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ABSTRACT

In the last few years, there has been a growing aware-
ness of reproducibility concerns in many areas of science. In
this work, our goal is to evaluate the reproducibility of tu-
mor segmentation outcomes produced with a deep segmenta-
tion model when MRI images are pre-processed (i) with two
different versions of the same pre-processing pipeline, and
(ii) by introducing numerical perturbations that mimic exe-
cutions on different environments. Results show that these
two variability sources can lead to important variations of seg-
mentation outcomes: Dice can go as low as 0.59 and Haus-
dorff distance as high as 84.75. Moreover, both cases show a
similar range of values, suggesting that the underlying causes
for instability may be numerical stability. This work can be
used as a benchmark to improve the numerical stability of the
pipeline.

Index Terms— reproducibility, deep learning, numerical
(in)stability, tumor segmentation

1. INTRODUCTION

Reproducibility has become a primary issue in research, par-
ticularly since data analysis workflows involve a large number
of analysis steps that imply many possible choices. A recent
study [1] underlines the huge variability in results when an-
alyzing a single neuroimaging dataset by 70 different teams
due to complex analysis workflows. Different configurations
of a processing pipeline can induce up to 64% difference in
the final segmentation produced by a trained deep learning
model [2]. Such variations can seriously damage the confi-
dence granted to the results. In clinical practice, it can be
particularly problematic regarding consequences for patients
because a change in results can lead to different (possibly
wrong) diagnoses.

As shown by [3], everything matters when it comes to re-
producibility, from the computational environment and soft-

† These authors have contributed equally to this work and share last au-
thorship.

ware versions to the tool selection and the methodological ap-
proach. While tool selection and methodological approaches
are tackled by recent studies such as [2] and [4], it is often ne-
glected that the simple fact of using different operating sys-
tems may lead to non reproducible results as shown in [5].
This is particularly important for data pre-processing, which
is one essential step prior to all kinds of data analysis. Public
pre-processing pipelines are now used as a standard routine.
Anyone can access and use those pipelines on their machines
but little is known about the variability and consequences of
the choice of the pipeline version or of the execution environ-
ment on the analysis, which is the focus of this paper.

In this paper, we evaluate the reproducibility of tumor seg-
mentation outcomes of a deep learning model, DeepMedic [6,
7], after having pre-processed the data with the BRATS pre-
processing pipeline [8, 9, 10] available in the Cancer imag-
ing phenomics toolkit (CaPTk) [11, 12]. To this aim, we
use the raw data from the publicly available dataset of Multi-
parametric magnetic resonance imaging (mpMRI) scans for
de novo Glioblastoma (GBM) patients from the University
of Pennsylvania Health System (UPENN-GBM) [13, 14, 15].
The objective is to quantify the differences in results triggered
by two factors: different versions of the same code and nu-
merical perturbations that mimic executions on different en-
vironments, namely operating systems (OS).

2. MATERIAL AND METHODS

2.1. Dataset

The UPENN-GBM dataset is composed of 630 patients diag-
nosed with de novo GBM. For each patient, multi-parametric
magnetic resonance imaging (mpMRI) scans are available in-
cluding the four structural MRI scans: native T1-weighted
(T1), post-contrast T1 (T1-GD), native T2-weighted (T2), and
T2 fluid attenuated inversion recovery (T2-FL) scans. Among
these 630 patients, we select1 a subset of 191 complete pa-
tients and we use the four raw images provided in DICOM
format as input.

1Selection procedure in the GitLab : formating dataset.ipynb

https://gitlab.in2p3.fr/MDL/reprovip-wp3-use-case/-/blob/master/formating_dataset.ipynb


2.2. Pipeline

We use the BRATS-preprocess pipeline available in CaPTk.
The pipeline has several steps2 and intermediate files are
saved. Studied files are represented in Figure 1 and referred
to with different appellations, as described in the following.
Raw data are designated by ‘raw’, and files after the reori-

Fig. 1. Steps of BraTS pre-processing pipeline on the T1 im-
age of patient UPENN-GBM-00002 in coronal view.

entation to RAI (Right Anterior Inferior coordinate system),
by ‘rai’. ‘rai n4’ files correspond to the N4 biais correction,
which is a temporary step helping with the registration to the
atlas. It is not applied to the final images. The T1-GD image
is registered to the atlas and then the other images (T1, T2
and T2-FL) to T1-GD. Images registered to the atlas space
are named ‘SRI’. Following is the interpolation to a uniform
isotropic resolution (1mm3) and the skull stripping, corre-
sponding to ‘brain’. Finally, a ‘segmentation’ is created
through the DeepMedic algorithm. It contains three labels
corresponding to different areas of the de novo Glioblastoma:
necrosis, contrast-enhancing tumor, and edema.

2.3. Experiments

In order to evaluate the difference in results triggered by the
use of different versions of the code, we use versions v1.8.1
and v1.9.0 of the Brats pre-processing pipeline. More pre-
cisely, we use the Docker images3 provided by the CBICA
team with the image tags CaPTk:2021.03.29 for v1.8.1
and CaPTk:190rc for v1.9.0. We first verify that results are
deterministic and differences only come from the difference
in pipeline versions. This requires that for multiple executions
with the same inputs we obtain the same result when using
the same Docker image (i.e., a given version of the pipeline).
Two result files are considered the same if they have identi-
cal checksums4. We then compare the results obtained with
the two versions of the pipeline on the same input files. More
specifically, we compare the pre-processing steps and final
mask of each result according to the metrics in section 2.5.

After the different versions of the pipeline, we evaluate
the influence of numerical perturbations. As explained in
[16] small amounts of noise or computational environments
can lead to substantial differences in results. One important
element of computational environments is operating systems

2https://cbica.github.io/CaPTk/preprocessing_
brats.html

3https://hub.docker.com/r/cbica/captk
4https://en.wikipedia.org/wiki/Md5sum

(OS). ”Fuzzy libmath” (FL) is a framework that uses Monte-
Carlo arithmetic to simulate the variability induced by OS
changes [17]. Here we evaluate the difference in results trig-
gered by the change in OS as simulated with FL. Based on
the CaPTk Docker images mentioned previously and on the
FL Docker image and instructions5, we built two new Docker
images corresponding to the studied versions of the pipeline
(v1.8.1 and v1.9.0) instrumented with FL. For each of these
versions, we executed three repetitions for each subject.

2.4. Execution environment

All BraTS experiments presented in the paper are executed
on the Virtual Imaging Platform (VIP) [18]. VIP is a web
portal for medical simulation and image data analysis. By
effectively leveraging the computing and storage resources of
the EGI federation6, VIP offers its users high-level services
enabling them to easily execute medical imaging applications
on a large scale computing infrastructure. While in pro-
duction conditions VIP uses distributed and heterogeneous
resources, all experiments presented in this paper were run
under controlled conditions. The experiments comparing the
two pipeline versions were executed on a single VM hosted
at CREATIS. Due to the multiple repetitions (and hence
longer computing time) required by the experiments using
FL, they were all executed on three identical VMs hosted on
the SCIGNE platform7.

2.5. Evaluation

Ideally, results obtained with the same inputs should be iden-
tical. Since this is unfortunately not always the case, dif-
ferences in results are quantified using different well-known
metrics as described below. We use the md5 checksum func-
tion to assess if files are identical between two executions.
This verification is done for all the files, from ‘raw’, to the
final step ‘brain’. To evaluate the differences in the ‘seg-
mentation’, we use the Sørensen–Dice Coefficient (Dice) as
an overlap-based metric and the Hausdorff Distance (HD) as
a boundary-based metric. To explore differences between
files earlier in the process, before the registration to the same
space, we need metrics able to quantify the similarity between
two images, such as Peak Signal to Noise Ratio (PSNR). For
the experiment using FL, to evaluate changes in precision for
intermediate files we use the significant digit metrics. Simi-
larly to what is done in [17], we measure results precision as
the number of significant bits among result samples obtained
with the ”fuzzified” pipeline, as s = − log2

∣∣∣σµ ∣∣∣ , where σ and
µ are respectively the observed cross-sample standard devia-
tion and average.

5https://github.com/verificarlo/fuzzy
6https://www.egi.eu/egi-federation/
7https://scigne.fr/en/page-dacceuil-english/

https://cbica.github.io/CaPTk/preprocessing_brats.html
https://cbica.github.io/CaPTk/preprocessing_brats.html
https://hub.docker.com/r/cbica/captk
https://en.wikipedia.org/wiki/Md5sum
https://github.com/verificarlo/fuzzy
https://www.egi.eu/egi-federation/
https://scigne.fr/en/page-dacceuil-english/


3. RESULTS

3.1. Impact of different versions of the pipeline

Checksums are identical for two executions of the same
pipeline version on VIP (see on the GitLab checksums.ipynb8).
This confirms that results are deterministic and that the dif-
ferences we may observe in the following only come from
the difference in pipeline versions.

To evaluate the impact of the two different versions of
the pipeline, Figures 2-a and -b respectively depict the Dice
and Hausdorff metrics computed for the pairs of results of the
two versions on all the 191 subjects. Scores are computed for
each label: necrosis, edema, and contrast-enhancing tumor.
The mean and standard deviation (SD) for the two metrics
are given in table 1. We notice that even if mean values for
Dice are above 0.94 (and HD below 7.37), outliers can go as
down as 0.59 (and up to 84.75 for HD). As shown with the
black line, respectively for the necrosis, edema, and contrast-
enhancing tumor label, 10% of the patients have Dice under
0.84, 0.93, and 0.90 (and HD larger than 6.4, 12.08, and 8.54).
We observe more Dice outliers for the label necrosis (Figure
2-a) and more HD outliers for the label edema (Figure2-b).
These differences can be explained by the fact that necroses
are more often small structures inside the contrast-enhancing
tumors, while edema can be stretched all around. Figures 2-c
and -d show tumor segmentations and the brain images for the
two patients highlighted in red, allowing to better understand
where the differences lie. They are also representative of the
other outliers. The necrosis segmentation for patient 00019
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Fig. 2. Evaluation of segmentation results with (a) Dice and
(b) HD for each label between v1.8.1 and v1.9.0.

(Fig.2-a) has a Dice of 0.59 and HD of 6.08. This low Dice
is the consequence of different registration results on the SRI
atlas between v1.8.1 (in blue) overlaid with v1.9.0 (in yellow,
orange or red). Since there are few pixels labelled as necro-
sis (in red), the misregistration has a higher impact on the
Dice value for this label. The edema segmentation for patient
00239 (Figure 2-b) has a Dice of 0.98 and HD of 84.75. The

8https://gitlab.in2p3.fr/MDL/
reprovip-wp3-use-case/-/blob/master/metrics/
checksums.ipynb
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Fig. 3. Patients in coronal view with T1 ’brain’ image in grey
tones (a) On the half brain image, the results of v1.9.0 are
superimposed on those of v1.8.1. On the right, the segmen-
tation and necrosis details for both versions are shown first,
and finally the overlay between the versions is only for necro-
sis. (b) v1.8.1 at the top and v1.9.0 at the bottom with ’seg-
mentation’ overlaid on top of T1 image with label necrosis
in red, contrast-enhancing tumor in yellow, and edema in or-
ange. Zoom to visualize pixels of edema detected in v1.9.0
but not in v1.8.1.

high value of HD associated with edema can be explained in
the zoomed area where pixels are associated with edema (in
orange) for v1.9.0 but not for v1.8.1. With v1.9.0 the edema
label is wrongly associated with a few pixels located far away
from the core of the edema around the contrast-enhancing tu-
mor, thus explaining the high HD score.

For a deeper understanding of reproducibility issues, we
also examine the intermediate files produced by the pipeline.
Indeed, as we detect differences between versions for the
segmentation task, we study, through the intermediate files,
where variability occurs and how it propagates through the
pipeline. PNSR values are depicted in Figure 4. The larger
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Fig. 4. PSNR for intermediary files from step rai n4 to the
skull stripping between v1.8.1 and v1.9.0.

the value, the greater the similarity between the two files. The
PSNR for the first two steps (’raw’ and ’rai’) is not repre-
sented, because it is equal to infinity, attesting that the images
were identical between the versions. For the ’rai n4’ step,
the PSNR values are high and scattered, showing that the N4
bias correction is the first step introducing variations. For
the following steps, the PSNR value decreases sharply and
continues until the last step ’brain’.

https://gitlab.in2p3.fr/MDL/reprovip-wp3-use-case/-/blob/master/metrics/checksums.ipynb
https://gitlab.in2p3.fr/MDL/reprovip-wp3-use-case/-/blob/master/metrics/checksums.ipynb
https://gitlab.in2p3.fr/MDL/reprovip-wp3-use-case/-/blob/master/metrics/checksums.ipynb


v1.8.1 VS v1.9.0 Fuzzy-Libmath
Dice Mean SD Min Mean SD Min
Nec 0.94 0.08 0.59 0.93 0.09 0.0
Ed 0.97 0.04 0.74 0.96 0.04 0.66
CET 0.96 0.05 0.74 0.95 0.05 0.54
HD Mean SD Max Mean SD Max
Nec 4.31 2.47 27.20 4.31 3.28 40.62
Ed 7.36 11.03 84.75 7.71 10.52 84.75
CET 4.26 5.79 56.82 4.37 7.09 69.55

Table 1. Mean and SD for Dice and HD between v1.8.1 and
v1.9.0 and for FL runs. Nec: Necrosis, Ed: Edema and CET:
Contrast-Enhancing Tumor

3.2. Impact of numerical perturbations

We now evaluate the differences in results due to the numeri-
cal perturbations introduced with FL. For each version instru-
mented with fuzzy (v1.8.1 fuzzy and v1.9.0 fuzzy), we ex-
ecuted 3 repetitions and then computed all Dice coefficients
between each FL execution and the corresponding pipeline
version without FL. In Table 1, we can see the mean and SD
for the two experiments: the change of version and the simu-
lated change of OS with FL. We notice that the order of mag-
nitude is very similar.

We further investigate which step of the pre-processing
pipeline introduced variations by computing the the mean sig-
nificant digits. Results of significant digits9 are only illus-
trated for v1.8.1 with FL in Figure 5 since results for v1.9.0
are very similar. Similarly to PSNR outcomes, the first two
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Fig. 5. Mean significant digits v1.8.1 with Fuzzy-Libmath

steps (’raw’ and ’rai’) produce identical images (mean sig-
nificant digit of exactly 8) and are not represented. We can
observe that there is a drop in similarity at the N4 bias correc-
tion step. The loss of similarity is accentuated in the next step
’SRI’, and is also very small for ’brain’. The slight increase in
significant digits for the last step ’brain’ may come from the
skull stripping involving the deletion of pixels and replacing
them with background (more significant digits of 8) and so
reducing the number of pixels with low significant digits and
increasing their mean value.

9https://github.com/glatard/fuzzy-fmriprep/blob/
main/sigdigits.ipynb

4. DISCUSSION AND CONCLUSION

In this paper, we explored the degree of reproducibility of
tumor segmentation results via the inference of a deep learn-
ing model when using different versions of a pre-processing
pipeline and digital perturbations that mimic executions in
different environments. Our experiments highlight the fact
that the results are not reproducible bit by bit. We quantified
the differences using several complementary metrics, such as
the Sørensen-Dice coefficient, Hausdorff distance for the fi-
nal segmentation results and peak signal-to-noise ratio, the
number of significant digits for the intermediary images in
the pre-processing pipeline.

Based on the results presented in section 3, the main take-
home messages are:
1. There is an important variation of segmentation outcomes

between versions of the BRATS pipeline. Even though on
average Dice coefficients are high, values can go down to
0.59 (which is very low) and 10% of patients for the label
necrosis are under 0.84.

2. The inter-OS variability measured with FL is in the same
order of magnitude as the between-version variability,
which suggests that the underlying causes for instability
may be numerical stability.

3. N4 normalization and SRI seem to be the main steps in
the pipeline where most of the variability comes from.

4. The variability in segmentation outcomes depends on the
input data. This data sensitivity may introduce a bias in
model performance at the patient level.

In conclusion, we believe it is important to review the numer-
ical stability of the pipeline. Reproducibility experiments like
the one presented in this paper can be used as a benchmark to
improve it.

These are the first results of a larger study within the Re-
proVIP project. Future work includes: (i) further analysis
of the source of variability among the two versions of the
pipeline, (ii) experiments allowing to quantify and compare
the variability introduced by different computing infrastruc-
tures (we are planning to use the Grid500010 experimental
platform), (iii) re-train the model and evaluate the impact on
the model transfer.
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