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Abstract 27	

Although reports of animal tool-use are phylogenetically widespread, it remains rare in the 28	

wild. From the perspective of human evolution, this rarity was first explained by the 29	

cognitive demands associated with tool use. Recently, an alternative assumption, ‘the tools 30	

are not often useful’ hypothesis, proposes that tool use is rare, because it is seldom more 31	

useful than the species’ anatomical adaptations. At the same time, several species that do not 32	

use tools in the wild have shown the capacity for tool use in experimental problem-solving 33	

settings, which suggests a certain level of cognitive flexibility. Investigating whether 34	

habitually non-tool using species are able to use tools flexibly is crucial to evaluate the 35	

predictions of existing theories on the evolution of cognition. In this study, we tested whether 36	

great white pelicans (Pelecanus onocrotalus), morphologically specialised fishers, for whose 37	

natural foraging tools are unlikely to be of use, were able to use tools in two problem-solving 38	

situations. In two tasks, the subjects were required to drop tools into an apparatus to gain 39	

access to a food reward. In Tool-use task 1, we tested the capacity of pelicans to show 40	

spontaneous tool-use behaviour. In Tool-use task 2, we assessed the birds’ tool-using 41	

performance, before and after providing them with different kinds of information about the 42	

task’s solution, that is experience with the functional features of the apparatus (‘platform-43	

pushing group’) and trial-and-error learning of tool-dropping behaviour (‘stone-nudging 44	

group’). All subjects failed in using tools in Tool-use task 1 and only one individual in the 45	

stone-nudging group learnt to use a tool in the training phase of Tool-use task 2. Despite 46	

previous experience with the functional properties of the task, birds from the platform-47	

pushing group did not exhibit tool-use behaviour or increased motivation towards the 48	

apparatus and the tools during the test phase. Although pelicans were not inhibited by 49	

morphological constraints to carry out the required tool behaviours, whether they lack the 50	

cognitive prerequisites for flexible tool-use remains to be further tested. 51	

 52	

Keywords: adaptive specialization; foraging ecology; Pelecanus onocrotalus; physical 53	

cognition; problem solving; tool use 54	
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Introduction 61	

Initially considered a core feature of human evolution and intelligence (Washburn, 1959), 62	

tool use is now reported in various animals, ranging from invertebrates to apes (for a review, 63	

see Shumaker, Walker, & Beck, 2011). A widely used, standard definition of tool use is “The 64	

use of an environmental object … to alter more efficiently the form, position, or condition of 65	

another object, another organism, or the user itself, when the user holds and directly 66	

manipulates the tool during or prior to use” (Shumaker, Walkup, & Beck, 2011). For 67	

instance, a capuchin monkey (Cebus apella) uses a tool when hitting the ground with a stone 68	

in search of insects, but does not use tools when engaging in object manipulations with no 69	

apparent purpose (e.g. object play). Furthermore, according to this definition, tool use does 70	

not include nest building as the manipulation of nest components involves static relations 71	

(Visalberghi, Sabbatini, Taylor, & Hunt, 2017). In birds, numerous tool-use examples have 72	

been reported (Boire, Nicolakakis, & Lefebvre, 2002), with ever-growing evidence in the 73	

wild (e.g. Camacho & Potti, 2018; Fayet, Hansen, & Biro, 2020, but see Farrar, 2020; Van 74	

Leeuwen, Cronin, & Haun, 2017). However, tool use remains rare in the animal kingdom 75	

(Biro, Haslam, & Rutz, 2013; Visalberghi, Sabbatini, Taylor, & Hunt, 2017). Traditionally, 76	

this rarity was associated with the cognitive demands of exhibiting tool use i.e. the ‘tools, 77	

animal intelligence’ hypothesis (Bird & Emery, 2009a; Brosnan, 2009; Van Schaik, Deaner, 78	

& Merrill, 1999). In this context, numerous experimental studies have focused on large-79	

brained accomplished tool users (e.g. chimpanzees, Pan troglodytes: Kühl et al. 2016, Pruetz 80	

& Bertolani, 2007; New Caledonian crows, Corvus moneduloides: Hunt, 1996), and revealed 81	

sophisticated cognitive capacities (e.g., Taylor, Hunt, Medina, & Gray, 2009; Povinelli, 2000; 82	

Wimpenny, Weir, Clayton, Rutz, & Kacelnik, 2009).  83	

Nevertheless, as highlighted by Shumaker et al. (2011) in their second ‘Myth’, tool use 84	

does not always predict advanced cognition (Emery & Clayton, 2009; Hansell, 2000, 2007; 85	

Mc Grew, 1993). Indeed, many instances of tool use or manufacture in animals possess a 86	

significant inherited component (e.g. Kenward, Weir, Rutz, & Kacelnik, 2005; Tebbich, 87	

Taborsky, Fessl, & Blomqvist, 2001). Tool use seems also not directly associated with better 88	

general cognitive capacities: woodpecker finches (Cactospiza pallida) and New Caledonian 89	

crows do not outperform closely related, non-tool-using species in physical and general 90	

cognitive tasks (Teschke, Cartmill, Stankewitz, & Tebbich, 2011; Teschke et al., 2013). 91	

In their ‘tools are not often useful’ hypothesis, Hansell and Ruxton (2008) propose that 92	

ecological utility determines the emergence (or absence) of tool use in animals (Hunt, Gray, 93	

& Taylor, 2013). The anhinga (Anhinga anhinga), for instance, forages in southern swamps 94	
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where it engages in a particular type of fishing, by using its specialized pointed bill as a 95	

‘harpoon’ to spear prey (Davis, 2015). From an ecological perspective, foraging with a tool 96	

does not seem to provide any selective advantage to this species, which already possesses a 97	

tool-like morphological adaptation. Thus, according to this hypothesis, tool use is induced 98	

when it is beneficial and practicable for the species in question given its morphological, 99	

ecological, and/or behavioural features (Hansell & Ruxton, 2008; see also Bräuer, Hanus, 100	

Pika, Gray, & Uomini, 2020). However, circumstances in which tool use is advantageous 101	

may be actually more numerous than believed, suggesting that constraints, other than the lack 102	

of ecological need, prevent tool use in birds and mammals in the wild (the ‘excess-of-103	

opportunity’ problem: Hunt, Gray, & Taylor, 2013). Moreover, recently, an increasing 104	

number of habitually non tool-using species (the ‘facultative tool users’) has been reported to 105	

employ novel foraging tools flexibly in captivity (reviewed in Bentley-Condit & Smith, 2010; 106	

Shumaker, Walkup, & Beck, 2011). This has led to the hypothesis that flexible tool-use - “the 107	

production of innovative solutions to respond to challenging or new situations” (Call, 2013; 108	

from Visalberghi, Sabbatini, Taylor, & Hunt, 2017) - is derivative of general-purpose 109	

cognition in some species (e.g. Bird and Emery, 2009; Deaner, Van Schaik, & Johnson, 110	

2006; see also the commentary of Kacelnik, 2009).  111	

Providing a more complete taxonomic picture of tool-use skills in animals under 112	

controlled conditions may significantly help elucidating why tool use is rare (Biro, Haslam, & 113	

Rutz, 2013; Hunt, Gray, & Taylor, 2013). Among birds, for instance, in contrast to the 114	

multifarious tool-use reports in the wild, captive Passeriformes have received considerable 115	

attention, with much focus on habitual tool-users (e.g. corvids: reviewed in Kacelnik, 116	

Chappell, Weir, & Kenward, 2006; Tebbich, Seed, Emery, & Clayton, 2007; finches: 117	

Tebbich & Bshary, 2004; Teschke, Cartmill, Stankewitz, & Tebbich, 2011). Assessing tool-118	

related capabilities in non-tool-using foragers that possess features generally associated with 119	

flexible tool-use (e.g. brain size and innovation in birds: Lefebvre, Nicolakakis, & Boire, 120	

2002; Lefebvre, 2013) is essential to comprehend to what extent ecology, cognition, and 121	

morphology, influence species differences in tool use (Cheke, Bird, & Clayton, 2011; 122	

Johnsson & Brodin, 2019). 123	

The great white pelican (Pelecanus onocrotalus) is a highly specialised piscivorous 124	

forager (Bowker & Downs, 2008; Hatzilacou, 1996; Megaze & Bekele, 2013; Sibley, 2000) 125	

that possesses a beak functionally very similar to humans’ hoop nets (Meyers & Myers, 2005; 126	

Mwema, de Ponte Machado, & Ryan, 2010; Redrobe, 2014). This sensitive feeding apparatus 127	

fulfils different functions (e.g. catching fish, stocking rain water, or ventilating the body 128	
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during heat; Elliott, 1992; Johnsgard, 1993; Wirtz, 1986) and has not changed during more 129	

than 30 million years, probably as a result of highly efficient adaptation to fishing (Louchart, 130	

Tourment, & Carrier, 2011). Despite its seemingly unwieldy beak, this species shows basic 131	

object manipulation outside the foraging domain. For instance, during the breeding season, 132	

pelicans normally nest directly on the ground, from which they pile up natural materials 133	

(grass, sticks, reeds, etc.) in order to form a nest (Brown & Urban, 1969). Object 134	

manipulation is common in some captive populations, where one or more individuals take 135	

and throw wood sticks on the ground, repeating this action sequence several times without 136	

apparent purpose (SD, personal observation). Although this bird, and Pelecaniformes more 137	

generally, is largely understudied in behavioural and cognitive sciences, we nevertheless 138	

know that pelicans possess a large relative brain size (the Lefebvre’s ‘seventh group’: 139	

Lefebvre, Whittle, Lascaris, & Finkelstein, 1997) associated with slow life history including 140	

late sexual and physical maturity, long incubation period, and longevity (Ricklefs, 2004). 141	

Moreover, cognitive capacities, such as learning, flexibility, and innovation, are crucial to 142	

learn important social aspects of foraging (Anderson, 1991; Danel et al., 2020) or to find new 143	

feeding opportunities (de Ponte Machado & Hofmeyr, 2004). The great white pelican may 144	

thus represent a relevant biological model to evaluate the predictions of theories on the 145	

evolution of tool use.  146	

In this study, we aimed to assess the capacity of twelve great white pelicans to use tools in 147	

two problem-solving tasks. Nest building involves specific behaviours in this species, ranging 148	

from collecting, pouch storing, and disgorging materials on the ground (Brown & Urban, 149	

1969; Elliott, 1992). We therefore built two devices that required a similar range of tool-150	

manipulation behaviours (i.e. touch, pick up, drop), with a restricted need to orientate the 151	

tools towards the apparatuses’ relatively large apertures. During Tool-use task 1, we assessed 152	

spontaneous foraging tool use. Subjects had to drop a tool inside an apparatus to get access to 153	

an out-of-reach reward. As for the second experiment, Tool-use task 2, our goal was to 154	

evaluate whether pelicans could use tools after being given experience with the functional 155	

features of the apparatus (‘platform-pushing group’) or trial-and-error learning of tool-156	

dropping behaviour (‘stone-nudging group’). We administered a slightly modified replica of 157	

the experimental design initially created by Bird & Emery (2009a) with rooks (Corvus 158	

frugilegus), which also possess morphological constraints (Matsui et al., 2016), and further 159	

employed using different methods with several other non-tool-using birds (e.g. Eurasian jays, 160	

Garrulus glandarius: Cheke et al., 2011; great-tailed grackles, Quiscalus mexicanus: Logan, 161	

2016; keas, Nestor notabilis: Auersperg, Gadjon, & Huber, 2010; Auersperg, von Bayern, 162	
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Gadjon, Huber, & Kacelnik, 2011; and Goffin cockatoos, Cacatua goffiniana: Laumer, 163	

Bugnyar, & Auersperg, 2016) and one habitually tool-using species (New Caledonian crow: 164	

Auersperg et al., 2011; von Bayern, Heathvote, Rutz, & Kacelnik, 2009). As material 165	

manipulation occurs in some specific contexts, and regarding aspects of this species’ 166	

cognition and behaviour, our first hypothesis predicts that pelicans will be able to use 167	

spontaneously novel tools to reach an out-of-reach reward (Tool-use task 1). Our second 168	

hypothesis also predicts that this species will use tools, and show increased motivation to 169	

interact with the apparatus and the tools, after experience with the task is provided (Tool-use 170	

task 2).  171	

Methods 172	

Subjects 173	

Twelve captive great white pelicans were tested at the Bird Park in Villars-les-Dombes, 174	

France. Five were males (Cra, Cro, Hyd, Jac, Jee), and seven were females (Asa, Bal, Coo, 175	

Her, Jan, Jgo, Jyw). All subjects were adults and their age varied between 3 to 16 years. 176	

Pelicans belonged to the free-flight bird show and were brought down to 85-90% of their ad 177	

libitum weight during the park’s high season (from Mar-Nov), which was also the 178	

experimental period. All birds were maintained within an outdoor enclosure of two 179	

compartments (1st compartment: 17.97 x 5.88 x 2.26m, including an indoor room: 2.34 x 2.34 180	

x 2.26m; 2nd compartment: 24.74 x 17.91 x 2.26m). Tests took place in the first compartment 181	

each early morning from 8 a.m. to 1 p.m. 182	

Statement about the STRANGEness of the test sample (based on the STRANGE 183	

framework: Rutz & Webster, 2021; Webster & Rutz, 2020): all subjects initially selected 184	

lived in the same social group and contributed data (original sample). Thus, no pelican was 185	

excluded due to specific “personality” types. Our sample may have been biased with at least 186	

four of the seven STRANGE factors: first, most of our pelicans were hand-reared and 187	

originated from the gene pool of the park avian collection (“Rearing history” and “Genetic 188	

make-up”). Subjects’ participation to the free-flight bird show also required some degree of 189	

cooperation between birds and avian keepers. Second, subjects had prior experience with one 190	

cognitive study (“Acclimation and habituation” and “Experience”): they had been previously 191	

tested on a social-learning task conducted by Danel et al. (2020), who investigated their 192	

capacity to acquire a novel behaviour by watching experienced conspecific demonstrators.  193	

Apparatus 194	

Tool-use task 1. The apparatus consisted of an inclined rectangular box with a transparent 195	

top that was opened at both ends. The reward was presented in the centre of the apparatus 196	
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inside an empty cardboard tissue box (24 x 12.5 x 7.5cm), which was held in position by a 197	

wooden protrusion (Figure 1). In the pre-test phase, the apparatus was shortened (40 x 38 x 198	

12.5cm), so the pelican could push out the tissue box directly by inserting its beak into the 199	

apparatus’s upper end. In the test phase, the apparatus was longer (85.7 x 38 x 12.5cm), so 200	

that the tissue box containing the reward was out-of-reach. In order to retrieve the reward, the 201	

subject had to pick up one of the tools provided on the ground (20 sticks: from 17.7 to 51cm 202	

in length; 20 stones up to 11cm large, each stone weighted about 50g and was heavy enough 203	

to collapse the tissue box), and to drop it into the box’s upper end. 204	

< Insert Figure 1 about here > 205	

Tool-use task 2. The apparatus consisted of a long transparent square-formed tube (95 x 206	

12 x 15cm) fixed on the centre of a board (1.5 x 59 x 40cm; Figure 2a & c). The out-of-207	

reach reward was presented in the centre of a collapsible platform held up by magnets 15cm 208	

above the ground. The subject had to pick up a tool on the ground (20 sticks: from 17.7 to 209	

51cm long; 20 stones up to 9.5cm large) and to drop it into the mouth of the tube in order to 210	

collapse the platform and get the reward. In the experience phase, two apparatuses were 211	

created: for the stone-nudging group, a rimmed square plank was mounted around the mouth 212	

of the tube (45.5 x 42.5 x 2.7cm), upon which a stone was placed (5cm in diameter; Figure 213	

2b1). To reach the reward, the subject had to push – ‘nudge’ – the stone with its beak towards 214	

the mouth of the tube so the tool would ultimately fall into it (Video 1, see Supplementary 215	

Materials). For the platform-pushing group, the transparent square-formed tube was 216	

considerably shortened (20 x 12 x 15cm; Figure 2b2). Here, the subjects had to learn about 217	

the mechanism of the collapsing platform, by pushing it down directly with the beak (Video 218	

1, see Supplementary Materials). The recording equipment consisted of a camera (Samsung 219	

camera HMX-F90) and a tripod, which were removed from the aviary after each trial. 220	

< Insert Figure 2 about here > 221	

Procedure 222	

Tool-use task 1. 223	

Habituation phase. Subjects were familiarized with the recording equipment and the 224	

unrewarded apparatus during two 30 min sessions (one session per day on two consecutive 225	

days).  226	

Pre-test phase. Pelicans were first trained to take the tissue box from the shortened 227	

apparatus, by pushing it down with the beak. Once they had obtained the reward eight times 228	

in a row, they were considered qualified to proceed to the test phase. 229	
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Test phase. Fifteen 12 min trials were administrated (usually two trials per day). On 230	

each test day, the experimenter entered the aviary and closed the door separating the first 231	

compartment from the second compartment in order to set up the experiment. To prevent any 232	

visual contact between the first compartment (the test bird) and the second compartment (the 233	

rest of the group), the grid wall in between the two compartments was covered with an 234	

opaque fabric. After having triggered the camera and baited the tissue box in the apparatus, 235	

the experimenter allowed the subject to enter the first compartment. Participation was made 236	

on a voluntary basis, so the order in which subjects participated changed randomly from day 237	

to day.  238	

Tool-use task 2.  239	

Pre-test phase. Birds were presented with the apparatus and the tools (i.e. sticks and 240	

stones) available on the ground during eight trials of 20 min each. This was carried out in 241	

order to establish whether tool-use behaviour was already part of the species’ behavioural 242	

repertoire (i.e., any behaviour consisting of manipulating, displacing, and dropping one of the 243	

tools provided into the mouth of the tube). 244	

Experience phase. After the pre-test phase, pelicans were randomly assigned to two 245	

experimental groups. In the platform-pushing group, six subjects (Asa, Bal, Coo, Hyd, Jgo, 246	

Jee) were trained to retrieve the reward by pushing the collapsing platform with the beak 247	

through the shortened tube. The training process was as follows: initially, the reward was 248	

partly reachable on the platform, so while trying to take the reward the subjects caused the 249	

platform to collapse unintentionally. Progressively, the reward was moved out-of-reach and 250	

subjects were gradually shaped to push the platform with the beak. This phase was 251	

considered completed when the subjects had retrieved the reward sixteen times in a row at 252	

maximum (only birds from the platform-pushing group reached this criterion, see below). 253	

The other six individuals in the stone-nudging group (Her, Cro, Jan, Jyw, Jac, Cra) were 254	

trained to nudge a stone into the apparatus from a rimmed square plate with a central hole. At 255	

the beginning of the training process, one stone was placed right on the edge of the tube. 256	

Thus, when the pelican interacted with the apparatus the stone accidentally fell down into the 257	

tube. When the association between the stone falling and the release of the reward was 258	

acquired, the stone was progressively moved to the plate’s edge. Here again, subjects met 259	

criterion when they obtained the reward (using the stone located at the border of the plate) 260	

sixteen times in a row at maximum (only one bird from the stone-nudging group reached this 261	

criterion, see below). 262	
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Test phase. After each group had met criterion in the training phase, subjects moved 263	

to the test phase. Here, the procedure was the same as the pre-test phase of Tool-use task 2.  264	

Coding and data analysis 265	

All tests were video recorded, and continuous second-by-second coding of the videos was 266	

performed. For both tool-use tasks, we followed a specific coding scheme including 6 267	

behaviours: 1 = perch on the apparatus, 2 = insert the beak in the apparatus, 3 = interaction 268	

with the apparatus (i.e. touching the apparatus with the beak), 4 = touch a tool, 5 = pick up a 269	

tool, and 6 = insert a tool. Based on this coding scheme, the number of behaviours exhibited 270	

by each bird was counted by assigning a score of 1 when this behaviour lasted at least 1s 271	

(e.g., when a subject interacted with the apparatus during 1 s, this behaviour was coded as 1; 272	

conversely, if no interaction was counted - or behaviour from the coding scheme - this was 273	

coded as 0). We assessed inter-observer reliability by using a sub-sample of the videos, 274	

whereby 36 trials from Tool-use task 1 (180 trials in total) were independently scored by two 275	

observers. Inter-observer reliability was high (percentage agreement: 99%, Cohen’s kappa 276	

coefficient: 0.95). 277	

Model 1: Tool use task 1. 278	

We used a Generalized Linear Mixed model (GLMM) with a negative binomial error 279	

structure (overdispersion score with a Poisson error structure: 9.12). Time (i.e. time to 280	

perform each behaviour) was set as dependant variable, Behaviour (“Insert beak in the 281	

apparatus” and “Interaction with the apparatus”), Trial (1 vs 2 vs …10), and Trial*Behaviour 282	

as fixed factors, and Subject (i.e. subject’s identity) as random effect. We limited our 283	

investigation to the behaviours specified above, given the absence or rarity of other 284	

behaviours (“Insert a tool within the apparatus”, “Pick up a tool”, “Perch on the apparatus”, 285	

and “Touch a tool”; see Results). 286	

Model 2: Tool use task 2. 287	

To assess whether the individuals from the platform-pushing group changed their 288	

behaviour after experience with the functional properties of the task, we ran a GLMM with a 289	

negative binomial error structure (overdispersion score with a Poisson error structure: 80.74). 290	

Time was set as dependant variable, Behaviour (“Insert beak in the apparatus”, “Touch a 291	

tool”, and “Interaction with the apparatus”) and Phase (pre-test phase vs test phase) as fixed 292	

factors, and Subject as random effect. Here again, we limited our investigation to the 293	

behaviours specified above, given the absence or rarity of other behaviours (“Insert a tool 294	

within the apparatus”, “Pick up a tool”, and “Perch on the apparatus”; see Results). 295	
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GLMM analyses were conducted using the packages lme4 (Bates, Mächler, Bolker, & 296	

Walker, 2015) and multcomp (Hothorn, Bretz, & Westfall, 2008) in R software (R Core 297	

Team, 2019). 298	

Ethics 299	

This research conforms to the 'Guidelines for the use of animals in research' as published 300	

in Animal Behaviour (1991, 41, 183-186) and the ARRIVE guidelines, and has been carried 301	

out in accordance with the U.K. Animals (Scientific Procedures) Act, 1986 Amendment 302	

Regulations (SI 2012/3039) and associated guidelines, EU Directive 2010/63/EU for animal 303	

experiments, and the National Institutes of Health guide for the care and use of Laboratory 304	

animals (NIH Publications No. 8023, revised 1978). The Bird Park’s (Ain, France) scientific 305	

board provided the authorization to perform environmental enrichments through strictly non-306	

invasive behavioural experiments on captive pelicans. 307	

Ethics 308	

The research conforms to the 'Guidelines for the use of animals in research' as published in 309	

Animal Behaviour (1991, 41, 183-186)" and the ARRIVE guidelines, and has been carried 310	

out in accordance with the U.K. Animals (Scientific Procedures) Act, 1986 Amendment 311	

Regulations (SI 2012/3039) and associated guidelines, EU Directive 2010/63/EU for animal 312	

experiments, and the National Institutes of Health guide for the care and use of Laboratory 313	

animals (NIH Publications No. 8023, revised 1978). The Bird Park’s (Ain, France) scientific 314	

board provided the authorization to perform environmental enrichments through strictly non-315	

invasive behavioural experiments on captive pelicans. 316	

Results 317	

Tool-use task 1 318	

No subject was able to solve the task, namely to drop a tool within the apparatus to get 319	

access to the food reward. Indeed, we did not report any behaviour consisting of “Pick up a 320	

tool” or “Insert a tool within the apparatus”. Overall, behaviours that involved “Insert the 321	

beak in the apparatus” and “Perch on the apparatus” were rare (respectively: mean = 31.91s, 322	

SD = 48.20s; mean = 1.16s, SD = 2.72s). At least in one of their total test trials, seven birds 323	

tried to obtain the reward by inserting their beak within the apparatus’s aperture (Bal, Coo, 324	

Jac, Jgo, Jan, Jee, Jyw), and three by perching on it (Coo, Jani, Jyw). Although most pelicans 325	

rarely touched a tool (Bal, Coo, Hyd, Jac, Jan, Jee, Jgo, mean = 5.91s, SD = 7.46s), they 326	

interacted with the apparatus (Asa, Bal, Coo, Cra, Hyd, Jac, Jgo, Jan, Jee, and Jyw, mean = 327	

947.41s, SD = 1217.39s). The GLMM analysis revealed a significant effect of the factor 328	

Behaviour (p < .001; estimated parameters are provided in Table 1) and the factor Trial (p < 329	
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.001). The interaction Trial*Behaviour was also significant, suggesting that pelicans 330	

increased their behavioural interactions towards the apparatus (p < .001) but decreased their 331	

beak insertions within the apparatus across trials (p < .001). As shown in Figure 3, subjects’ 332	

behaviour was subject to a great inter-individual variability. 333	

< Insert Figure 3 and Table 1 about here > 334	

Tool-use task 2 335	

Pre-test phase: stone-nudging group and platform-pushing group. 336	

No subject was able to drop a tool within the device to collapse the platform supporting 337	

the food reward. Here again, behaviours consisting of inserting the beak within the apparatus 338	

were seldom at the group level (platform-pushing group: mean = 14.00s, SD = 16.18s; stone-339	

nudging group: mean = 133.25s, SD = 183.51s). More specifically, in both groups, three 340	

subjects tried to insert their beak within the apparatus (platform-pushing group: Bal, Coo, 341	

Jee; stone-nudging group: Jac, Jan, Jyw), while no one attempted to perch on the device. 342	

Most pelicans touched a tool and interacted with the apparatus in this phase (platform-343	

pushing group: Bal, Coo, Hyd, Jee, Jgo, mean = 515.60s, SD = 524.43s for “Interaction with 344	

the apparatus”; and Coo, Jgo, Jee, mean = 27.40s, SD = 37.81s for “Touch a tool”; stone-345	

nudging group: Cra, Jac, Jan, Jyw, mean = 1939.5s, SD = 1556.22s for “Interaction with the 346	

apparatus”, and Jan, Jyw, Jac, mean = 9.25s, SD = 9.03s for “Touch a tool”). One subject 347	

(Jee) from the platform-pushing group picked up a tool during its first trial without directing 348	

it towards the apparatus, and no one inserted a tool in the device. No subject from the stone-349	

nudging group picked up a tool on the ground or tried to insert it in the apparatus. As shown 350	

in Figure 4, we also noted inter-individual differences. 351	

< Insert Figure 4 about here > 352	

Experience phase: stone-nudging group and platform-pushing group. 353	

Although all subjects in the platform-pushing group rapidly learned to use the beak to 354	

push the platform in this phase, only one subject in the stone-nudging group successfully 355	

moved the stone into the aperture to get the reward (Jac; Video 1, see Supplementary 356	

Materials). Noteworthy, instead of trying to move the stones towards the hole, most subjects 357	

tended to throw the stone on the ground when the experimenter replaced them on the plate. 358	

Consequently, only the platform-pushing group was allowed to proceed to the test phase. 359	

Test phase: stone-nudging group and platform-pushing group. 360	

The only subject from the stone-nudging group that passed the criterion in the previous 361	

experience phase (Jac) did not pick up a tool on the ground to obtain the reward. Only two 362	

subjects (Bal, Jee) from the platform-pushing group tried to insert their beak in the apparatus, 363	
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and no perching behaviour was reported. The majority of birds from this group interacted 364	

with the apparatus and touched a tool (Asa, Bal, Coo, Hydra, Jgo, Jee, mean = 807.16s, SD = 365	

1265.65s for “Interaction with the apparatus”, and Asa, Bal, Jee, Jgo, mean = 61.50s, SD = 366	

84.59s for “Touch a tool”). According to the GLMM analysis, subjects made significantly 367	

more behavioural interactions with the apparatus than the other behaviours (p < .001; “Insert 368	

the beak within the apparatus”: p = 0.15 and “Touch a tool”: p = 0.06). However, there was 369	

no significant effect of the factor Phase (p = 0.46) and Phase*Behaviour (p = 0.51). Thus, 370	

behavioural interactions with the apparatus did not increase significantly after experience 371	

with the functional properties of the task (pairwise post-hoc test comparisons are provided in 372	

Table 2). 373	

< Insert Table 2 about here > 374	

Discussion 375	

Overall, most pelicans were unable to spontaneously use the tools provided (Tool-use task 376	

1), even after they had been gradually shaped to produce the stone-dropping behaviour (Tool-377	

use task 2: stone-nudging group). Knowledge of the collapsing-platform mechanism of the 378	

apparatus had also no effect on the subjects’ motivation or capacity to use tools (Tool-use 379	

task 2: platform-pushing group). Cognitive requirements of flexible tool use, notably the 380	

initial difficulty of perceiving objects as tools, are discussed as the main constraints for the 381	

emergence of tool-use skills in this species. 382	

Before delving into explanations of the absence of tool-related competence in pelicans, 383	

methodological biases must be ruled out so as to ensure that the reported experiments truly 384	

reflected the subjects’ failure to understand the task. For instance, although similar devices 385	

have been appropriate to ground foragers such as corvids (e.g. rooks: Kasprzykowski, 2003), 386	

they may have created constraints regarding our species’ physical abilities. Pelicans indeed 387	

frequent a quite different foraging niche, consisting of a wide variety of aquatic habitats 388	

(Elliott, 1992). Nevertheless, object manipulation and transportation have been reported to 389	

often occur on land in captive (SD, personal observation) as well as wild individuals (e.g. 390	

Brown & Urban, 1969), and some free-ranging populations are efficient ground-foragers 391	

(Mwema, de Ponte Machado, & Ryan, 2010; de Ponte Machado, 2004, see also Danel et al., 392	

2020 for a social foraging task carried out on land). Furthermore, all subjects from the 393	

platform-pushing group learned rapidly through associative learning/operant conditioning 394	

how to obtain the reward when the platform could be reached directly with the beak. Whether 395	

these subjects understood causality (that the platform collapsed if they applied a physical 396	

force on it), however, remains unlikely.  397	
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Another possibility is that tool use may not easily arise when subjects lack first-hand 398	

manipulative experience with the objects (e.g. their mechanical properties, affordances, and 399	

manoeuvrability: Fayet, Hansen, & Biro, 2020; Taylor et al., 2011). However, Tool-use task 400	

2 was specifically designed to allow the subjects all necessary experience with the apparatus 401	

and the tools and, even after proper training, all pelicans (except one subject: Jac, during the 402	

experience phase) were unable to use tools. Finally, a lack of motivation does not appear to 403	

explain the failure of pelicans in both tool-use tasks. Although we noted a decrease in 404	

specific behaviours during Tool-use task 1 (“Insert the beak within the apparatus” and 405	

“Touch a tool”), pelicans interacted with the apparatus significantly more across trials. 406	

Similarly, there was no significant effect of experience during the test phase of Tool-use task 407	

2 (platform-pushing group). 408	

Noteworthy, one subject (Jac) was able to repeatedly drop stones within the apparatus to 409	

release an out-of-reach reward during the experience phase of Tool-use task 2. This bird not 410	

only pushed the stone towards the tube’s aperture, but also had sufficient control over the tool 411	

by lifting it above the hole probably to create an additional force on the platform. During the 412	

experience phase, Jac surprisingly dropped a thin stick that fell from a tree above the 413	

apparatus’s platform. This demonstrates that this subject could also use non-trained tool 414	

items, similarly to other bird species tested in similar tasks (e.g. New Caledonian crows: von 415	

Bayern, Heathcote, Rutz, & Kacelnik, 2009). However, when task properties slightly changed 416	

in the subsequent test phase (when tools were located on the ground), this individual did not 417	

repeat the action sequence required to solve the task. As this subject did not engage in any 418	

attempts to touch the tool in this phase, its failure is unlikely due to motor difficulties in 419	

grabbing tools directly on the ground. This subject’s experience with objects and rearing 420	

history were the same as the other tested pelicans. We suggest that more instances of learned 421	

tool-use behaviour may appear in studies with a larger sample size. 422	

Our sample, however, may have been affected by certain biases (i.e. captivity and rearing 423	

experience, Webster & Rutz, 2020). For instance, subjects’ participation in the tasks may 424	

have been favoured by low neophobia due to previous experience with humans. Participation 425	

in a previous cognitive experiment may also have represented a bias (Webster & Rutz, 2020), 426	

although the foraging apparatus was dissimilar to the present ones and did not require the use 427	

of environmental objects (Danel et al., 2020). 428	

We believe additional insights can be gained by looking at the behavioural pattern of 429	

individuals during the training phase of Tool-use task 2. Rather than trying to move the 430	

stones towards the hole, most subjects tended to throw the stones on the ground when the 431	
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experimenter replaced them on the plate. This manipulation pattern of pelicans’ behaviour 432	

when interacting with tools is reminiscent of a recent study that failed to induce tool-use 433	

behaviour in wild-caught great tits (Johnsson & Brodin, 2019). Instead of directing tools 434	

towards the apparatuses, most tits threw them away after grabbing and tossing them with the 435	

beak. This suggests that both avian species failed at making any link between the tools and 436	

the reward obtained. In other words, although some pelicans possess morphological (the 437	

sensorimotor processes to hold a tool) and behavioural (object manipulation or ‘object related 438	

non-tool use’: Hunt, Gray, & Taylor, 2013) predispositions required to use tools (Call, 2013; 439	

Visalberghi, Sabbatini, Taylor, & Hunt, 2017), and are able to learn to use tools in a goal 440	

directed manner, they may lack the initial cognitive capacity to perceive the need for tools 441	

(how objects work and can be used as tools: Hunt, Gray, & Taylor, 2013). Perceiving that a 442	

familiar object can be exploited as a tool might be cognitively demanding (Hunt, Gray, & 443	

Taylor, 2013), even for species that use tools frequently in the wild (e.g. Sonso chimpanzee 444	

community, Pan troglodytes schweinfurthii: Grund, Neumann, Zuberbühler, & Gruber, 2019; 445	

Lamon, Neumann, Gier, Zuberbühler, & Gruber, 2018; New Caledonian crow: von Bayern, 446	

Heathcote, Rutz, & Kacelnik, 2009).  447	

Pelicans’ behaviours contrast with those of some captive habitually non-tool-using species 448	

that performed the stone-dropping behaviour required in the present study, such as Goffin 449	

cockatoos (Laumer, Bugnyar, & Auersperg, 2016) and keas (Auersperg Gajdon, & Huber, 450	

2010; Auersperg, von Bayern, Gajdon, Huber, & Kacelnik, 2011; see also tool-related studies 451	

on other habitually non-tool-using species e.g. macaws, Ara ambiguous and Ara 452	

glaucogularis: O’Neill, Picaud, Maehner, Gahr, & von Bayern, 2020; Goffin cockatoos: 453	

Auersperg, Szabo, von Bayern, & Kacelnik, 2012; Eurasian jays, Garrulus glandarius: 454	

Cheke, Bird, & Clayton, 2011; and vasa parrots, Coracopsis vasa: Lambert, Seed, & 455	

Slocombe, 2015). Rooks, for instance, which have shown surprising tool-related capacities 456	

among non-habitual avian tool users, were able to appreciate their functional properties (e.g. 457	

using large stones over small ones) and to exploit successfully their experience with the tools 458	

and the task (Bird & Emery, 2009a; Bird & Emery, 2009b). Moreover, some subjects seemed 459	

capable of learning rapidly about their physical environment, inhibiting inefficient 460	

behaviours, remembering information, focusing attention, and foreseeing the outcomes of 461	

their actions (e.g. Bird & Emery, 2009a; Bird & Emery, 2009b; Tebbich, Seed, Emery, & 462	

Clayton, 2007). Each of these capacities has been proposed to be involved in flexible tool-use 463	

(Coolidge & Wynn, 2005; Kane & Engle, 2000, 2002). 464	
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As pelicans are able to solve novel foraging problems after observation of experienced 465	

conspecifics (Danel et al., 2020), future experiments may assess this species’ capacity to use 466	

tools through social learning (Bandini, Motes-Rodrigo, Steele, Rutz, & Tennie, 2020). 467	

Further tests may also investigate whether this ability develops early during ontogeny (e.g. at 468	

juvenile stage: Tan, 2017), and/or when pelicans are given the opportunity to manipulate a 469	

various range of objects (e.g. anthropogenic objects). Additionally, in order to assess the 470	

generalisability of our findings, this experiment should be carried out in wild populations 471	

(Rutz & Webster, 2021; Webster & Rutz, 2020). 472	

To conclude, our study demonstrates that captive great white pelicans were unable to solve 473	

novel problems by using the provided tools (i.e. sticks and stones). However, our results must 474	

be interpreted with caution. Indeed, at this stage, we cannot conclude that facultative tool-use 475	

is cognitively demanding in pelicans (Hunt, Gray, & Taylor, 2013; Visalberghi, Sabbatini, 476	

Taylor, & Hunt, 2017). We hope that our experiment encourages future investigations to 477	

assess the cognitive demands of flexible tool-use in a taxonomically various range of non-478	

habitually tool-using species, in order to test the validity of existing theories on the evolution 479	

of tool use and cognition. 480	
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Table 1. GLMM Estimates of Model 1 - Tool-use task 1 740	

Variable Estimate SE z Pr(|z|) 

Behaviour - Insert beak in the apparatus 
(Intercept) 

-1.94 0.72 -2.68 < .001 

Behaviour - Interaction with the apparatus 4.08 0.31 12.79 < .001 

Trial 0.02 0.01 4.13 < .001 

Trial: Behaviour - Interaction with the 
apparatus 

1.09 0.32 3.40 < .001 
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Table 2. Pairwise comparisons within Behaviour and between Phase x Behaviour of Model 2 - Tool-741	
use task 2.  742	

Contrast Estimate SE z Pr(|z|) 

Behaviour 
   

 

Insert beak - Interaction  -4.09 0.31 -12.7 < .001 

Insert beak - Touch tool 1.10 0.32 3.40 < .001 

Interaction - Touch tool 5.19 0.32 16.07 < .001 

Phase x Behaviour     

Insert beak pre test - Insert beak test -0.52 0.71 -0.73 0.97 

Interaction pre test - Interaction test 0.05 0.57 0.10 0.84 

Touch tool pre test - Touch tool test 0.13 0.67 0.20 0.49 
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Figures 743	

Figure 1.  744	

 745	
  746	



TOOL USE IN PELICANS 27 

Figure 2. 747	
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Figure 3.  750	
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Figure 4.  753	
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Figure captions 756	

Figure 1. Schematic representation of the apparatus used during Tool-use task 1. 757	

The reward, a fresh fish located inside a tissue box, was maintained horizontally inside the 758	

apparatus. To get the reward, the subject had to pick up a tool on the ground and to drop it 759	

into the upper end of the apparatus. 760	

Figure 2. Schematic representation of the apparatus used during Tool-use task 2. 761	

a. Subjects were first confronted in a pre-test phase to assess whether the subjects could 762	

spontaneously use tools (Figure 2a). The reward, a piece of fresh fish, was located on a 763	

magnetised collapsing platform. To get the reward, the subject had to pick up a tool on the 764	

ground and to drop it into the top hole of the apparatus. b. After having checked that subjects 765	

did not use tools during the pre-test phase, subjects were divided into two groups and moved 766	

to the experience phase. The stone-nudging group was trained to nudge a stone into the 767	

apparatus from a rimmed square plate with a central hole, which was mounted around the 768	

tube’s top (Figure 2b1). Subjects in the platform-pushing group were trained to reach the 769	

reward into a shortened tube by pushing the platform with their beak (Figure 2b2). c. The 770	

test phase followed the experience phase. The same procedure as the pre-test phase was 771	

applied (Figure 2c). 772	

Figure 3. Time spent (in s) in performing specified behaviours at the individual level and at 773	

the group level (Tool-use task 1).  774	

Figure 4. Time spent (in s) in performing specified behaviours at the individual level and at 775	

the group level (Tool-use task 2: pre-test). The two experimental groups are indicated (i.e. 776	

platform pushing vs stone nudging).  777	


