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Introduction

This document tries to develop the Theory of Thermodynamics by using Mathematics about some known facts related to the temperature, the thermal equilibrium, the transformation of energy (mechanical, kinetic, gravitational, electromagnetic, nuclear, …, heat), the state variables, the 0 th , the 1 st , the 2 nd and the 3 rd Principles of Thermodynamics.

The word Thermodynamics is derived from two Greek words "thermo" (meaning "hotness") and "dynamis" (meaning "force/power"); Thermodynamics is the "study" of getting work/power from heat. All the Principles are shown in the figure 1, "The Thermodynamics Tetralogy" (showing the four, above mentioned, Principles). We name them Principles because they are assumptions induced into our mind by known facts we see in Nature. From them we can derive Theorems able to predict, using Mathematics, the results of "real cases" happening in Nature. The same was done by Galileo, Newton, Maxwell, …, Einstein, …, Bohr, Schrödinger, Heisenberg, Born, … about Mechanics, Electrodynamics, Relativity, Quantum Mechanics, … We start with some Feynman statements (notice that Feynman also consider ideas not known at Carnot days). Some documents call "Laws" our Principles. See Feynman statements:

The results of thermodynamics are all contained implicitly in certain apparently simple statements called the laws of thermodynamics. At the time when Carnot lived, the first law of thermodynamics, the conservation of energy, was not known. Carnot's arguments were so carefully drawn, however, that they are valid even though the first law was not known in his time! Sometime afterwards, Clapeyron made a simpler derivation that could be understood more easily than Carnot's very subtle reasoning. But it turned out that Clapeyron assumed, not the conservation of energy in general, but that heat was conserved according to the caloric theory, which was later shown to be false. So it has often been said that Carnot's logic was wrong. But his logic was quite correct. Only Clapeyron's simplified version, that everybody read, was incorrect. The so-called second law of thermodynamics was thus discovered by Carnot before the first law! It would be interesting to give Carnot's argument that did not use the first law, but we shall not do so because we want to learn physics, not history. We shall use the first law from the start, in spite of the fact that a great deal can be done without it.

Excerpt 1. Feynman statements

Now, what about the second law of thermodynamics? We know that if we do work against friction, say, the work lost to us is equal to the heat produced. If we do work in a room at temperature T, and we do the work slowly enough, the room temperature does not change much, and we have converted work into heat at a given temperature. What about the reverse possibility? Is it possible to convert the heat back into work at a given temperature? The second law of thermodynamics asserts that it is not. It would be very convenient to be able to convert heat into work merely by reversing a process like friction. If we consider only the conservation of energy, we might think that heat energy, such as that in the vibrational motions of molecules, might provide a goodly supply of useful energy.

But Carnot assumed that it is impossible to extract the energy of heat at a single In other words, if the whole world were at the same temperature, one could not convert any of its heat energy into work: while the process of making work go into heat can take place at a given temperature, one cannot reverse it to get the work back again. Specifically, Carnot assumed that heat cannot be taken in at a certain temperature and converted into work with no other change in the system or the surroundings. Now, the hypothesis of Carnot, the second law of thermodynamics, is sometimes stated as follows: heat cannot, of itself, flow from a cold to a hot object. But, as we have just seen, these two statements are equivalent: first, that one cannot devise a process whose only result is to convert heat to work at a single temperature, and second, that one cannot make heat flow by itself from a cold to a hot place. We shall mostly use the first form. So, if both engines are reversible they must both do the same amount of work, and we thus come to Carnot's brilliant conclusion: that if an engine is reversible, it makes no difference how it is designed, because the amount of work one will obtain if the engine absorbs a given amount of heat at temperature T1 and delivers heat at some other temperature T2 does not depend on the design of the engine. It is a property of the world, not a property of a particular engine. This is the relation we were seeking. Although proved for a perfect gas engine, we know it must be true for any reversible engine at all. Excerpt 2. Other Feynman statements We will not consider the 1 st Principle in this section, as Carnot did, although we use the term "Energy" in figure 2. We will start our journey starting from Carnot ideas to let the reader appreciate his ingenuity. The two figures show the analogy between the waterwheel and the heat-engine. We now (in these days) use the term Energy both for the Potential energy of water and Kinetic Energy for the wheel, providing the way to do "work", as we use the term Energy both for the "heat" entering Q h into the heat-engine and the "heat" leaving Q c the heatengine and the "work" done by the engine. At the Carnot times the word Caloric was used for the word heat. Note that Carnot erroneously that the same caloric (heat) passes through the engine and extracts (produces) work by lowering its temperature, like how the same water flow passes through the waterwheel and produces work by lowering its elevation potential. This error, considering the knowledge at the time, in no way diminishes Carnot's ingenious reasoning and conclusions about limiting, reversible processes and its accurate limitations of heat to work conversion. Notice, as well, that although, at that time, everybody thought that, according to the caloric theory, the quantities of "heat" Q h and Q c would have to be the same, Carnot did not say that the two "levels" (quantities) Q h was equal to Q c because he did not believe it; that, in spite of the analogy between the motive power 1) of a heat engine and 2) of a waterwheel; as in the waterwheel (see fig. 1 and2) two levels of height of a waterfall are needed to get the wheel move, due to the water flow, the "caloric flow" causes the heat engine to generate work [the quantity of water discharged by the wheel at the bottom level is the same as originally entered at the top level; Carnot did say (See the Carnot's own wording, later) that the "quantiy of caloric (flow)" entering the engine was the same quantity as the "quantiy of caloric (flow)" outgoing from the engine]. He invented an ideal reversible engine, named Carnot Engine, working according to the Carnot Cycle, made of two isotherm and two adiabatic lines. Notice that Carnot assumed that it is impossible to "extract work" from heat at a single temperature. In other words, the process of making work go into heat can take place at a given temperature, one cannot reverse it to get the work back again. Carnot did not consider the "mechanical" details of the engines and gave due attention to the "significant ("theoretical") aspects" of heat engines; they were: A. Caloric (Heat?) is supplied in, at High temperature T h [Q h is the "level" of Caloric (Heat?) delivered to the engine] B. The engine transforms caloric into (mechanical) work C. Caloric (Heat?) is delivered out, at Low temperature T c (<T h ) [Q c is the "level" of Caloric (Heat?) delivered out of the engine] The "levels" of Caloric (fig. 2), at the Carnot times, were the nowadays Potential Energy of the water (fig. 2): the temperature difference between the heat source and heat sink, like the waterwheel output dependence on the waterfall height difference. Notice that the caloric "theory" was respectable at Carnot's days, while it is obsolete nowadays. Notice that Carnot could not say how much quantity of caloric (heat?) was Q C , because he did not know the first Principle. However, he did say:

"On peut donc poser an thèse générale que la puissance motrice est en quantitè invariable dans la Nature; quelle n'est jamais, à proprement parler, ni produite, ni détruite. A la vérité, elle change de forme, c'est a dire quelle produit tantot un genre de mouvement, tantot un•autre; mais elle n'est jamais anèantie." Substitute the word "energy" to "puissance motrice (motive power)" and you see the Energy Conservation Principle. One can hardly believe it possible that it should have been written in the first quarter of the nineteenth century. No heat engine, no matter how well constructed, can convert all the heat from the hightemperature reservoir T h into work. Such an engine would be 100% efficient. Sadi Carnot was the first scientist to realise this and deduce an expression showing the limitations of heat engines. We can say that this could be considered the Carnot statement of the 2 nd Principle of Thermodynamics: NO heat engine can be 100% efficient.

Figure 1 .

 1 Figure 1. Transformation of the water Potential energy into Kinetic energy of the waterwheel, which can be used to do "work" by a mill, for example

Figure 2 .

 2 Figure 2. Schematic of a Heat Engine, operating from the temperature T h to the temperature T c Transformation of "heat" into "work" This is not the way most of the books present the Theory of Thermodynamics.

2.

Efficiency of Heat Engines

See the fig. 2 and its symbols; Carnot did say that "The ratio of the work obtained in a cyclic process (W eng ) to the caloric (heat?) taken from the high-temperature reservoir (Q h , at T h ) is referred to as the efficiency of a heat engine". From the above cycle the efficiency of the Carnot cycle can be found out as:

Efficiency of the cycle=Work output/Heat supplied Carnot, at its times, lacked the validity of the First Principle, the Energy Conservation. Nevertheless, since he thought that the work depended on the "caloric flow" flowing in the engine and on the difference of the temperatures t h (actually t h +273.15) and t c (actually t c +273.15) [height of the caloric fall] the efficiency should be the following ratio [START_REF] Feynman | The Feynman lectures on physics, New Millennium Edition[END_REF] where T H and T C are the absolute temperatures (in degrees Kelvin) of the high and low temperature reservoirs respectively. The maximum engine efficiency dependence on the reservoirs' temperatures only, is functionally expressed by Equation [START_REF] Feynman | The Feynman lectures on physics, New Millennium Edition[END_REF]. A way to prove (1) is the following: see the Carnot's own wording:

When a gas passes without change of temperature from one definite volume and pressure to another volume and another pressure equally definite, the quantity of caloric absorbed or relinquished is always the same, whatever may be the nature of the gas chosen as the subject of the experiment. This is a simple and logical, ingenious reasoning! The maximum, limiting efficiency of heat engine does not depend on the medium used in the engine or its design, but only depends on (and increases with) the temperature difference between the heat source and heat sink, like the water wheel output dependence on the waterfall height difference. According to Fermi [2], the ratio of is the same for all the reversible engines and that the function is a universal function depending only on the two temperatures. Consider two reversible engines A 1 and A 2 working between the temperatures t 0 t 1 and t 0 t 2 we have and ; dividing the two relations we have the consequence

(2)

The functional relation [Markovian!]

(3) whose solution is (4) Considering a perfect gas working in a Carnot cycle it is proved that [START_REF] Linhart | Correlation of Entropy and Probability[END_REF] where T is the absolute temperature. Hence, we retrieve [START_REF] Feynman | The Feynman lectures on physics, New Millennium Edition[END_REF] where T H and T C are the absolute temperatures (in degrees Kelvin) of the high and low temperature reservoirs respectively. Now we find the interesting probabilistic relation [START_REF] Galetto | The Mathematics of Thermodynamics[END_REF] where is the efficiency of an engine working between the temperatures t i and t j .

Consider two reversible engines connected in series; engine A receives the heat Q 1 at temperature t 1 , delivers work W A , and discharges heat Q' 2 . Engine B receives the heat Q' 2 , delivers work W B , and discharges heat Q 3 to a reservoir at temperature t 3 <t 2 . Their efficiencies are [START_REF] Galetto | Addendum to Mathematics of Thermodynamics[END_REF] But by a simple mechanical linkage, A and B can be combined into a single reversible engine C, which receives heat Q 1 and delivers work W C =W A +W B . So, we must have also [START_REF] Galetto | Entropy of Linhart_a nonsense_PREAMBLE[END_REF] Now we elaborate the formula (8) so, getting [START_REF] Galetto | The Mathematics of Thermodynamics[END_REF] To see the probabilistic interpretation of the formula (6), let's consider two events A and B, whose probabilities are p A =P{A} and p B =P{B}. If the events are independent, we have that the probability of the "union" AB of the two events is p AB = P{AB} = P{A} + P{B} -P{A}P{B} = p A + p B -p A p B [START_REF] Galetto | Linhart ideas on Entropy versus "classical Entropy[END_REF] If we identify the event {A} as the engine A has efficiency  and the event {B} as the engine B has efficiency  the series of engines A and B, given by "union" C=AB event provides that the engine C has efficiency  receiving heat Q 1 and delivering work W C =W A +W B . This is the probabilistic interpretation of the Carnot Theorem (Principle!):

No heat engine operating between two heat reservoirs can be more efficient than a reversible heat engine operating between the same two reservoirs.

From [START_REF] Galetto | The Mathematics of Thermodynamics[END_REF] we derive [START_REF] Galetto | Horstmann Thermodynamics versus Mathematics_FIRST part[END_REF] Comparing [START_REF] Galetto | Horstmann Thermodynamics versus Mathematics_FIRST part[END_REF] with [START_REF] Finzi | Cosa è la temperatura (what is the temperature[END_REF] we see that it is the same functional relation formula. So, we get again [START_REF] Feynman | The Feynman lectures on physics, New Millennium Edition[END_REF] where T H and T C are the absolute temperatures (in degrees Kelvin) of the high and low temperature reservoirs respectively.