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ABSTRACT

In vivo metabolite quantification by short echo time MR
spectroscopy is a challenge for which various methods have
been proposed. In this study, the reproducibility of quan-
tification outcomes is questioned at three distinct levels:
(i) between-software (LCModel and cQUEST), (ii) within-
software (with different parameter sets), and (iii) across soft-
ware executions (when the fitting algorithm uses random
seeds, like cQUEST). After running multiple quantification
tasks on a dedicated platform (VIP), metrics from Bland-
Altman analysis were used to assess the variability of out-
comes in signals acquired on a lysolecithin rat model, from a
study on demyelination. Results show substantial variations
at the three levels, allowing for more potent analyses than
from a single parameter set / single software point of view.

Index Terms— reproducibility, quantification, in vivo
MR spectroscopy

1. INTRODUCTION

1.1. Background

In vivo MR spectroscopy is currently considered the only
tool allowing for non-invasive measurement of biochemical
compounds (e.g, metabolites, lipids). Since pioneering pub-
lications presenting in vivo spectra of rat brain [1], signals
acquired at short echo time in the brain have been of great
interest because a large number of metabolites contribute
to those signals. The main accessible metabolites are: N-
acetylaspartate (NAA), creatine/phospho creatine (Cr+PCr),
cholines (PCho+GPC), glutamate (Glu), glutamine, γ-amino-
butyric acid (GABA) and taurine (Tau).

MR spectroscopy quantification consists in analyzing
the acquired signal to estimate metabolite concentration. In
this process, the main challenges lie in the high number
of metabolites with overlapping spectral components, the
presence of a background of macromolecules, and the weak
signal/noise ratios (since metabolites are present at concentra-
tions 104 to 105 times smaller than water). The most widely

developed quantification methods are based on parametric ad-
justment, using classical mathematical optimization methods
like Least Squares. The in vivo MR spectroscopy community
has proposed several methods for brain metabolite quantifi-
cation (see https://mrshub.org/software/).

1.2. Reproducibility crisis

However, such methodological diversity challenges one’s
ability to reproduce numerical results across software. This
statement is consistent with a growing awareness in the sci-
entific community of the reproducibility issues associated
with many studies [2], including neuroimaging [3, 4]. This
paper focuses on computational reproducibility, which can be
defined as one’s ability to obtain identical results (or at least,
equivalent conclusions), by applying identical analyses to the
same set of experimental data.

In metabolite quantification, reproducibility issues can
been observed at three levels. (i) High flexibility in the com-
putation method (e.g., model and parameters) leads to high
variability in the final results [5]. (ii) Beyond the chosen
method, the analysis software leaves its own footprint [6].
(iii) Within the same software, the non-deterministic parts
of the fitting process lead to impactful variability in the nu-
merical outcomes. Since there is no ground truth for in vivo
neurochemical profiles, these sources of variability should be
controlled when carrying out a MR spectroscopy study.

1.3. Motivations and outline

To our knowledge, however, no study to date has simultane-
ously controlled for these three sources of variability. This
paper aims to capture them on the same MR spectroscopy
dataset, by comparing the quantification outcomes:

• between two quantification algorithms, accounting for
inter-software variability;

• between two sets of parameters for each software, ac-
counting for model flexibility;

• across multiple executions for each software-parameter
set, accounting for random seeds in the fitting process.

https://mrshub.org/software/


2. MATERIALS AND METHODS

2.1. Experimental data

The signals used in this study were acquired on horizontal
11.7T Bruker Biospec. The STEAM sequence was used with
the following parameters: TE 2ms, TM 10 ms, TR 3.5 s, spec-
tral width 5464Hz, number of acquired complex points 2048,
number of accumulations 256 resulting in 15 min of acquisi-
tion time, VOI=12µL. The 1H NMR spectra were acquired
from two distinct VOIs located on the corpus callosum of
brains of Lysolecithin rat models. This animal model consists
in an intracerebral injection of lysophosphatidylcholine [7]
which produces focal demyelination (lesion). With help from
T2-weighted anatomical imaging, the first voxel (Vox1) was
located on the supposed lesion; and the second one (Vox2)
was placed in the contralateral hemisphere, supposedly pre-
served. From this database, a total of 32 signals (i.e., 16 from
voxel Vox1 and 16 from voxel Vox2) were submitted to our
quantification experiments. All experiments were performed
according to procedures approved by the local ethic commit-
tee for animal experimentation.

2.2. Quantification models

2.2.1. Software

Two quantification methods were used in this study: LCModel
[8] and cQUEST[9]. LCModel is one of the most widely used
method for the analysis of short-echo time 1H MRS data. It
performs a model fitting in the frequency domain using,
for the model function, a linear combination of metabolites
signals, to which is added lipid and macromolecules contri-
butions. The whole process is regularized using splines to
account for different baseline and lineshapes.

cQUEST is an alternative approach, with similar model
description (sum of weighted metabolite signals, macro-
molecules and lipid contribution) but performing the parame-
ter fitting in the time domain, and allowing or not the handling
of the baseline with HLSVD [10]. Compared to LCModel,
no regularization term is employed. In the implementation of
cQUEST used in this paper, a multiple starting values strategy
has been implemented with a random seed.

2.2.2. Parameter sets

For both LCModel and cQUEST, a set of parameters must be
provided by the user to define the fit options, prior knowledge
and the constraints on the parameters to fit. All signals have
been preprocessed, phased and normalized with the unsup-
pressed water peak amplitude beforehand. For both methods,
the same metabolite basis set was used and the signal from
the macromolecules (MM) was voluntarily parameterized in
the same way with Gaussian lines (modeled from one MM
acquired with metabolite nulling) and constraints on the am-
plitudes of these peaks were set. LCModel necessarily adds

splines for the baseline to correct for inaccuracies from ap-
proximative MM models and regularizes its fit.

Fig. 1. LCModel results, with in red the fitted model over-
laid on the raw spectrum in black for parameter set A and
B. Annotations indicate baseline macromolecules (MM) peak
positions, and metabolites.

Two solutions were computed for both methods, by play-
ing on parameters acting on the baseline accounting (see
Figure 1): no baseline (cQUEST-A) or baseline as flat as pos-
sible (LCModel-A) vs flexible baseline, HLSVD-modelled
for cQUEST-B, and default option baseline modeling for
LCModel-B.

2.3. Reproducibility experiment

Experimental design − Mirroring the reproducibility ques-
tions raised in §1.3, each of the 32 signals was submitted to
metabolite quantification : (i) by both software (LCModel &
cQUEST), (ii) with both of their parameter sets (A & B), on
(iii) nexec=30 distinct executions. This way, each metabo-
lite was quantified 2*2*30=120 times for each signal in the
dataset. Executions during which the quantification algorithm
did not reach convergence were discarded, using indicators
from both LCModel and cQUEST. This process left between
26 and 30 executions per signal.

Execution Environment − To perform this reproducibil-
ity experiment, both LCModel and cQUEST were container-
ized and made available on the Vitual Imaging Platform (VIP,
see § 6). While in production conditions VIP uses distributed
and heterogeneous resources, these experiments were run un-
der controlled conditions to ensure that no variability was in-
troduced in the outputs by the computing infrastructure or OS.
We used two virtual machines, deployed on the same server
and with the same OS version (CentOS 7 kernel 3.10.0 −
1160.76.1.el7.x86 64).

2.4. Measures of agreement

A typical quantification result is the concentration x(m, s, q, e)
of metabolite m in signal s, estimated by method q ∈{cquest-
A, cquest-B, lcmodel-A, lcmodel-B} during execution e.
The purpose of this study is to measure the agreement in x
between two methods (q, q′); or across distinct executions e.



2.4.1. Variability across software and parameter sets

First, inter-execution variability was neutralized by using the
mean concentration x(m, s, q) over all executions e. On this
basis, a typical way to compare two measurements q and
q′ is Bland-Altman analysis [11], in which the differences
xm,s(q) − xm,s(q

′) are computed and displayed against the
mean of both values.

We call bias(m, qq′) the mean difference across sig-
nals, between methods q and q′, for metabolite m; and
CI95(m, qq′) the 95% confidence interval computed from
the standard deviation of these differences. A simple way to
assess if there is a strong disagreement between q and q′ for
metabolite m is to compare both values in the following ratio:

Z95(m, qq′) = bias(m, qq′)/CI95(m, qq′) (1)

This modified Z-score was computed for each pair of quan-
tification methods qq′ and each metabolite m.

2.4.2. Variability across software executions

Inter-execution variability can be seen as the dispersion of x
around a ”true” value xt : x(e) = xt+ ϵ(e), where ϵ(e) is the
measurement error for execution e. A simple way to measure
ϵ is to compute the residuals of a linear model, as in [12].

Metabolite concentration x was assumed to depend on the
signal s (”x ∼ s”); and software execution e to produce a ran-
dom effect. This model was fit separately on the signals from
voxels Vox1 and Vox2. For each metabolite m, method q and
voxel v, a root-mean-squared error (RMSE) was computed
from the residuals r(s, e) of the corresponding linear model:

RMSE(m, q, v) =

√
mean
e,s∈v

(
rm,q (s, e)

2
)

(2)

We used bootstrapping over signals to measure the influ-
ence of the dataset on the RMSE. The signal set used to fit the
linear model was resampled randomly; and model fitting was
run on this new dataset to give new residuals. This process
was repeated 1000 times to give as many values of RMSE.

This inter-execution measure of variability was compared
with the traditionnal Cramér-Rao bound (CRB, the theoretical
lower bound on the variance of an unbiased estimator), com-
puted by both software for each metabolite concentration.

2.4.3. Preservation of the findings

Once uncertainty measures have been performed, a final ques-
tion to be answered is whether such variability may impact the
results of a biological investigation on the dataset.

As stated in §2.1, our signals should show variations in
metabolite concentrations xm,q between the two voxels (Vox1
& Vox2). For each execution e, a Wilcoxon sign-rank test was
run on quantification outputs xm,q,e(s) between s ∈ Vox1 and
s ∈ Vox2. In this process, we were not interested in the test
results but in their consistency across all executions.

3. RESULTS

3.1. Variability between parameter sets

On Bland-Altman plots of Figure 2, the between-parameter
difference (y-axis) is displayed against the mean (x-axis). For
each metabolite, the upper plot stands for cQUEST and the
lower plot for LCModel. For each voxel, the bias (see §2.4.1)
is depicted by a dash-dotted line (blue for Vox1, orange for
Vox2) and can be compared to Zero (plain dark grey line).
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Fig. 2. Bland-Altman plots showing between-parameter
variations in the quantification results of the same sotfware
(LCModel, cQUEST) for three metabolites.

Both LCModel and cQUEST show systematic disagree-
ments between their parameter sets. This is obvious on the
left-hand charts of Figure 2 (metabolite GABA), where most
of the points lie above the Zero line. When focusing on
Vox2, this is also true for Cr+PCr within LCModel; and for
PCho+GPC within both models.

For the three metabolites, Vox2 interestingly shows higher
biases but lower dispersion than Vox1. This reflects the ex-
pected higher biological variability of metabolite concentra-
tion in the damaged tissue (i.e., Vox1). The bias / dispersion
ratios are displayed on first and last lines of Figure 3, where
within-software comparisons are highlighted in bold font.

3.2. Variability between quantification methods

Figure 3 extends the previous analyses to six metabolites
and the six possible combinations of quantification methods
(qq′). Each matrix displays the modified Z-scores introduced
in Equation 1 for a single voxel. In a classical Z-test, a value
above 100% would mean significant variations (this is not the
focus of the present study, as sample sizes are small).

On the upper 3 lines of each matrix, method cquest-A
(which does not use any baseline modeling) shows strong de-
viations from the other methods regarding the quantification
outputs. On the two right-hand columns, one may also notice
a divergence in the results between both voxels, especially for
metabolite pair PCho+GPC (absolute Z-scores are all below
30% for Vox1 and above 36% for Vox2). As stated earlier
(§3.1), the lower Z-scores for Vox1 may be explained by a
higher dispersion in the between-method differences.
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Fig. 3. Bias between quantification methods, expressed as a
percentage of the 95% confidence intervals in Bland-Altman
plots. C-A/B: cquest-A/B ; L-A/B: lcmodel-A/B .

3.3. Variability across software executions

All previous analyses were performed on a single concen-
tration value for each metabolite m, method q and signal s.
To assess the quantification error on these values, Figure 4
displays the theoretical variance computed by the software
(CRB, left-hand plots) next to our empirical measure of the
inter-run variability (RMSE, right-hand plots). In this study,
only cQUEST could be explicitly designed to use random
seeds; and LCModel outputs showed zero inter-run variabil-
ity. Hence, the results are displayed for cQUEST only.
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Fig. 4. Inter-execution variability compared to Cramér-Rao
lower bounds for three metabolites.

Two statements may be drawn from these results. First,
the quantification errors are rather small here compared to the
mean metabolite concentrations observed in Figure 2. Sec-
ond, CRBs and RMSEs are inconsistent between each other:
while CRBs (which are higher than RMSEs) decrease be-
tween cquest-A and cquest-B, RMSEs increase between both
models. Unlike RMSEs, the CRBs do not seem to make a
difference between Vox1 and Vox2. Therefore, CRB and the
inter-run RMSE seem to provide two distinct measures of un-
certainty on the quantification outcomes.

3.4. Preservation of the findings

Finally, the conclusions drawn from a signed rank test be-
tween Vox1 and Vox2 are summarized in Figure 5. For each
method and metabolite, the matrix displays the number of
”significant” variations detected over the 30 quantification
runs. Divergent results are highlighted in bold font.
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Fig. 5. Number of significant results (out of 30 quantifica-
tion runs) obtained by the signed rank test, between Vox1 and
Vox2. Colormap: average Z-statistic from the test.

Except for two metabolite pairs, the test delivered the
same conclusions for each run regardless of the software or
parameter set. For metabolites Cr+PCr and PCho+GPC, how-
ever, the test provided divergent results between cquest-A and
the other methods; and divergent results between quantifica-
tion runs.

4. DISCUSSION

Quantification of short echo time spectroscopy data is an ill-
posed problem, for which the macromolecular contribution is
not fully known; and the additional consideration of a base-
line is very software dependent. Depending on the parameter
set, the implementation of the inverse problem, or the regu-
larization terms, multiple solutions can be obtained from the
same dataset. This work proposes a methodology to monitor
distinct levels of variability in the quantification outcomes,
related to numerical implementations of the fitting method.

Despite the strong biases observed between cQUEST and
LCModel and within these models for some metabolites (e.g.
GABA), both models mostly agreed during hypothesis test-
ing for differences between healthy and damaged brain re-
gions. This was not the case, however, for the quantifica-
tion of cholines and creatine (PCho+PCh and PCr+Cr). This
may be caused by a strong interdependence between macro-
molecules, respectively at 3.2 ppm and 3.0 ppm and the peak
of total Choline and total Creatine. That said, this diver-
sity of solutions is in itself a sign of something interesting
to investigate. This fosters the use of multiple quantification
methods, to overcome the limitations of a single software or
parametrization in the fitting process.

Finally, this reproducibility study was designed to be re-
produced. The code and data used to deliver the present re-
sults are available on our GitLab repository:

https://gitlab.in2p3.fr/gael.vila/repro-spectro

https://gitlab.in2p3.fr/gael.vila/repro-spectro
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[5] Małgorzata Marjańska, Dinesh K. Deelchand, Roland
Kreis, et al., “Results and interpretation of a fitting chal-
lenge for MR spectroscopy set up by the MRS study
group of ISMRM,” Magnetic Resonance in Medicine,
vol. 87, no. 1, pp. 11–32, Jan. 2022.

[6] Alex A. Bhogal, Remmelt R. Schür, Lotte C. Houtepen,
et al., “1H–MRS processing parameters affect metabo-
lite quantification: The urgent need for uniform and
transparent standardization,” NMR in Biomedicine, vol.
30, no. 11, pp. e3804, 2017.
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