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Let s(t) and r(t) be band-limited signals of bandwidth smaller than B sampled at frequency F s over N = N 2 -N 1 samples. The aim of this note is to provide details on the evaluation of the following integral terms:

w 1 = R s(t -τ )r(t -τ k ) * e -j2πfc(b(t-τ )-b k (t-τ k )) dt, (1) 
w 2 = R (t -τ )s(t -τ )r(t -τ k ) * e -j2πfc(b(t-τ )-b k (t-τ k )) dt, (2) 
w 3 = R (t -τ ) 2 s(t -τ )r(t -τ k ) * e -j2πfc(b(t-τ )-b k (t-τ k )) dt, (3) 
w 4 = R s (1) (t -τ )r(t -τ k ) * e -j2πfc(b(t-τ )-b k (t-τ k )) dt, (4) 
w 5 = R (t -τ )s (1) (t -τ )r(t -τ k ) * e -j2πfc(b(t-τ )-b k (t-τ k )) dt, (5) 
w 6 = R s (2) (t -τ )r(t -τ k ) * e -j2πfc(b(t-τ )-b k (t-τ k )) dt, ( 6 
)
where τ is a time delay, (1 -b) is a dilatation term due to Doppler effect, f c is carrier frequency and the superscript (i) refers to the i-th time derivative of signal s(t).

Prior Considerations

First the Fourier transform of a set of functions are to be evaluated. Remembering that the signal is band-limited of band B ≤ F s , one has:

s(t) ⇌ FT {s(t)} (f ) ≜ S(f ) = 1 F s N 2 n=N 1 s(nT s )e -j2πf nTs 1 [-Fs 2 ; Fs 2 ] (7) 
In order to tackle the issue that may come from the spectral shift due to Doppler effect. One simply needs to take F s large enough so that Fs

2 ≥ B 2 + f c max {|b|, |b k |, |b -b k |}.
A first expression is a simple application of the frequency shift relation when using the Fourier transform of a signal multiplied by a complex time-varying exponential.

s(t)e j2πfcbt ⇌ FT s(t)e j2πfcbt (f ) ≜ S(f -f c b) (8)
Then, let s 1 be defined by s 1 (t; b) = s(t)e j2πfcbt , it is known that

ts 1 (t; b) ⇋ j 2π d df (FT {s 1 (t; b)} (f )) (8) (9) therefore ts(t)e j2πfcbt ⇋ j 2π d df (S(f -f c b)) (10) Similarly t 2 s(t)e j2πfcbt ⇋ j 2π 2 d 2 df 2 (S(f -f c b)) (11) 
Besides, with the superscript (1) referring to the first time derivative,

s (1) 1 (t; b) ≜ d dt (s 1 (t; b)) = s (1) (t)e j2πfcbt + (j2πf c b)s 1 (t; b) ⇔ s (1) (t)e j2πfcbt = s (1) 1 (t; b) -(j2πf c b)s 1 (t; b) Then, knowing the Fourier transform of the k-th time derivative of a function FT s (k) (t) (f ) ≜ (j2πf ) k S(f ) (12) one directly gets s (1) (t)e j2πfcbt ⇌ j2π (f -f c b) S(f -f c b) (13) Now, if s 2 is defined as s 2 (t; b) = ts(t)e j2πfcbt , s (1) 
2 (t; b) = s 1 (t; b) + ts (1) (t)e j2πfcbt + (j2πf c b)s 2 (t; b) ⇔ ts (1) (t)e j2πfcbt = -s 1 (t; b) (8) + s (1) 2 (t; b) (12) -(j2πf c b) s 2 (t; b) (10) therefore, ts (1) (t)e j2πfcbt ⇋ -S(f -f c b) -(f -f c b) d df (S(f -f c b)) (14) 
Finally, by taking again

s 1 as s 1 (t; b) = s(t)e j2πfcbt , s (2) 
1 (t; b) = s (2) (t)e j2πfcbt + 2(j2πf c b)s (1) (t)e j2πfcbt + (j2πf c b) 2 s 1 (t; b) (15) ⇔ s (2) (t)e j2πfcbt = s (2) 1 (t; b) (12) -(j4πf c b) s (1) (t)e j2πfcbt (13) +4π 2 (f c b) 2 s 1 (t; b) (8) 
(16) one obtains,

s (2) (t)e j2πfcbt ⇋ (j2πf ) 2 S(f -f c b) + 8π 2 f c b(f -f c b)S(f -f c )) + 4π 2 (f c b) 2 S(f -f c b) (17) ⇋ -4π 2 (f -f c b) 2 S(f -f c b) (18)
1.2 Evaluation of the Integrals

1.2.1 Integral w 1 w 1 = R s(t -τ )r(t -τ k ) * e -jωc(b(t-τ )-b k (t-τ k )) dt = e -jωcb k ∆τ k R s(u)r(u -∆τ k ) * e jωc∆b k u du with ∆τ k ≜ τ k -τ and ∆b k ≜ b k -b.
Then, using the Fourier transform properties over the hermitian product,

w 1 e jωc∆b k u = R s(u)e jωc∆b k u (8) (r(u -∆τ k )) * du = Fs 2 -Fs 2 S(f -f c ∆b k ) R(f )e -j2πf ∆τ k * df = Fs 2 -Fs 2 1 F s N 2 n=N 1 s(nT s )e -j2π(f -fc∆b k )nTs e j2πf ∆τ k 1 F s N 2 n=N 1 r(nT s )e -j2πf nTs * df = 1 F s 1 2 -1 2 N 2 n=N 1 s(nT s )e -j2πf n e j2π fc∆b k Fs n e j2πf ∆τ k Ts N 2 n=N 1 r(nT s )e -j2πf n * df = 1 F s 1 2 -1 2 s T U - f c ∆b k F s ν(f ) * e j2πf ∆τ k Ts r H ν(f ) df = 1 F s r H 1 2 -1 2 ν(f )ν H (f )e j2πf ∆τ k Ts df U - f c ∆b k F s s = 1 F s r H V ∆,0 - ∆τ k T s U - f c ∆b k F s s Hence w 1 = 1 F s r H V ∆,0 - ∆τ k T s U - f c ∆b k F s s e -jωcb k ∆τ k (19) with ν(f ) = . . . e j2πf n . . . T N 1 ≤n≤N 2 (20) U (p) = diag . . . e -j2πpn . . . N 1 ≤n≤N 2 (21) V ∆,0 (q) = 1 2 -1 2 ν(f )ν H (f )e -j2πf q df (22) and V ∆,0 (q) k,l = 1 2 -1 2 e j2πf (k-l-q) df = e j2πf (k-l-q) j2π(k -l -q) 1 2 -1 2 = sin (π(k -l -q)) π(k -l -q) = sinc (k -l -q) (23) 1.2.2 Integral w 2 w 2 = R (t -τ )s(t -τ )r(t -τ k ) * e -jωc(b(t-τ )-b k (t-τ k )) dt = e -jωcb k ∆τ k R us(u)r(u -∆τ k ) * e jωc∆b k u du Therefore, w 2 e jωcb k ∆τ k = R us(u)e jωc∆b k u (10) (r(u -∆τ k )) * du = Fs 2 -Fs 2 j 2π d df (S(f -f c ∆b k )) R(f )e -j2πf ∆τ k * df = Fs 2 -Fs 2 1 F s j 2π (-j2πT s ) N 2 n=N 1 s(nT s )ne -j2π(f -fc∆b k )nTs e j2πf ∆τ k × 1 F s N 2 n=N 1 r(nT s )e -j2πf nTs * df = 1 F 2 s 1 2 -1 2 N 2 n=N 1 s(nT s )ne -j2πf n e j2π fc∆b k Fs n e j2πf ∆τ k Ts N 2 n=N 1 r(nT s )e -j2πf n * df = 1 F 2 s 1 2 -1 2 s T DU - f c ∆b k F s ν(f ) * e j2πf ∆τ k Ts r H ν(f ) df = 1 F 2 s r H 1 2 -1 2 ν(f )ν H (f )e j2πf ∆τ k Ts df U - f c ∆b k F s Ds = 1 F 2 s r H V ∆,0 - ∆τ k T s U - f c ∆b k F s Ds Hence w 2 = 1 F 2 s r H V ∆,0 - ∆τ k T s U - f c ∆b k F s Ds e -jωcb k ∆τ k (24)
with U and V ∆,0 , defined in ( 21) and ( 22), respectively, and with

D = diag . . . n . . . N 1 ≤n≤N 2 (25) 1.2.3 Integral w 3 w 3 = R (t -τ ) 2 s(t -τ )r(t -τ k ) * e -jωc(b(t-τ )-b k (t-τ k )) dt = e -jωcb k ∆τ k R u 2 s(u)r(u -∆τ k ) * e jωc∆b k u du
Therefore,

w 3 e jωcb k ∆τ k = R u 2 s(u)e jωc∆b k u (11) (r(u -∆τ k )) * du = Fs 2 -Fs 2 j 2π 2 d 2 df 2 (S(f -f c ∆b k )) R(f )e -j2πf ∆τ k * df = Fs 2 -Fs 2 1 F s j 2π 2 (-j2πT s ) 2 N 2 n=N 1 s(nT s )n 2 e -j2π(f -fc∆b k )nTs e j2πf ∆τ k × 1 F s N 2 n=N 1 r(nT s )e -j2πf nTs * df = 1 F 3 s 1 2 -1 2 N 2 n=N 1 s(nT s )n 2 e -j2πf n e j2π fc∆b k Fs n e j2πf ∆τ k Ts N 2 n=N 1 r(nT s )e -j2πf n * df = 1 F 3 s 1 2 -1 2 s T D 2 U - f c ∆b k F s ν(f ) * e j2πf ∆τ k Ts r H ν(f ) df = 1 F 3 s r H 1 2 -1 2 ν(f )ν H (f )e j2πf ∆τ k Ts df U - f c ∆b k F s D 2 s = 1 F 3 s r H V ∆,0 - ∆τ k T s U - f c ∆b k F s D 2 s Hence w 3 = 1 F 3 s r H V ∆,0 - ∆τ k T s U - f c ∆b k F s D 2 s e -jωcb k ∆τ k (26)
with U, V ∆,0 and D defined in ( 21), ( 22) and ( 25) respectively.

1.2.4 Integral w 4 w 4 = R s (1) (t -τ )r(t -τ k ) * e -jωc(b(t-τ )-b k (t-τ k )) dt = e -jωcb k ∆τ k R s (1) (u)r(u -∆τ k ) * e jωc∆b k u du Therefore, w 4 e jωcb k ∆τ k = R s (1) (u)e jωc∆b k u (13) (r(u -∆τ k )) * du = Fs 2 -Fs 2 (j2π(f -f c ∆b k )S(f -f c ∆b k )) R(f )e -j2πf ∆τ k * df = Fs 2 -Fs 2 j2π(f -f c ∆b k ) 1 F s N 2 n=N 1 s(nT s )e -j2π(f -fc∆b k )nTs e j2πf ∆τ k × 1 F s N 2 n=N 1 r(nT s )e -j2πf nTs * df = 1 F s 1 2 -1 2 j2π(f F s -f c ∆b k ) N 2 n=N 1 s(nT s )e -j2πf n e j2π fc∆b k Fs n e j2πf ∆τ k Ts × N 2 n=N 1 r(nT s )e -j2πf n * df = 1 F s 1 2 -1 2 j2π(f F s -f c ∆b k )s T U - f c ∆b k F s ν(f ) * e j2πf ∆τ k Ts r H ν(f ) df = r H j2π 1 2 -1 2 f ν(f )ν H (f )e j2πf ∆τ k Ts df U - f c ∆b k F s s - j2πf c ∆b k F s r H 1 2 -1 2 ν(f )ν H (f )e j2πf ∆τ k Ts df U - f c ∆b k F s s = r H V ∆,1 - ∆τ k T s U - f c ∆b k F s s - j2πf c ∆b k F s r H V ∆,0 - ∆τ k T s U - f c ∆b k F s s Hence w 4 = r H V ∆,1 - ∆τ k T s U - f c ∆b k F s s - jω c ∆b k F s r H V ∆,0 - ∆τ k T s × U - f c ∆b k F s s e -jωcb k ∆τ k (27)
with U and V ∆,0 defined in ( 21) and ( 22) and

V ∆,1 (q) = j2π 1 2 -1 2 f ν(f )ν H (f )e -j2πf q df (28) and V ∆,1 (q) k,l = j2π 1 2 -1 2 f e j2πf (k-l-q) df = j2π f e j2πf (k-l-q) j2π(k -l -q) 1 2 -1 2 - + 1 2 -1 2 e j2πf (k-l-q) j2π(k -l -q) df = j2π j2π(k -l -q) 1 2 e jπ(k-l-q) -- 1 2 e -jπ(k-l-q) - e j2πf (k-l-q) j2π(k -l -q) 1 2 -1 2 = 1 k -l -q (cos (π(k -l -q)) -sinc (k -l -q)) (29) 1.2.5 Integral w 5 w 5 = R (t -τ )s (1) (t -τ )r(t -τ k ) * e -jωc(b(t-τ )-b k (t-τ k )) dt = e -jωcb k ∆τ k R us (1) (u)r(u -∆τ k ) * e jωc∆b k u du Therefore, w 5 e jωcb k ∆τ k = R us (1) (u)e jωc∆b k u (14) (r(u -∆τ k )) * du = Fs 2 -Fs 2 -S(f -f c ∆b k ) -(f -f c ∆b k ) d df (S(f -f c ∆b k )) R(f )e -j2πf ∆τ k * df = Fs 2 -Fs 2 - 1 F s N 2 n=N 1 s(nT s )e -j2π(f -fc∆b k )nTs -(f -f c ∆b k ) 1 F s (-j2πT s ) N 2 n=N 1 s(nT s )ne -j2π(f -fc∆b k )nTs × e j2πf ∆τ k 1 F s N 2 n=N 1 r(nT s )e -j2πf nTs * df = - 1 F s 1 2 -1 2 N 2 n=N 1 s(nT s )e -j2πf n e j2π fc∆b k Fs n e j2πf ∆τ k Ts N 2 n=N 1 r(nT s )e -j2πf n * df + 1 F s 1 2 -1 2 j2πf N 2 n=N 1 s(nT s )ne -j2πf n e j2π fc∆b k Fs n e j2πf ∆τ k Ts N 2 n=N 1 r(nT s )e -j2πf n * df -j2π f c ∆b k F 2 s 1 2 -1 2 N 2 n=N 1 s(nT s )ne -j2πf n e j2π fc∆b k Fs n e j2πf ∆τ k Ts N 2 n=N 1 r(nT s )e -j2πf n * df = - 1 F s 1 2 -1 2 s T U - f c ∆b k F s ν(f ) * e j2πf ∆τ k Ts r H ν(f ) df + 1 F s 1 2 -1 2 j2πf s T DU - f c ∆b k F s ν(f ) * e j2πf ∆τ k Ts r H ν(f ) df -j2π f c ∆b k F 2 s 1 2 -1 2 s T DU - f c ∆b k F s ν(f ) * e j2πf ∆τ k Ts r H ν(f ) df = - 1 F s r H 1 2 -1 2 ν(f )ν(f ) H e j2πf ∆τ k Ts df U - f c ∆b k F s s + 1 F s r H j2π 1 2 -1 2 f ν(f )ν(f ) H e j2πf ∆τ k Ts df U - f c ∆b k F s Ds -j2π f c ∆b k F 2 s r H 1 2 -1 2 ν(f )ν(f ) H e j2πf ∆τ k Ts df U - f c ∆b k F s Ds = - 1 F s r H V ∆,0 - ∆τ k T s U - f c ∆b k F s s + 1 F s r H V ∆,1 - ∆τ k T s U - f c ∆b k F s Ds -j2π f c ∆b k F 2 s r H V ∆,0 - ∆τ k T s U - f c ∆b k F s Ds Hence w 5 = - 1 F s r H V ∆,0 - ∆τ k T s U - f c ∆b k F s s + 1 F s r H V ∆,1 - ∆τ k T s U - f c ∆b k F s Ds -j ω c ∆b k F 2 s r H V ∆,0 - ∆τ k T s U - f c ∆b k F s Ds e -jωcb k ∆τ k (30)
with U, V ∆,0 , V ∆,1 and D defined in ( 21), ( 22), ( 28) and ( 25).

1.2.6 Integral w 6

w 6 = R s (2) (t -τ )r(t -τ k ) * e -jωc(b(t-τ )-b k (t-τ k )) dt = e -jωcb k ∆τ k R s (2) (u)r(u -∆τ k ) * e jωc∆b k u du w 6 e jωcb k ∆τ k = R s (2) (u)e jωc∆b k u (18) (r(u -∆τ k )) * du = Fs 2 -Fs 2 -4π 2 (f -f c ∆b k ) 2 S(f -f c ∆b k ) R(f )e -j2πf ∆τ k * df = Fs 2 -Fs 2 -4π 2 f 2 + 8π 2 f f c ∆b k -4π 2 (f c ∆b k ) 2 1 F s N 2 n=N 1 s(nT s )e -j2π(f -fc∆b k )nTs × e j2πf ∆τ k 1 F s N 2 n=N 1 r(nT s )e -j2πf nTs * df = 1 2 -1 2 -4π 2 (f F s ) 2 + 8π 2 (f F s )f c ∆b k -4π 2 (f c ∆b k ) 2 1 F s N 2 n=N 1 s(nT s )e -j2πf n e j2π fc∆b k Fs n × e j2πf ∆τ k Ts 1 F s N 2 n=N 1 r(nT s )e -j2πf n * df F s = 1 2 -1 2 -F s (4π 2 f 2 ) -j4πf c ∆b k (j2πf ) -4π 2 (f c ∆b k ) 2 F s s T U - f c ∆b k F s ν(f ) * × e j2πf ∆τ k Ts r H ν(f ) df = -F s r H 4π 2 1 2 -1 2 f 2 ν(f )ν(f ) H e j2πf ∆τ k Ts df U - f c ∆b k F s s -j4πf c ∆b k r H j2π 1 2 -1 2 f ν(f )ν(f ) H e j2πf ∆τ k Ts df U - f c ∆b k F s s -4π 2 (f c ∆b k ) 2 F s r H 1 2 -1 2 ν(f )ν(f ) H e j2πf ∆τ k Ts df U - f c ∆b k F s s = -F s r H V ∆,2 - ∆τ k T s U - f c ∆b k F s s -j4πf c ∆b k r H V ∆,1 - ∆τ k T s U - f c ∆b k F s s -4π 2 (f c ∆b k ) 2 F s r H V ∆,0 - ∆τ k T s U - f c ∆b k F s s Hence w 6 = -F s r H V ∆,2 - ∆τ k T s U - f c ∆b k F s s -j2ω c ∆b k r H V ∆,1 - ∆τ k T s U - f c ∆b k F s s - (ω c ∆b k ) 2 F s r H V ∆,0 - ∆τ k T s U - f c ∆b k F s s e -jωcb k ∆τ k
(31) with U, V ∆,0 and V ∆,1 defined in ( 21), ( 22) and (28) and

V ∆,2 (q) = 4π 2 1 2 -1 2 f 2 ν(f )ν H (f )e -j2πf q df (32) and V ∆,2 (q) k,l = 4π 2 1 2 -1 2 f 2 e j2πf (k-l-q) df = 4π 2 f 2 e j2πf (k-l-q) j2π(k -l -q) 1 2 -1 2 - + 1 2 -1 2 2f e j2πf (k-l-q) j2π(k -l -q) df = 4π 2 j2π(k -l -q) 1 4 e jπ(k-l-q) -e -jπ(k-l-q) - 8π 2 j2π(k -l -q) f e j2πf (k-l-q) j2π(k -l -q) 1 2 -1 2 - + 1 2 -1 2 e j2πf (k-l-q) j2π(k -l -q) df = π 2 sinc (k -l -q) - 8π 2 (j2π(k -l -q)) 2 × 1 2 e jπ(k-l-q) -- 1 2 e -jπ(k-l-q) - e j2πf (k-l-q) j2π(k -l -q) 1 2 -1 2 = π 2 sinc (k -l -q) + 8π 2 4π 2 (k -l -q) 2 × (cos (π(k -l -q)) -sinc (k -l -q)) = π 2 sinc (k -l -q) + 2 cos (π(k -l -q)) -sinc (k -l -q) (k -l -q) 2 (33) 

Matrix Properties

Based on the definitions of matrices V ∆,0 , V ∆,1 , V ∆,2 and U, one can do the following remarks:

• V ∆,0 (q) H = V ∆,0 (-q),

• V ∆,1 (q) H = -V ∆,1 (-q), • V ∆,2 (q) H = V ∆,2 (-q),
• (U(p)) H = U(-p).

2 Kullback-Leibler Divergence and Mispecified Maximum Likelihood Estimator

Signal Models

In this section two signal models are considered. One, referred to as the true model considers the reception of two sources embedded in an additive white Gaussian noise:

x = α 0 a 0 + α 1 a 1 + w, w ∼ CN (0, σ 2 n I N ) , (34) 
with, for i ∈ {0, 1}, α i = ρ i e jϕ i and, for n ∈ [N 1 , N 2 ],

x T = (. . . , x(nT s ), . . . ) , a T i = a(η i ) T = (. . . , a(nT s ; η i ), . . . ) , w T = (. . . , w(nT s ), . . . ) . η i is a vector of unknown parameters (delay and Doppler parameters for instance) that parameterized the signal of interest a and θ T i = [η T i , ρ i , ϕ i ] is the concatenated vector of parameters the i-th contributor. Consequently, the true data model PDF, noted p x (x|θ 0 , θ 1 ), is written as:

p x (x|θ 0 , θ 1 ) = CN (α 0 a 0 + α 1 a 1 , σ 2 n I N ). (35) 
The second signal model, referred to as psuedotrue model considers the reception of a single source with an additivie white Gaussian noise:

x = α pt a pt + w, w ∼ CN (0, σ 2 n I N ) , (36) 
with, α pt = ρ pt e jϕpt and, for n

∈ [N 1 , N 2 ],
a T pt = a(η pt ) T = . . . , a(nT s ; η pt ), . . . , and the subscript pt refers to psuedotrue which will necessarily depend on the true values θ 0 and θ 1 .

Then, the misspecified data model PDF, noted f x (x|θ pt ) is written as:

f x (x|θ pt ) = CN (α pt a pt , σ 2 n I N ) (37) 
where θ pt = [η pt , ρ pt , ϕ pt ] T is the vector of pseudotrue parameters.

Kullback-Leibler Divergence Computation

In the case of a misspecified scenario, one uses a the single source model (37) whereas the true model is a dual source model (35). In this case, the pseudotrue parameters θ pt are the values of the parameters θ = [η T , ρ, ϕ] T that minimise the Kullback-Leibler Divergence (KLD) between the true and misspecified distribution models.

D(p x ||f x ) = E p {ln (p ϵ (x; θ 0 , θ 1 )) -ln (f x (x; θ))} (38) 
θ pt = arg min θ {D(p x ||f x )} = arg min θ {E p {-ln (f x (x; θ))}} , (39) 
where E p {•} is the expectation with respect to the true model's pdf, and

-ln (f x (x; θ)) = -N ln(π) -2N ln(σ n ) + 1 σ 2 n ∥x -αa(η)∥ 2 . ( 40 
)
The last term of (40) can be expanded as follows:

∥x -αa(η)∥ 2 = ∥x -(α 0 a 0 + α 1 a 1 ) + (α 0 a 0 + α 1 a 1 ) -αa(η)∥ 2 (41)

= ∥x -(α 0 a 0 + α 1 a 1 )∥ 2 + ∥α 0 a 0 + α 1 a 1 -αa(η)∥ 2 + (x -(α 0 a 0 + α 1 a 1 )) H (α 0 a 0 + α 1 a 1 -αa(η))

+ (α 0 a 0 + α 1 a 1 -αa(η)) H (x -(α 0 a 0 + α 1 a 1 ))

The expectation of the first term of ( 42) is the noise covariance, which cannot be minimized and the expectation of the last two terms of (42) are null. Consequently, to minimize the expectation of ( 40 Let P a be the orthogonal projector and P a ⊥ = I N -P a with P a = a(η)a(η) H ∥a(η)∥ 2 , which leads to ∥α 0 a 0 + α 1 a 1 -αa(η)∥ 2 = P a + P a ⊥ (α 0 a 0 + α 1 a 1 -αa(η))

2

= ∥P a (α 0 a 0 + α 1 a 1 -αa(η))∥ 2 + P a ⊥ (α 0 a 0 + α 1 a 1 -αa(η)) ∥a(η pt )∥ 2 (α 0 a 0 + α 1 a 1 ) (44) with α pt = ρ pt e jΦpt . This result shows that minimizing the KLD between the true and the misspecified distribution is equivalent to performing misspecified maximum likelihood estimation.

  ) w.r.t. the argument θ, the equation can be simplified as,arg min θ {E p {-ln (f x (x; θ))}} = arg min θ ∥α 0 a 0 + α 1 a 1 -αa(η)∥ 2 .(43)

  ∥a(η)∥ 2 (α 0 a 0 + α 1 a 1 ) -α 2 + P a ⊥ (α 0 a 0 + α 1 a 1 ) 2 ,then the parameters that minimize the KLD are,θ pt = arg min θ ∥α 0 a 0 + α 1 a 1 -αa(η)∥ 2 ⇔    η pt = arg max η P a ⊥ (α 0 a 0 + α 1 a 1 ) 2 α pt = a(η pt ) H