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Global exponential set-point regulation for
linear operator semigroups with input saturation

Daniele Astolfi1, Swann Marx2, Vincent Andrieu1 and Christophe Prieur3

Abstract—In this paper the problem of set-point reg-
ulation of linear operator semigroups is considered, in
presence of saturation of the control input. It is shown how
global exponential stability can still be obtained by adding
an anti-windup loop to the integral action. As first con-
tribution towards the solution of this regulation problem,
we give some new results related to the characterization of
global exponential stability of the equilibrium of a subclass
of semi-linear dynamical systems.

I. INTRODUCTION

Recent years have witnessed a growing interest in
the problem of feedback control of dynamical systems
modeled by partial differential equation or more gen-
erally with state evolving in an infinite-dimensional
space. Among the problems that have been studied, the
output regulation (as considered e.g., in [1]) holds a
great place because of its importance in applications.
Hence, many results have been obtained in this field and
in this context, integral actions are essential to obtain
set-point regulation (see [2] or more recently [3]–[7]).
However, when applying these regulation methods in the
case of saturated controls if the global regulation can
be preserved, the global exponential regulation can be
lost (see, e.g., [8] in the context of finite-dimensional
systems). In this note, inspired by so-called anti-windup
methods (see, e.g., [9]–[11]), we provide an explicit
solution to the regulation problem, by an appropriate
choice of an integral action, while obtaining the global
exponential stabilization of the equilibrium.

Before solving this regulation problem, we give some
new results concerning global exponential stability con-
ditions for nonlinear infinite-dimensional systems com-
posed of a linear operator to which is added a globally
Lipschitz and bounded function. These type of systems
are a subclass of semi-linear systems. The proposed
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sufficient conditions and necessary conditions extend the
corpus of existing results for such a class of systems, e.g.
[12]–[18].

The rest of the article is organized in two main
parts. In Section II, we characterize the property of
global exponential stability for a class of semi-linear
systems. These results are then applied in Section III
to the particular problem of set-point regulation in case
of saturated control input. Conclusions are drawn in
Section IV.
Notation: Given two Hilbert spaces X1,X2, L(X1,X2)
denotes the class of linear bounded operators from X1

to X2, and we define L(X ) := L(X ,X ). Given a real
number L > 0, the saturation function satL : R → R
and the dead-zone function dzL : R → R are defined as

satL(s) :=

 L if s ≥ L ,
s if |s| ≤ L ,

−L if s ≤ −L ,
(1)

dzL(s) := s− satL(s) . (2)

II. GLOBAL EXPONENTIAL STABILITY CONDITIONS
FOR SOME SEMI-LINEAR SYSTEMS

A. Preliminaries

Let X be a Hilbert space equipped with a scalar
product ⟨·, ·⟩X , from which one can deduce a norm ∥·∥X .
We consider in this section semi-linear systems of the
form

d
dtx = Fx+ GψL(Kx) := Fψ(x) (3)

in which F : D(F) ⊂ X → X is a linear operator which
is an infinitesimal generator of a strongly continuous
semigroup denoted (etF )t≥0, G : R → X and K : X →
R are bounded linear operators, and ψL : R → R is a
function satisfying the following assumption.

Definition 1. Given a positive real number L, ψL : R →
R is a generalized saturation function if it satisfies the
following properties

1) ψL(0) = 0.
2) |ψL(s′)− ψL(s

′′)| ≤ |s′ − s′′| for any s′, s′′ ∈ R.
3) sups∈R |ψL(s)| ≤ L.

In particular, ψL is a continuous globally bounded
function with Lipschitz constant equal to 1. For instance,



the saturation function defined in (1) satisfies all proper-
ties of Assumption 1. We stress that the Lipschitz con-
stant is selected equal to 1 to ease the presentation of the
following section, but we could remove the knowledge
assumption on the value of the Lipschitz constant.

Next, we study the solution to system (3). The general-
ized saturation function being globally Lipschitz, apply-
ing [12, Theorem 11.1.5], the following well-posedness
result follows. Note that we refer the reader to [12,
Definition 11.1.3] and [12, Definition 11.1.2] for the
definitions of mild and classical solutions, respectively.

Proposition 1. For any x0 ∈ X (resp. x0 ∈ D(F)),
there exists a unique mild (resp. classical) solution x ∈
C(R+;X ) (resp. x ∈ C1(R+;X ) ∩ C(R+;D(F)), that
we will denote by x(t) := etFψ (x0), to (3).

In this first section, our aim is to study the exponential
stability of the origin of (3). This notion of stability is
defined as follows.

Definition 2. The origin is said to be globally expo-
nentially stable for system (3) if there exist positive real
numbers c and λ such that the following inequality holds

∥etFψ (x0)∥X ≤ ce−λt∥x0∥X (4)

for all (x0, t) in X × R+.

It has to be noticed that in this property it is required
that the positive real number c and λ are uniform. In the
following part of this section a necessary condition and
two sufficient conditions are given to obtain this global
exponential stability property.

B. A necessary condition for global exponential stability

We start by stating the following necessary condition.
Even though the result is probably known in the finite-
dimensional context, we haven’t found any proof of
it. Note that this condition is in the same spirit of
some other results related to feedback stabilization with
saturated control, e.g. [10, Theorem 2.2, Chapter 2.4.4]
or [9, Theorem 1], although these results are based on the
existence of a quadratic Lyapunov function (differently
from the proof below which is based on a trajectory
analysis).

Proposition 2 (Necessary Conditions). The origin of
system (3) is globally exponentially stable only if the
origin of d

dtx = Fx is exponentially stable.

Proof. Assume that (4) holds for some positive real
numbers c and λ. By definition of mild solutions [12,
Definition 11.1.3], note that, for all x in X and for all
t ≥ 0

etFψ (x) = etFx+

∫ t

0

e(t−s)FGψL
(
KesFψx

)
ds . (5)

Let v ∈ X satisfying ∥v∥X = 1. Note that, by definition
of the norm, for all µ > 0 and all t ≥ 0

∥etFv∥X =
1

µ
∥etFµv∥X ,

≤ 1

µ
∥etFψ (µv)∥X +

1

µ
∥etFψ (µv)− etFµv∥X .

With inequality (4), this implies by Definition 2 and
equation (5) that for all µ > 0 and all t ≥ 0

∥etFv∥X ≤ ce−λt∥v∥X

+
1

µ

∥∥∥∥∫ t

0

e(t−s)FGψL
(
esFψµv

)
ds

∥∥∥∥
X
,

which gives, using the fact that ∥v∥X = 1, the Cauchy
Schwarz inequality and item 3) of Definition 1

∥etFv∥X ≤ ce−λt +
L

µ

∫ t

0

∥e(t−s)F∥L(X)∥G∥L(R,X)ds.

Letting µ going to infinity yields, for all t ≥ 0

∥etFv∥X ≤ ce−λt , (6)

for all v in X such that ∥v∥X = 1. By linearity
of the semigroup (etF )t≥0 it holds, for all w in X ,

1
∥w∥X

∥etFw∥X = ∥etF w
∥w∥X

∥X and using (6) with v =
w

∥w∥X
, we deduce that F is an infinitesimal generator of

an exponential strongly continuous semigroup. 2

C. Sufficient conditions for global exponential stability

Sufficient conditions exist to prove the asymptotic sta-
bility from separate properties on the linear operator and
on the semilinear map. See, e.g., [14, Theorem 4] (see
also [19], [20]) for exponentially stable linear operators
and dissipative semilinear maps; [14, Theorem 5] for
an other sufficient condition based on the comparison
of the decay rate of the linear operator and the Lipchitz
constant of the semilinear map; [13] for conditions based
on the circle-criterion for Lur’e type systems. In our
context, we give sufficient conditions based on Lyapunov
consideration. Before presenting the next result, we
provide the definition of coercive Lyapunov functionals
for linear systems, that will be used all along the sequel
(see [18, Definition 2.11] for the definition of coercive
Lyapunov functionals for more general systems).

Definition 3. Let F : D(F) ⊂ X → X be a linear
operator generating a strongly continuous semigroup.
A functional V (x) := ⟨Px, x⟩X , with P ∈ L(X ) a
self-adjoint operator, is said to be a coercive Lyapunov
functional for F if there exist positive constants α and
λ satisfying

α∥x∥2X ≤ V (x) , ∀x ∈ X , (7)

⟨Fx,Px⟩X + ⟨Px,Fx⟩X ≤ −λ∥x∥2X , ∀x ∈ D(F).
(8)



Inequality (7) and the assumption P ∈ L(X ) imply
in particular that

√
V (·) is equivalent to the usual norm

∥·∥X . Note that the existence of non-coercive Lyapunov
functional (possibly implying a non-equivalence between√
V (·) and ∥ · ∥X ) is a particular feature of infinite-

dimensional systems, as discussed in [21].
In the following, two sufficient conditions for the ex-

ponential stability of the origin of systems of the form (3)
are stated. The first condition is based on a “small-gain
control property” which extends the result [8, Theorem
2.4] presented in the case of finite-dimensional linear
systems in the particular case in which the function
ψL is a saturation function. It is a trivial extension
of the fact that exponential stability is robust to small
Lipschitz perturbations in the dynamics when there exists
a coercive Lyapunov functional.

Proposition 3. Consider system (3) with the function
ψL satisfying Definition 1. Suppose that there exists a
coercive Lyapunov functional V for F given by, for all
x ∈ X , V (x) := ⟨Px, x⟩X for some P ∈ L(X ). Then,
for all bounded linear operator K : X → X satisfying
∥K∥L(X ,R) < λ

2∥PG∥X
the origin of (3) is globally

exponentially stable.

Proof. We consider classical solutions to (3), i.e. we
consider initial condition x0 in D(F) and we will prove
that the result of Proposition 3 for such solutions. One
can deduce the same result for any initial condition
x0 ∈ X by applying a standard density argument (see
e.g., [17, Lemma 1]).

Consider the Lyapunov functional V (x) := ⟨Px, x⟩
of the statement. Its derivative along classical solutions
to (3) yields, for all x in D(F)

d
dtV (x) =⟨Fx,Px⟩X + ⟨Px,Fx⟩X

+ ⟨GψL(Kx),P x⟩X + ⟨Px,GψL(Kx)⟩X ,

≤− λ∥x∥2X + 2∥x∥X ∥PG∥X |ψL(Kx)| , (9)

where in the second step we used the property (8). Let
ε > 0 be such that ε < λ

2∥PG∥X
−∥K∥L(X ,R). Such ε > 0

exists by assumption on the bound of K in Proposition 3.
Using Definition 1 (point 1. and 2.) and the definition of
ε, one obtains that, for all x in X , |ψL(Kx)| ≤ |Kx| ≤

λ
2∥PG∥X

∥x∥X − ε∥x∥X . We deduce with (9)

d
dtV (x) ≤ −2ε∥PG∥X ∥x∥2X ∀x ∈ D(F).

Using the coercivity of V and the boundedness of the
linear operator P , we obtain the desired result. Indeed,
P being coercive,

√
V (·) is equivalent to the usual

norm of X . Using this equivalence together with the
Grönwall’s inequality, one can deduce that the origin
of (3) is globally exponentially stable (in the sense of
Definition 2). 2

The second sufficient condition is based on the existence

of a common coercive Lyapunov functional between the
operators F and F+GK. For the finite-dimensional case
in which the function ψL is a saturation function this
result is well known, see, e.g. [11].

Proposition 4. Consider system (3) with the function ψL
satisfying Definition 1. Suppose there exists a common
coercive Lyapunov functional V for F and F + GK,
namely there exists a functional V defined as V (x) :=
⟨Px, x⟩X , for all x in X , satisfying (7) and

⟨Fx,Px⟩X + ⟨Px,Fx⟩X ≤ −λ∥x∥2X
⟨(F + GK)x,Px⟩X + ⟨Px, (F + GK)x⟩X ≤ −λ∥x∥2X

(10)
for all x ∈ D(F), for some λ > 0. Then the origin of
(3) is globally exponentially stable.

Proof. Similarly to the proof of Proposition 3, we
consider here classical solutions to (3), i.e. we consider
initial condition x0 in D(F), and we will prove that
the result of Proposition 4 for any initial condition
x0 in D(F). One can deduce the same result for any
initial condition x0 ∈ X by applying a standard density
argument (see e.g., [17, Lemma 1]).

Define FK := F + GK and let α : R → R be the
function defined as α(0) = 0 and

α(s) := 1− ψL(s)

s
, ∀s ̸= 0,

Note that with Points 1 and 2 of the definition 1, it yields
that α(s) ∈ [0, 1] for all s. With such a notation, the
system (3) can be rewritten as

d
dtx = α(Kx)Fx+ (1− α(Kx))FKx. (11)

Now consider the coercive Lyapunov functional given in
the statement V (x) := ⟨Px, x⟩X with P ∈ L(X ) sat-
isfying (7) and (10). By compactly writing α = α(Kx),
we compute its derivative along classical solutions to (3),
i.e. equivalently (11). Using (10), we obtain, for all x in
D(F),

d
dtV (x) = α⟨Fx,P x⟩X + α⟨P x,Fx⟩X

+ (1− α)⟨FKx,P x⟩X + (1− α)⟨P x,FKx⟩X
≤ −αλ∥x∥2X − (1− α)λ∥x∥2X ≤ −λ∥x∥2X .

The proof concludes by following the same arguments
used in the proof of Proposition 3. 2

III. SET-POINT REGULATION

A. Problem statement and assumptions

In this section we consider a class of controlled
linear systems with saturated control. A slightly modified
notation is used. In particular, we consider H as a Hilbert



space equipped with a norm ∥ · ∥H and a scalar product
⟨·, ·⟩H. We consider systems which are described as

d
dtξ = Aξ + B satL(u) + w, y = Cξ, (12)

in which A : D(A) ⊂ H → H is an infinitesimal
generator of a C0-semigroup denoted t 7→ etA, the
operator B : R → H is linear and bounded, the operator
C is in1 L(D(A),R), u in R is the control input, y in R
is the measured output, w in H is an unknown constant
disturbance vector, and the saturation function satL is
defined as in (1) for some L > 0. Given a constant
reference yref ∈ R, we are interested in the design of
a feedback law for system (12) so that there exists a
unique equilibrium which is exponentially stable and

lim
t→∞

y(t) = yref , (13)

by means of an integral action. Note that the regulation
problem could be defined without requiring existence
and uniqueness of equilibrium leading to weaker as-
sumptions. It is however beyond the scope of this paper.

To this end, we follow the set of conditions established
below (similarly to [7]). Comments are postponed at the
end of the section.

Assumption 1. The operator A generates a strongly
continuous semigroup (etA)t≥0, and moreover there
exist a coercive and self-adjoint operator Q ∈ L(X)
and a positive constant ν such that for all ξ ∈ D(A)

⟨A ξ,Q ξ⟩H + ⟨Q ξ,A ξ⟩H ≤ −2ν∥ξ∥2H . (14)

Then, following [2], we assume (up to a
reparametrization) the following.

Assumption 2. The condition CA−1B = 1 holds.

Following classical finite-dimensional strategies, we
extend the system (12) with an integral action [22] and
an anti-windup mechanism [9]–[11]. In particular, we
propose the following regulator

d
dtz = Cξ − yref − µdzL(u), u = kz, (15)

with z in R, the function dzL defined as in (2), and µ, k
positive parameters to be selected so that the solutions to
the closed-loop system (12), (15) converge exponentially
to an equilibrium on which the regulation objective (13)
is attained.

We complete this section by introducing the following
compact form. In particular, recalling the definition of
the deadzone function in (2), the extended closed-loop
system (12), (15) reads as

x =

(
ξ
z

)
, d

dtx = Fx+ G satL(Kx) + Γ, (16)

1Since A is an infinitesimal generator of a C0-semigroup, its domain
D(A) is a Hilbert space equipped with the graph norm ∥ξ∥D(A) =
∥ξ∥H + ∥Aξ∥H.

with F ,G,L defined as

F :=

(
A 0
C −µk

)
, G =

(
B
µ

)
, K =

(
0 k

)
, (17)

and Γ = (w, yref)
⊤. The state space is defined by

X = H × R and it is equipped with the norm ∥x∥X =
∥(ξ, z)∥X =

√
⟨ξ, ξ⟩H + |z|2, with the associated scalar

product ⟨(ξ1, z1), (ξ2, z2)⟩X = ⟨ξ, ξ⟩H+z1z2. Moreover,
we define the domain of the operator F given by
D(F) = {(ξ, z) ∈ H×R | Aξ ∈ H}, which is equipped
with the usual graph norm.

Remark 1. Assumption 1 establishes that the semigroup
generated by A is exponentially stable. This assumption
is necessary in finite dimension in view of Proposition 2
and the lower triangular structure of the operator F .
Note that exponential stability could be obtained without
assuming coercivity of the operator Q. However,it is not
straightforward to obtain exponential stability for the
closed loop system that we study, because it is nonlinear
due to the saturation operator. Following [21], it may be
possible to remove this coercivity assumption. It is left
for future research. Assumption 2 could be also relaxed
as CA−1B ≠ 0, which is necessary for the design
of an integral action feedback design (see, e.g., [22]
for the finite-dimensional case and [7] for the infinite-
dimensional case). Here we select its value set to 1 to
ease the rest of the presentation.

B. Main results

The next result ensures that there exists a unique
equilibrium point to (16). This existence result relies
mainly on Assumption 2. In addition to this existence,
we provide a condition ensuring that, if the perturbation
w and the reference yref are sufficiently small, then at
the equilibrium the regulation objective Cξ◦ = yref is
satisfied, despite the perturbation w.

Lemma 1. There exists a unique equilibrium point
(ξ◦, z◦) ∈ D(F) to (16). In other words, there exists
a unique solution (ξ◦, z◦) ∈ D(F) to the following set
of equations:

0 = Aξ◦ + B satL(kz
◦) + w

0 = Cξ◦ − yref − µdzL(kz
◦) .

(18)

Moreover, let Ω ⊂ H× R be defined as

Ω = {(w, yref) ∈ H × R : |CA−1w + yref | ≤ L}.

Then, for all (w, yref) ∈ Ω, one has Cξ◦ = yref .

Proof. The first line of (18) can be equivalently written
as:

ξ◦ = −A−1B satL(kz
◦)−A−1w. (19)

Plugging this identity in the second line of (18) leads to

−CA−1B satL(kz
◦)−yref −CA−1w−µdzL(kz◦) = 0.



Using Assumption 2 and the definition of the dead-zone
function, one finds the equivalent equation

f(kz◦) = −yref − CA−1w, (20)

with f defined as

f : s ∈ R 7→ µs− (µ− 1) satL(s) ∈ R.

By definition of the saturation function, f can be equiv-
alently rewritten as:

f : s 7→ f(s) =

 µs− (µ− 1)L if s ≥ L ,
s if |s| ≤ L ,
µs+ (µ− 1)L if s ≤ −L .

(21)
Note that once one is able to prove that there exists
a unique z◦ ∈ R solving (20), the result of Lemma 1
follows, thanks to (19). If µ = 1, the result follows
easily, and we have even an explicit solution given by
kz◦ = −yref − CA−1w. Suppose then that µ ̸= 1. Note
that f is continuous. Moreover, lims→+∞ f(s) = +∞
and lims→−∞ f(s) = −∞. Then, according to the
intermediate value theorem, and since f is increasing,
for every s̃ ∈ R, there exists a unique s ∈ R such that
f(s) = s̃. Setting s = kz◦ and s̃ = −yref − Cw, there
exists a unique solution to (18).

Now, we prove the second part of Lemma 1. The
definition of the set Ω and the condition (20) gives
|f(kz◦)| ≤ L. As a consequence, in view of the
definition of the function f given in (21), we obtain
f(kz◦) = kz◦ and |kz◦| ≤ L. Furthermore, using the
definitions of satL and dzL in (1), (2), the second line
of equation (18) reads 0 = Cξ◦ − yref concluding the
proof. 2

Our aim now is to transform (16) into a system in
the form (3). To do so, we introduce the change of
coordinates

ξ 7→ ξ̃ := ξ − ξ◦, z 7→ z̃ := z − z◦,

where the pair (ξ◦, z◦) is given by Lemma 1. The system
(16) reads in these new coordinates:

d
dt ξ̃ = Aξ̃ + B[satL(kz̃ + kz◦)− satL(kz

◦)]
d
dt z̃ = Cξ − µ[dzL(kz̃ + kz◦)− dzL(z

◦)]

or equivalently, selecting x̃ := (ξ̃, z̃),

d
dt x̃ = F x̃+ GψL(Kx̃), (22)

where ψL(Kx̃) := satL(K(x̃ + x◦)) − satL(Kx◦).
System (22) is in the form (3) and moreover the function
ψL so defined satisfies Definition 1 (picking 2L instead
of L). Well-posedness of system (22) follows from direct
application of Proposition 1.

Finally, we can show that an appropriate selection
of the parameters µ, k allows to apply Proposition 4

in order to show that the origin of system (22) is
globally exponentially stable. To this end, we need to
introduce a new operator that will be denoted as M.
In particular, since A generates a strongly continuous
semigroup which origin is exponentially stable, it admits
an inverse, A−1 which belongs to L(H, D(A)) (see e.g.,
[23, Theo. 2.1]). As a consequence, C being A-bounded,
the operator M = CA−1 belongs to L(H,R). Note that
such an operator M is solution to the following equation

MA ξ = Cξ ∀ξ ∈ D(A) . (23)

Proposition 5. Suppose Assumption 1 and 2 hold. For
any µ > 0 and k ∈ (0, k⋆) with k⋆ given by

k⋆ = min

{
ν

µ∥M∥2L(H,R)
,

ν

∥(Q+M⋆M)B∥2L(H,R)

}
,

(24)
the origin of (22) is globally exponentially stable.

Proof. The main idea of the proof of this proposition
consists in showing the existence of a common Lyapunov
functional for the operators F and for F + GK, which
is the context of Proposition 4. To this end, let us define
the operator P in L(X ) as

P(ξ, z) =

(
Q+M⋆M −M⋆

⋆ 1

)(
ξ
z

)
, (25)

with Q given by Assumption 1 and M defined by (23).
We compute now, for all x = (ξ, z) in D(F),

⟨Fx,Px⟩X = ⟨PFx, x⟩X ,

=

〈(
QA M⋆µk
⋆ −µk

)
x, x

〉
X
, (26)

where we used the fact that M⋆MAξ −M⋆Cξ = 0 in
view of (23). Then, using (14), inequality (26) gives

⟨Fx,Px⟩X + ⟨Px,Fx⟩X ≤ −
(
∥ξ∥H
|z|

)⊤

S1

(
∥ξ∥H
|z|

)
with

S1 = 2

(
νI −µk∥M∥L(H,R)
⋆ µk

)
.

Finally, it can be verified that for any k ∈ (0, k⋆), with
k⋆ smaller than the first value in (24), there exists ε1 > 0
such that S1 ≥ ε1I from which we obtain

⟨Fx,Px⟩X + ⟨Px,Fx⟩X ≤ −ε1∥x∥2X . (27)

Then, denoting

FK = F + GK =

(
A kB
C 0

)
and recalling that MB = 1 by Assumption 2, we
compute for all x = (ξ, z) in D(F)

⟨FKx,Px⟩X = ⟨PFKx, x⟩X ,

=

〈(
QA k(Q+M⋆M)B
⋆ −k

)
x, x

〉
X
.



With Assumption 1, it implies

⟨FKx,Px⟩X + ⟨Px,FKx⟩X ≤ −
(
∥ξ∥H
|z|

)⊤

S2

(
∥ξ∥H
|z|

)⊤

with

S2 = 2

(
−νI k∥(Q+M⋆M)B∥L(H,R)
⋆ −k

)
.

As in the previous case, it can be verified that for any k ∈
(0, k⋆), with k⋆ smaller than the second value in (24),
there exists ε2 > 0 such that S2 ≥ ε2I . Hence, we obtain
⟨FKx,Px⟩X + ⟨Px,FKx⟩X ≤ −ε2∥x∥2X . Combining
the last inequality with (27), we conclude that P is a
common coercive Lyapunov functional for the operators
F and F + GK. As a consequence, the conditions (10)
of Proposition 4 are satisfied and the origin of system
(22) is globally exponentially stable. 2

Remark 2. From condition (24) we obtain that if µ ∈(
0,

∥(Q+M⋆M)B∥2
L(H,R)

∥M∥2
L(H,R)

)
, then k⋆ is independent of µ,

allowing for a larger interval for the choice of k.

Finally, in view of the previous result, we state the fol-
lowing result which combines the result of Proposition 5
with the properties of the equilibria of the closed-loop
dynamics established in Lemma 1. In summary, global
exponential set-point regulation is obtained.

Corollary 1. Consider the controller (15) and select µ, k
according to Proposition 5. For any w, yref ∈ Ω, with Ω
defined in Lemma 1, the closed-loop system (12), (15)
admits a unique equilibrium (ξ◦, z◦) which is globally
exponentially stable and satisfies y = Cξ◦ = yref .

IV. CONCLUSION

In this paper, we have first given some necessary
and sufficient conditions for the global exponential sta-
bility of some subclass of semi-linear abstract Cauchy
problems. This class of system is composed of a linear
generator to which is added a nonlinear function which
is globally Lipschitz and globally bounded. This has
allowed us to tackle the set-point regulation problem
with saturated control input. Indeed, employing an anti-
windup design strategy, we have shown how to ob-
tain global exponential set point regulation for infinite-
dimensional linear systems. The case of boundary con-
trol is currently under inverstigation.
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