, ..., 𝐿 − 1

{
ˆ̀𝑙+1 = 𝜌𝑙 ˆ̀𝑙 + ˆ̀ 𝛿𝑙+1

�̂�2
𝑙+1 = 𝜌2

𝑙
�̂�2
𝑙
+ �̂�2

𝛿𝑙+1

(4)

In this case, 𝜌𝑙 is considered as a constant but it can depend on 𝑥 and we have 𝜌𝑙 : 𝑥 ↦→ 𝜌𝑙 (𝑥). The learning process is
the following, the lowest fidelity level is first learnt, then the relationships (scaling factor 𝜌𝑙 and discrepancy function
𝛿𝑙+1 with 𝑙 = 0, ..., 𝐿 − 1) between each fidelity level are successively learnt. Since the variances can be expressed
in a closed form, the contribution of each fidelity level to the total variance of the multi-fidelity model can also be
expressed. This is the most remarkable advantage of Le Gratiet’s recursive formulation. Denoting 𝜎2

𝑐𝑜𝑛𝑡 (𝑙, 𝑥) the
variance contribution of the 𝑙𝑡ℎ fidelity level at the point 𝑥, with the notation 𝜎2

𝛿0
= 𝜎2

0 , we have:

∀𝑙 = 0, ..., 𝐿 − 1 𝜎2
𝑐𝑜𝑛𝑡 (𝑙, 𝑥) = 𝜎2

𝛿𝑙
(𝑥)

𝐿−1∏
𝑗=𝑙

𝜌2
𝑗 and 𝜎2

𝑐𝑜𝑛𝑡 (𝐿, 𝑥) = 𝜎2
𝛿𝐿
(𝑥) (5)

B. Multi-fidelity Bayesian optimization
With a multi-fidelity Bayesian optimization process, one must decide the most promising point and the fidelity level

at which to evaluate it. It has been proposed in [14] to solve the problem of finding the point and the fidelity level in two
successive steps. First the point is found using a classical acquisition function as in mono-fidelity Bayesian optimization.
Then the knowledge of the variance contribution to each fidelity level gives some information to smartly decide which
fidelity level to choose. Let 𝑐0, ..., 𝑐𝐿 be respectively the querying costs of all the fidelity levels 𝑓0, ..., 𝑓𝐿 . Let us denote
𝜎2
𝑟𝑒𝑑

(𝑙, 𝑥∗) the variance reduction of the high fidelity model when the point 𝑥∗ is evaluated with all the fidelity levels
≤ 𝑙 to ensure the nested DoE structure

𝜎2
𝑟𝑒𝑑 (𝑙, 𝑥

∗) =
𝑙∑︁

𝑖=0
𝜎2
𝛿𝑖
(𝑥∗)

𝐿−1∏
𝑗=𝑖

𝜌2
𝑗 (6)

A criterion to choose the level of enrichment can then be written as:

𝑙∗ = arg max
𝑙∈0,...,𝐿

𝜎2
𝑟𝑒𝑑

(𝑙, 𝑥∗)
(∑𝑙

𝑖=0 𝑐𝑖)2
(7)
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One can remark that Eq (7) is a trade off between variance reduction and computational cost. Then the cost ratios
between the different fidelity levels are important parameters to the method. This two step approach from [17, 18]
is described in Fig. 11 of Appendix ??. It is refered in the following as the Multi-Fidelity Super Efficient Global
Optimization (MFSEGO). Now that we have detailed the multi-fidelity model and the optimization technique that we
will use in this work, we describe the electric drone models we have developed for the purposes of this work.

IV. Electric drone models developed
The increasing use of drones and in particular electric drones for various missions is accompanied by a need to

model these drones and the missions they are assigned. In this paper, we focus on a power line monitoring mission. We
will consider that the mission is a succession of checkpoints along the power line through which the drone must pass.
Two models of electric drones have been developed in this work: a high fidelity model and a low fidelity one. Both
of them couple different disciplines (aerodynamics, structure, masses, geometry, mission, propulsion, ...) which are
computed with more or less accuracy. The purpose of the models is to estimate different quantities of interest: the final
state of charge of the drone’s battery (𝑆𝑂𝐶) at the end of the mission as well as the mission time, and two other outputs
that indicate if the wing or the tail can be broken during the mission. Both models must be able to consider the UAV
geometrical parameters such as wing span, root chord, taper ratio and wing and tail sweep angle, dihedral angle and
spanwise twist control points as variables. In addition, structural parameters like wing and tail spanwise spar thickness
control points are also considered as variables. Finally we want to model a function 𝑓 depending on 19 design variables
and described in the following equation.

𝑓 : Ω ⊂ R19 −→ R4

𝑥 ↦−→ 𝑦
(8)

All the models have been developed in Python using OpenMDAO, an open source MDO framework [19] from
NASA Glenn. The Extended Design Structure matrix (XDSM) [1] diagrams of our OpenMDAO analyses have been
made thanks to WhatsOpt [20] which is a web application developed at ONERA to define and share multidisciplinary
analyses in terms of disciplines and data exchange. Figure 1 is an example of XDSM that represents the LF model
workflow. The aerostructural discipline relies on a tool called OpenAeroStruct (OAS) [21–23]. It is an open source
lightweight tool that performs aerostructural analysis and optimization using OpenMDAO. It couples a vortex-lattice
method (VLM) and a 6 degree of freedom 3-dimensional spatial beam model to simulate aerodynamic and structural
analyses using lifting surfaces. OpenAeroStruct is developed by the NASA and the University of Michigan. In the
following, two fidelity levels are presented to model the drone. For the aerostructural discipline OpenAeroStruct is used
for both fidelity levels with different meshes. To deal with the mission in the multidisciplinary process, the low fidelity
model relies on the electrical Breguet range equation while the high fidelity model requires to solve an optimal control
problem which is tackled by the DYMOS software [24]. DYMOS is a framework for the simulation and optimization of
dynamical systems within the OpenMDAO environment. It has two primary objectives: provide a generic ordinary
differential equation (ODE) integration interface that allows for the analysis of dynamical systems and allow the user to
solve optimal control problems involving dynamical multidisciplinary systems. In Section IV.A the low fidelity drone
model is described and in Section IV.B the high fidelity one is detailed.

A. Low fidelity electrical drone model
The low fidelity model tries to approach the final 𝑆𝑂𝐶, the mission time, and the wing and tail failure constraints

with a cheap computational cost. Figure 1 depicts the associated workflow with the different disciplinary modules
involved in the low fidelity model and their associated number of inputs and outputs variables. Regarding performance
during mission computation, this model relies on an adaptation of the Breguet range equation to electrical aircraft. The
classic fuel Breguet range equation is recalled in Appendix VII.B. The electric adaptation is given by:

𝑅 =
𝐶𝐿

𝐶𝐷

[𝑝[𝑚[𝐸𝑆𝐶

𝑒𝑏

𝑔

𝑚batt

𝑚
(9)

with [𝑝 , [𝑚 and [𝐸𝑆𝐶 being respectively the efficiency coefficients for the propeller, the motor and the electronic speed
controller. 𝑒𝑏 is the battery specific energy, 𝑔 the gravitational acceleration, 𝑚batt the battery mass, and 𝑚 is the total
mass of the aircraft. Typically, for our study, we choose 𝑒𝑏 = 250 Wh.kg−1. This equation is valid in the steady level
flight case and its demonstration is given in Appendix VII.C.

4



Fig. 1 XDSM for the low fidelity drone model with the different disciplinary modules involved.

The low fidelity workflow is therefore the following. First, the RootChordTail group (see Fig. 1) balances the tail
root chord in order to ensure longitudinal stability for the drone. Figure 2 shows the XDSM of the RootChordTail group.
Note that in order to ensure the longitudinal stability of the drone, we use a rule of thumb. The moment arm between the
tail and the wing is equal to 3 meters. The tail root chord is balanced so that the tail surface is equal to 0.15 times the
wing surface. In order to obtain a realistic tail root chord, we impose that the taper ratios of the wing and tail are equal
and that the wing span is equal to 3 times the tail span. The tail span, taper ratio and root chord are not input variables
as they depend on the geometric properties of the wing. Next, the aerostructure group (see Fig. 1) uses OpenAeroStruct

Fig. 2 XDSM of the RootChordTail group.

to compute the lift and drag coefficient required for the electrical Breguet component, the wing and tail failures that will
be used as constraints by the optimizer and the wing and tail masses. The material used for the wing and tail spars is
carbon fiber, and the following properties have been defined in the aerostructure model: the Young modulus of the spars
is equal to 85𝑒9Pa, the shear modulus of the spars is equal to 25𝑒9Pa, the maximum authorized yield stress is set to
350𝑒6
𝑚

Pa with 𝑚 = 2.5 being a safety margin and the material volumic mass is equal to 1.6𝑒3 kgm−3. In addition, we
choose a tubular spar for both the wing and the tail. The radius of these spars is considered constant in the spanwise
direction with a radius of 0.044m for the wing tube and a radius of 0.02m for the tail tube. The thickness to chord ratio
of the wing and of the tail are chosen to be constant in the spanwise direction and equal to 0.12. Note that this value of
thickness to chord ratio ensures that the tubular spars can be effectively contained within the wing and the tail. It is
also important to remark that we have chosen a fixed discretization of the wing and tail meshes in the OpenAeroStruct
model. Indeed the number of points in the spanwise direction is equal to 9 for the wing and to 7 for the tail while the
number of points in the chordwise direction is equal to 7 for the wing and to 5 for the tail. The wing and tail masses
from the aerostructure component are passed to the masses component which deduces the overall drone mass. Finally
the electrical Breguet range equation is applied to find the maximum range and the functions component (see Fig. 1) is
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used to make a rough approximation of the 𝑆𝑂𝐶 at the end of the mission estimated by the following formula:

𝑆𝑂𝐶 = (1 −
𝑅target

𝑅max
)100 (10)

where 𝑅target is the targeted range of the mission and 𝑅max is the maximum range that the drone can perform (computed
with the electrical Breguet range equation Eq (9)).

B. High fidelity electrical drone model
The high fidelity model also attempts to approximate the final 𝑆𝑂𝐶 and the failure constraints for the wing and

the tail, but with greater accuracy. Figure 3 shows the XDSM diagram of the high fidelity drone model with the main
disciplinary modules involved.

Fig. 3 XDSM for the high fidelity drone model with the different disciplinary modules involved.

The strategy involved computes the optimal trajectory in terms of energy consumption and then returns the final
𝑆𝑂𝐶 passing through this optimal path. The workflow of the high fidelity model is as follows. First, as with the low
fidelity model, the tail root chord is balanced to ensure the longitudinal stability of the UAV. Next, we perform the
structure sizing using a call to OpenAeroStruct at the most critical flight point: maximum speed and maximum angle of
attack. This component computes the wing and tail failure constraints and the wing and tail masses. Note that, as for the
low fidelity model, the wing and tail spars are considered tubular. The spar radius, the spar material properties, the
thickness to chord ratio, and mesh discretization are also considered to be the same as in the low fidelity model for the
wing and the tail. Finally, the mission is completed and the corresponding component provides the mission time and the
battery state of charge. The main part of the model is encapsulated in the mission component which calls DYMOS [24],
the OpenMDAO package for optimal control. The mission component has 𝑛 control points of the trajectory through
which the drone must pass and which define the mission requirements. Each control point is composed of 4 values:
altitude, range, Mach number, and climb rate. We then build 𝑛 − 1 phases between each consecutive control point.
To be consistent with the low fidelity model, the trajectory control points are chosen so that the sum of each of the
distances of the 𝑛 − 1 phases is equal to the target range 𝑅target of the low fidelity model. DYMOS is used to determine
the detailed optimal trajectory that minimizes the final 𝑆𝑂𝐶 on each phase knowing the set of design variables. In short,
DYMOS looks for the optimal control variables (climb rate and Mach number) that maximize the final 𝑆𝑂𝐶 for a fixed
UAV design with the constraint of passing through the trajectory control points on each phase. A constraint is added to
the optimal control problem in order to ensure that the maximum possible thrust is not exceeded during the mission.
Denoting 𝑛phases the number of phases, the optimal control problem solved with DYMOS on each phase is described by
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the formula:

∀𝑖 ∈ 0, . . . , 𝑛phases, 𝑢∗𝑖 =max
𝑢𝑖∈𝑈𝑖

∫ 𝑡𝑖+1

𝑡𝑖

𝜕𝑆𝑂𝐶

𝜕𝑡
(𝑠𝑖 (𝑡), 𝑢𝑖 (𝑡))𝑑𝑡

such that



Thrust(𝑡) ≤ Thrustmax ∀𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1]
alt(𝑡𝑖) = alt𝑖
range(𝑡𝑖) = range𝑖
Mach(𝑡𝑖) = Mach𝑖
climb rate(𝑡𝑖) = climb rate𝑖
alt(𝑡𝑖+1) = alt𝑖+1
range(𝑡𝑖+1) = range𝑖+1
Mach(𝑡𝑖+1) = Mach𝑖+1
climb rate(𝑡𝑖+1) = climb rate𝑖+1

(11)

where 𝑠𝑖 and 𝑢𝑖 are respectively states and controls over the 𝑖-th phase and (alt𝑖 , range𝑖 ,Mach𝑖 , climb rate𝑖) is the 𝑖-th
trajectory control point. Note that we perform a maximization since the state of charge time derivative is always negative.
We consider the control system associated with our optimal control problem. It can be written as a system of differential
equations of the following form:

¤𝑠 = 𝐻 (𝑠, 𝑢) (12)

The control variables 𝑢 are the climb rate and the Mach number and the state variables 𝑠 are the 𝑆𝑂𝐶, the altitude and
the range. 𝐻 is a function of the state and control variables which computes the time derivatives ¤𝑠 of the state variables.
To solve the optimal control problem, the time derivatives of all the state variables must be computed. To do so DYMOS
allows the time derivatives to be provided either as control variables or as outputs of an OpenMDAO model able to
compute them by approximating the 𝐻 function defined by Eq. (12). To approximate the state variables time derivatives
¤𝑠, we proposed a model denoted by �̂� (.), coded in OpenMDAO, and depicted in Fig. 4.

Fig. 4 XDSM of the model used to compute the optimal control problem state variable time derivatives. It is
used in the mission component which relies on DYMOS.

The altitude time derivative is the climb rate which is given as a control variable. To compute the range time
derivative, we first compute the altitude dependent characteristics of the atmosphere. Then, we compute the true air
speed (𝑇𝐴𝑆) using the Mach number and the speed of sound in the air in these atmospheric conditions. Knowing the
𝑇𝐴𝑆 and the climb rate, we can apply elementary trigonometric considerations to compute the flight path angle 𝛾 and
the range rate which is the speed component along the 𝑥-axis. The 𝑆𝑂𝐶 rate ( ¤𝑆𝑂𝐶) is the most complex part of the
model �̂� (.) to compute. It is computed in the propulsion group whose XDSM diagram is given in Fig. 5. The 𝑆𝑂𝐶 rate
is the opposite of 𝑃batt the power output of the battery at each instant scaled by the product between the battery capacity
𝑄batt (Coulomb) and the battery voltage 𝑈batt (Volt). We express ¤𝑆𝑂𝐶 in percentages:

¤𝑆𝑂𝐶 (𝑡) = 𝜕𝑆𝑂𝐶

𝜕𝑡
(𝑡) = −𝑃batt

100
𝑄batt𝑈batt

(13)
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Fig. 5 XDSM of the propulsion group.

where 𝑈batt = 𝑈cell × 𝑘 , with 𝑈cell being the electric tension of a single cell in the on-board Lithium-Polymer (LiPo)
battery and 𝑘 being the number of cells in the battery. Typically, 𝑈cell = 3.7𝑉 and 𝑘 = 3. 𝑃batt is necessarily greater
than the propeller output power 𝑃prop required for flight equilibrium due to the efficiencies of the propeller, motor and
electronic speed controller (𝐸𝑆𝐶) being less than 1. These efficiency losses passing through the propeller, motor and
𝐸𝑆𝐶 are modeled using efficiency coefficients ∈ [0; 1[, respectively [𝑝 = 0.7, [𝑚 = 0.95 and [𝐸𝑆𝐶 = 0.98 and we
have:

𝑃prop = 𝑃batt[𝑝[𝑚[𝐸𝑆𝐶 (14)

The required power output of the propeller depends on the required thrust 𝑇 for flight balance and the true air speed 𝑇𝐴𝑆

𝑃prop = 𝑇 × 𝑇𝐴𝑆 (15)

with the thrust 𝑇 being equal to the product of dynamic pressure 𝑞 = 1
2 𝜌air𝑇𝐴𝑆, the reference area 𝑆 = 𝑆wing + 𝑆tail and

the thrust coefficient 𝐶𝑇

𝑇 = 𝑞𝑆𝐶𝑇 (16)

The dynamic pressure 𝑞 is computed in a dedicated component inside the �̂� model while the reference surface is given
to the �̂� model as an input coming from the structure component. The 𝐶𝑇 is an output of the steady flight equilibrium
group of �̂�. Note that the trajectories considered are simple, so not dealing with acceleration phases and only assuming
steady flight phases is accurate enough for us. Within the steady flight equilibrium group, we first call the aerodynamic
component. Using OpenAeroStruct simulations directly at this stage to compute the aerodynamics is very expensive in
term of computational cost because a very large number of simulations must be performed. Then, for the UAV defined
by the MDA inputs variables, two surrogate models of the OpenAeroStruct aerodynamic model are built to solve the
optimal control problem at a reasonable cost. The same radii, material properties, the same thickness to chord ratios and
same mesh discretizations as in the low fidelity model are considered. These surrogate models are Kriging models
built at the very beginning of the mission component from a 90 point Latin Hypercube Sampling (LHS) design of
experiments. Once built the surrogate models are passed to �̂� through an option dictionary to be used in it. They take
three inputs (altitude, Mach number and angle of attack). The first surrogate provides the lift coefficient 𝐶𝐿 while the
second provides the drag coefficient 𝐶𝐷 .

𝐶𝐷 = 𝐶𝐷,𝐺𝑃 (AoA,Mach, alt) (17)

𝐶𝐿 = 𝐶𝐿,𝐺𝑃 (AoA,Mach, alt) (18)

Next we use the 𝐶𝐷 to compute the 𝐶𝑇 required for steady flight equilibrium before computing the 𝐶𝐿 required for
steady flight equilibrium. We denote by 𝑊total the total weight of the UAV. It is computed in a previous component of �̂�
the time derivative model and is equal to the sum of the battery weight (fixed equals to 15 kg), the payload weight (fixed
equals to 10 kg), the fuselage weight (fixed equals to 20 kg) and the lifting surface structural weight (computed by the
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structural component of the model).

𝐶𝑇 = 𝑊total
sin(𝛾)

cos(𝐴𝑜𝐴)𝑞𝑆 + 𝐶𝐷

cos(𝐴𝑜𝐴) (19)

𝐶𝐿𝑒𝑞
= 𝑊total

cos(𝛾)
𝑞𝑆

− 𝐶𝑇 sin(𝐴𝑜𝐴) (20)

Finally we use a Newton solver to find the angle of attack that balances the lift coefficient from the aerodynamic
surrogate model and the one that allows steady flight equilibrium. In other words we want to solve the following non
linear coupled system:

find 𝐴𝑜𝐴 ∈ [−15; 15]
such that 𝐶𝐿𝑒𝑞

(𝐶𝐷 (AoA,Mach, alt)) = 𝐶𝐿 (AoA,Mach, alt) (21)

The thrust coefficient 𝐶𝑇 used in Eq. (16) is the one of Eq. (19) once the Newton solver which balances the lift coefficient
has converged. The workflow of the steady flight equilibrium group is described in Fig. 6. Figure 7 shows an optimal

Fig. 6 XDSM of the steady flight equilibrium group which is a sub analysis of Fig. (6).

trajectory obtained on a climb phase between 2 control points. The phase begins at an altitude of 6 kft and a range of
0 NM and ends at 6.4 kft and 2 NM. The optimal trajectory in terms of energy consumption appears to be linear for
this phase. The blue dots representing the DYMOS solution match perfectly with the blue dotted line representing
the simulation of the dynamical system evolution when subjected to the controls computed with DYMOS. This match
ensures that the optimal control solution is dynamically realistic.

V. Mission test cases
In this section, the overall methodology adopted for the optimization and the mission test cases are described. Four test

cases are considered (Mission 1 to Mission 4), each corresponding to a different mission of gradual complexity. Regardless
of the test case considered, the optimization problem we want to solve is to maximize the mission end 𝑆𝑂𝐶 with respect to
19 design variables 𝑥 ∈ Ωwhere the design spaceΩ = ( [0, 45] × [−20, 20] × [0, 1.2] × [−5, 5]3× [0.001, 0.01]3)2 ⊂ R19

and satisfying two structural constraints. The design variables are listed in Table 1 and the constraints in Table 2.
The high-level optimization problem is expressed as follows:

𝑥∗ = arg max
𝑥∈Ω

SOCfinal (𝑥)

such that
{

wingfailure (𝑥) ≤ 0
tailfailure (𝑥) ≤ 0

(22)

In this paper we want to compare the performance of the Super Efficient Global Optimization (SEGO) algorithm [8], a
mono fidelity Kriging based Bayesian optimization technique that only uses the high fidelity model with the performance
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(a) Range vs time. (b) Altitude vs time.

Fig. 7 Illustration of an optimal trajectory obtained on a climb phase.

Table 1 Definition of the 19 design variables.

variables design space unit quantity
wing span [5, 6] m 1

root chord wing [0.9, 1.2] m 1
wing taper ratio [0.6, 1] no unit 1

wing sweep angle [0, 5] degree 1
tail sweep angle [0, 5] degree 1

wing dihedral angle [−3, 3] degree 1
tail dihedral angle [−3, 3] degree 1

structural tube thickness control points along wing span [0.001, 0.01]3 m 3
structural tube thickness control points along tail span [0.001, 0.01]3 m 3

twist control points along wing span [1, 1.5]𝑥 [0.5, 1]𝑥 [0, 0.5] degree 3
twist control points along tail span [1, 1.5]𝑥 [0.5, 1]𝑥 [0, 0.5] degree 3

Total number of design variables 19

Table 2 Definition of the constraints.

name type bound dimension tolerance
wingfailure ≤ 0 1 1𝑒 − 7
tailfailure ≤ 0 1 1𝑒 − 7

Total number of constraints 2

of the Multi-Fidelity Super Efficient Global Optimization (MFSEGO) algorithm [17, 18], the multi-fidelity co-Kriging
based Bayesian optimization method described in Section III.B which takes advantage of both the high and the low
fidelity electric drone models. The squared exponential kernel and a constant trend are chosen to build the Kriging
(if mono fidelity) or the co-Kriging (if multi-fidelity) models at each iteration of the Bayesian optimizer. The Super
Efficient Global Optimization Mixture Of Experts (SEGOMOE) framework [9, 10, 25, 26] is selected to perform the
Bayesian optimizations. SEGOMOE is a Bayesian optimization internal ONERA & ISAE-SUPAERO toolbox. It relies
on the Surrogate Modelling Toolbox (SMT) introduced in Section III.A. Note that [27] implemented MFSEGO in
SEGOMOE, [18] adapted this implementation to fit the SMT format. It is expected that the use of multi-fidelity will
decrease the total optimization cost by reducing the number of calls to the high-fidelity model. One can remark that
since the number of design variables is relatively high in our problem it is useful to use a dimension reduction technique
in order to save computational cost. To do so we choose to use the partial least squares method (PLS) technique [28, 29].
The PLS method finds a linear relationship between input variables and the output variable by projecting input variables
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onto a new space of lower dimension formed by newly chosen variables called latent variables. PLS has been integrated
into the SEGOMOE and can be coupled with SEGOMOE’s multi-fidelity kriging method. In our tests, we realized that
4 latent variables were enough to capture most of the information. Adding a fifth latent variable does not improve the
precision since almost all of the variance is captured by the 4 first latent variables. On the other hand, removing one
of them will strongly reduce the prediction capability without reducing the computational cost that much. Then, we
decided to set the dimension of latent space to 4.

For the MFSEGO method, the cost ratio between the HF and LF models must be defined. Monte Carlo simulations
of the HF and LF models on 100 randomly drawn points according to a uniform distribution are used to estimate the
computational costs for all mission test cases. The cost ratios are given by the CPU time ratios. They are summarized in
Table 3. The control points defining the four different missions are shown in Fig. 8 where the altitude and Mach values
are given as a function of range.

Table 3 Cost ratio for each mission test case.

Mission 1 Mission 2 Mission 3 Mission 4
cost ratio 140 124 168 164

(a) Mission 1 (4 control points) (b) Mission 2 (6 control points)

(c) Mission 3 (8 control points) (d) Mission 4 (6 control points)

Fig. 8 Range, altitude (red dot) and Mach values (blue cross) at the control points of the four missions.

In order to compare the performances of the mono and multi-fidelity methods, we performed 10 runs for the
single-fidelity Bayesian optimization using SEGO and 10 runs for the multi-fidelity optimization using MFSEGO,
respectively. The mono and multi-fidelity runs share the same HF DoE. Table 4 details the sizes of the initial DoE for
each mission test case. For each multi-fidelity run, the size of the initial LF DoE is twice the size of the initial HF initial
DoE and contains, among other points, the points of the initial HF DoE in order to respect the nested structure of the
DoE. The COBYLA [30] optimizer which stands for Constrained Optimization By Linear Approximation is used to
determine a reference solution for each test case. COBYLA is an implementation of Powell’s nonlinear derivative–free
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Table 4 Initial DoE size for each mission test case.

Mission 1 Mission 2 Mission 3 Mission 4
HF 10 10 5 5
LF 20 20 10 10

constrained optimization that uses a linear approximation approach. The algorithm is a sequential trust–region algorithm
that employs linear approximations to the objective and constraint functions. The obtained optimal designs for each
mission test case are shown in Fig. 9. Now that a reference solution is available we can propose a convergence criterion

Fig. 9 Radar plot of the optimal drone design for each mission test case.

for our methods. Knowing that a point is considered feasible if the constraints are satisfied at this point, we denote by
𝑦
𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑏𝑒𝑠𝑡
the best feasible objective value at a given iteration of the Bayesian optimization and �̄�

𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑏𝑒𝑠𝑡
the respective

mean value over the 10 runs. We can define the following convergence criterion method:

| �̄� 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑏𝑒𝑠𝑡
− 𝑓HF (ref𝑠𝑜𝑙) | ≤ 𝜖0 | 𝑓𝐻𝐹 (ref𝑠𝑜𝑙) | + 𝜖1 (23)

where 𝜖0 is a relative tolerance chosen equal to 0.001 while 𝜖1 is an absolute tolerance chosen equal to 0.05. The four
different missions that the drone must satisfy are detailed in the following sections.

A. Mission 1
Mission 1 is defined by the set of four waypoints detailed in the Table 5. The values in this table are the values

imposed on the control points. This first mission consists in a climb phase followed by a cruise phase and a descent
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phase.

Table 5 Range, altitude, Mach and climb rate values at the Mission 1 waypoints.

Range alt Mach Climb rate
control point 0 0 NM 6.0 kft
control point 1 2 NM 6.4 kft 0.065 0 ft

min
control point 2 7 NM 6.4 kft 0.065 0 ft

min
control point 3 9 NM 6.0 kft

B. Mission 2
Mission 2 consists of by six waypoints (see Table 6). The specificity of this mission is that it carries out a level

climb. Moreover, the flight altitude is much lower.

Table 6 Range, altitude, Mach and climb rate values at the Mission 2 waypoints.

Range alt Mach Climb rate
control point 0 0 NM 1.0 kft
control point 1 2 NM 1.4 kft 0.065 0 ft

min
control point 2 4 NM 1.4 kft 0.065 0 ft

min
control point 3 6 NM 2.0 kft 0.065 0 ft

min
control point 4 11 NM 2.0 kft 0.065 0 ft

min
control point 5 16 NM 1.0 kft

C. Mission 3
Table 7 shows the 8 waypoints that define Mission 3. The flight is performed at low altitude and includes two cruise

phases.

Table 7 Range, altitude, Mach and climb rate values at the Mission 3 waypoints.

Range alt Mach Climb rate
control point 0 0 NM 1.0 kft
control point 1 2 NM 1.4 kft 0.065 0 ft

min
control point 2 6 NM 1.4 kft 0.065 0 ft

min
control point 3 7 NM 1.2 kft 0.065 0 ft

min
control point 4 9 NM 1.2 kft 0.065 0 ft

min
control point 5 11 NM 1.6 kft 0.065 0 ft

min
control point 6 13 NM 1.6 kft 0.065 0 ft

min
control point 7 16 NM 1.0 kft

D. Mission 4
The 6 waypoints of Mission 4 are detailed in Table 8. The main difference with previous missions is that the cruise

phase must be performed at a highest minimal speed. A higher speed is then imposed. This mission consists in a climb
phase, an acceleration phase, a cruise phase performed at least at 𝑀𝑎𝑐ℎ = 0.1, a deceleration phase and finally a descent
phase.

VI. Results
For the four test cases, the MFSEGO method outperforms the SEGO method. Multi-fidelity appears to improve

the budget required for convergence. Figures 10a, 10b, 10c and 10d show, respectively for Missions 1, 2, 3, 4, the
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Table 8 Range, altitude, Mach and climb rate values at the Mission 4 waypoints.

Range alt Mach Climb rate
control point 0 0 NM 6.0 kft
control point 1 2 NM 6.4 kft 0.065 0 ft

min
control point 2 3 NM 6.4 kft 0.12 0 ft

min
control point 3 10 NM 6.4 kft 0.12 0 ft

min
control point 4 11 NM 6.4 kft 0.065 0 ft

min
control point 5 13 NM 6.0 kft

evolution of the mean and 1𝜎 confidence interval over the 10 runs for the objective value at the best current feasible
point. The budget required to achieve the convergence criterion of Eq. (23) for both the mono-fidelity and multi-fidelity
methods is presented in Table 9 for each mission test case. In this table, "Not reached" means that the convergence
criterion was not met with the allowed budget of 100 computational units. One computational unit is the cost of one HF
evaluation. For the first 3 missions, Fig. 10a, 10b and 10c show that compared to the SEGO method, the MFSEGO
method approaches the optimum faster and eventually reaches the convergence criterion (see Eq. (23)) faster too. For
Mission 4, at the beginning, both SEGO and MFSEGO methods approach the optimum at the same speed but at the end
the convergence criterion (see Eq. (23)) is reached with the MFSEGO method and not with SEGO. Finally, for Mission
1, 2 and 3, the use of the bi-fidelity MFSEGO method instead of SEGO reduces the computational budget to reach
convergence respectively by a factor 2.24, 2.21, 1.32 respectively. For Mission 4, the mono-fidelity method does not
even converge for each run. Only 6 runs out of 10 reached the optimum with the allowed budget in the case of the
mono-fidelity method, while all runs reached the optimum in the case of the multi-fidelity method. The multi-fidelity
method is therefore much more robust.

Table 9 Needed budget to reach convergence criterion for each method and each mission test case.

Mission 1 Mission 2 Mission 3 Mission 4
Mono-fidelity (1F) 30 39 29 Not reached
Multi-fidelity (2F) 13.39 17.65 21.90 30.61

VII. Conclusion
In this paper, we addressed the problem of designing an electric fixed-wing drone for long range surveillance

missions. We recall that the methodology applied to solve the optimization problem relies on a multi-fidelity Bayesian
optimization. We developed two drone models of different fidelities. The main contribution here is the addition of an
electric propulsion module and of a mission module to these drone models. For the low fidelity drone model, a mission
component based on the electrical Breguet range equation has been developed while in the high fidelity model, the
mission discipline has been tackled using DYMOS, performing optimal control on the mission trajectory. The use of
metamodels to approximate the lift and drag coefficients provides sufficient accuracy while greatly reducing the cost of
calling Dymos since we no longer have to call OpenAeroStruct many times when solving the optimal control problem.
In the end we used both of these models to perform mono and multi-fidelity Bayesian optimizations on four different
missions that lead to different drone designs. Finally, to solve the optimization problem, the MFSEGO multi-fidelity
algorithm overtakes SEGO mono-fidelity algorithm in terms of needed convergence budget and robustness.

Appendix
In this appendix, Section VII.A presents the MFSEGO methodology in a diagrammatic form. Then, the classical

Breguet fuel autonomy equation is recalled in Section VII.B and Section VII.C details how to find the expression of the
electric Breguet range equation.
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(a) Mission 1 case (b) Mission 2 case

(c) Mission 3 case (d) Mission 4 case with a zoom for the last iterations

Fig. 10 Mean and 1-sigma confidence interval over 10 runs of the objective value at the best HF feasible point
against budget.

A. Diagram of the multi-fidelity Bayesian optimization methodology based on Le Gratiet’s recursive formulation.
Figure 11 is a diagram that explains the multi-fidelity Bayesian optimization methodology with the Le Gratiet’s

recursive formulation.

B. Classic fuel Breguet range equation
The classic fuel Breguet range equation is given by:

𝑅 = − ℎ

𝑔

𝐿

𝐷
[overall ln

𝑊final

𝑊init
(24)

where ℎ is the fuel energy per unit of mass, 𝑔 is the gravity acceleration, 𝐿 is the lift force, 𝐷 the drag force, [overall is
the overall efficiency (ie: propulsive power over fuel power), 𝑊final is the aircraft final weight and 𝑊init is the initial
aircraft weight.

C. Electric Breguet range equation demonstration
First note that the range 𝑅 can be expressed with the speed and the time flying at that speed: 𝑅 = 𝑉 × 𝑡. Under ideal

conditions, the time needed to empty a battery is given by:

𝑡 =
𝑚batt𝑒𝑏

𝑃batt
(25)

where 𝑒𝑏 is the specific energy density of the battery (unit: J.kg−1), 𝑚batt is the battery mass and 𝑃batt is the battery
power. Lets define the overall propulsion system efficiency [𝑡𝑜𝑡 =

𝑃prop
𝑃batt

with 𝑃prop is the required propulsive power to
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Fig. 11 MFSEGO methodology diagram.

reach the equilibrium. [𝑡𝑜𝑡 can be expressed as the product of 3 individual efficiencies: [𝑝 the propeller efficiency, [𝑚
the motor efficiency and [𝐸𝑆𝐶 the electric speed controller efficiency. 𝑃prop = 𝑇𝑉 with 𝑇 the required thrust. Assuming
the steady level flight hypothesis, we have {

𝑇 = 𝐷

𝐿 = 𝑊
(26)

where 𝐿 is the lift force, 𝐷 is the drag force and 𝑊 is the weight. Equation (26) implies

𝑇 =
𝐿
𝐿
𝐷

=
𝑊
𝐿
𝐷

=
𝑚𝑔
𝐿
𝐷

with 𝑔 being the gravity acceleration. A relation is now available for the speed:

𝑉 =
𝑃prop

𝑇
=

𝑃batt [𝑡𝑜𝑡
𝑚𝑔
𝐿
𝐷

(27)

Then the final expression for the range is given by:

𝑅 = 𝑉 × 𝑡 =
𝑚batt𝑒𝑏

𝑃batt
× 𝑃batt [𝑡𝑜𝑡

𝑚𝑔
𝐿
𝐷

=
𝐿

𝐷
[𝑝[𝑚[𝐸𝑆𝐶

𝑒𝑏

𝑔

𝑚batt

𝑚
(28)

Note that the 𝐿
𝐷

ratio can be replaced by the ratio of lift and drag coefficient 𝐶𝐿

𝐶𝐷
. Indeed, 𝐿 = 𝑞𝑆𝐶𝐿 and 𝐷 = 𝑞𝑆𝐶𝐷

with 𝑆 being the lifting surface area and 𝑞 being the dynamic pressure.
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