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Abstract 

Emerging evidence shows that the modular organization of the human brain allows for better and 

efficient cognitive performance. Many of these cognitive functions are very fast and occur in sub-

second time scale such as the visual object recognition. Here, we investigate brain network 

modularity while controlling stimuli meaningfulness and measuring participant’s reaction time. 

We particularly raised two questions: i) does the dynamic brain network modularity change 

during the recognition of meaningful and meaningless visual images? And ii) is there a 

correlation between network modularity and the reaction time of participants?  

To tackle these issues, we collected dense-electroencephalography (EEG, 256 channels) data 

from 20 healthy human subjects performing a cognitive task consisting of naming meaningful 

(tools, animals…) and meaningless (scrambled) images. Functional brain networks in both 

categories were estimated at sub-second time scale using the EEG source connectivity method. 

By using multislice modularity algorithms, we tracked the reconfiguration of functional networks 

during the recognition of both meaningful and meaningless images. Results showed a difference 

in the module’s characteristics of both conditions in term of integration (interactions between 

modules) and occurrence (probability on average of any two brain regions to fall in the same 

module during the task). Integration and occurrence were greater for meaningless than for 

meaningful images. Our findings revealed also that the occurrence within the right frontal regions 

and the left occipito-temporal can help to predict the ability of the brain to rapidly recognize and 

name visual stimuli. We speculate that these observations are applicable not only to other fast 

cognitive functions but also to detect fast disconnections that can occur in some brain disorders. 
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Introduction  

Information is continuously processed and integrated in the human brain. To ensure efficient 

cognitive function, complex brain networks are characterized by two key features. On the one 

hand, recent studies show that their modularity facilitates information processing as compared to 

non-modular organization (Sporns and Betzel 2016). Typically, in a large study of 77 cognitive 

tasks, Bertolero et al. showed that the presence of network modules (defined as a set of brain 

regions strongly connected to each other and weakly connected to the rest of the network) is 

correlated with different cognitive functions such as memory, visual processing and motor 

programming (Bertolero, Yeo et al. 2015). 

On the other hand, emerging evidence shows that the dynamic behavior of brain networks is 

fundamental to understand cognition (Basset 2015). Typically, during a learning task, Basset et 

al. showed that the flexibility (defined as how often a given node changes its modular affiliation 

over time) of the networks facilitates the prediction of individual future performances in next 

learning sessions (Bassett, Wymbs et al. 2011). Both flexibility and integration (defined as the 

interactions between modules) in the frontal lobe during a 2-back working memory task were 

shown to be correlated with the performance accuracy (Braun, Schäfer et al. 2015).  

All the above-mentioned studies were performed using fMRI, the spatial resolution of which 

allows for appropriate identification of brain areas involved in considered cognitive processing. 

However, most of cognitive processes occur on a very short duration and are likely to involve 

modular dynamic changes occurring at sub-second time scale. Unfortunately, such changes 

cannot be tracked with fMRI due to intrinsic time resolution (on the order of 1 second). 
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Therefore, our knowledge about the dynamic modifications of the modular organization of brain 

networks at a sub-second time-scale during cognitive activity remains elusive. 

To tackle this issue, i.e. to assess how functional brain network modules dynamically reconfigure 

to ensure information processing and integration, we chose the well-defined visual object 

recognition and naming task (DiCarlo, Zoccolan et al. 2012) which involves fast cognitive 

processes (a few hundred of ms from stimulus onset to reaction). In order to guarantee 

sufficiently fast tracking of functional brain networks, we collected dense-

electroencephalography (EEG, 256 channels) data from 20 healthy human subjects performing a 

cognitive task consist of naming meaningful (tools, animals…) and meaningless (scrambled) 

visual stimuli. Functional brain networks in both categories were estimated using ‘dense-EEG 

source connectivity’ method (Hassan and Wendling 2018). By applying multislice modularity 

algorithms to neocortical networks, we tracked the reconfiguration of brain modules at sub-

second time scale during the recognition of these two object categories. Results showed that two 

relevant parameters, namely the integration and occurrence (defined as the probability on average 

of any two brain regions to fall in the same module during the task) parameters, exhibited 

stronger values for meaningless as compared with meaningful images. Our findings also revealed 

that the occurrence within the right frontal regions and the left occipito-temporal can help to 

predict the ability of the brain to rapidly recognize and name meaningful visual stimuli. 

Materials and methods 

Participants 

Twenty healthy volunteers (10 women and 10 men; mean age 23 y) with no neurological diseases 

participated in this study (the data of two females and 1 male participants were eliminated as 
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EEG signals were very noisy due to electrodes impedance issues). 80 meaningful and 40 

meaningless pictures (figure S1), taken from the Alario and Ferrand database (Alario and Ferrand 

1999), were displayed on a screen as black drawings on a white background and the participants 

were asked to name the presented images. The same number of stimuli was used in the further 

analysis by selecting 40 meaningful images (the same for all subjects). E-Prime 2.0 software 

(Psychology Software Tools, Pittsburgh, PA) was used to display the pictures.  

A typical trial started with a fixation cross that lasted 1sec, then the image was shown during 2.5s 

and followed by a blank screen for 1 or 2s (randomly selected) (Figure 1A, see also table S1 for 

more details about the images used in the study). The time between the picture onset and the 

beginning of vocalization recorded by the system was considered as naming latencies. The voice 

onset times were then analyzed using Praat software (Boersma 2001). The fastest response over 

trials and subjects was 535ms. Therefore, the analysis was performed from the stimulus onset up 

to 500ms following the stimulus in order to avoid muscle artifacts (due to articulation). Errors in 

naming were discarded for the following analysis. Subjects were informed about meaningless 

objects presence in the experiment and were instructed to say nothing when viewing them. All 

participants provided a written informed consent to participate in this study which was approved 

by the National Ethics Committee for the Protection of Persons (CPP), Braingraph study, 

agreement number (2014-A01461-46), and promoter: Rennes University Hospital.  
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Figure 1. Experimental setup. A. The cognitive task consisted in naming visual stimuli of two categories of: 

meaningful and meaningless pictures. B. 68 cortical regions defined from the Desikan-Killiany atlas (Desikan, 

Ségonne et al. 2006) were used. C. Functional connectivity was computed between these 68 regional time series 

for a period of 500 ms using the dense EEG source connectivity method in the gamma frequency band (30-

45Hz). D. A dynamic module detection algorithm (Bassett, Wymbs et al. 2011, Bassett, Porter et al. 2013, 

Bassett, Yang et al. 2015) was used to identify network modules in each time window and to follow their 

evolution over time. Briefly, this algorithm constructs a modular allegiance matrix over the 100 runs at each 

window in which each element is 1 if two nodes are in the same module and is equal to zero otherwise. E. All 

matrices are then summed for each condition to obtain the global modular allegiance matrix, whose elements 

indicate the fraction of time windows in which nodes have been assigned to the same module. Then a 

community detection algorithm is applied to obtain a “consensus partition” as described in (Braun, Schäfer et 

al. 2015), which represents the common modular structure across all time windows. 

Data recording and preprocessing 

A dense EEG system (EGI, Electrical Geodesic Inc., 256 electrodes) was used to record brain 

activity. EEG signals were sampled at 1 KHz and then band-pass filtered between 0.3 and 45 Hz. 
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For the preprocessing, EEGLAB (Delorme and Makeig 2004) was used to reject and exclude the 

epochs contaminated by eye blinking (using ICA-based algorithm) and any other noise source. 

For some subjects, few electrodes with poor signal quality were identified. For these electrodes, 

the EEG signal was interpolated using signals recorded by surrounding electrodes.  

In addition to dense EEGs, individual structural MRI was also available for each participant. A 

realistic head model was built by segmenting the anatomical MRI using Freesurfer (Fischl 2012). 

The individual MRI anatomy and EEGs were co-registered through identification of the same 

anatomical landmarks (left and right tragus and nasion). The lead field matrix was then computed 

for a cortical mesh of 15000 vertices using Brainstorm (Tadel, Baillet et al. 2011) and 

OpenMEEG (Gramfort, Papadopoulo et al. 2010). An atlas-based approach was used to project 

EEG signals onto a subject-specific anatomical framework consisting of 68 cortical regions 

(summarized in table S2 and visualized in figure 1B) identified by means of the Desikan-

Killiany, (Desikan, Ségonne et al. 2006). Time series belonging to the same ROI were averaged 

after flipping the sign of sources with opposite directions. 

Construction of the functional networks 

Functional networks were constructed using the dense-EEG source connectivity method (Hassan, 

Dufor et al. 2014, Hassan, Benquet et al. 2015). This method includes two main steps: i) 

reconstruction of the temporal dynamics of the cortical regions from the scalp EEG signals and ii) 

measurement of the functional connectivity between reconstructed regional time series. The 

weighted Minimum Norm Estimate (wMNE) was used to reconstruct the cortical sources. A 

phase locking value (PLV) (Lachaux, Rodriguez et al. 1999) algorithm was then used to estimate 

the functional connectivity. Two versions of PLV were proposed by (Lachaux et al., 1999). The 

first method consists of looking at the “inter-trial” phase synchrony, which provides pair-wise 
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connectivity values at each time point. This version works only in the case of task-related 

paradigms and in the presence of a high number of trials. The second version consists of choosing 

a sliding window, adapted to the analyzed frequency band. In the case of gamma band: 30-45 Hz, 

the duration of the smallest time window that contains a sufficient number of cycles (N=5) for 

PLV computation is ~0.133s. As shown by (Lachaux et al., 1999), both versions provide very 

similar results. In this study, we used the first version.  

This choice of wMNE/PLV was supported by two comparative analyses performed in (Hassan, 

Dufor et al. 2014, Hassan, Merlet et al. 2017) that reported the superiority of wMNE/PLV over 

other combinations of five inverse algorithms and five connectivity measures. Briefly, in 

(Hassan, Merlet et al. 2017), the network identified by each of the inverse/connectivity 

combination used to identify cortical brain networks from scalp EEG was compared to a 

simulated network (ground truth). The combination that showed the highest similarity between 

scalp-EEG-based network and reference network (using a network similarity algorithm) was 

considered as the optimal combination. This was the case for the wMNE/PLV. The dense-EEG 

source connectivity method benefits from the intrinsically-excellent time resolution of the EEG. 

This lead to time-varying functional networks which spatio-temporal dynamics directly 

characterize the cognitive processes involved in considered task. Regarding technical details, 

readers can refer to (Kabbara, Falou et al. 2017, Kabbara, Eid et al. 2018) for detailed 

methodological description of the dense EEG source connectivity method as computed in this 

paper. The inverse solutions were computed using Brainstorm (Tadel, Baillet et al. 2011).  

The wMNE/PLV combination was computed in the gamma band (30-45Hz). For each subject, 

this procedure yielded a set of weighted adjacency matrices describing the functional 

connectivity in each time window (Figure 1C).  
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Finally, not all elements of the connectivity matrix reflect significant functional relationships and 

that a threshold should be applied to retain only the ‘true’ functional connections. Here, we 

adopted the approach proposed in (Bassett, Wymbs et al. 2011). Briefly, for each connectivity 

matrix Ai,j, a p-value matrix Pi,j was computed , based on the t-statistic. The computed p-values 

were corrected for multiple comparisons using the False Discovery Rate (FDR) approach of p < 

0.05. All Ai,j  whose p-values Pi,j passed the statistical FDR threshold were retained (their values 

remained unchanged). Otherwise, the values were set to zero (Bassett, Wymbs et al. 2011) to build 

a thresholded weighted connectivity matrix. 

Multislice network modularity 

The resultant matrices were split into time-varying modules using a multislice community 

detection algorithm described in (Mucha, Richardson et al. 2010). This algorithm consists of 

introducing a coupling parameter that links nodes across slices (time windows) before performing 

the modularity maximization procedure (Figure 1D). This algorithm was recently applied on 

functional brain networks (Bassett, Wymbs et al. 2011, Bassett, Porter et al. 2013, Bassett, Yang et 

al. 2015). The multislice modularity is defined as: 
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where nodes i and j are assigned to communities Mil and Mjl in layer l, respectively. ijlA represents 

the weight of the edge between these two nodes and  l  is the structural resolution parameter of 

layer l. jlrC  is the connection strength between node j in layer r and node j in layer l. The 

structural resolution parameter γ and the inter-layer coupling parameter C are usually set to 1. ilk  

is the strength of node i in layer l, the δ-function δ(x, y) is 1 if x = y and 0 otherwise, 
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and 
1

2
   jr

jr

k . This produces for every brain region at every time window a modular 

assignment reflecting the module allegiance.   

The multilayer network modularity was computed 100 times as Q may vary from run to run, due 

to heuristics in the algorithm: each run can produce slightly different partitions of nodes into 

modules (Good, de Montjoye et al. 2010). To deal with this problem, we computed a consensus 

matrix, also called ‘co-classification matrix’ (Bassett, Porter et al. 2013, Fornito, Zalesky et al. 

2016) whose elements indicate the ratio of each node to be in the same module with the other 

nodes among these 100 partitions (figure 1E). Only elements in the consensus matrix higher than 

an appropriate random null model were taken into account, as described in (Bassett, Wymbs et al. 

2011). Finally, by applying the Louvain algorithm (Blondel, Guillaume et al. 2008) on the 

consensus matrix, we obtained a partition that is most representative of the network segregation. 

Brain regions repeatedly classified in the same module (over the runs) will have a high weight in 

the consensus matrix and will more likely be assigned to the same module after applying the 

modularity maximization algorithm. To investigate the consistency of the modules over time, we 

computed a final consensus matrix (same procedure as described above) by calculating the ratio of 

each node to be with the other nodes in the same module, among the time windows. 

Integration and occurrence metrics 

To quantitatively analyze the contribution of each module during the task, first we used the 

integration metric as described in (Bassett, Wymbs et al. 2011, Braun, Schäfer et al. 2015). 

Integration values reflect how modules are interacting with each other. It is computed as the 

average number of links each node in a given module has with the nodes in the other modules. 

We calculated also a new metric called occurrence (%). In our case, the occurrence defined as the 

probability on average of any two nodes to fall in the same module over time, from 0 to 500ms. 
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This metric reflects the importance of the strong (or weak) temporal interactions between any two 

brain regions during the cognitive task. 

Software 

The connectivity measures, network measures and network visualization were performed using 

BCT (Rubinov and Sporns 2010), EEGNET (Hassan, Shamas et al. 2015) and BrainNet viewer 

(Xia, Wang et al. 2013), respectively. The Network Community Toolbox 

(http://commdetect.weebly.com/) was used to compute the consensus matrices as well as the 

values provided by the integration and flexibility metrics. 

Statistical test 

A Wilcoxon rank sum test was used to assess the statistical difference between the functional brain 

networks respectively associated to meaningful and meaningless objects. The difference between 

the two conditions was considered as significant when the p-value was less than 0.05. The 

Bonferroni method was used to correct for multiple comparisons. 

Results 

A. Meaningful vs. meaningless networks 

For each participant, the network modularity was computed over time for both categories 

(meaningful and meaningless). A global consensus matrix was computed over all participants for 

each category, as described in the methods section. As depicted in figure 2A, the qualitative visual 

inspection of the obtained matrices, indicated that both conditions have a different modular 

configuration in term of network integration (connections outside the square red lines) and 

occurrence (weights of the matrix values).   

 

http://commdetect.weebly.com/
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Figure 2. A. The modular allegiance matrices for meaningful (left) and meaningless (right) conditions. B. A 

mapping of the different modules identified for both conditions (6 and 7 modules for the meaningful and 

meaningless categories). C. The values of integration for each module in both conditions. D. The values of 

occurrence for each module in both conditions. Note that modules having similar regions in both conditions are 

visualized by the same color. (MF and ML stand for meaningful and meaningless respectively). 

The resulting modules were projected on a 3D cortical surface, as illustrated in figure 2B. Modules 

having spatially-neighbor regions in both conditions are visualized by the same color and the 

region’s names for each module are reported in table 1. To assess an average quantitative 
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difference between the two categories, integration (figure 2C) and occurrence (figure 2D) values 

were computed from the final consensus matrix for each module. For both meaningful and 

meaningless objects, 4

FM  and 5

LM  modules located in the frontal and the temporo-frontal lobes 

respectively have the highest integration values. The temporo-central module 5

FM  was interacting 

with other modules only for meaningful objects (figure 2C left) while the occipital and occipito-

temporal modules ( 3

LM and
L

4
M ) were integrated only for meaningless objects (figure 2C right). 

Concerning the occurrence values, which represent the probability of any two brain regions to fall 

in the same module during the task, results showed fewer differences in both conditions (Figure 

2D). Globally, the 1

FM , 4

FM  and 6

FM  modules (located mainly in the frontal cortex) showed higher 

occurrence values for meaningful than meaningless frontal modules ( 2

LM , 5

LM  and 6

LM ). 
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Meaningful Meaningless 

1

FM  

caudalanteriorcingulate.R (cACC.R), 

lateralorbitofrontal.R (LOF.R), 

medialorbitofrontal.L/R (MOF.L/R), 

postcentral.R (postC.R), 

rostralanteriorcingulate.L/R 

(rACC.L/R), superiorfrontal.L/R 

(sFG.L/R)  
 

2

LM  

caudalanteriorcingulate.L/R 

(cACC.L/R), frontalpole.L (FP.L), 

frontalpole.R (FP.R), 

medialorbitofrontal.L/R (MOF.L/R), 

precentral.R (preC.R), 

rostralanteriorcingulate.L/R 

(rACC.L/R), rostralmiddlefrontal 

(rMFG.R), superiorfrontal.L/R 

(sFG.L/R),  

2

FM  

cuneus.L/R (CUN.L/R), fusiform.R 

(FUS.R), inferiortemporal.R (ITG.R), 

isthmuscingulate.L (iCC.L), 

lateraloccipital.R (LOG.R),     

lingual.L/R (LING.L/R), 

parahippocampal.R (paraH.R), 

pericalcarine.L/R (periCAL.L/R), 

precuneus.L/R (PCUN.L/R)  

3

LM  

cuneus.L/R (CUN.L/R), fusiform.R 

(FUS.R), inferiortemporal.R (ITG.R), 

isthmuscingulate.L (iCC.L), 

lateraloccipital.L/R (LOG.L/R), 

lingual.L/R (LING.L/R), 

parahippocampal.R (paraH.R), 

pericalcarine.L/R (periCAL.L/R), 

precuneus.L/R (PCUN.L/R), 

superiorparietal.R (SPL.R) 

3

FM  

entorhinal.L (ENT.L), fusiform.L 

(FUS.L), inferiortemporal.L (ITG.L), 

isthmuscingulate.R (iCC.R), 

lateraloccipital.L (LOG.L), 

parahippocampal.L (paraH.L) 

4

LM  

entorhinal.L (ENT.L), fusiform.L 

(FUS.L), inferiortemporal.L (ITG.L), 

isthmuscingulate.R (iCC.R), 

parahippocampal.L (paraH.L) 

4

FM  

Insula.R (INS.R), parsopercularis.R 

(pOPER.R), parsorbitalis.R (pORB.R), 

parstriangularis.R (pTRI.R), 

rostralmiddlefrontal.R (rMFG.R) 5

LM  

Insula.R (INS.R), 

lateralorbitofrontal.R (LOF.R), 

parsopercularis.R (pOPER.R), 

parsorbitalis.R (pORB.R), 

parstriangularis.R (pTRI.R), 

superiortemporal.R (STG.R), 

temporalpole.R (TP.R), 

transversetemporal.R (TT.R) 

5

FM  
middletemporal.R (MTG.R), 

precentral.R (preC.R), 

transversetemporal.R (TT.R) 

1

LM  
paracentral.L (paraC.L), 

posteriorcingulate.L/R (PCC.L/R) 

6

FM  

parsorbitalis.L (pORB.L), 

parstriangularis.L (pTRI.L), 

postcentral.L (postC.L) 
6

LM  

lateralorbitofrontal.L (LOF.L), 

parsopercularis.L (pOPER.L), 

parsorbitalis.L (pORB.L), 

parstriangularis.L (pTRI.L), 

temporalpole.L (TP.L)  

  

7

LM  

bankssts.L (BSTS.L), 

caudalmiddlefrontal.L (cMFG.L), 

supramarginal.L (SMAR.L), 

transversetemporal.L (TT.L) 

Table 1: Modules obtained for both categories (meaningful and meaningless) in the consensus matrices. 
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We then computed the statistical difference between the two conditions in term of integration and 

occurrence at the level of each brain region. Significant differences were obtained at three brain 

regions: the left isthmus cingulate (iCC.L), the right lingual (LING.R) and the right fusiform 

(FUS.R) as illustrated in Figure 3A (p<0.01, uncorrected for multiple comparisons). Significant 

differences in the occurrence values were also obtained at four edges connecting the right caudal 

anterior cingulate (cACC.R) with the right pars opercularis (pOPER.R), the right cuneus (CUN.R) 

with the right pars opercularis (pOPER.R), the left lateral occipital (LOG.L) with the right pars 

opercularis (pOPER.R) and the right parahippocampal (paraH.R) with the right pars obitalis 

(pORB.R), as illustrated in Figure 3B (p<0.01, uncorrected for multiple comparisons). 

Interestingly, these occipito-frontal and temporo-frontal connections were mainly located in the 

right hemisphere.  
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Figure 3: A. Brain regions showing significant differences (meaningless > meaningful) in term of integration 

(p<0.01, uncorrected for multiple comparisons). B. Brain connections showing significant difference 

(meaningless > meaningful) in term of occurrence (p<0.01, uncorrected for multiple comparisons). See table S2 

for the full name of the reported regions. 

B. Correlation between dynamic modularity and reaction time  

Here, we explored the correlation that may exist between the network modularity and the 

participant’s reaction time, available only for 12 participants and defined as the time interval 
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between the stimulus onset and the instant when participants start to name the displayed picture. 

We computed the values of the integration and the occurrence metrics for each region and edge, 

respectively. This part was realized only on the meaningful pictures as for meaningless pictures 

participants were asked to say nothing. Results (not shown here) revealed no significant 

correlation between the module’s integration and the reaction times. However, the occurrence 

computed for each link showed positive and negative correlations at a set of connections. Figure 

4A shows the connections where significant correlations (p<0.01, uncorrected for multiple 

comparisons) between the occurrence and the reaction time were observed. The positive 

correlations (green lines) were mainly located at the occipito-temporal regions while the negative 

correlations (red lines) were mainly located at the frontal cortex. By averaging the values of those 

edges (their occurrence), Figure 4B shows the strong correlations in both negative (ρ=-0.9, 

p<0.001) and positive (ρ=-0.83, p=0.001) cases. 
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Figure 4. A. Brain regions of 12 participants that showed significant correlation between their occurrence 

values and the participant’s reaction time B. Correlation between the average occurrence over these 

connections and the minimal reaction time for each participant. (Note that this part was realized only on the 

meaningful pictures as for meaningless pictures participants were asked to say nothing and for only 12 

participants as the reaction time was only available for them.) 

Discussion 

Emerging evidence shows that the human brain network is essentially organized into modules 

allowing the required adaptability to external drivers without necessarily modifying underlying 

structures (Braun, Schäfer et al. 2015). In a previous preliminary work (performed in a ‘static’ 

way), we showed that the network modularity could be a powerful tool to explore the overall 

reconfiguration of brain networks during visual object identification (Rizkallah, Benquet et al. 
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2016, Mheich, Hassan et al. 2017). Yet, this modular architecture is dynamic and may rapidly 

reshape according to external stimuli. Here, we showed that the functional connectivity during 

object recognition is dynamically organized into adapting modules and that this adapting modular 

architecture could be related to the ‘meaning’ of the visual stimuli. By quantifying these dynamic 

modules, we showed that network modularity (in term of occurrence) can predict the speed of 

object recognition and naming. Results are further discussed hereafter. 

Brain network modularity and cognitive functions 

The modular architecture of the human brain networks was reported using various 

neuroimaging techniques and at different scales (Sporns and Betzel 2016). It was firstly revealed 

on large scale structure network by Hagmann et al. (Hagmann, Cammoun et al. 2008). Regarding 

the functional role of brain network modules, numerous studies revealed that the brain is 

organized into a set of modules of functionally interconnected regions (Meunier, Lambiotte et al. 

2010, Power, Cohen et al. 2011). The modular architecture of the human brain was shown to be 

related to individual cognitive state (Andric and Hasson 2015), development (Meunier, Achard et 

al. 2009) and brain diseases (Fornito, Zalesky et al. 2015). In addition, it was revealed that 

network modular architecture provides more flexible learning and promotes functional 

specialization (Bassett, Yang et al. 2015, Sporns and Betzel 2016).  

Here, we investigated the possible functional role of brain network modularity during 

recognition (and naming) of meaningful and meaningless images. We showed that the two 

conditions have different modular organization mainly in the module’s node integration and 

module’s edge occurrence.  

Our findings showed higher integration and occurrence values for meaningless compared to 

meaningful images. Higher integration for meaningless images was observed at right lingual and 

right fusiform regions. Interestingly, these region are known for their essential role in visual 
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processing (Cai, Chong et al. 2015). For instance, in a PET study aimed at identifying brain 

structures involved in animal picture identification by comparison to meaningless shapes, results 

showed a primary activation of the lingual gyrus and the fusiform gyrus (Perani, Schnur et al. 

1999).  Our results also suggest that the left isthmus also shows significantly different integration 

between the two conditions (meaningless > meaningful). A possible explanation relates to the role 

of this region in the regulation of the focus of attention (Leech and Sharp 2014).  

The increase in module integration for meaningless objects can be interpreted as an enhancement 

of communication between nodes, due to multiple attempts to match the detected image 

characteristics present in the visual stimuli with object representations already encoded in the 

memory involving the ventral visual pathway. Indeed, the complex shape information of 

scrambled images cannot be instantly linked to a recognized object in the brain database. Thus, 

searching for coherent signal (corresponding image) through visual pathway would increase 

module communication from the low/intermediate (image reconstruction) to high level of visual 

processing (image identification).  

In term of occurrence, the occipito-frontal connections were found to be higher for meaningless 

than meaningful objects. As the occurrence is defined as the probability of two brain regions to 

stay in the same module during the task, thus it also provides a measure of the duration of 

communication between these two regions. A possible interpretation of higher occurrence values 

is that the coherent communication in networks involved in object identification (visual pathway) 

and decision making in case of unclear choice (prefrontal cortex) is not immediate for meaningless 

images. Indeed, the difficulty to identify and the unsuccessful multiple trials to match the image 

might increase the number of times the brain regions inter-communicate, and thus the occurrence 

values. Interestingly, denser scalp-EEG networks for meaningless images compared to meaningful 

images were also reported in (Gruber and Müller 2005). The lateralization of the connections 
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during object recognition was also reported previously and several clinical studies linked the right 

hemisphere with object recognition. For instance, studies showed that patients with right-

hemisphere disease (RHD) performed significantly worse than subjects with left-hemisphere 

disease (LHD) when asked to discriminate between faces, to discriminate between emotional 

faces, and to name emotional scenes (DeKosky, Heilman et al. 1980). 

Methodological issues 

First, we computed the functional networks at the EEG gamma band (30-45 Hz). This choice was 

supported by previous studies in the field of object recognition and naming. These studies 

reported that gamma is the most involved frequency band in the information processing during 

this cognitive task (Rodriguez, George et al. 1999, Hassan, Benquet et al. 2015, Liljeström, 

Kujala et al. 2015). Nevertheless, other frequency bands (and some frequency-frequency 

couplings), can be indeed involved in other aspects of this task such as the memory process. This 

issue is however beyond the scope of this study.  

Second, the muscle artifact in the gamma band is a serious methodological issue. Here, we have 

reduced the effect of the muscle artifacts by i) asking the participants to not moving as much as 

possible ii) limiting our network-based dynamic analysis between the onset (presentation of the 

visual stimuli) to the moment before the fastest responses, in order to avoid the muscle artifacts 

due to articulation (naming) and iii) selecting the low gamma band (<45Hz) which is less 

contaminated by muscle artifacts comparing to high gamma (>50Hz). 

Third, although significant results were obtained for region-wise analysis (integration) or edges-

wise analysis (occurrence), these results did not resist the correction for the multiple 

comparisons. Thus, results should be interpreted with caution. Nevertheless, the results showed 

very strong correlations (> 0.8) values between the network metrics (mainly the occurrence) and 

the reaction time. 
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Fourth, a variety of thresholding methods are available, but none is free of bias. For example, one 

could apply a threshold that ensures only the top 10 % of connections across a sample of 

individuals are retained. In this case, it is recommended to repeat analyses across a range of 

threshold (values and approaches) to ensure that any results obtained are robust to this 

methodological parameter. Here we adopted the automatic threshold method used in Basset el al. 

(Bassett, Wymbs et al. 2011), where authors dealt also with the dynamics of functional brain 

networks. The main advantage of this method is that it is based on statistical tests and not an 

arbitrary choice of the threshold value.  

Fifth, it is important to keep in mind that measuring the functional connectivity is generally 

corrupted by the volume conduction problem, a known problem regarding functional couplings at 

the scalp level (Schoffelen and Gross 2009). Therefore, connectivity analysis at source level was 

shown to reduce the effect of volume conduction as connectivity methods are applied to “local” 

time-series (analogous to local field potentials) generated by cortical neuronal assemblies 

modelled as current dipole sources. Nevertheless, these so-called “mixing effects” can also occur 

in the source space but can be reduced by an appropriate choice of connectivity measures. Indeed, 

false functional couplings can be generated by some connectivity methods when applied to mixed 

signals such as estimated brain sources. To address this issue, a number of methods were 

developed based on the rejection of zero-lag correlation. In particular, “unmixing” methods, 

called “leakage correction” (including the orthogonalization approach), have been reported which 

force the reconstructed signals to have zero cross-correlation at lag zero (Colclough, Brookes et 

al. 2015). Although handling this problem -theoretically- helps interpretation, a very recent study 

showed that the current correction methods also produce erroneous human connectomes under 

very broad conditions (Pascual-Marqui, Biscay et al. 2017). In addition, several experimental 

studies reported the presence of zero-lag corrections in the human brain. We believe that there is 
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no ideal solution yet for this issue and that further methodological efforts are needed to 

completely solve the spatial leakage problem. 

Behavioral significance of network modularity 

Several functional network modularity-based metrics have previously been linked to many 

behavioral modifications in brain network dynamics in response to cognitive difficulties by 

predicting individual differences in learning (Bassett, Wymbs et al. 2011), working memory 

(Braun, Schäfer et al. 2015) and other cognitive tasks (Cole, Reynolds et al. 2013, Mattar, Betzel 

et al. 2016).  Here we showed that the network occurrence, essentially for prefrontal brain regions, 

was negatively correlated with the reaction time (defined as the time from the stimulus onset to the 

instant when participant starts the naming process). On the other side, a positive correlation 

between the occurrence values of occipito-temporal connections was observed with the reaction 

time.  

The occurrence values, that reflect the duration of communication between brain regions, 

increased in the occipito-temporal ventral visual pathway (including lingual cortex,  lateral 

occipital cortex, enthorinal cortex,  fusiform gyrus and parahippocampal cortex) which is known 

to be involved in the categorization and identification of the visual stimuli (Clarke and Tyler 

2015), along with the reaction time. This result suggests that the longer it takes to identify the 

object, the longer is the occurrence in the occipito-temporal pathway and the longer is the reaction 

time. 

Conversely, an immediate recognition and identification of a visual stimuli is associated with a 

decrease of occurrence values between brain regions involved in task-conflict (anterior cingulate 

(Shenhav, Straccia et al. 2014)) and decisions associated to image identification such as the frontal 

cortex (namely the superior frontal cortex,  rostral middle frontal cortex,  medial orbitofrontal 

cortex and precentral cortex) (Gilbert and Li 2013). This result suggests a decreased processing 
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time of cognitive information as soon as the image is identified; the participant is ready to name 

the proper object and consequently a shorter reaction time. It is noteworthy that these results and 

interpretations should be taken with some cautions as the number of subjects is relatively small 

(N=12). 

Finally, this prediction of the visual object recognition time can be easily extended not only to 

other cognitive tasks using other modalities (auditory, motor) but also to understand the possible 

modifications of network dynamics in patients with brain disorders, an issue that was recently 

discussed using other network modularity metrics (Mattar, Betzel et al. 2016, Zhang, Cheng et al. 

2016). 
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