
HAL Id: hal-04005941
https://hal.science/hal-04005941

Submitted on 27 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Physical, Chemical and Biological Characteristics of
Dew and Rainwater during the Dry Season of Tropical

Islands
Marc Muselli, Owen Clus, Pascal Ortega, Iryna Milimouk, Daniel Beysens

To cite this version:
Marc Muselli, Owen Clus, Pascal Ortega, Iryna Milimouk, Daniel Beysens. Physical, Chemical and Bi-
ological Characteristics of Dew and Rainwater during the Dry Season of Tropical Islands. Atmosphere,
2021, 12 (1), pp.69. �10.3390/atmos12010069�. �hal-04005941�

https://hal.science/hal-04005941
https://hal.archives-ouvertes.fr


atmosphere

Article

Physical, Chemical and Biological Characteristics of Dew and
Rainwater during the Dry Season of Tropical Islands

Marc Muselli 1,2 , Owen Clus 1, Pascal Ortega 3, Iryna Milimouk 2 and Daniel Beysens 2,4,*

����������
�������

Citation: Muselli, M.; Clus, O.;

Ortega, P.; Milimouk, I.; Beysens, D.

Physical, Chemical and Biological

Characteristics of Dew and Rainwater

during the Dry Season of Tropical

Islands. Atmosphere 2021, 12, 69.

https://doi.org/10.3390/

atmos12010069

Received: 6 December 2020

Accepted: 27 December 2020

Published: 5 January 2021

Corrected: 13 May 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Campus Grimaldi, Université de Corse Pasquale Paoli, Avenue du 9 Septembre, BP 52, 20250 Corte, France;
marc.muselli@univ-corse.fr (M.M.); clus@univ-corse.fr (O.C.)

2 OPUR, 2 rue Verderet, 75016 Paris, France; contact@opur.fr
3 Université de la Polynésie Française, BP 6570, 98702 Faa’a, French Polynesia; pascal.ortega@upf.pf
4 Physique et Mécanique des Milieux Hétérogènes, CNRS, ESPCI Paris—PSL University, Sorbonne Université,

Sorbonne Paris Cité, 10 rue Vauquelin, 75005 Paris, France
* Correspondence: daniel.beysens@espci.fr

Abstract: In order to establish data to be used for comparison with future evolution related to climate
change, physical, chemical and biological characteristics of dew and rainwater as collected during the
2005 dry season (plus a few data during the 2004 dry season) are reported. They have been collected
in two characteristic tropical islands of French Polynesia, Tikehau (TKH), a low-lying coral atoll in the
Tuamotu Archipelago, and the mountainous Tahiti island at the University of French Polynesia (TAH).
Trade winds dominate the trajectory of air masses, ensuring constant temperature and humidity to the
lower layers of the atmosphere where dew forms. In addition to the comparison of dew yields with a
physical model using simple meteorological data (air and dew point temperatures, windspeed, cloud
cover), the following parameters were studied: pH, electrical conductivity (EC), total dissolved solids
(TDS), total hardness, suspended matter, ion concentration with major cations (Ca2+, K+, Na+, Mg2+,
NH4

+) and major anions (Cl−, SO4
2−, NO3

−), reviviscible aerobe microorganisms and compared to
two Polynesian spring waters (“Eau Royale” and “Vaimato”). Dew, with a chemical composition
mainly consisting of Na+, Ca2+, Mg2+, Cl− and SO4

2−, exhibits much higher ion concentration than
rain and compares well with the composition of local spring waters. The values of pH, EC and
TDS are larger in dew than in rainwater. At TAH, the volume weighted mean (VWM) pH values
of dew were 6.05 in 2004 and 5.23 in 2005, larger than the pH of rain (4.69). The VWM dew EC (at
TAH, 203 µS·cm−1 in 2004 and 237 µS·cm−1 in 2005; 321 µS·cm−1 at TKH in 2005) and dew TDS
(152 mg·L−1 at TAH and 225 mg·L−1 at TKH) were higher than the corresponding quantities in rain.
Mean total hardness (TH) values of dew water are much higher than in rainwater (2.8 for dew versus
0.5 for rain at TAH and 5.7 for dew versus 0.5 for rain at TKH). Ions Na+, Mg2+ and Cl− are clearly of
sea origin while the presence of Ca2+ is due to coral particles. From their chemical characteristics,
dew and rainwater could be used as an alternative source of water in dry season but, due to the
presence of reviviscible aerobe microorganisms at 22 ◦C and 36 ◦C (>300 CFU·mL−1), water must be
disinfected to be potable.

Keywords: atmospheric deposition; dew water; rainwater; chemical and biological analysis; tropi-
cal conditions

1. Introduction

Dew is a ubiquitous phenomenon. Dew is not fog or rain, constituted of already con-
densed liquid droplets. Its formation by water vapor condensation from the surrounding
atmosphere is well-known [1,2]. Water vapor can come either from soil moisture (“distilla-
tion” [3]) or from long range convected humid air masses. The radiation deficit at night
between a surface and the atmosphere cools the surface by a few degrees, which, for a
humid enough air (relative humidity (RH) > 70%) allows the dew point temperature to
be reached and atmospheric water vapor to be condensed into liquid. Dew formation is
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dependent on the characteristics of the atmospheric boundary layer for radiative prop-
erties (water content, cloud coverage) and convective heat exchange (air flow near the
condensing surface). With typically less than 70 Wm−2 radiative power available [2], the
maximum yield cannot exceed 0.7–0.8 L·m−2 [1,2,4]. This low yield, however, can be
a useful contribution to the biosphere [5–16] and to potable water in arid or semi-arid
climates (see the reviews [2,17,18]). It can also be the source of plant disease [19–22] and, in
urban areas, cause degradation to any inorganic matter that can be corroded (roofs, cars...
see, e.g., [23–25]).

Dew chemical composition depends on the properties of the local environment. The
different stages governing its composition are formation on dry deposition solids, dissolu-
tion of the soluble portion of the dry deposition by dew water, and sorption of gases into the
dew solution. In contrast, rain comes from a cloud, formed when the atmosphere’s relative
humidity reaches 100% with enough hygroscopic nuclei to foster nucleation. Nucleated
droplets initially grow quickly but collision/coalescence processes are needed to produce
precipitation in the end. The chemical composition of rain thus results from three different
processes: nucleation scavenging (the chemical composition of nuclei determines the cloud
initial composition), in-cloud scavenging (incorporation of non-activated particles and trace
gases, including chemical reactions within droplets), sub-cloud scavenging (absorption of
gases and take up of particles). Not every cloud gives rain, and a condensation nucleus
may undergo many cloud cycling processes including chemical transformation before it
reaches the Earth’s surface, often far away from its primary source.

Carbon dioxide, because of its high and constant concentration, plays a key role
in the formation of acidity in the atmospheric liquid phase. An important pathway in
alkalinity (carbonate) formation goes via nucleation and droplet formation as well as
aerosol scavenging, the last process contributing significantly to sub-cloud scavenging into
falling raindrops. The ability to capture particulates is very relevant for dew chemical
composition and is strong at the beginning and weakened at the end of the condensation
process. The acidity from dissolved gases (CO2, SO2, NOx) is mostly neutralized by Mg2+,
Ca2+ and NH4

+; sometimes a slight alkaline character is observed in dew. Dew events with
the higher ionic concentration thus occur following long periods without rain.

Absorption of high soluble gases by dew and rainwater is very fast. Cloud cycling
processes, microphysical conditions and heterogeneous reactions will influence dew and
rain chemistry. When in equilibrium with atmospheric CO2, the HCO3

− concentration
is an exponential function of the pH-value. When the pH solutions are higher than 6.35
(pKa1 of H2CO3), [HCO3

−] can become important. However, samples of the atmospheric
multiphase system are most probably not in equilibrium with atmospheric CO2 due to
complex chemical compositions, microphysical processes and heterogeneous interactions
and [HCO3

−] can only be obtained by analytical estimation and not deriving Henry’s law.
Dew water composition is thus a function of both long range convected atmosphere

and locally produced gas and aerosols. The physico-chemical analysis of dew gives
information about atmosphere from where it was condensed. Several studies during the
last decades have been concerned with dew chemistry in urban areas; however, there are
comparatively less studies concerning rural or remote areas (see the reviews in [2,17]). In
particular, there is, to our knowledge, no report on chemical and biological studies of dew
water and comparison with rainwater under tropical island conditions. This is all the more
regrettable since data are needed to establish future evolution due to climate change. In
this context, we report data obtained in 2004 and 2005 to serve as a reference.

Note that dew can be a valuable source of water as noted above. In the coral atolls of
the Pacific Ocean, freshwater resources are very limited. Although the annual precipitations
are sufficient for human use, with climate change, periodic droughts are more frequent
during which the situation can become critical.

It is therefore the objective of this paper to give information on dew characteristics
and especially on its chemical and biological quality as compared to rain and spring water.
Data were collected during the dry season 16 May 2005–14 October 2005, plus a few data



Atmosphere 2021, 12, 69 3 of 25

during the 2004 dry season. The paper is organized as follows. After having reported
on measurements and methods in Section 2, Section 3 is devoted to the comparison of
measured dew yields with a physical model using general meteorological parameters. The
succeeding Sections 4 and 5 deal with the trajectory of air masses and the physico-chemical
characteristics of dew and rain samples measured on both sites. Finally, Section 6 reports
on the biological analyses before concluding with the global analyses.

2. Measurements and Methods

Two representative sites were chosen in French Polynesia. A very low-lying coral atoll
(highest elevation is 2 m) in the Tuamotu Archipelago (village of Tuherahera) and a high
and mountainous island (Punaauia in the Tahiti island) whose highest elevation is 2241 m.
The two sites are 320 km apart.

The Tikehau atoll (Figure 1a) covers 448 km2 with its lagoon. Two sites have been
used. The first site (labeled # 1, from 21 June to 8 August 2005) is at the airport (latitude
14◦07◦ S and longitude 148◦14◦ W) and is exposed to the dominant trade winds. The
second site (labeled # 2, from 8 August to 7 October 2005) is located 300 m west from site #
1 and is protected from the wind by coco trees. Both sites are 0.5 m above sea level (asl) and
are labeled as TKH hereafter. The sites exhibit a tropical humid climate (Köppen-Geiger
classification: Am) alternating two seasons, the current dry season (May to October) and
the wet season (November to April) [26]. The wind regime is characterized by a permanent
activity of the trade winds, with dominant direction east/north-east (day and night).

Figure 1. (a) Tikehau atoll in the Tuamotu Archipelago (French Polynesia). The white arrow indicates the airport of
Tuherahera. (b) Tahiti Island in the Society Islands. The white arrow indicates the University site (Outumaoro, municipality
of Punaauia, French Polynesia). Water catchment points from spring water: Eau Royale�, VaimatoN). Source: Google Earth.

The second measurement site (from 17 September to 30 September 2004 and 6 June to
15 October 2005; Figure 1b) is located at the University of French Polynesia at Punaauia
(called TAH hereafter) along the west coast of Tahiti, at latitude 17◦34′ S and longitude
149◦36′ W. The elevation is 64 m asl and the climate is also tropical humid (Köppen-Geiger
classification: Am) with two contrasted dry and wet seasons. The west coast of Tahiti is
located downwind of the prevailing winds that are the trade winds. Therefore, it is the
least rainy part of the island.

Dew volumes are measured under the same conditions in Tikehau and Tahiti using a
standard condenser 1 m × 1 m, inclined at 30◦ horizontal, thermally isolated from below
and covered with foil [27]. This foil is made of a low-density polyethylene film, 0.39 mm
thick, in which a few % of TiO2 and BaSO4 micro-particles are embedded [28]. This foil is
of food quality. In order to account for dry depositions, surface cleaning was completed
only a few times. At TAH, the condensing surface was manually cleaned only 3 times with
distilled water (20 June, 24 June and 19 July 2005) and foil replacement was made after
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a storm on 14 August 2005. In addition, on both sites, numerous rain episodes naturally
cleaned the foils.

At Tikehau, the condenser faces west and thus remains somewhat protected from
the trade winds and the first rays of the sun until 8:00 local time (UTC-10H). The TAH
condenser is exposed north-east to face the most open part of the sky. The presence of some
buildings and the asphalt parking lot nearby slightly decreases the sky view. Dew was
collected each morning at 7:30 local time. The total collected volume corresponds to the
volume of water that has run in the bottle due to gravity plus the volume of the manually
scraped residual droplets.

Dew and rainwater were stored in polyethylene bottles at 3 ◦C for further analysis.
Water was not filtered. As the minimum volumes needed for chemical analyses are large
(~600 mL), it was necessary to cumulate dew water on several consecutive days. The
result of the analyses thus corresponds to a mean on these corresponding days. Note
that the number of samples used for the analysis is sometimes low (e.g., in 2004) but the
constancy of the meteorological conditions as imposed by the dominant trade winds makes
only a few samplings representative. The minimum volume for biological analyses was
15 mL. The dew and rain samples were brought every 2 weeks for immediate analyses to
laboratories specialized in water analyses (Institut Louis Malardé and Laboratoire d’Etude
et de Surveillance de l’Environnement, see Table 1). The following determinations were
performed (i) physico-chemical properties: electrical conductivity EC, total water hardness
TH and pH; (ii) chemical concentrations for cations (Na+, K+, Ca2+, Fe2+, Zn2+, Cu2+, Mg2+,
NH4

+ (only a few samples)) and anions (HCO3
−, Cl−, SO4

2−, NO2
−, PO4

3− and NO3
−);

(iii) bacteriological properties: reviviscible aerobe microorganisms (CFU) at 22 ◦C and
36 ◦C for less samples. In 2004, only pH and EC values were determined. Note that the
atomic absorption spectrometry method measures elements, which are then related to
ions in water since in aqueous medium of weak concentration (ionic force lower than
5×10−3 M/L, such as dew or rainwater), one considers that the totality of the elements is
under ionic form.

Table 1. Summary of methods and quality standards used for water sample analyses.

CFU (36◦C) for 1mL NF EN ISO 6222 Colony count (a)
CFU (22◦C) for 1mL NF EN ISO 6222 Colony count

Cations (mg/L) : Major Ca2+ NF EN ISO 7980 Atomic Absorption Spectrometer (b) (c)
K+ NF T90-020 Atomic Absorption Spectrometer
Na+ NF T90-020 Atomic Absorption Spectrometer
Mg2+ NF EN ISO 7980 Atomic Absorption Spectrometer
NH4

+ NF T90-015-2 Colorimetry
Cations (mg/L) : Minor Fe2+ FD T90-112 Atomic Absorption Spectrometer

Zn2+ FD T90-112 Atomic Absorption Spectrometer
Cu2+ FD T90-112 Atomic Absorption Spectrometer

Anions (mg/L) : Major Cl− NF ISO 9297 Mohr method (a)
SO4

2− NF T90-040 Nephelometric method
NO3

− ISO 7890-3 Spectrometric method with sulfosalicylic acid
Anions (mg/L) : Minor NO2

− NF EN 26777 Molecular absorption spectrometry
PO4

3− NF EN ISO 6878 Ammonium molybdate spectrometric method
HCO3

− NF EN ISO 9963-2 Titrimetric determination of carbonate alkalinity

Others properties pH NF T90-008 - (a)
EC (25◦C, µS/cm) NF EN 27888 -
Suspended matter (mg/L) NF EN 872 Suspended matter dosing (filtration)
Measured TH (◦f) NF T90-003 Titrimetric method (EDTA: ethylene diamine tetraacetate)

(a) Institut Louis Malardé (Tahiti); (b) Laboratoire d’Etude et de Suivi de l’Environnement/Institut de Radioprotection et de Sûreté
Nucléaire (Vairao, Tahiti); (c) the atomic absorption spectrometry method measures elements, which are then related to ions in water
(see text).

The quality control/analysis (QA/QC) of measurements corresponds to the content of
the standards listed in Table 1. To be more precise, in order to obtain exact and reproducible
results, the analysis sequence includes various QC tests: (i) zero point: ultra-pure water; (ii)
pilot test (blank): realization of the test with all the reagents but on ultra-pure water; (iii)
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test of a point of the calibration range (midrange in general), prepared independently from
the range of calibration (another batch of standard and another series of dilutions); (iv) a
standard solution corresponding to the limit of quantification. The results are validated
if (i) the calibration function is a curve whose correlation coefficient is R2 > 0.985, (ii) the
measured limit of quantification should not vary more than ±60% from the theoretical
value and (iii) the independent standard should not vary more than ±10% from the
theoretical value.

Daily rain values are obtained in the following way. For the TAH site, hourly rainfall
data are available thanks to the neighboring meteorological station of Faa’a (Météo-France).
On the TKH atoll, there is no automatic meteorological station. However, precipitations
can be estimated from the ERA-Interim [29,30], an atmospheric reanalysis produced by
the European Centre for Medium-Range Weather Forecasts. Even if the spatial resolution
of the data set is approximately 80 km, the rain data provided by ERA-Interim can be
representative since the low elevation of the TKH atoll has no significant effect upon
synoptic analysis.

For a given water sample, chemical compositions (dew, rain, water sources) have been
evaluated by classical statistical indicators (min, max, mean and standard deviation) and
the volume weighted mean (VWM). The latter takes into account the effect of dilution and
is in general close to the median value. It is computed from:

VWM[X] =
∑N

i=1(ViXi)

∑N
i=1 Vi

, (1)

where X represents the variable to be weighted (ion concentration, electrical conductivity,
etc.), Xi and Vi are, respectively, the variable value and the water sample volume for sample
i. For the pH, the VWM value has been calculated from the [H+] concentrations:

pH = − log
(

H+
)

. (2)

Electrical conductivity (EC) values (25 ◦C, µS·cm−1) are measured with a Schott Geräte
conductometer CG858 with a LF 5100T sensor. Other analyses are detailed in Table 1.

The number of samples for pH statistical values were at TAH 4 (dew in 2004), 31 (dew
in 2005) and 4 (rain in 2005). For TKH, only one dew pH and two rain pH values measured
in 2005 are available due to a failure of the pH meter. For EC statistical values, we have
worked at TAH with 4 dew samples (in 2004) and 24 (in 2005) and 10 rain samples (in 2005).
For TKH in 2005, 12 EC dew samples were used and two rain samples for EC.

Chemical and biological compositions were determined only in 2005. They are con-
cerned with two rain samples and three dew samples, corresponding at TAH to the
cumulation of 19 days and two rain samples and three dew samples at TKH, corresponding
to the cumulation of 12 days.

Data are compared with water from two local spring waters, “Eau Royale” and
“Vaimato” (the composition is taken in 2005; it is only slightly different from the 2020
values). “Eau Royale” is a spring water pumped from 63 m depth and located in the
natural site of Mount Aorai at 600 m elevation (17◦31′42′′ S 149◦31′36′′ W). “Vaimato” is
another spring water, located at Papeari district at Teva I Uta (17◦45′12′′ S 149◦21′08′′ W),
pumped from 17 m depth at 50 m elevation (asl). Water comes from precipitations and is
naturally filtered by the volcanic rocks and enriched over time with mineral salts and trace
elements [31].

3. Hourly and Nightly Dew Yield Potential with Energy Balance Model

In a first study during the dry season (16 May–14 October 2005), Clus et al. [32]
measured during the dry season the daily dew yield on both TKH and TAH sites using
the same condensers as described above in Section 2. The main results were concerned
with the evaluation of the dew potential. Mean dew yield of 0.07 mm·night−1 in Tahiti



Atmosphere 2021, 12, 69 6 of 25

(max: 0.22 mm·night−1) and 0.102 mm·night−1 in Tikehau (max: 0.23 mm·night−1) were
measured. Dew events represented up to 53.5% and 23.9% of the studied days in Tahiti
and Tikehau, respectively, and 1.1% and 3.2% of rainwater, respectively. This small amount
corresponds to an absence of drought during this period.

In order to estimate the dew potential, Beysens [33] developed an energy balance
model that uses only a few classical meteorological data: cloud cover (N, oktas), wind
speed (V, m·s−1), air temperature (Ta, ◦C), air relative humidity (RH, %) and dew point
temperature (Td, ◦C). Near the ground level where dew forms, in the atmospheric boundary
layer, the contribution from water vapor (about 0.2–2% by volume) and carbon dioxide
(about 0.03% in volume) is of great importance for the radiative balance, with radiation
from water vapor being by far the more important of the two. The data collected at TAH
have been used to validate the model [33], with the meteorological parameters collected on
site. Here we want to adapt and test this model from standard meteorological databases
(Weather Underground, [34]) by using their historical time series. Tikehau data are not
accessible in the database. For the period May–October 2005, Tahiti data have been
extracted from the Faa’a airport station located at latitude 17.77◦ S, longitude 149.31◦ W,
4 m asl (distance: 2.5 km from the measurement site). During this period, the cumulative
nightly dew yields of the previous study represented 4.70 mm (68 dew events). Daily dew
yields h (mm·h−1) from the physical energy model [33] can be implemented using the
airport data from the following formulation:

h =

(
1

12

)
· (HL + RE). (3)

The numerical factor 1/12 corresponds to hourly data. The data for h > 0 correspond
to condensation and h < 0 to evaporation, which have to be discarded. The quantity
HL represents the convective heat losses between air and condenser, with a cut-off for
windspeed V > V0 = 4.4 m·s−1 where condensation vanishes:

HL =

{
0.06(Td − Ta) if V < V0
−10 if V > V0

. (4)

It means that when V > V0, the negative contribution of heat losses are so important
that the dew yield becomes negative and should be discarded.

The quantity RE is the available radiative energy, which depends on air water content
(measured by Td, in ◦C), site elevation H (in km) and cloud cover N (in oktas):

RE = 0.37× (1 + 0.204323H − 0.0238893H2 − (18.0132 − 1.04963H +

0.21891H2)× 10−3Td)
(

Td+273.15
285

)4(
1− N

8

)
.

(5)

The Weather Underground hourly data base [34] provides the quantities Ta (◦C), Td
(◦C), wind speed V (km·h−1, to be transformed in m·s−1), but N must be determined
from the sky conditions according to standard descriptions of the local meteorology, “fair”,
“partly cloudy”, “mostly cloudy”, and “cloudy”. According to NOAA’s national weather
service glossary [35], the correlation sky conditions/cloud cover proposes N = 8/8 for
“cloudy”, 5/8 to 7/8 for “mostly cloudy”, 3/8 or 4/8 for “partly cloudy” and “fair” (mainly
for nocturnal conditions) corresponds to less than 3/8 opaque clouds, no precipitation, no
extremes of visibility/temperature/wind.

By filtering the rain or fog events and integrating the time series on a daily time-step
corresponding to h > 0, calculated cumulative daily yields are obtained and compared to
the corresponding measured cumulative yield. According to the previous standard cloud
coverage, we have implemented different configurations in our Matlab program, and the
best correspondence is obtained for the following transformations: N = 0 for “fair”, N = 4
for “partly cloudy”, N = 6 for “mostly cloudy” and N = 8 for “cloudy” (Figure 2a). A linear
correlation between collected and estimated dew yields is observed during the period, with
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sum h (calculated)/sum h (measured) = 1.092 ± 0.022 (uncertainty: one standard deviation)
with R2 = 0.984. The computed cumulative dew yield exhibits a slightly smaller value
than the observed yield, i.e., 4.55 mm versus 4.70 mm from the 6 months of observation, a
phenomenon that was also observed when using the in-situ meteorological parameters [33].
A stepwise increase is observed in Figure 2a. This result is relative to the model sensitivity
(described in [33]), which calculates the hourly dew production (mm·h−1) and generates
low dew events. These low dew events correspond to pinned droplets that do not flow
and evaporate in the morning, then preventing their evaluation.

Figure 2. (a) Cumulative daily dew yields (calculated vs. measured) on a 6 month dry period in 2005 at Tahiti according to
the energy balance model [33]. (b) Daily dew yields on the studied period (calculated vs. measured). The interrupted line
(blue) is a linear fit (slope = 0.611 with R2 = 0.549) and the full line (red) corresponds to Y = X.
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When analyzing the dew frequency, the physical model is seen to produce more dew
events (151 events versus 68 measured), however, with lower yields as can be seen in
Figure 2b where the linear fit between experimental and calculated data gives the correla-
tion h (calculated)/h (measured) = 0.611 ± 0.03 (uncertainty: one standard deviation) with
R2 = 0.549. Very low dew yields are indeed not collected in experiments as discussed above.

4. Air Masses Trajectories

As discussed in the preceding Section 3, the formation of dew is mainly dependent on
the air characteristics in the atmospheric boundary layer. The boundary layer thickness, H,
can be approximated [36] by h ≈ (Ta − Td)/8, with h in km. At night, in the conditions of
dew formation where Ta − Td ≈ a few K, h ≈ 200 m. The motion of air masses is governed
in TAH and TKH by the wind regime, characterized by (i) trade winds, blowing east,
south-east during all seasons, (ii) episodes of disturbances being able to evolve in tropical
depression, sometimes very vigorous, to the extreme of an hurricane (hot season, December
to March), (iii) disturbances dependent on subtropical depressions, (iv) “mara’ amu” strong
wind (July to November), coming at the back of the previous disturbances under the push
of a mobile anticyclone (in general that of Kermadec).

Since dew does not form under strong winds (larger than about 4.4 m·s−1, see
Section 3), measurements will be concerned only under the regime of trade winds as
one will see below. These winds blow day and night predominantly from the south-east in
the Southern Hemisphere. They extend from sea level (0 m) up to 1500 or 2000 m elevation.
It is only from 6000 m elevation that the direction of the winds is reversed. Figure 3a,b
reports the evolution and histogram of the wind direction (Dir.) during all days and nights
during the studied period and (Figure 3c,d) during only the sampling nights. Data (hourly)
are from the nearby Tahiti Faaa airport, 2.5 km from the sampling site, from the historical
time series of Weather Underground [34]. Since there are no such meteo data available for
TKH, we expect these data to be also representative of the nearby TKH location (320 km) as
the involved air masses are the same. In Table 2, the mean values and standard deviations
for windspeed V and wind direction are summarized. Night data during sampling and
general data are close together, as expected from the constancy of trade winds in direction
and amplitude. The sampling nights show mean windspeed slightly smaller than the mean
value of all days and nights. This is expected as the dew occurrences are favored by weak
windspeeds, which lower the convective heat exchanges between the condenser and the
surrounding air [2]. The variability of the data (Figure 3 and Table 2), as measured by the
standard deviations, reflects the natural local variation of the air masses around the mean
direction, with the variability due to the specificity of the island where low elevation air
masses have to circumvent the mountains.

Table 2. Mean values between 10 July 2005 and 14 October 2005 with standard deviation SD for
windspeed V and wind direction Dir. concerning all days and nights and sampling nights.

V (m·s−1) Dir. V (◦)
Mean SD Mean SD

All days and nights 2.04 1.00 143.3 89.6
Sampling nights 1.57 0.76 124.5 63.4

In Figure 4, the air mass trajectories corresponding to minimum, mean and maximum
directions of Figure 3c,d are reported. They indeed all correspond to directions around SE,
the directions −1◦ and 315◦ being due to a temporary local variation of the wind direction.
As the air masses flow above the ocean nearly always in the same direction, no important
changes in temperature and relative humidity are then expected.
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Figure 3. Evolution of the wind speed direction Dir. V (◦) (a,c) and histogram (b,d) at Tahiti airport 2.5 km from the
sampling site (10 July–14 October 2005). (a,b) During day and night and (c,d) during dew sampling nights. Mean values
with standard deviation SD are given. The bold line is the mean, and the bold curve is a smoothing function.

Figure 4. Cont.
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Figure 4. Backward 24 h evolution of air masses at 10 m (green curve, circles), 100 m (blue curve, squares) and 500 m (red
curve, triangles) above the ground level corresponding to (a) minimum night wind direction (−1◦) on 11/7/2005 09:00 UTC
(10/7/2005 23:00 TAH time), (b) mean night wind direction (139◦) on 27/9/2005 14:00 UTC (27/9/2005 04:00 TAH time)
and (c) maximum night wind direction (315◦) on 6/9/2005 05:00 UTC (5/9/2005 19:00 TAH time). (a,c) directions are due to
transitory local variations. (From NOAA’s HYSPLIT model [37,38]).

5. Chemical Analysis

The analytical results for dew and rain samples are shown in Table 3 for TAH and
Table 4 for TKH. Chemical and biological data are presented and compared to (i) the
chemical compositions of both Polynesian commercial local sources of water “Eau Royale”
and “Vaimato”) and (ii) to WHO reference values for drinkable water [39]. A blank test was
performed, revealing the presence of some deposited aerosols in small quantities (Ca2+,
Zn2+) but no influence of substrate materials, in agreement with previous measurements
by some of us [40]. The origin of calcium is coral, and Zn has a marine and anthropogenic
origin (see Sections 5.2 and 5.3). The methods used for water analyses are reported in
Table 1 together with quality standards.
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Table 3. Chemical and biological analysis of dew and rain samples from the University of French Polynesia (TAH), Tahiti (year 2005, with pH and electrical conductivity (EC) data also in
2004). A number of chemical analyses data correspond to the mean of several successive dew water samples to reach the minimum value for analysis. The corresponding dates are listed in
footnotes. WHO: ref. [39].

Dew TAH (2) Rain TAH Blank Vaimato Eau Royale WHO
Min Max Mean SD VWM Min Max Mean SD VWM Sample 2005 2005 Max

Volume (mL) 12 221 76 46.3 - 300 18,000 10,100 8850 - - - -
CFU (36◦C) for 1mL >300 >300 >300 0 - >300 >300 >300 0 - - - -
CFU (22◦C) for 1mL >300 >300 >300 0 - >300 >300 >300 0 - - - -
Cations (mg/L) : Major Ca2+ 6.600 13.044 8.783 3.013 7.680 0.535 5.194 2.864 2.330 1.042 4.025 12.2 14

K+ 3 3.3 3.15 0.15 3.21 <0.5 <0.5 <0.5 - <0.5 <0.5 2.35 6.5
Na+ 14.8 34 24.27 7.84 23.65 <0.5 3.0 3.0 - <3 <0.5 11.32 50 200
Mg2+ 2.6 4.2 3.47 0.66 3.38 0.1 0.5 0.30 0.20 0.14 0.1 6.9 7.7
NH4

+ 1.6 1.6 1.6 0.0 1.6 - - - - - - 0 <0.01 (1)
Cations (mg/L) : Minor Fe2+ 0.022 0.035 0.027 0.006 0.025 0.013 0.014 0.013 0 0.013 0.019 0.09 <0.2

Zn2+ 0.151 0.410 0.281 0.106 0.243 0.092 0.092 0.092 0 0.092 0.475 <0.016 (1) <0.001 (1) 5
Cu2+ 0.017 0.028 0.021 0.005 0.019 0.002 0.004 0.003 0.001 0.002 0.003 <0.013 (1) 0.001 (1) 2

Anions (mg/L) : Major Cl− 27 65 46.7 15.5 45.0 <5 7 7 - <7 <0.5 11.35 78 250
SO4

2− 11 21 15.7 4.1 15.5 <2 <3 - - <3 <3 0.95 10 250
NO3

− 2 3.75 2.92 0.72 2.66 <0.5 1 1 - <1 0.5 0.2 1.1 50
Anions (mg/L) : Minor NO2

− 0.06 1.15 0.43 0.51 0.48 <0.01 <0.01 <0.01 - <0.01 0.01 0 <0.05 (1) 3
PO4

3− <0.05 0.05 0.05 0 0.05 <0.05 - <0.05 - <0.05 <0.05 0.1 0.6
HCO3

− 17 17 17 0 17 - - - - - - 85.4 80

Others properties pH 5.76 (*)
4.80 (**)

7.17 (*)
7.07 (**)

6.45 (*)
5.490 (**)

0.5 (*)
0.5 (**)

6.05 (*)
5.232 (**)

3.67
(***)

6.77
(***)

5.02
(***)

1.2
(***)

4.690
(***) - 7.65 7.9 (1) 6.5–9.5

EC (25◦C, microS/cm) 170.7 (*)
41.7 (◦)

258.0 (*)
645.0 (◦)

213.15 (*)
267.07 (◦)

40 (*)
154 (◦)

202.939 (*)
237.321 (◦)

6.7
(◦◦)

177
(◦◦)

44.49
(◦◦)

55
(◦◦)

15.97
(◦◦) 6.0 154.8 466 (1) 2500

EC calc (microS/cm) 204.9 379.0 276.5 74.4 278.3 3.5 58.0 30.800 27.2 57.1 2.6 253.1 534.4
Suspended matter (mg/L) 24 142.5 95.50 51.39 79.87 4 4 4 0 4 17 - -
Measured TH (◦f) 2.5 3.2 2.9 0.3 2.85 0.5 0.5 0.5 0 0.5 - 5.80 (1) 6.90 (1)
Calculated TH (◦f) 2.8 4.8 3.6 0.8 3.33 0.2 1.5 0.8 0.7 1.04 1.048 5.92 6.58
Sum(cations, meq/L) 1.198 2.336 1.872 0.488 1.777 0.030 0.431 0.231 0.201 0.431 0.216 1.672 3.647
Sum(anions, meq/L) 1.302 2.343 1.790 0.427 1.770 0.000 0.213 0.107 0.107 0.213 0.008 1.746 3.753
TDS (calculated from
EC_measured, mg/L)

119.5 (*)
29.19 (◦)

180.6 (*)
451.5 (◦)

149.24 (*)
186.97 (◦)

28 (*)
108 (◦)

142.03 (*)
166.11 (◦) 4.70 123.90 31.14 38.39 11.18 4.20 108.36 326.20

(*): 4 samples (2004 data); (**): 31 samples (2005 data); (***): 4 samples (2005 data); (◦): 24 samples (2005 data); (◦◦): 10 samples (2005 data); (1): obtained in 2020; (2): 3 mixed samples, sample 1: July 11, 12, 13, 14,
16, 19, 21, 22 ; sample 2: August 3, september 6, 7, 9, 16, 22 ; Sample 3: September 27, October 8, 11, 12, 14.
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Table 4. Chemical and biological analysis of dew and rain samples from the Tikehau atoll (TKH) (year 2005). A number of chemical analyses data correspond to the mean of several
successive dew water samples to reach the minimum value for analysis. The corresponding dates are listed in footnotes. WHO: ref. [39].

Dew TKH (3) Rain TKH Blank Vaimato Eau Royale WHO
Min Max Mean SD VWM Min Max Mean SD VWM Sample 2005 2005 Max

Volume (mL) 13 226 - 1000 7000 4000 3000 - - - -
CFU (36◦C) for 1mL >300 >300 >300 0 - - - - - - - - -
CFU (22◦C) for 1mL >300 >300 >300 0 - - - - - - - - -
Cations (mg/L) : Major Ca2+ 6.945 28.686 19.328 9.130 17.951 1.545 7.347 4.446 2.901 2.270 4.0253 12.2 14

K+ 1.5 5.7 3.20 1.81 3.46 <0.5 <0.5 <0.5 - <0.5 <0.5 2.35 6.5
Na+ 15 70 34.63 25.06 37.11 4.8 7.1 5.95 1.15 6.81 <0.5 11.32 50.0 200
Mg2+ 1.95 7.70 4.27 2.48 4.45 0.70 0.80 0.75 0.05 0.79 0.1 6.9 7.7
NH4

+ 0.06 0.06 0.06 0 0.06 - - - - - - 0 <0.01 (1)
Cations (mg/L) : Minor Fe2+ 0.014 0.025 0.019 0.004 0.018 0.009 0.012 0.011 0.002 0.009 0.0190 0.09 <0.2

Zn2+ 0.269 0.529 0.400 0.106 0.420 0.398 0.541 0.470 0.072 0.523 0.4745 <0.016 (1) <0.0011 (1) 5
Cu2+ 0.005 0.026 0.014 0.009 0.015 0.003 0.007 0.005 0.002 0.004 0.0030 <0.013 (1) 0.0013 (1) 2

Anions (mg/L) : Major Cl− 30 115 61.33 38.13 64.87 10 14 12.00 2.00 13.50 <0.5 11.35 78 250
SO4

2− 4.5 23.0 11.17 8.39 12.21 <2 <3 - - <3 <3 0.95 10 250
NO3

− <0.05 0.75 0.750 0 0.62 <0.5 <0.5 <0.5 - <0.5 0.5 0.2 1.1 50
Anions (mg/L) : Minor NO2

− <0.01 0.01 0.01 0 <0.01 <0.01 <0.01 <0.5 - <0.01 0.01 0 <0.05 (1) 3
PO4

3− <0.05 0.23 0.23 0 <0.05 <0.05 - <0.05 - <0.05 <0.05 0.1 0.6
HCO3

− - - - - - - - - - - - 85.4 80
Others properties pH 6.720 6.720 6.720 - - 6.29 (=) 6.55 (=) 6.42 0.13 6.445 (=) - 7.65 7.9 (1) 6.5–9.5

EC (25◦C, microS/cm) 73.2 (+) 902 (+) 308.31 (+) 277 (+) 320.83 (+) 55.7 (=) 69.0 (=) 62.35 6.6 67.34 (=) 6.0 154.8 466 (1) 2500
EC calc (microS/cm) 182.4 689.3 405.09 211.48 415.40 63.5 83.0 73.30 9.80 80.60 2.6 253.1 534.4
Suspended matter (mg/L) 19.5 75.0 46.50 22.68 42.26 4 4 4 0 4 17 - -
Measured TH (◦f) 2.7 8.1 5.8 2.3 5.69 0.5 0.5 0.5 0 0.5 - 5.80 (1) 6.90 (1)
Calculated TH (◦f) 2.55 8.80 6.61 2.87 6.34 0.72 2.13 1.40 0.70 0.90 1.048 5.92 6.58
Sum(cations, meq/L) 1.237 4.955 2.917 1.539 2.979 0.469 0.646 0.557 0.089 0.491 0.216 1.672 3.647
Sum(anions, meq/L) 0.982 3.726 1.969 1.246 2.091 0.282 0.394 0.338 0.056 0.380 0.008 1.746 3.753
TDS (calculated from
EC_measured, mg/L) 51.24 631.4 215.82 194 224.58 38.990 48.300 43.645 4.655 47.14 4.200 108.360 326.200

(+): 12 samples; (=): 2 samples; (1): obtained in 2020; (3): 3 mixed samples, sample 1: July 29, August 3, 4, 19, 25 ; sample 2: September 2, 3, 9, 10 ; sample 3: October 3, 5, 6.
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5.1. Physico-Chemical Measurements
5.1.1. pH Values

The measurements of pH were carried out mainly at the TAH site (Table 3). Only
a few data were measured in TKH, due to a failure of the pH-meter (dew at TAH: four
samples in 2004, 31 samples in 2005; dew at TKH: no samples in 2004 and one sample in
2005; rain: no samples in 2004 and in 2005, four samples at TAH and two at TKH). At TAH,
VWM dew pHTAH = 6.05 (arithmetic mean: 6.45± 0.5) in 2004 and 5.23 in 2005 (arithmetic
mean: 5.49± 0.5) with minimum 4.80 and maximum 7.17. For TKH (Table 4), the only
available measurement in 2005 corresponds to pH (dew) = 6.720 (no data in 2004).

Figure 5a shows the pH evolution for rain and dew. As anticipated, there is no
clear variation in time due to the stability of the meteorological conditions. Rain at the
TAH site (Table 3) appears slightly more acidic than dew with VWM pHTAH,rain = 4.690
(min value = 3.67; max value = 6.77; arithmetic mean: 5.02± 1.2), nearly half a unit less
than dew pH). For TKH (Table 4), the VWM pHTKH,rain = 6.44 (min = 6.29; max = 6.55;
arithmetic mean: 6.42± 0.13). As usual [2,41], dew pH is less acidic than rain because dew
reacts with more deposited aerosols (e.g., CaCO3) than rain. We note that dew samples
are more acidic than the “Vaimato” and “Eau Royale” local spring waters (pHVaimato = 7.65
and pHEau_Royale = 7.9). The WHO drinking standards recommend 6.5 < pH < 9.5 [39], dew
and rainwater pH are thus somewhat below the lower recommended value.

Figure 5b presents the pH variation with respect to the daily harvested volume V
at TAH (gravity flow plus scrapping). Note the decrease of one pH unity (pH = six to
pH = five) for dew with volume from 12 to 221 mL·m−2. The data are fitted with the linear
law pH = a·V + b with a = −0.004± 0.002 and b = 5.859± 0.211 (uncertainty: one standard
deviation). This tendency to have lower pH with higher water volume corresponds to a
lower concentration of reacting aerosols in water and is generally observed (see [2,41]).

Figure 5. Cont.
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Figure 5. (a): Evolution of pH (volume weighted) measured at TAH (�: 2004 data, �: 2005 data). Interrupted line: dew
volume weighted mean (VWM) for year 2004. Full lines: dew and rain VWM for year 2005. (b): Dew pH versus daily
harvested volume at TAH (�: 2004 data, �: 2005 data; dotted line: linear fit, see text).

5.1.2. Electrical Conductivity (EC)

Electrical conductivity is directly proportional to the mineral salts in solution and not
to dissolved organic matter in water. Thus, the higher the concentration of dissolved solids,
the higher the conductivity. Mean dew electrical conductivity is much larger than in rain
samples. In Table 3, one can see that at TAH, VWM ECTAH,dew = 202.9 µS·cm−1 (2004 data)
and 237.3 µS·cm−1 (2005 data) and at TKH (Table 4), VWM ECTKH,dew = 320.8 µS·cm−1, as
compared to VWM ECTAH,rain= 16.0 µS·cm−1 and ECTKH,rain= 67.3 µS·cm−1. Rain EC is
between five and 10 times smaller than dew EC in both locations.

Although dew and rain both absorb the ambient gases (CO2, SO2, NOx), rainwater
samples contain less ion concentration than dew samples because of a larger dilution
effect. The volumes of water are indeed much larger than the dew volumes. In addition, in
contrast to rainwater, which rapidly runs off the substrate, dew has time to dissolve the
aerosols falling on the condensing substrate for a whole night.

Several works have reported dew EC measurements. It appears that the present elec-
trical conductivity in dew is more important than what was collected in Bordeaux/France
(ECdew = 29µS·cm−1 and ECrain ~5µS·cm−1 [40]); Ajaccio/France (ECdew = 114µS·cm−1 [42]);
Paris/France (ECdew= 156 µS·cm−1 and ECrain ~59 µS·cm−1 [43]) or Zadar/Croatia (ECdew
~196 µS·cm−1 and ECrain ~184 µS·cm−1 [41]). Polkowska et al. [44] obtained EC values
in the range 41–62 µS·cm−1 for dew in Poland; Zdeb et al. [45] found ECs in the interval
40–150 µS·cm−1 in Poland on a non-industrialized suburban area. However, some of
us have observed in Mirleft/Morocco and Gujarat/India, quite high ECs (respectively,
725 µS·cm−1 and 930 µS·cm−1 for dew) due to the high amount of aerosols in the vicinity
of both sites [46,47]. Beysens [2] has reviewed many reports showing that dew EC val-
ues range from 18 to 930 µS·cm−1, a concentration that depends on the local deposition
of aerosols.
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Concerning rain EC, one notes that the electrical conductivity of rain samples is close
to that of local river waters, between 40 and 150 µS·cm−1. These values are drawn from
local Polynesian studies [48].

Figure 6a,b reports the EC evolution for rain and dew. As already noted in Section 4,
the constancy of measurements is due to the stability of the meteorological conditions
governed by the trade winds. Figure 6c reports the correlation of dew and rain ECs in
relation to the total harvested volume V (scrapped and obtained by gravity). We obtain a
classical dilution-governed evolution (see [2]), with a decrease in dew EC with the increase
in V.

In order to verify the quality of the physico-chemical data, the calculated electrical
conductivities σi for a given ion have been computed from the classical Kohlrausch law:

σi = zi.[Xi].λi. (6)

For a given ion i, zi is the number of charge, [Xi] its concentration (mol·m−3) and λi
the ionic conductivity (S·m2·mol−1).

The conductivity of the solution is given by:

σc = ∑i λizi[Xi]. (7)

Figure 7 reports the measured (σm) and calculated (σc) electrical conductivity for
water samples (dew and rain, blank, and spring waters). As can be seen in Figure 7, σm
is proportional to σc for dew and rainwater. With σm = aσc, a (dew) = 1.224 ± 0.055 with
R2 = 0.979 and a (rain) = 1.197 ± 0.17 with R2 = 0.884 (all uncertainties are one standard
deviation). The value a > 1 is correlated with the 17% difference of the ionic balance and
shows that some anions are not taken into account (presumably organic acids, which are not
measured). This difference is, however, below 20%, and should be acceptable according to
WMO [49], meaning that the measured ions are indeed dominant in the EC determination.
One notes that the EC mean values for dew and rain (TAH and TKH) respect the indicator
criteria for drinkable water according to WHO (EC < 2500 µS·cm−1 [39]).

Figure 6. Cont.
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Figure 6. Electrical conductivity (volume weighted) for dew (�) and rain (•) samples. (a) Evolution at TAH (�: 2004 data,
�: 2005 data). (b) Evolution at TKH. (c) Dew electrical conductivity versus daily harvested volume for TAH (�: 2004 data,
�: 2005 data) and TKH (N). The dotted line is a fit to TAH data (2004 and 2005 data).
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Figure 7. Electrical conductivity (volume weighted) measured and computed from Kohlrausch’s law. Marks: +: dew; N:
rain; x: blank test; �: “Vaimato” spring water; •: “Eau Royale” spring water. The full line corresponds to Y = X. Dotted and
interrupted lines correspond to linear dew and rain data fits (see text). (2005 data).

5.1.3. Total Dissolved Solids

One can approximate the total dissolved solids (TDS) from the electrical conductivity
by the formula [50], which accounts for the major ions:

TDS ≈ keEC. (8)

Here TDS is in mg·L−1 and EC is in µS·cm−1 at 25 ◦C. The correlation factor ke varies
between 0.55 and 0.8. Taking the mean value ke ≈ 0.7, it comes for dew at TAH (volume
weighted, Table 3), TDSdew (2004) = 142.0 mg·L−1 and TDSdew (2005) = 166.1 mg·L−1. At
TKH (Table 4), VWM TDSdew = 224.6 mg·L−1. For rain, TDS is about (volume weighted)
11.2 mg·L−1 (TAH, 2005) and 47.1 mg·L−1 (TKH, 2005).

Following the EC values, the TDS values for rain are more than 10 times lower than
for dew at TAH and five times lower at TKH. Similar to the electrical conductivity, TDS is
higher in dew than in rain samples, corresponding to more dissolved ions in dew water.
The fact that TDS is larger in TKH than in TAH can be understood by the low elevation of
the atoll, favoring the capture of aerosols, of marine (NaCl, MgCl2) or local (CaCO3 coral)
origins. As a matter of fact, the concentration of corresponding ions is larger at TKH than
at TAH as can be seen in Section 5.2.

5.1.4. Total Hardness

The total hardness (TH) is the hydrotimetric title expressed in French degree (◦f). It
corresponds by definition to an equivalent of 10 mg·L−1 of calcium carbonate CaCO3 per
degree. The water total hardness is a function of the Ca2+ and Mg2+ concentrations:

TH = 10−1
{[

Ca2+
]

MCa
−1MCaCO3 +

[
Mg2+

]
MMg

−1MCaCO3

}
, (9)
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with MCa, MMg, MCaCO3 the molar mass of Ca2+, Mg2+, CaCO3 (respectively, 40.08 g·mol−1,
24.3 g·mol−1 and 100.09 g·mol−1). The hydrotimetric title can thus be estimated with the
simple formulation:

TH = 0.25×
[
Ca2+

]
+ 0.41×

[
Mg2+

]
, (10)

where
[
Ca2+] and

[
Mg2+] are the concentration of both cations in g·L−1.

Tables 3 and 4 present the calculated TH (◦f) for all samples. These values are com-
pared with the measured TH in dew and rain and spring waters (Figure 8). A linear fit
for dew data leads to TH (calculated) = (1.17 ± 0.067) × TH (measured) with R2 = 0.968
(uncertainty: one standard deviation).

Figure 8. Measured and estimated total water hardness TH (◦f). Two rain samples (one at TAH and one at TKH) are missing.
Marks: +: dew; N: rain. •: “Eau Royale” spring water; �: “Vaimato” spring water. The full line corresponds to Y = X and
the dotted line is a fit to the data (see text). (2005 data).

Dew and rain samples then present low total hardness values, corresponding to their
low concentration of calcium (of coral origin) and magnesium (of marine origin). Water
is thus very fresh (0 < TH(◦ f ) ≤ 7) or fresh (7 < TH(◦ f ) ≤ 15). Dew exhibits TH values
(VWM = 2.85/5.69 for TAH/TKH, min–max = 2.5–8.1) only slightly less than spring waters
(THcalc = 5.92 and THmeas = 5.80 for Vaimato; THcalc = 6.58 and THmeas = 6.90 for “Eau
Royale”), which also present a low concentration of calcium and magnesium. The values
for spring water are relatively close, as expected since they have the same origin. The fact
that these values are also close to the TAH values is a mere coincidence as the water origins
are different.

5.2. Ion Concentrations

The mean concentration (mg·L−1) of all analyzed ions is shown in Figure 9 for the TAH
and TKH sites. Figure 9 makes it possible to distinguish the major ions (cations: Figure 9a
and anions: Figure 9c) from the minor ions (cations: Figure 9b and anions: Figure 9d)
present in solution. For each ion i, dew VWM [Xi] are presented in Tables 3 and 4. All chem-
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ical compositions (weighted by water volume or not) lead to the conclusion that for dew,
rain, and spring water samples, the major cations are Na+, Ca2+, Mg2+ and K+. The concen-
trations of NH4

+, Fe2+, Cu2+ are negligible (<0.05 mg·L−1), the Zn2+ concentrations exhibit
higher concentrations, which however remain low (<0.5 mg·L−1). The origin of Zn is either
natural (erosion, marine aerosols) or anthropogenic (steel galvanizing, pigments, corrosion
protection of roofs and gutters, solid waste incineration). For dew, rain, and spring waters,
[Na+] > [Ca2+] >> [Mg2+] ~ [K+] (a classification already observed in [47]. The origin of
[Ca2+] is from coral. Other major ions are of marine origin (see Section 5.3 below). One
observes for the “Eau Royale” spring water, a large [Na+] concentration, presumably from
marine origin during the formation of the volcanic island.

Three major anions are present: [Cl−] >> [HCO3
−] > [SO4

2−]. Nitrate, nitrite and
phosphate ions appear with low concentrations (<3 mg·L−1) with [NO3

−] >> [NO2
−] >

[PO4
3−]. The presence in dew and rain samples of inorganic phosphorus (PO4

3–) and
inorganic nitrogen (NO3

−, NO2
–, and NH4

+) can have a sea origin because these chemicals
are essential to the growth of marine organisms (nitrogen and phosphorus are incorporated
into the tissues of marine organisms). The predominance of Na+, Mg2+, Cl− ions in dew
water samples is widely described in the literature on sites close to the sea [40,42]. The
large concentration of [Cl−] in “Eau Royale” spring water corresponds to the large [Na+]
concentration seen above and can be attributed to fossil salt collected during the emergence
of the volcanic island from the sea.

Both spring waters reveal a high concentration of HCO3
− (~80 mg·L−1), missing in

dew and rain samples except at a low level in dew at Tikehau (17 mg·L−1). Note that sulfate
ions exhibit concentrations around 10–15 mg·L−1 in dew samples at Tikehau and Tahiti,
but are missing in rain samples at the same locations, an effect which can be attributed to
a larger dilution. Such a sulfate concentration is mainly of marine origin (see Section 5.3
below where the sulfate concentration, larger in TAH than in TKH, is presumably of
anthropogenic origin).

The ionic balance has been determined to verify the quality of the chemical analysis.
Based on each ionic concentration, the sum of cations (volume weighted) is compared to
the sum of anions (volume weighted) in order to test electro-neutrality for dew, rain, blank
and spring water samples (Figure 10). We can conclude that a good correlation is found for
all samples where ∑ anions = (0.829 ± 0.052)× ∑ cations (R2 = 0.909) (uncertainty: one
standard deviation) and for dew samples where ∑ anions = (0.761 ± 0.069)× ∑ cations
(R2 = 0.921) (uncertainty: one standard deviation). A first group integrates all dew samples
with equivalent concentrations ranging from one to five mEq·L−1 including, on the same
scale, both spring waters (“Vaimato” and “Eau Royale”, about 1.7 and 4 mEq·L−1, respec-
tively). A second group is concerned with the rain samples with small ion balance values
(about 0.5 mEq·L−1). According to WMO [49], the acceptable difference for concentrations
>0.5 mEq/L is 10%. Then, the ratio between the sum of cations and sum of anions, which
presents 17% imbalance, shows that some anions are not taken into account. These ions are
presumably organic acids, which were not measured.
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Figure 9. Mean concentration (mg·L−1) of cations (major (a) and minor (b) ions) and anions (major (c) and minor (d)) compared to both Polynesian spring waters (“Vaimato” and “Eau
Royale”). Standard deviations (bars − σ; +σ) have been added for only dew and rain samples. (2005 data).
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Figure 10. Electrical neutrality. Sums of cations (Na+, K+, Ca2+, Fe2+, Zn2+, Cu2+, Mg2+, NH4
+) versus sum of anions

(HCO3
−, Cl−, SO4

2−, NO2
−, PO4

3−, NO3
−). Marks: +: dew; N: rain; ♦: blank test; �: “Vaimato” spring water; •: “Eau

Royale” spring water. The full line corresponds to Y = X. The dotted line corresponds to a linear fit to dew data. (2005 data).

5.3. Marine Influence

Due to its location in the middle of the Pacific Ocean (respectively, 5900 km and
8200 km from Australia and South America mainland), with a wind regime dominated
by trade winds (see Section 4), chemical compositions of water from French Polynesia
islands are greatly influenced by the presence of the sea. In order to verify the marine
contribution of dew and rain ions, the sea salt fraction (SSF) and non-sea-salt fraction
(NSSF) were calculated. The six most abundant ions of seawater are chloride (Cl−), sodium
(Na+), sulfate (SO4

2−), magnesium (Mg2+), calcium (Ca2+) and potassium (K+). By weight,
these ions form about 99% of all sea salts. The presence of Na+ cation in dew and rain
samples corresponds to a symptomatic sea origin and is considered as a reference for SSF
and NSSF estimations following the equations:

%(NSSF)X = 100−%(SSF)X , (11)

with

%(SSF)X =
1
X

[
100×

(
Na+

)( Xsea

Na+sea

)]
, (12)

where X is the mean concentration of ions measured in dew and rain samples, Xsea repre-
sents the concentration of the sea water ions [51,52] and Na+sea the sodium concentration
taken as a reference in sea water. Table 5 summarizes the results for SSF and NSSF for dew
and rain relative to the major ions in solution.
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Table 5. Sea salt fraction (SSF) (%) and non-sea-salt fraction (NSSF) (%) for dew and rain samples
relative to major cations (Ca2+, K+, Mg2+) and anions (Cl−, SO4

2−, HCO3
−). In bold, the largest

contributions are indicated. The contributions to SSF and NSSF cannot be calculated when the
concentrations of chemical element X are too low (noted as -). (2005 data).

Dew Rain

TAH TKH TAH TKH

%SSF %NSSF %SSF %NSSF %SSF %NSSF %SSF %NSSF

Ca2+ 9.908 90.092 6.426 93.574 3.756 96.244 4.799 95.201
K+ 25.900 74.100 36.387 63.613 - - - -

Mg2+ 78.147 21.853 90.619 9.381 111.638 −11.638 88.566 11.434
Cl− 95.931 4.069 104.173 −4.173 79.064 20.936 91.473 8.527

SO4
2− 40.860 59.140 81.815 18.185 - - - -

HCO3
− 1.784 98.216 - - - - - -

As expected, one can conclude that Na+, Mg2+ and Cl− are clearly of sea origin (dew
and rain). This result can be correlated with the plot between {[Na+] + [Mg2+]} versus [Cl−]
presented in Figure 11. It exhibits a linear correlation Y = aX between the sum of both Na+

and Mg2+ concentrations (mEq·L−1) versus Cl− (mEq·L−1). For dew samples, a = 0.899 ±
0.032 with R2 = 0.974 (uncertainty: one standard deviation) and for rain samples, a = 0.799
± 0.027 with R2 = 0.996 (uncertainty: one standard deviation).

Figure 11. Comparison between the volume weighted sum of Na+ and Mg2+ cations versus Cl− anion (sea salts NaCl and
MgCl2). Due to the very low concentrations for Na+ and Cl−, one sample at TAH is missing. Marks: +: dew; N: rain; �:
“Vaimato” spring water; •: “Eau Royale” spring water. The full line corresponds to Y = X. Dotted (dew) and interrupted
(rain) lines correspond to a linear fit of the data (see text). (2005 data).

In contrast, Ca2+, related to the presence of the coral reef, is of non-marine origin for
dew and rain (%NSSF > 90%). In dew samples (TAH and TKH), the same result is observed
for K+ (%NSSF > 64%) and HCO3

− (%NSSF = 98% for TAH dew samples). The case of
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SO4
2− in dew is from sea origin in TKH, but rather undetermined at TAH, with %SSF

values (and %NSSF) around 50%, in favor of mixed sea–anthropogenic activities origin.

6. Biological Analysis

The number of biological analyses was fewer than the chemistry analyses (five dew
and one rain samples). They were concerned with bacteria reviviscible aerobe microor-
ganisms (designed as CFU for dew and rain) [53]. The time lag between sampling and
analysis, between 1 day and 2 weeks, makes the determined values a maximum, the initial
water certainly showing fewer CFUs.

CFU developing at 22 ◦C corresponds to vegetal bacteria; its recommended maximum
level by WHO is 100 CFU·mL−1 [39]. This level is exceeded in the present data where CFU
>300 (Tables 3 and 4). However, those bacteria are harmless to humans. These vegetal
bacteria naturally come from the atmospheric environment of the condenser.

CFU developing at 36 ◦C corresponds to animal or human bacteria, and the recom-
mended maximum level is 10 CFU·mL−1 for drinking-water leaving treatment plan [39].
At this level, total coliforms, thermotolerant coliforms and Escherichia coli should be absent.
It is worth noticing that this level is exceeded in the present samples where CFU > 300.
The origin of such bacteria can be found in human manipulation, contact with animals
(small mammals), birds and insects (flies, ants), which can drink dew water and easily
contaminate it.

Despite the small number of samples, which does not allow for a definitive conclusion
to be made, for the sake of precaution, dew and rainwater should be submitted to a
disinfection treatment before being used for human consumption.

7. Concluding Remarks

This work presents a comparison between rainwater and dew samples under humid
tropical environments in French Polynesia at two sites, Tikehau and Tahiti islands, during
the dry season of years 2004 and 2005. These results are compared with both local spring
waters (“Vaimato” and “Eau Royale”). Dew, as usually observed, exhibits much higher ion
concentration than rain, resulting from an aerosol dilution effect. Chemical composition
mainly consists of Na+, Ca2+, Mg2+, Cl− and SO4

2−. The sea salt fraction assesses the
marine origin of Na+, Mg2+, Cl− and SO4

2−. The deposition of coral particles can explain
the presence of Ca2+ more importantly in dew water (four times higher than in rainwater).
Although SO4

2− in dew is clearly from sea origin in Tikehau, it is in favor of mixed sea–
anthropogenic origin in Tahiti. Dew compares well with the spring waters distributed in
French Polynesia due to its large ion concentration. Both dew and rain are close to the
WHO requirements but should be disinfected to be potable. The dry period leading to a
shortage of water, dew and rain can thus represent a possible alternative for potable water
if disinfected before use.

Author Contributions: Conceptualization, D.B.; Data curation, M.M. and D.B.; Formal analysis,
M.M., O.C. and D.B.; Funding acquisition, P.O. and I.M.; Investigation, O.C. and D.B.; Methodology,
M.M., I.M. and D.B.; Project administration, P.O.; Resources, P.O. and I.M.; Supervision, D.B.; Writing—
original draft, M.M.; Writing—review & editing, M.M., P.O. and Daniel Beysens. All authors have
read and agreed to the published version of the manuscript.

Funding: Support is gratefully acknowledged from the “Ministère Français de l’Outre-Mer” and
“Collectivité Territoriale de Corse”. We are very grateful to the Natua family for having kindly
welcomed the experiments in Tikehau. We are grateful to R. Matehau and D. Teiva for their help in
the data collection. We would like to thank the French Polynesia department of Météo-France for the
meteorological data and the Vaimato and Eau Royale companies for their contribution.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: [https://ftp.espci.fr/incoming/beysens/Data_French_Polynesia].

https://ftp.espci.fr/incoming/beysens/Data_French_Polynesia


Atmosphere 2021, 12, 69 24 of 25

Acknowledgments: This study has been carried through collaboration between the University of
French Polynesia, the University of Corsica and the French Alternative Energies and Atomic Energy
Commission. We gratefully thank Gaël Leclerc from LESE laboratory (Laboratoire d’Etude et de
Surveillance de l’Environnement) for dew and rain samples analyses.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Monteith, J.L.; Unsworth, M.H. Principles of Environmental Physics. Plants, Animals, and the Atmosphere, 4th ed.; Academic Press:

Oxford, UK, 2013.
2. Beysens, D. Dew Water; Rivers Publisher: Gistrup, UK, 2018.
3. Monteith, J.L. Dew. Q. J. R. Meteorol. Soc. 1957, 83, 322–341. [CrossRef]
4. Berkowicz, S.; Beysens, D.; Milimouk-Melnytchouk, I.; Heusinkveld, B.G.; Muselli, M.; Jacobs, A.F.G.; Clus, O. Urban dew

collection in Jerusalem: A three-year analysis. In Proceedings of the 4th International Conference on Fog, Fog Collection and
Dew, La Serena, Chile, 22–27 July 2007; pp. 297–300.

5. Zangvil, A. Six years of dew observations in the Negev Desert, Israel. J. Arid Environ. 1996, 32, 361–371. [CrossRef]
6. Ben-Asher, J.; Alpert, P.; Ben-Zvi, A. Dew is a major factor affecting vegetation water use efficiency rather than a source of water

in the eastern Mediterranean area. Water Resour. Res. 2010, 46, w10532. [CrossRef]
7. Jacobs, A.F.G.; van Boxel, J.H.; Nieveen, J. Nighttime exchange processes near the soil surface of a maize canopy. Agric. For.

Meteorol. 1996, 82, 155–169. [CrossRef]
8. Uclés, O.; Villagarcía, L.; Moro, M.J.; Canton, Y.; Domingo, F. Role of dewfall in the water balance of a semiarid coastal steppe

ecosystem. Hydrol. Proc. 2013, 28, 2271–2280. [CrossRef]
9. Konrad, W.; Burkhardt, J.; Ebner, M.; Roth-Nebelsick, A. Leaf pubescence as a possibility to increase water use efficiency by

promoting condensation. Ecohydrology 2015, 8, 480–492. [CrossRef]
10. Malik, F.T.; Clement, R.M.; Gethin, D.T.; Beysens, D.; Cohen, R.E.; Krawszik, W.; Parker, A.R. Dew harvesting efficiency of four

species of cacti. Bioinspir. Biomim. 2015, 10, 036005. [CrossRef]
11. Guo, X.; Zha, T.; Jia, X.; Wu, B.; Feng, W.; Xie, J.; Gong, J.; Zhang, Y.; Peltola, H. Dynamics of dew in a cold desert-shrub ecosystem

and its abiotic controls. Atmosphere 2016, 2016, 32. [CrossRef]
12. Wang, L.; Kaseke, K.; Seely, M. Effects of non-rainfall water inputs on ecosystem functions. WIREs Water 2017, 4, e1179. [CrossRef]
13. Gerlein-Safdi, C.; Koohafkan, M.C.; Chung, M.; Rockwell, F.E.; Thompson, S.; Caylor, K.K. Dew deposition suppresses transpira-

tion and carbon uptake in leaves. Agric. For. Meteorol. 2018, 259, 305–316. [CrossRef]
14. Wang, L.; Kaseke, K.F.; Ravi, S.; Jiao, W.; Mushi, R.; Shuuya, T.; Maggs-Kolling, G. Convergent vegetation fog and dew water use

in the Namib Desert. Ecohydrology 2019, 12, e2130. [CrossRef]
15. Carlos, A.; Aguirre-Gutiérrez, F.H.; Gregory, R.; Delgadod, G.J.; Yepez, E.; Carbajala, N.; Escoto-Rodríguez, M.; Arredondo, J.T.

The importance of dew in the water balance of a continental semiarid grassland. J. Arid Environ. 2019, 168, 26–35.
16. Liu, M.; Cena, Y.; Wanga, C.; Gua, X.; Bowler, P.; Wu, D.; Zhang, L.; Jiang, G.; Beysens, D. Foliar uptake of dew in the sandy

ecosystem of the Mongolia Plateau: A lifesustaining and carbon accumulation strategy shared differently by C3 and C4 grasses.
Agric. For. Meteorol. 2020, 287, 107941. [CrossRef]

17. Tomaszkiewicz, M.; Najm, M.A.; Beysens, D.; Alameddine, I.; El-Fadel, M. Dew as a sustainable non-conventional water resource:
A critical review. Environ. Rev. 2015, 23, 425–442. [CrossRef]

18. Kaseke, K.; Wang, L. Fog and dew as potable water resources—Maximizing harvesting potential and water quality concerns.
GeoHealth 2018, 2, 327–332. [CrossRef]

19. Goheen, A.C.; Pearson, R.C. Compendium of Grape Diseases. APS Press: St. Paul, MN, USA, 1988.
20. Francl, L.J.; Panigrahi, S. Artificial neural network models of wheat leaf wetness. Agric. For. Meteorol. 1997, 88, 57–65. [CrossRef]
21. Luo, W.; Goudriaan, J. Dew formation on rice under varying durations of nocturnal radiative loss. Agric. For. Meteorol. 2000, 104,

303–313. [CrossRef]
22. Agam, N.; Berliner, P. Dew formation and water vapor adsorption in semi-arid environments—A review. J. Arid Environ. 2006, 65,

572–590. [CrossRef]
23. Rubio, M.A.; Lissi, E.; Riveros, V.; Paez, M. Remoción de contaminantes por lluvias y rocíos en la región metropolitana. J. Chil.

Chem. Soc. 2001, 46, 353–361. [CrossRef]
24. Rubio, M.A.; Lissi, E.; Villena, G. Nitrite in rain and dew in Santiago city, Chile. Its possible impact on the early morning start of

the photochemical smog. Atmos. Environ. 2002, 36, 293–297. [CrossRef]
25. Xu, N.; Zhao, L.; Ding, C.; Zhang, C.; Li, R.; Zhong, Q. Laboratory observation of dewformation at an early stage of atmospheric

corrosion of metals. Corros. Sci. 2001, 44, 163–170. [CrossRef]
26. Laurent, V.; Maamaatuaiahutapu, K.; Maiau, J.; Varney, P. Atlas climatologique de la Polynésie française. Météo-France, Direction

interrégionale de Polynésie française: Papeete, France, 2004; p. 201.
27. OPUR. 2020. Available online: www.opur.fr (accessed on 7 October 2020).
28. Nilsson, T.M.J.; Vargas, W.E.; Niklasson, G.A.; Granqvist, C.G. Condensation of water by radiative cooling. Renew. Energy 1994, 5,

310–317. [CrossRef]

http://doi.org/10.1002/qj.49708335706
http://doi.org/10.1006/jare.1996.0030
http://doi.org/10.1029/2008WR007484
http://doi.org/10.1016/0168-1923(96)02333-7
http://doi.org/10.1002/hyp.9780
http://doi.org/10.1002/eco.1518
http://doi.org/10.1088/1748-3190/10/3/036005
http://doi.org/10.3390/atmos7030032
http://doi.org/10.1002/wat2.1179
http://doi.org/10.1016/j.agrformet.2018.05.015
http://doi.org/10.1002/eco.2130
http://doi.org/10.1016/j.agrformet.2020.107941
http://doi.org/10.1139/er-2015-0035
http://doi.org/10.1029/2018GH000171
http://doi.org/10.1016/S0168-1923(97)00051-8
http://doi.org/10.1016/S0168-1923(00)00168-4
http://doi.org/10.1016/j.jaridenv.2005.09.004
http://doi.org/10.4067/S0366-16442001000300014
http://doi.org/10.1016/S1352-2310(01)00356-9
http://doi.org/10.1016/S0010-938X(01)00018-X
www.opur.fr
http://doi.org/10.1016/0960-1481(94)90388-3


Atmosphere 2021, 12, 69 25 of 25

29. Dee, D.P.; Uppala, S.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Alonso-Balmaseda, M.; Balsamo, G.; Bauer,
P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011,
137, 553–597. [CrossRef]

30. Berrisford, P.; Kållberg, P.; Kobayashi, S.; Dee, D.; Uppala, S.; Simmons, A.J.; Poli, P.; Sato, H. Atmospheric conservation properties
in ERA-Interim. Q. J. R. Meteorol. Soc. 2011, 137, 1381–1399. [CrossRef]

31. Ozog, R. Inventaire des Données Relatives à l’eau Souterraine Disponibles sur Tahiti: Rapport Intermédiaire; Rapport BRGM/RP-61147-FR;
BRGM: Orleans, France, 2012.

32. Clus, O.; Ortega, P.; Muselli, M.; Milimouk, I.; Beysens, D. Study of dew water collection in humid tropical islands. J. Hydrol.
2008, 361, 159–171. [CrossRef]

33. Beysens, D. Estimating dew yield worldwide from a few meteo data. Atmos. Res. 2016, 167, 146–155. [CrossRef]
34. Weather Underground. 2020. Available online: https://www.wunderground.com/ (accessed on 7 October 2020).
35. NOAA. National Weather Service. 2020. Available online: https://www.forecast.weather.gov (accessed on 7 October 2020).
36. Berger, X.; Buriot, D.; Gamier, F. About the equivalent radiative temperature for clear skies. Sol. Energy 1984, 32, 725–733.

[CrossRef]
37. Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and

dispersion modeling system. Bull. Am. Meteor. Soc. 2015, 96, 2059–2077. [CrossRef]
38. Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Modell. Softw. 2017,

95, 210–222. [CrossRef]
39. World Health Organization (WHO). Guidelines for Drinking-Water Quality, 4th ed.; Incorporating the 1st Addendum; World Health

Organization: Geneva, Switzerland, 2017; p. 631. ISBN 9789241549950.
40. Beysens, D.; Ohayon, C.; Muselli, M.; Clus, O. Chemical and biological characteristics of dew and rain water in an urban coastal

area (Bordeaux, France). Atmos. Environ. 2006, 40, 3710–3723. [CrossRef]
41. Lekouch, I.; Mileta, M.; Muselli, M.; Milimouk-Melnytchouk, I.; Šojate, V.; Kabbachi, B.; Beysens, D. Comparative chemical

analysis of dew and rain water. Atmos. Res. 2010, 95, 224–234. [CrossRef]
42. Muselli, M.; Beysens, D.; Soyeux, E.; Clus, O. Is Dew Water Potable? Chemical and Biological Analyses of Dew Water in Ajaccio

(Corsica Island, France). J. Environ. Qual. 2006, 35, 1812–1817. [CrossRef] [PubMed]
43. Beysens, D.; Mongruel, A.; Acker, K. Urban dew and rain in Paris, France: Occurrence and physico-chemical characteristics.

Atmos. Res. 2017, 189, 152–161. [CrossRef]
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