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ABSTRACT Digital representation of 3D content in the form of 3D point clouds (PC) has gained
increasing interest and has emerged in various computer vision applications. However, various degradation
may appear on the PC during acquisition, transmission, or treatment steps in the 3D processing pipeline.
Therefore, several Full-Reference, Reduced-Reference, and No-Reference metrics have been proposed
to estimate the visual quality of PC. However, Full-Reference and Reduced-Reference metrics require
reference information, which is not accessible in real-world applications, and No-Reference metrics still lack
precision in evaluating the PC quality. In this context, we propose a novel deep learning-based method for
No-Reference Point Cloud Quality Assessment (NR-PCQA) that aims to automatically predict the perceived
visual quality of the PC without using the reference content. More specifically, in order to imitate the human
visual system during the PC quality evaluation that captures the geometric and color degradation, we render
the PC into different 2D views using a perspective projection. Then, the projected 2D views are divided into
patches that are fed to a Convolutional Neural Network (CNN) to learn sophisticated and discriminative
visual quality features for evaluating the local quality of each patch. Finally, the overall quality score of the
PC is obtained by pooling the quality score patches. We conduct extensive experiments on three benchmark
databases: ICIP2020, SJTU, and WPC, and we compare the proposed model to the existing Full-Reference,
Reduced-Reference, and No-Reference state-of-the-art methods. Based on the experimental results, our
proposed model achieves high correlations with the subjective quality scores and outperforms the state-of-
the-art methods.

INDEX TERMS Point Cloud, Quality Assessment, Point Cloud Rendering, Convolutional Neural Network
(CNN).

. INTRODUCTION (acquisition, representation, compression, and rendering) that

N the past years, the digital representation of 3D mod-

els has gained increased interest and has been used in
prevalent 3D computer vision applications such as virtual and
augmented reality, immersive communications, and cultural
heritage [1]-[8]. PC is considered one of the most widely
used data for digital representation to model 3D realistic
content. A PC is a set of unstructured points with geometric
coordinates that represent point position and optional associ-
ated attributes related to the point appearance including color,
curvatures, and opacity [9], [10].

As for images and videos, the PC objects may be affected
by several factors from the point cloud processing pipeline

VOLUME 4, 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

could degrade their perceived visual quality. Therefore, it is
essential to develop effective methods that accurately assess
the quality of PC and preserve the quality of the user ex-
perience. Two families of methods are usually adopted to
evaluate PC degradation [11]-[13]: subjective and objective
metrics. The subjective ones are based on human judgment
for the evaluation, which makes it cambersome and expan-
sive in practical real-world situations. However, this type
of method is used to construct a PC annotated database.
In this case, the annotation refers to the subjective quality
scores (ground truth) of the PC, often called Mean Opinion
Scores (M OS). On the other hand, the objective methods
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automatically predict the perceived quality score that should
be highly correlated with the ground truth.

Based on the availability of the reference PC, we can clas-
sify the objective point cloud quality assessment (PCQA)
methods into three branches: Full-Reference (F'R), Reduced-
Reference (RR) and No-Reference (INR). In NR-PCQA
methods, the perceived quality of the visual stimuli (distorted
point clouds) is assessed without the need for the reference
PC, while in the FR-PCQA and RR-PCQA methods, the
quality is estimated through a full or partial (PC features)
information from the reference PC, respectively. However, in
practical situations, the reference PC is not often available.
Consequently, the NR-PCQA methods can be considered a
fruitful solution.

In this context, due to the great success of deep learning
in several computer vision applications, CNNs are widely
adopted in the NR image quality assessment task [14]-[20].
However, contrary to the 2D images that have regular grids
and spatial structures, PCs are unordered and unstructured.
Based on these considerations, PCs cannot be directly pro-
cessed with CNNs, which uses discrete convolutions. To
circumvent this limitation and to mimic the human visual
system during the subjective evaluation, we propose to gen-
erate 2D projections from each PC object on multiple views.
The projected images are then split into vertical overlapping
patches to discard the useless information in the background.
After that, we feed the extracted patches into a CNN that
automatically and hierarchically learns discriminant visual
features in order to predict the visual quality score. Finally,
the quality score of the PC is computed by aggregating the
score of each patch.

The main contributions of our paper are as follows:

1) We propose a novel multi-view deep learning-based
method that aims to automatically evaluate the per-
ceived visual quality of the PC without relying on the
reference content.

2) We conduct a large study on the impact of different
model parameters, such as the number of rendering
views, the type of the CNN feature extractor, and
the spatial pooling technique used to aggregate the
predicted quality scores of the views. This study is
not taken into consideration in the projection-based NR
state-of-the-art metrics.

3) We compare the proposed method with various Full-
Reference, Reduced-Reference, and No-Reference
state-of-the-art methods on three PCQA benchmark
databases: ICIP2020, SJTU, and WPC. Extensive ex-
periments show that the proposed method outperforms
all the NR and RR methods and is competitive or even
better than the FR methods. Moreover, our method
shows better performance over the 3 databases, and on
mixed and individual types of distortion.

The remainder of this paper is organized as follows. We
present in Section II the state-of-the-art of 3D point cloud
quality assessment. After that, the proposed approach is
described in Section III. Finally, Section IV presents the
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experimental results that are followed by conclusions and
future works.

Il. RELATED WORK

In the literature, most of the existing PCQA methods are Full-
Reference (FR). They can be broadly classified into point-
based, feature-based, and projected-based metrics.

Point-based metrics establish a correspondence between
the reference PC and its degraded version. After that, a
distance is adopted to quantify the visual quality. Concomi-
tantly, point-based approaches can be divided into two cate-
gories: geometry-based and joint-geometry-and-color-based.
The sub-categories of geometry-based metrics are Point-
to-Point [21], Point-to-Plane [22], Plane-to-Plane [23], and
Point-to-Distribution [24]. In [21], Mekuria et al. proposed
a Point-to-Point metric where the distance between the cor-
responding points of the reference and the distorted PC is
measured using the Mean Squared Error (MSE) or Hausdorff
distance to evaluate the geometric PC quality. In the same
vein, Tian et al. [22] proposed a Point-to-Plane metric that
projects the point-to-point distance along the normal vector
of the reference PC. These metrics predict the geometric
distortions accurately, however, they fall short when dealing
with structure loss. To solve this issue, Alexiou et al. [23]
proposed a Plane-to-Plane metric based on measuring the
angular similarity between the tangent planes of the distorted
PC and its reference. However, the performance of this latter
depends upon the used method to estimate the normal, which
is error-prone. As a Point-to-Distribution method, Javaheri
et al. [24] computed the Mahalanobis distance between
the distributions of reference and degraded PCs. The joint-
geometry-and-color-based methods assess the quality based
on a combination of color and geometry information. Java-
heri et al. [25] proposed to fuse the geometry and the color
distortion after calculating them independently.

For the feature-based metrics, the quality score is calcu-
lated through the distance between the attributes and/or ge-
ometry features of original and distorted PC objects. Meynet
et al. [26] adapted the Structural Similarity (SSIM) metric
[27] to evaluate the PC quality by capturing the local cur-
vature statistics changes between the reference and distorted
PC. The same authors proposed the so-called Point Cloud
Quality Metric (PCQM) [28], which aggregates a set of
geometry-based and color-based features through logistic re-
gression. Similarly, in [29], the authors linearly combined the
color statistic and Point-to-Plane metric extracted from the
reference and altered PC to estimate the overall quality score.
Alexiou et al. [30] extracted a set of statistical dispersion
features including geometry, normal, curvature, and color,
to analyze the local changes between the reference and the
degraded PC. Diniz et al. [31], [32] proposed two frame-
works where geometry and texture features are extracted,
and the distance between their statistics is used to compare
the reference and the degraded object. In [31] the geometry
and the texture features are computed independently while
in [32] the texture information is extracted with respect to
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FIGURE 1: Flowchart of the proposed NR-PCQA method. It is composed of two main steps: Preprocessing and objective
quality score estimation of the PC. In the first step, we represent the PC with different 2D viewpoints. From this later, we extract
central overlapping patches using a sliding step in the vertical direction to discard the useless information in the background. In
the second step, we feed the extracted patches into a deep CNN network to learn discriminative and meaningful visual features
in the training phase. Afterward, in the test phase, we predict the local quality score of each extracted degraded patch using the
learned CNN model (M) in the training phase. Finally, the global PC quality score is obtained by pooling all the patches local

quality scores.

their geometry information. In [33], Yang et al. proposed a
GraphSIM approach that construct graphs in the reference
and degraded PC in order to calculate the similarity index
for PC quality evaluation. Zhang et al. [34] approached
the problem of the PCQA from the perspective of trans-
formational complexity to avoid the complicated process of
feature selection. The PC quality is estimated by calculating
the complexity of transforming the distorted PC back to its
reference.

For the projected-based metrics, the PC is projected into
multiple 2D planes and evaluated by comparing the corre-
sponding images from the reference and the distorted PC
using classical 2D image quality assessment metrics. Torlig
et al. [35] projected the voxelized PC into six orthographic
viewpoints and employed 2D objective quality methods, in-
cluding Peak Signal-to-Noise Ratio (PSNR) [36], Informa-
tion Fidelity in Pixel domain (VIFP) [37], Structural Similar-
ity Index (SSIM) [27] and Multi Scale Structural Similarity
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Index (MS-SSIM) [38], to predict the perceptual quality of
the stimuli. Correspondingly, Yang et al. [39] performed for
each PC six perpendicular color texture and their correspond-
ing depth images. The quality score is then obtained by com-
bining the local and the global image-based features of all the
projected planes. In the same vein, Alexiou et al. [40] studied
the impact of the view number on the performance of the
algorithm used to assess the perceived quality of the content.
Additionally, they weighted the projected views depending
on the user interaction in subjective evaluation experiments.
Javahri et al. [41] address the problem of misalignment be-
tween the reference and the degraded projected images when
geometric degradation exists in the PC content. To avoid this
problem, the authors proposed to assign the same geometry
condition to both the reference and distorted PC through a
recoloring step before applying the projection step. Diniz et
al. [42] proposed to calculate the visual textures similarities
from the 2D projections of the reference and the degraded
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PC and combining them with the geometrical similarities to
assess the PC quality.

Limited works are introduced in Reduced-Reference (RR)
point cloud quality assessment. Viola et al. [43] proposed to
extract a set of features from the reference and the evaluated
PC that are transmitted through the processing channel and
used on the receiver side to evaluate the visual quality of
the PC. Liu et al. [44] proposed to evaluate the degradation
of the V-PCC compressed PC using the geometry and color
quantization parameters.

Recently, several No-Reference (NR) point cloud quality
assessment methods have been proposed in the literature. Tao
et al. [45] proposed to project the PC into 2D projections that
are fed to a multi-scale feature fusion network to evaluate
the visual PC quality blindly. Yang et al. [46] proposed to
represent the PC with six texture and depth images, and
then aggregate the features extracted from these maps as
point cloud quality index. Liu et al. [47] proposed point
cloud quality assessment network (PQA-Net) framework that
consists of multi-view projection feature extraction, followed
by the distortion type classification, and perceptual quality
prediction sub-tasks to assess PCs affected with only an
individual degradation. In [48], the authors proposed the use
of transfer learning in order to leverage the rich subjective
scores of 2D images in 3D quality score assessment through
domain adaptation. To achieve this, Generative Adversarial
Networks (GANSs) are used to extract effective latent features
and minimize the domain discrepancy between 2D and 3D
data, then a quality regression network is utilized to find
the final MOS. Liu et al. [49] proposed a method based on
sparse convolutional layers and residual blocks to extract the
hierarchical features of the PC, which are then pooled and
sent to a regression model to predict PC quality score.

lll. PROPOSED METHOD

The overall objective of this work is to predict automatically
the visual quality score of the PC without relying on the
reference content. To achieve this goal, we compose our
model into two major steps, which are the preprocessing step
and the objective quality score estimation step, as depicted
in the flowchart 1. In the preprocessing step, we project 2D
views from the degraded PC using the perspective projection.
Then, we extract central overlapping patches in the vertical
direction. In the quality score estimation step, the feature
learning is performed in the training phase using a CNN
model, and the visual quality score prediction of the PC is
performed in the test phase after pooling all the estimated
scores of the extracted patches from the PC.

A. PREPROCESSING

1) From PC to 2D projection views

The first step of the proposed method consists of projecting
each distorted PC object into different 2D viewpoints. For
doing so, we exploit a perspective projection to mimic the
perception of the human visual system when evaluating the
quality of the PC. This projection captures information about
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the geometric and color distortions, as well as the stimuli
depth information. To be specific, we fix virtual cameras at
different angles to surround the PC. The centroid of the 3D
object is set to the origin of a spherical coordinate system
(7, 0c1, Paz) Where 1 is the radius that represents the distance
between the virtual camera and the origin, 6, € [0, 27]
and ¢, € [0, 27] are the elevation and the azimuth angles,
respectively [50]. We note that the virtual camera coordinates
are obtained by varying the azimuths angle with ; and
setting the elevation angle to zero. Intuitively, the distance
r is changing according to the size of each PC in order to
cover it entirely and clearly. In Fig. 2, we give an example
of 2D projected images from a degraded PC when varying
the azimuth angle with 7. Additionally, we capture two other
projections from the north and the south poles. In our work,
the size of each projection is 512 x 512 pixels.

Virtual camera coordinates (Paz = 0,60, =0,r=1250) (Baz= %,921 =0, r=1250)

Y by varying the azimuth angle,
/
- /
/
L/
5 /
/
¥ /
Y
/
/
/
X

3
— (Paz=5,001=0,7=1250)  (¢bar= 3, 61 =0, 7= 1250)

= Vunuél C;?ngra
! N
N
.
- \\\ N,
.
.

FIGURE 2: An example of the projected views from a PC
with Downscaling and Geometry Gaussian noise degradation
from the SJTU database. The virtual camera coordinates are
7,0 and ¢,. Pq. is the azimuth angle, 0,; is the elevation
angle and r is the radius.

2) Patch extraction and normalization

Since the 3D object is concentrated in the middle of each
2D projected image, we extract central overlapping patches
of size 224 x 224 pixels using a sliding step (stride) in the
vertical direction to discard the useless information in the
background. We give an example of patch extraction with
a stride equal to 40 to obtain 4 patches in Fig. 3. This
splitting allows us to augment the data and evaluate locally
the distortion that appears in the PC.

After that, we normalize each extracted patch as demon-
strated in Equation 1. The use of normalization not only
remedies the saturation problem, but also provides a decor-
relation effect and makes the neural network more resilient
to brightness and contrast changes [14].

i) == +c

where I(i, 7) is the normalized intensity value of the I(i, ;)
pixel at the (i, j) location, C'is a constant value that is set at
1 to prevent division by zero, u(4, j) represents the mean and
o(t, 7) refers to the variance.

ey
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> . .
FIGURE 3: An example of patch extraction of a distorted

projected image from a PC with Downscaling and Geometry
Gaussian noise degradation from the SJITU database.

B. OBJECTIVE QUALITY SCORE ESTIMATION

We recall that the ultimate goal of our work is to predict
the objective quality score of a given PC. For doing so, we
develop a novel NR-PCQA method based on a deep learning
approach. More precisely, we exploit the high potential of
the deep CNN that has demonstrated excellent performance
in various computer vision tasks to learn discriminative and
meaningful visual features without relying on handcrafted
ones [51]. Such a method requires two phases: training phase
to learn the model and test one to evaluate the performance
of the model.

1) Training phase

In the training phase, we first construct an annotated
database. Since the degraded PC samples from all state-
of-the-art PC databases have homogeneous distortions, we
affect the normalized Mean Opinion Score M O.S (subjective
quality score) as an annotation to all extracted patches from
the same PC. After that, using the built database, we train the
CNN model using three different networks for comparison:
AlexNet [52], VGG [53] and ResNet [54]. This comparison
allows studying the effect of the architecture as well as the
impact of depth on the performance of the proposed method.

o AlexNet [52]: is a CNN classification model that won
the Imagenet Large-scale Visual Recognition Challenge
(ILSVRC) in 2012. It is composed of 5 convolutional
layers with max-pooling, followed by 3 fully connected
layers. The authors introduce the use of overlapping
pooling, and the use of Rectified Linear Unit (ReLu)
in addition to the dropout to prevent overfitting and
improve learning.

e VGG [53]: is proposed by the Oxford Visual Geometry
Group. It won the ILSVRC in 2014. Different versions
are provided depending on the number of convolutional
layers. In this study, we compare VGG16 and VGG19
which consisted of 16 and 19 layers, respectively. This
network is characterized by its deep structure and small
convolution kernels that reduce the computational com-
plexity of the model while improving its generalization
ability.

e ResNet [54]: is won the ILSVRC in 2015. The authors
introduced the Residual blocks in order to reduce the
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training time and to improve the accuracy. In this work,
we use ResNet18 and ResNet50.

We underline that we adjust all the baselines to make them
suitable for the NR-PCQA task by modifying the size of their
last three fully-connected layers into 512, 512, 1 neurons,
respectively. Each fully-connected layer is followed by a
dropout set to 0.5 and a Re Lu function, except for the output
layer that has a Sigmoid function. Then, using the pre-
trained CNN models, mentioned above, on ImageNet dataset
[55], we fine-tune the networks on our dataset to adapt their
weights to the quality prediction task by minimizing the
following L, Norm loss function:

1N

Loss = ;\PMO& MOS,| 2)
where MOS; and PMOS; represent the subjective and
estimated quality score of the patches, respectively. N is
the total number of patches. To select the parameters of
the trained model, we use a validation set that contains
PC objects different from the training and the test sets. To
optimize the model parameters, we adopt stochastic gradient
descent (SGD) with momentum. In addition, we initialize
the learning rate with 103 that is descended every 70 epoch
with a decay rate of 1071,

2) Test phase

In the test phase, we estimate the quality score of each patch
using the model learned in the training phase (M). After that,
we aggregate the quality scores of all patches to derive the
final visual quality score of the overall PC object. For this
purpose, we use five spatial pooling methodologies that are
defined by the following equations:

e Minimum pooling: is the minimum score in K predicted
scores of the PC object patches, and it is calculated by
the following equation:

MOSgiohar = min. PMOSN,i=1,..,N (3)
e Maximum pooling: is the maximum score of all pre-
dicted quality scores of the patches extracted from the
PC object, and it is computed by the following equation:

MOSgiopat = max PMOSNi=1,..N (4

o Median pooling: is given by ordering the set of the pre-

dicted quality scores PM O.S; of the PC and then taking

the middle value of the predicted scores, as described in
the following equation:

VOS PMOS [5] if K is even
lobal = K—1 K+l
g (PMOS[%; ];PMOS[ 1) ifK(iss)odd

o Weighted average pooling: is calculated by applying to
each PMOS; estimated quality score a corresponding
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FIGURE 4: The reference samples from ICIP2020 (1) and SJTU (2) WPC (3) databases.

w; weight. The predicted scores are divided into 5 A. POINT CLOUD DATABASES.
categories and the frequency of each category is used We evaluate our proposed PCQA method on two databases:

as w;. We represent the weights mean pooling by the o ICIP2020 [56]: is composed of 6 reference PC ob-
following equation: jects that represent human body models, including four
1 watertight/full-coverage objects (Soldier, LongDress,

MOSgi0pa1 = —— ZwZPM 0S; (6) Loot and RedandBlack) and two semi-coverage PC

Z lwlzl

o Average pooling: is calculated by averaging all the
predicted quality score patches of the PC, as shown in
the following equation:

K
1
MOSgiohat = 7= > PMOS; (7)

i=1

IV. EXPERIMENTAL RESULTS

In this section, we first provide a description of the ex-
perimental setting including the used PCQA databases, the
validation protocol, and the evaluation metrics. Subsequently,
we make an ablation study, a comparison with the state-of-
the-art, and a cross-dataset evaluation.

6
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(Ricardo10 and Sarah9). Each original PC is degraded
with 3 types of compression distortion caused by G-
PCC Octree, G-PCC Trisoup, and V-PCC with a 5-level
rating scale, 1 indicating the lowest quality and 5 the
highest quality. Consequently, the number of degraded
objects is 90.

SJTU [39]: contains 9 reference PC and 378 distorted
ones, which include both human body models and
inanimate objects. Each original PC is degraded ac-
cording to 7 types of distortion with 6 different lev-
els caused by 4 independent distortions: Octree-based
compression (OT), Color noise (CN), Geometry Gaus-
sian noise (GGN) and Downsampling (DS), and 3 su-
perimposed distortions: Downscaling and Color noise
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(DS+CN or D+C), Downscaling and Geometry Gaus-
sian noise (DS+GGN or D+G), Color noise and Geom-
etry Gaussian noise (CN+GGN or C+G). These types of
distortions are used to characterize the distortions that
may be present in the PC during the processing.

o WPC [46] : is composed of 20 reference inanimate ob-
jects, and it is corresponding 740 distorted PC degraded
by 3 compression types including G-PCC Trisoup with
12 different levels, G-PCC Octree with 4 different levels
and VPCC with 9 different levels, Gaussian noise (GN)
with 9 different levels and Downsampling (DS) with 3
different levels.

B. VALIDATION PROTOCOL AND EVALUATION
METRICS
To evaluate the performance and the effectiveness of our
proposed method for the point cloud quality assessment, we
use the 4-fold cross-validation protocol for ICIP2020, 7-fold
for SITU and 20-fold for WPC database. For all datasets, the
different folds are organized as follows: one fold as a test set,
another fold as the validation set, and the remaining folds
as the training set. In this way, we assure that we do not
have an overlapping between the three. Besides, we adopt
the following metrics that are commonly used in the field of
quality assessment:
1) Spearman Rank Order Coefficient (SROCC): it mea-
sures the monotonicity of the model estimation. The
SROCC metric can be defined as follows:

Z;jzl (rank(MS;) — rank(M P;))?

= 1—
SROCC 707 1)

®)
where M P; and M S; are the estimated and the ground
truth quality score while .J indicates the total number
of the objects.

2) Pearson Linear Correlation Coefficient (PLCC): it
computes the prediction accuracy between the pre-
dicted and the subjective score, and is calculated with
the following equation:

S (MP, — MP,,)(MS; — MS,,)

PLCC =
VL (MP, - 3F,)%/(MS; - ]S,
)]
where M S,,, and M P,, are the mean values of M P
and M S.

The highest absolute values of the PLCC and SROCC criteria
(close to 1) indicate the best quality prediction performance
of the model.

C. ABLATION STUDY

The proposed method has three degrees of freedom: the
number of rendering views, the number of patches, the ar-
chitecture of the fine-tuned networks and the spatial pooling
methodology. We study in the following the influence of
these parameters on the ICIP2020 database.

VOLUME 4, 2022
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1) Impact of the rendering views number

In our work, we represent the PC with different perspectives
(2D images) which are obtained by fixing virtual cameras
at different angles, as illustrated in Fig. 1. The number of
views is related to the used rotation angles. In other words,
using small angles increases the number of projected views
and vice versa. Therefore, in Table 1, we investigate the
effect of this parameter (i.e. the number of views) while
setting the other model parameters unchanged (i.e. we fix
the CNN model to VGG, the number of the patches to 4 and
the pooling methodology to average pooling) to determine
how many projected images are needed to represent all the
information of the 3D object. According to this table, the best
performance is given when we use the 7/24 that provides
50 views (48 views + the top and bottom views). When we
use a smaller angle (7/48), the performance of the model
decreases, this is due to the redundancy of the information
from the captured images. Similarly, the use of larger angles
(/2,7 /4, 7 /6) causes a loss of information that prevents the
PC object from being represented accurately. It is noteworthy
that when we increase the number of views from 10 (pi/4)
to 14 (pi/6), we notice a small decrease in the correlation.
However, this difference is not statistically significant (P-
value > 0.5) according to the One-way Analysis of Variance
(ANOVA) test. In addition, we examine the performance of
the proposed model with and without the top and bottom
views, as presented in Table 2. We observe a slight gap in the
performance of the proposed model when the top and bottom
views are added. In the rest of the paper, the experiments are
performed using 50 views.

2) Impact of the number of the patches

As mentioned above, we extract patches from each projected
2D image. After that, we aggregate the local quality of all
sampled patches to measure the quality score of the PC. Since
we use a fixed patch size (224 x 224), the number of extracted
patches is related to the stride size. We vary this parameter in
Table 3 while keeping the rest of the model unchanged. As
we can observe, the number of patches does not significantly
affect the quality performance. In the rest of the experiments,
we use 4 patches.

3) Impact of the fine-tuned CNN networks

The extracted patches are used to fine-tune the pre-trained
CNN architecture. To study the influence of this later on
the quality performance, we conduct experiments with three
different CNN architectures pre-trained on ImageNet dataset:
AlexNet, VGG, and ResNet. As recorded in Table 4, the
performance of the proposed model varies from a pre-trained
model to another. The use of residual networks (ResNet18
and ResNet50) and shallow network (AlexNet) decrease the
performance since the difference is statistically significant
between them and the VGG based models, P-value < 0.5.
These results might be explained by the fact that AlexNet
is a shallow model and thus cannot extract enough relevant
features. For ResNet based models, it seems that the skip

7



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3247191

Salima Bourbia et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

TABLE 1: Correlation coefficients SROCC and PLCC of the proposed model using different numbers of rendering views on

ICIP2020 database.
Number of views 6 views (/2) 10 views (7/4) 14 views (7/6) 26 (w/12) views 50 views (7/24) 98 views (w/48)
SROCC 0.963 0.971 0.969 0.971 0.982 0.980
PLCC 0.943 0.959 0.947 0.956 0.958 0.949

TABLE 2: Performance of the proposed model with and
without top and bottom views on ICIP2020 database.

SROCC  PLCC
Without top and bottom views 0.981 0.941
With top and bottom views 0.982 0.958

connections introduce a kind of redundancy that is not rel-
evant for the quality task [57], [58]. However, it is giving
competitive results compared to the state-of-the-art methods
on ICIP2020 database. Moreover, we test the impact of the
depth for VGG and ResNet based models. As we can observe,
the depth did not affect the performance results since the p-
value > 0.5, which indicates that the difference is not statis-
tically significant. From the previous remarks, we conclude
that the network architecture has more influence on the model
performance compared to the effect of the depth. Based on all
the obtained results, we use VGG16 as our pre-trained CNN
model to compare the performance of our method with the
state-of-the-art metrics.

4) Impact of the spatial pooling methodology

The final step of our proposed method is to aggregate all the
predicted quality scores of the extracted patches to obtain the
final PC quality score. To study the influence of the spatial
pooling methodology on the performance of the proposed
model. We conduct a comparison with five pooling meth-
ods: Minimum, maximum, median, weighted average, and
average pooling. Based on the obtained results in Table 5,
we observe that the best results on both metrics SROCC and
PLCC are obtained when using the spatial average pooling.
We use this later in our experiment.

5) Qualitative results

In Fig. 5, we present a qualitative study to test the ability of
the proposed model in evaluating the PC quality by compar-
ing the predicted and the corresponding ground truth quality
scores on different distorted samples. More precisely, we
compare the quality scores of 2 different samples: RedAnd-
Black and Loot that are degraded with GPCC octree and G-
PCC trisoup distortions. The PC with high quality is noted
by 5, and the PCwith the lowest quality is scored by 1. As we
can observe from Fig. 5, our model is able to predict quality
scores that are close to the ground truth M OS, which proves
the effectiveness of our proposed model.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

G-PCC Octree r01
MOs: 1.000
Proposed Method: 1.001

Type of distortion: W/o (Reference)
RedAndBlack

G-PCC Trisoup r02
MOS: 2.100
Proposed Method: 2.291
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G-PCC Octree r01
Mos: 1.000

Proposed Method : 1.003

Type of distortion: W/o (Reference)
Loot

G-PCC Trisoup r02
MOs: 2.050
Proposed Method: 2.049

FIGURE 5: Distorted point clouds with G-PCC Octree r01
and Trisoup r02 on ICIP2020 database.

D. COMPARISON STUDY WITH THE STATE-OF-THE-ART
In this section, we conduct a comparison study of our model
against different Full-Reference (FR), Reduced-Reference
(RR), and No-Reference (NR) state-of-the-art methods. The
best results are highlighted in bold.

1) Comparison with FR and RR methods

In Table 6, 7 and 8, we list the correlation coefficient results
on ICIP2020, SJITU, and WPC databases of our method in
comparison with FR and RR methods.

In ICIP2020 database (Table 6), considering all the PC
objects distortions and regarding the FR methods, the Point-
to-Point MSE (i.e. P2P MSE) [21], Point-to-Point Hausdorff
(i.e. P2P Hausdorff) [21], Point-to-Plane MSE (i.e. P2P1
MSE) [22], Point-to-Plane Hausdorff (i.e. P2P1 Hausdorff),
Plane-to-Plane (i.e. PI2P1) [22] and Point-to-Distribution-
Geometry MMD (i.e. P2D-G MMD) [24] metrics are based
on the geometry structure and are given the lower perfor-
mance. One reason is that these methods do not consider the
color information and are based only on a simple geometric
distance to compute the quality of the PC. This is proved
by the better performance in the Point-to-Distribution-
Geometry-Joint-Geometry-and-Color MMD (i.e. P2D-JGC
MMD) [24], PCQM [28], BitDance [31], and GraphSIM
[33] metrics that include the color information for the PC
evaluation. We denote that the FR projection-based methods

VOLUME 4, 2022



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3247191

IEEE Access

Salima Bourbia et al.: Preparation of Papers for [EEE TRANSACTIONS and JOURNALS

TABLE 3: Correlation coefficient of the proposed model on different patches number on ICIP2020 database.

Number of patches 2 patches (Stride = 224)

SROCC PLCC

4 patches (Stride = 90)
SROCC

8 patches (Stride = 40)

PLCC SROCC PLCC

Correlation score 0.980 0.955

0.982 0.958 0.982 0.955

TABLE 4: Performance of the proposed model using different pre-trained models on ICIP2020 database.

AlexNet VGG-16 VGG-19 ResNet-18 ResNet-50
SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC
0.971 0.919 0.982 0.958 0.968 0.967 0.965 0.951 0.980 0.952

TABLE 5: Performance of the proposed model using differ-
ent spatial pooling strategies on ICIP2020 database.

SROCC  PLCC

Minimum 0.823 0.795
Maximum 0. 775 0.820
Median 0.844 0.814
Weighted average 0. 796 0.827
Average 0. 982 0.958

including, JGC-ProjQM DISTS, JGC-ProjQM LPIPS meth-
ods [41], achieve good correlations on each degradation type
and on all the database. However, the quality evaluation of
these methods depends on the reference information that is
not available in the majority of practical applications. For
the RR methods, the PCM metric [43], which is based on
the comparison between the original and degraded PC in the
receiver side to evaluate the transmitted contents, archives a
PLCC and a SROCC of 0.882 and 0.627, respectively. By
studying the different types of distortions individually, we
remark that the proposed method outperforms the state-of-
the-art methods on the three compression distortion types
(VPCC, G-PCC Trisoup, and G-PCC Octree).

In SJTU database (Table 7), The proposed method pro-
vides the best correlation coefficient results on all the distor-
tions and outperforms the state-of-the-art metrics in SROCC
and PLCC correlation coefficients. It is worth noting that
the correlation values of our method and all the state-of-the-
art methods are less than the correlation values of ICIP2020
dataset. This could be justified by the type of distortions in
the two databases. ICIP2020 database consists only of objects
with compression types, while SJTU database has more chal-
lenging types of degradation such as acquisition noise and
resampling, that can be applied individually (Octree-based
compression (OT), Color noise (CN), Geometry Gaussian
noise (GGN) and Downsampling (DS)) or superimposed
(Downscaling and Color noise (D+C), Downscaling and Ge-
ometry Gaussian noise (D+G), Color noise and Geometry
Gaussian noise (C+G)). In addition, we compare the SROCC
and PLCC values for each of the seven degradation types. We
denote that the correlations of the metrics marked with ’-* are
undefined because their variance is equal to zero (since they
are divided by zero). As shown in Table 7, our model exhibits
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robust performance for each type of degradation and shows
good correlations with the subjective quality scores. The
geometric-based methods, P2P MSE [21], P2P Hausdorff
[21], P2P1 MSE [22], P2P]1 Hausdorff [22], PI2P1 [23] and
P2D-G MMD [24] metrics, fail to reflect the color degrada-
tion in the PC and perform the worst SROCC and PLCC.
In the same vein, all the compared metrics present inferior
performance in terms of PLCC for superimposed distortions,
expect PCQM [28], PointSSIM [30], JGC-ProjQM DISTS,
JGC-ProjQM LPIPS [41], Yang et al. method [39] and our
proposed method. We note that the PCM metric [43] provides
poor results on all types of degradation, which could be
explained by the large set of features used in their method that
prevents its generalization across all types of degradation.

In WPC database (Table 8), our approach outperforms all
the compared methods for each distortion type and for the
whole database. We note that most of the compared methods
achieve lower performance on the WPC database compared
to the other two databases. This can be explained by the fact
that some WPC reference object samples are less sensitive to
distortions in perceived visual quality. For example, Banana,
Honeydew-melon, and Litchi (See Fig. 4), etc, samples show
less complexity in geometry structure and in texture color,
making the distortion difference less obvious and harder to
measure. We highlight our model is able to keep nearly the
same performance on the larger and more difficult database,
which proves its high robustness.

2) Comparison with NR methods

To make a fair comparison of our method with the NR ones,
we follow the protocol proposed in [48], [49] on SJTU and
WPC databases. We take 75% of the database for training and
the remaining for testing. As shown in Table 9, the proposed
method achieves the best SROCC and PLCC results on both
databases, largely outperforming the compared NR methods,
except for ResSCNN which shows competitive results on
SJTU database. This can be explained by the projection-
based NR metrics, including PQA-Net and IT-PCQA meth-
ods, not taking into consideration the impact of the number
of views and utilizing much unnecessary background infor-
mation that could drop the model accuracy. In our proposed
model, we address this issue by conducting a patch extraction
in the central axis that contributes to removing the majority
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TABLE 6: Performance comparison of the proposed method against the FR and RR state-of-the-art methods on ICIP2020

database.

Distortion type

VPCC G-PCC Octree G-PCC Trisoup All
Method type Methods |SROCC| |PLCC| |SROCC| |PLCC| |[SROCC| |PLCC| |SROCC| |PLCC|
P2P MSE [21] 0.954 0.615 0.963 0.817 0.944 0.864 0.947 0.673
P2P Hausdorff [21] 0.682 0.615 0.944 0.692 0.975 0.615 0.656 0.673
P2P1 MSE [22] 0.971 0.618 0.932 0.848 0.971 0.618 0.975 0.670
P2P1 Hausdorff [22] 0.735 0.491 0.932 0.838 0.735 0.491 0.704 0.521
PI2PI [23] 0.902 0.626 0.628 0.603 0.447 0.292 0.902 0.626
FR P2D-G MMD [24] 0.960 0.784 0.831 0.871 0.906 0.906 0.954 0.806
P2D-JGC MMD [25] 0.965 0.881 0.906 0.880 0.906 0.880 0.962 0.889
PCQM [28] 0.977 0.942 0.966 0.978 0.977 0.955 0.977 0.942
PointSSIM [30] 0.546 0.246 0.628 0.603 0.447 0.292 0.795 0.717
TCDM [34] 0.822 - 0.885 - 0.970 - 0.935 0.942
GraphSIM [33] 0.855 - 0.939 - 0.770 - 0.890 0.872
BitDance [31] - - - - - - 0.936 0.932
JGC-ProjQM DISTS [41] 0.968 0.983 0.969 0.954 0.960 0.961 0.974 0.937
JGC-ProjQM LPIPS [41] 0.968 0.983 0.969 0.954 0.960 0.961 0.978 0.960
RR PCM [43] 0.882 0.627 0.830 0.749 0.510 0.407 0.882 0.627
NR The proposed NR-PCQA 0.982 0.958 1.000 0.987 1.000 0.957 0.982 0.958

TABLE 7: Performance comparison of the proposed method against the FR and RR state-of-the-art methods on SJITU database.

Distortion type

oT CN GGN DS D+C D+G TG Al
Method type Methods |SROCC| |PLCC| |SROCC| |PLCC| |SROCC| |PLCC| |SROCC| |PLCC| |SROCC| |PLCC| |SROCC| |PLCC| |SROCC| |PLCC| |SROCC| |PLCC|

P2P MSE [21] 0349 0481 B - 0.301 0385 0646 0.499 0.661 0.165 0.837 0385 0757 0416 0.803 0.606

P2P Hausdorff [21] 0286 0496 0.286 0.496 0.858 0395 0451 0.260 0.383 0.167 0.761 0386 0818 0417 0.687 0.606

P2PI MSE [22] 0345 0470 . - 0.846 0369 0757 0.448 0.746 0.165 0.837 0385 0.809 0.405 0.715 0.568

P2PI Hausdorff [22] 0377 0492 - - 0.858 0395 0451 0.351 0.383 0.167 0.801 0467 0828 0.438 0.683 0.562

PI2PI [23] 0359 0290 0.059 0.058 0579 0515 0361 0210 0.241 0.164 0723 0665 0572 0.503 0.772 0.615

FR P2D-G MMD [24] 0269 0075 0.067 0.190 0.768 0462 0548 0.188 0.747 0.166 0.742 0478 0754 0.501 0.604 0.628

P2D-JGC MMD [25] 0260 0039 0.778 0.699 0.792 0494 0639 0315 0.762 0174 0772 0509 0.794 0.594 0.755 0.667

PCQM [28] 0741 0786 0.812 0.801 0.903 0771 0.864 0.787 0.937 0.857 0.883 0712 0920 0.813 0.855 0813

PointSSIM [30] 0.806 0.831 0.742 0.765 0936 0964 0.866 0.902 0.733 0.741 0951 0955 0.809 0.811 0.733 0.715

TCDM [34] 0793 - 0.819 - 0921 - 0876 - 0.934 - 0944 - 0951 - 0.910 0.930

GraphSIM [33] 0693 - 0.778 - 0916 - 0872 - 0.886 - 0.888 - 0941 - 0.841 0.856

BitDance [31] - - - - - - - - - - - - - - 0.730 0.714

Yang et al. method [39] 0.760 0.790 0.790 0.850 0.730 0.760 0580 0.730 0.880 0.890 0.680 0.690 0930 0.950 0.602 0.607

JGC-ProjQM DISTS [41] 0.811 0822 0.823 0.838 0.747 0876 0.896 0.927 0.883 0872 0.806 0.900 0786 0.869 0.671 0.600

JGC-ProjQM LPIPS [41] 0738 0.765 0.780 0813 0.747 0836 0862 0.862 0.921 0.894 0819 0867 0814 0.866 0.690 0.665

RR PCM [43] 0279 0271 0029 0014 0175 0.187 0428 0398 0.006 0.093 0430 0500 0132 0265 0219 0263

NR The proposed NR-PCQA 0.1 0316 0853 0830 0976 0975 0927 0978 0967 0966 0959 0.980 0992 0.986 0915 0943

TABLE 8: Performance comparison of the proposed method against the FR and RR state-of-the-art methods on WPC database.

Distortion type

DS GN G-PCC Trisoup G-PCC Octree VPCC All
Method type Methods |SROCC| |PLCC| |SROCC| |PLCC| |SROCC| |PLCC| |SROCC| |PLCC| |SROCC| |PLCC| |[SROCC| |PLCC|
P2P MSE [21] 0.900 0.779 0.728 0.686 0.464 0.534 - - 0.697 0.684 0.566 0.399
P2P Hausdorff [21] 0.904 0.755 0.688 0.662 0.293 0.243 - - 0.445 0.254 0.258 0.166
P2PI MSE [22] 0.849 0.724 0.737 0.677 0.462 0.521 - - 0.705 0.702 0.446 0.395
P2P1 Hausdorff [22] 0.861 0.614 0.692 0.664 0.355 0.299 - - 0.558 0.377 0.313 0.226
PI2PI [23] 0.643 0.618 0.683 0.677 0.141 0.132 0.035 0.025 0.382 0.392 0.321 0.315
FR P2D-G MMD [24] 0.786 0.688 0.863 0.826 0.502 0.509 0.062 0.032 0.790 0.734 0.411 0.420
P2D-JGC MMD [25] 0.786 0.688 0.863 0.826 0.502 0.509 0.786 0.709 0.790 0.734 0.431 0.413
PCQM [28] 0.875 - 0.886 - 0.821 - 0.894 - 0.643 - 0.743 0.751
PointSSIM [30] 0.835 0.872 0.586 0.670 0.681 0.657 0.791 0.783 0.365 0.379 0.450 0.460
TCDM [34] 0.882 - 0.857 - 0.832 - 0.795 - 0.640 - 0.807 0.804
GraphSIM [33] 0.898 - 0.840 - 0.816 - 0.855 - 0.612 - 0.841 0.856
Projection PSNR [35] 0.5399 0.6783 0.6538 0.8292 0.1968 0.3291 0.7809 0.7730 0.1998 0.2903 0.4601 0.4989
Projection SSIM [35] 0.8039 0.8529 0.7509 0.8213 0.6144 0.6065 0.8391 0.8258 0.3195 0.3299 0.6138 0.6013
Projection MS-SSIM [35] 0.8876 0.9375 0.7493 0.8372 0.6572 0.6545 0.8770 0.8774 0.4213 0.4397 0.6656 0.6701
Projection VIFP [35] 0.9212 0.9700 0.8067 0.8467 0.8153 0.8105 0.8976 0.8950 0.7484 0.7448 0.7689 0.7670
RR PCM [43] 0.737 0.661 0.780 0.788 0.243 0.304 0.672 0.662 0.282 0.251 0.345 0.367
NR The proposed NR-PCQA 0.939 0.971 1.000 0.999 0.914 0.936 1.000 0.995 0.956 0.966 0.930 0.925

TABLE 9: Performance comparison of the proposed method
against the NR state-of-the-art methods on SJTU [39] and
WPC databases.

Methods SITU WPC
SROCC PLCC SROCC PLCC
PQA-Net [47] 0.23 0.28 0.69 0.70
IT-PCQA [48] 0.63 0.58 0.54 0.55
ResSCNN [49] 0.81 0.86 0.75 0.72
The proposed NR-PCQA 0.83 0.87 0.86 0.85

TABLE 10: Cross-database evaluation: The method is trained
on SJTU and is tested on ICIP2020 and WPC databases.

ICIP2020 WPC
PLCC SROCC SROCC PLCC
Proposed method ~ 0.765 0.725 0.234 0.419

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

of the background information and focusing on evaluating the
local degradation in the PC.

To better illustrate the accuracy of the compared state-of-
the-art metrics, we provide the scatter plots of the predicted
quality values and the subjective scores on the 3 benchmark
databases: ICIP2020, SJTU and WPC. The curves obtained
in Fig. 6, 7 and 8 are estimated using the four-parameter
logistic regression according to the suggestion of the Video
Quality Experts Group (VQEG) [59]. The closer the points
are to the curve, the better the model correlation and vice
versa. As expected, our proposed model shows a good fit with
the nonlinear logistic regression on the 3 databases while
some of the methods based on the simple geometric distance
and the PCM metric are away from the curve fitting specially
on the WPC database.

VOLUME 4, 2022



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3247191

IEEE Access

Salima Bourbia et al.: Preparation of Papers for [EEE TRANSACTIONS and JOURNALS

FIGURE 6: Scatter distributions of the objective scores versus the M OS scores on the database ICIP2020. X-axis is the

objective quality values predicted by the metrics, Y-axis is the subjective quality scores and the curve presents the estimated
no-linear logistic function.
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E. CROSS-DATASET EVALUATION we first train the proposed model on SJTU database then we

test it on the ICIP2020 and WPC databases. As presented
in Table 10, our model provides decent correlation results
(SROCC = 0.765, PLCC = 0.725) on ICIP2020 database.

In this section, we investigate the generalization capability
and the robustness of the proposed NR-PCQA model by eval-
uating the quality scores using a cross-database test. To do so,
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FIGURE 8: Scatter distributions of the objective scores versus the M OS scores on the database WPC. X-axis is the objective
quality values predicted by the metrics, Y-axis is the subjective quality scores and the curve presents the estimated no-linear

logistic function.
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We note that only a single distortion type (G-PCC Octree)
is shared between the training and the test database while
the other distortions are different. When tested on WPC, our
model shows decreased results, which can be explained by
the large difference between the distribution of the objects
and the distortions in the training and the test database, being
more challenging for PCQA models.

V. CONCLUSION

In this paper, we proposed a novel no-reference point cloud
quality assessment method to predict the visual quality of
distorted 3D point clouds. We fine-tuned a pre-trained CNN
model to learn the visual quality features of the 2D patches
extracted from the rendered views of the 3D point cloud.
The final quality score of the evaluated object is obtained by
averaging the predicted quality scores of all patches. Inter-
estingly, our proposed method does not require any reference
information for evaluation, which is a promising solution
for real-world applications. We conducted several ablation
experiments to select the best parameters for our method.
Moreover, the comparison with the Full-Reference, Reduced-
Reference and No-Reference state-of-the-art methods proved
that our proposed method provides superior correlations with
the subjective quality scores on the three benchmark datasets
and across different degradation types. Finally, the proposed
method has demonstrated the generalization ability through
cross-dataset experiments. In future work, we will project to
generate our own pre-trained model. This will be done by
training a generative adversarial network to learn to recon-
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struct the patches, and only use its encoder in the point cloud
quality assessment task.
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