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Neural Network-Based KKL observer for nonlinear discrete-time systems

Johan Peralez1, Madiha Nadri1∗ and Daniele Astolfi1

Abstract— For non-autonomous multivariable discrete-time
nonlinear systems, we address the state estimation problem
using a Kazantzis-Kravaris-Luenberger (KKL) observer. We
aim to build a mapping that transforms a nonlinear dynamics
into a stable linear system modulo an output injection and
to design an asymptotic observer. However, this mapping is
difficult to compute and its numerical approximation may be
badly conditioned during the transient phase. We propose an
algorithm based on ensemble learning techniques to improve the
numerical approximation of the mapping and its extension in
the transient phase. This ensures a good asymptotic convergence
of the observer and avoids peaking phenomena. The algorithm
demonstrates good performance in high-dimensional and multi-
input-multi-output examples.

I. INTRODUCTION

The problem of online estimation of the state of nonlinear
dynamic systems has been a major research topic in control
for many decades. Indeed, it is often the case that nonlinear
control laws depend on state information making the ob-
server an essential estimation tool [1]. However, only few
results addressing observer design for discrete-time systems
can be found in the literature, see, e.g. [2]–[5]. These
approaches rely on linearization methods, and thus provide
local convergence only.

An alternative strategy dealing with strong non-linearities
in observer design is to find a change of coordinates, which
makes nonlinear dynamics approximately linear or in canon-
ical forms [4]. Despite the theoretical strength of these ap-
proaches, it is still is a challenge in the observer design field
to compute these transformations. One of these approaches
is the Kazantzis-Kravaris-Luenberger (KKL) observer, which
has been transposed to the discrete-time nonlinear case by N.
Kazantzis and C. Kravaris in [5] and recently extended in [2].
Based on an immersion technique, the nonlinear system is
transformed into a linear system modulo an output injection
[6]. Although promising, the difficulty in synthesizing the
coordinate transformation remains high, which makes the
application of the approach to industrial problems difficult
[7].

Data-driven approaches may be an alternative worth ex-
ploring to overcome this problem, the objective being to
develop a systematic algorithm to construct this mapping
and design an asymptotic observer learned from data. A
first attempt for the design of a KKL-based neural network
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observers for nonlinear time-continuous systems has been
reported in [8]. Therein, the authors rely on the stability
of the observer to eliminate the early stages (the burn-in
phase) of the simulation from the dataset. Unfortunately, this
procedure does not guarantee a proper exploration of the state
space during training and, in the case of non autonomous sys-
tems, a time varying mapping is required. More recently, [9]
addresses these shortcomings through unsupervised learning,
demonstrating significant improvements in term of accuracy.

In this body of work, despite promising results, the
proposed neural based KKL observers were only assessed
on single-input single-ouput (SISO) systems with low state
dimensions (only 2 states). A further drawback are strong
assumptions required to ensure asymptotic convergence of
the state in the initial coordinates.

In the present paper, we build on the methodology based
on unsupervised learning introduced in [9] and improve
this approach in several ways: i) we provide an extension
relaxing some of the assumptions and address the problem
of peaking phenomena; ii) using a neural network based
ensemble approach, we improve the convergence accuracy,
and iii) to validate our observer design methodologies, we
consider two applications where the observer is an impor-
tant task for process control: a multi-inlet multi-outlet heat
exchanger conventionally used in industry and a challenging
nonlinear model of Korteweg De Vries (KdV) where, to our
knowledge, only local observers exist in the literature.

II. OBSERVER DESIGN

A. Problem Statement and assumptions

In this work, we consider nonlinear discrete-time systems of
general form {

xk+1 = F (xk, uk)
yk = h(xk)

(1)

where x ∈ Rdx is the state, u ∈ Rdu is a known control
input, y ∈ Rdy the measured output, and F and h are
suitable functions. In the following, in the particular case
where the control input is maintained at a constant value
u0, system (1) is referred to as an autonomous system. In
order to design an observer for system (1), we require the
system to be time reversible backward distinguishable. More
formally, we consider the case in which the vector fields F
and h satisfy the following assumptions.

Assumption 1. There exists a compact set X such that for
any solution x to (1), xk ∈ X for all k ≥ 0.

Assumption 2. For all u0 of interest, F (., u0) is invertible
and F−1 and h are of class C1 and globally Lipschitz.



Assumption 3. For all u0 of interest and for all (x1, x2) ∈
X 2, if x1 ̸= x2, then there exists a positive integer i such
that h(F−i(x1, u

0)) ̸= h(F−i(x2, u
0)).

B. Preliminary results

In [2], following the Luenberger-like methodology, the au-
thors have shown that under Assumptions 1-3, for any pair
of matrices A ∈ Rdz×dz and B ∈ Rdz×dx there exists a
continuous mapping T : X → Rdz satisfying

T (F (x, u0)) = AT (x) +Bh(x) ∀x ∈ X . (2)

Most importantly, it is shown that T is unique and admits
a left-inverse on T (X ) if dz ≥ dy(dx + 1), (A,B) is
controllable and A is Schur stable. In the following we
denote T this inverse:

T (T (x)) = x ∀x ∈ X . (3)

In [9] the transformations T and T defined by equations (2)-
(3) are used to construct an observer for the non-autonomous
case of System (1) as follows{

ẑk+1 = Aẑk +Byk +Ψ(ẑ, uk)
x̂k = T (ẑk),

(4)

with

Ψ(ẑ, uk) := T (F (T (ẑk), uk))− T (F (T (ẑk), u
0)).

The eigenvalues of A have to be chosen fast enough. A
simple choice, for the single-output case, is to select

A = diag(λ1, . . . , λdz
), B = (1, . . . , 1)⊤, (5)

max
i∈{1,...,dz}

|λi| < min

{
1,

1

c

}
, c = sup

x∈X

∣∣∣ (F−1
)′
(x)

∣∣∣.
In order to ensure the asymptotic convergence of the state
in the initial coordinates it was assumed that the observer
state in the latent space ẑ remains in T (X ). Unfortunately,
as highlighted in Section IV, even when ẑ is initialized in
T (X ) the observer state tends to leave this set during the
transient phase. This phenomenon is also known as peaking
phenomenon (well-known in the context of continuous-time
observers [1] and in particular for high-gain observers). To
address this issue, an extension of the mapping T is detailed
in the following section.

C. Algorithm extension

The mapping T is defined in equation (3) by inversion of
T on the open set T (X ). If the trajectories of the observer
state ẑ leave this set, it is necessary to extend its domain of
definition. Inspired by the solution proposed for continuous
time systems in [6], in what follows, we give an extension
in discrete time context defined by

T̃ (z) = argminx∈X |T (x)− z| ∀z ∈ Rdz . (6)

An observer for the non-autonomous system (1) is then given
by {

ẑk+1 = Aẑk +Byk + Ψ̃(ẑ, uk)

x̂k = T̃ (ẑk),
(7)

where now Ψ̃ is defined as

Ψ̃(ẑ, uk) := T (F (T̃ (ẑk), uk))− T (F (T̃ (ẑk), u
0)).

Proposition 1. Let A be designed as in (5) and assume there
exists a positive constant cΨ satisfying∣∣Ψ̃(z1, u)− Ψ̃(z2, u)

∣∣ ≤ cΨ
∣∣z1 − z2

∣∣
for all u ∈ U and for all z1, z2 ∈ T (X ), such that the matrix
A+ 2cΨI is Schur stable. Then any solution to (1), (6), (7)
verifies limk→+∞ |xk − x̂k| = 0.

Proof. In [9] it is shown that there exists a map T solution
to

T (F (xk, u
0)) = AT (xk) +Byk.

Adding T (F (xk, uk)) to each side of previous equation, this
becomes

T (F (xk, uk)) = AT (xk)+Byk+T (F (xk, uk))−T (F (xk, u
0)).

Hence along solutions of System (1), zk = T (xk) evolves
according to

zk+1 = T (xk+1)

= Azk +Byk + Ψ̃(zk, uk).

Let us denote by ek the estimation error ek = ẑk−zk. From
(7) and above equations, we have

ek+1 = Aek +∆Ψ(ek, zk, uk), (8)

with ∆Ψ(ek, zk, uk) := Ψ̃(ek + zk, uk) − Ψ̃(zk, uk). Since
T is injective, it is sufficient to prove that ek converges
geometrically towards zero. To this end, first show that the
following Lipschitz inequality∣∣Ψ̃(ek + zk, u)− Ψ̃(zk, u)

∣∣ ≤ 2cΨ|ek| (9)

holds for all k. First, note that zk = T (xk) ∈ T (X ). So
if ẑk ∈ T (X ), the constraint (9) is satisfied by assumption.
Otherwise, let us define z̃ as

z̃ := T (T̃ (ẑ)) = argmin
ζ∈T (X )

|ζ − ẑ|.

Note that by definition, |z̃− ẑ| ≤ |z− ẑ|. As a consequence,
for all k, z̃k ∈ T (X ) we obtain

|∆Ψ(ek, zk, uk)| ≤ cΨ|z̃k − zk|
≤ cΨ(|z̃k − ẑk|+ |ẑk − zk|) ≤ 2cΨ|ek|,

showing (9). Now, consider the quadratic Lyapunov function
Vk := e⊤k ek, and recall that A is diagonal. We define a :=
maxi |λi|, where λi denotes the eigenvalues of A.
Using (8) and (9), we compute

Vk+1 = (e⊤k A
⊤ +∆Ψ⊤

k )(Aek +∆Ψk)

We show that Vk+1 ≤ (a + 2cΨ)
2|ek|2. Then by selecting

A + 2cΨI Schur stable, we obtain a + 2cΨ < 1. Using the
previous Lyapunov inequality we obtain Vk+1 < Vk and this
completes the proof by invoking standard Lyapunov discrete-
time arguments.



Notice that solving the minimization of (6) is difficult
in general: even if the mapping T is known, the problem
may not be convex and the space of search (the compact set
X ) can be of high dimension. Moreover to implement the
observer (7) this optimization problem should be solved on-
line at each time step. In Section III, we propose an algorithm
– based on deep learning techniques – to learn not only the
transformations T and T , but also a method to approximate
the extension T̃ , with the objective to obtain computations
which are tractable for a real time implementation.

D. Multi-observer approach: Ensemble

Consider a set of observers {Om,m = 1, ...,M}, where
each observer Om is defined by equations (7) with (possibly)
different design choices for A and B:{

ẑmk+1 = Amẑmk +Bmyk + Ψ̃m(ẑmk , uk)

x̂m
k = T̃ (ẑmk ).

In order to provide state estimations using these multiple
KKL observers (MKKL), the dynamical equation for MKKL
strategy is considered by taking the average of each estimate.
Indeed, using the convergence property of each observer
established in Proposition 1, it is readily seen that

lim
k→∞

|xk − x̂k| =
1

M
lim
k→∞

∣∣∣ M∑
m=1

xk − x̂m
k

∣∣∣ = 0.

This approach is often used in the control context for state
estimation purposes, which allows us to improve the transient
response of high-gain observers [10] and to remove the
peaking phenomenon [11]. In Section III a deep learning
based ensemble method is detailed that takes advantage of
this property in order to improve the numerical accuracy.

III. DEEP LEARNING METHODOLOGY

In this section, we address the problem of finding the
mappings T , T and T̃ (defined in Section II) through
deep learning. Indeed, high-capacity deep neural network
have shown to be able to learn non-linear mappings and to
generalize to unseen data for a diverse range of problems.

In the following, we make use of multi layer perceptrons
(MLPs) to approximate the transformations. An MLP is
composed of linear functions fi(ζ) = Wi ζ + bi (the hidden
layers) followed by a nonlinearity (an activation function).
Resulting MLPs have the following form

f(ζ) = fp ◦ fp−1 ◦ · · · ◦ f1(ζ) (10)
= Wpϕp(Wp−1...ϕ2(W2ϕ1(W1ζ + b1) + b2)...) + bp,

where matrices Wi and vectors bi are the parameters to
identify and ϕi are the activation functions.

A. Preliminary results

Following the methodology introduced in [9], we first learn
the mappings T and T from data. The method is summarized
in the following steps:

1) Choose A and B for the observer dynamics such that
A is Schur stable and (A,B) controllable as in (5).

2) Sample a set of state values {xk} randomly on X .
3) Compute corresponding outputs {yk} and successor

states {xk+1} from the dynamical model (1) with a
fixed control input u0.

4) Learn the transformation T which satisfies the observer
dynamics given by the equation (2). This dynamics is
enforced using the following loss:

LT = |T (xk+1)− (AT (xk) +Byk)|. (11)

The learned mapping is then a function of the form
(10) minimizing the loss (11) for the collected data
{(xk, yk, xk+1)}.

5) Perform nonlinear regression to find an approximation
of T by minimization of the following loss:

LT = |xk − T (T (xk))|. (12)

In [9] numerical simulations have shown the ability of
the method to learn the mappings T and T with good
accuracy on examples of low dimensions. One of the main
advantage of this training algorithm is to allow control over
the exploration of the state space: the sampling of the state
space (step 2) takes advantage of the unsupervised learning
of T (step 4) that does not rely on system trajectories.

B. Algorithm extension

The method described in Section III-A is first used to learn T
and T . Knowing that the plant dynamics x evolves in some
compact set X , we would like to estimate the image of T (X )
in order to compute an (over) approximation of a set Z in
which the observer dynamics should evolve. To identify the
extension T̃ defined by (6), we use the following loss

LT̃ = |zk − T (T̃ (zk))|+ w d(T̃ (zk),X )2, (13)

where d(xk,X ) is the distance between T̃ (zk) and the
compact set X , and w is a parameter chosen sufficiently
large to enforce xk to remain in X .

To learn the mapping T̃ minimizing equation (13) we need
to sample some observer values ẑk to estimate the set in
which it evolves.

Assuming its dynamics follows (2), the ith element of
vector ẑk is denoted ẑk,i and follows:

ẑk+1,i = λiẑk,i + bi yk,j ,

where λi is the ith diagonal element of A and bi yk,j the
output injection with j = ⌈i/(dx+1)⌉. Hence an estimate on
the bounds of the state vector is obtained from the bounds
of the output (for simplicity sake, λi and bi are considered
positives): ¯̂zi = bi/(1−λi)ȳj and ẑi = bi/(1−λi)yj . A set
of data {zk} is then sampled randomly inside these bounds.

Notice that the equality T (z) = T̃ (z) stands for all
z ∈ T (X ). But in practice, the mapping T̃ being learned
from data sampled in a larger set, we can expect the learned
mapping T to be of a better accuracy on its domain of
definition. We therefore propose to keep using T when
ẑ ∈ T (X ). To numerically detect this condition, we introduce



a threshold ϵT and we consider that ẑ ̸∈ T (X ) when
|ẑ − T (T (ẑ))| > ϵT . We then estimate the state from

x̂ =

{
T̃ (ẑ), if |ẑ − T (T (ẑ))| > ϵT

T (ẑ), otherwise.

C. Multi-observer approach: Ensemble
Combining predictions from multiple models (referred

as ensemble) has been shown to be an effective approach
to increase the performance of learned models. Ensemble
learning has been successfully applied in different areas such
as object recognition or reinforcement learning [12]. Among
the most popular methods, fusion, bagging and gradient
boosting usually demonstrate benefits in term of accuracy.
However these methods suffer of high computational cost.

Unlike all these methods where M independent base
models are trained, snapshot ensemble [13] generates the
ensemble by enforcing a single base model to converge
to different local minima M times, allows a substantial
reduction of training time. For each minima, the parameters
of this estimator are recorded, acting as the mth base model
in the ensemble. The output of snapshot ensemble then takes
the average over the predictions from all snapshots.

To obtain base models with good performance, snapshot
ensemble uses a cyclic annealing schedule on the learning
rate. Suppose that the initial learning rate is α0, the total
number of training iterations is K, the learning rate at
iteration k is set to:

αk =
α0

2

(
cos

(
π
(k − 1) mod ⌈K/M⌉

⌈K/M⌉

)
+ 1

)
. (14)

The global deep learning procedure including snapshot en-
semble is summarized in Algorithms 1-2:

• Algorithm 1 gives an overview of a base model training,
where the mappings T , T and T̃ are trained sequen-
tially. For each one, the learning rate used in the gradient
descent is gradually reduced following (14). Starting
from a (relatively) high value prevents the base model
parameters from being trapped in a local minimum.

• Algorithm 2 depicts the ensemble procedure. Each call
of Algorithm 1 is done with an optimized version of the
mappings parameters, allowing to reduce the number of
iterations (i.e. reduce KT , KT , KT̃ ) and therefore to re-
duce the computation time. As shown in [12], diversity
in the data helps to improve the ensemble performance;
we take advantage of the simulation model to sample a
new dataset for each base model.

IV. SIMULATION RESULTS

In this section we evaluate our approach through numerical
simulations applied to two different partial differential equa-
tions (PDEs). A multi-input multi-output example (a counter-
flow heat exchanger) and the Korteweg-de Vries equation are
addressed.

In the rest of the section, we denote with t ∈ R the time
variable and with s ∈ [0, 1] the spatial variable. Given a
function w(t, s) we denote with wt := ∂tw, respectively ws,
its partial derivative with respect to t, respectively s.

Algorithm 1: Training a base model.
Input : Initial mappings parameters ΘT , ΘT and

ΘT̃ . Observer matrices A and B. Datasets
Dx and Dz .

Output: Learned mappings parameters ΘT , ΘT , ΘT̃ .
// Learning T

1 for k = 1, ...,KT do
2 Compute LT following (11) for a subset (a

batch) of Dx.
3 Update ΘT using stochastic gradient descent

(SGD) to minimize LT .
4 Reduce the learning rate following (14).
5 end
// Learning T

6 for k = 1, ...,KT do
7 Compute LT following (12) for a batch of Dx.
8 Update ΘT using SGD to minimize LT .
9 Reduce the learning rate following (14).

10 end
// Learning T̃

11 for k = 1, ...,KT̃ do
12 Compute LT̃ following (13) for a batch of Dz .
13 Update ΘT̃ using SGD to minimize LT̃ .
14 Reduce the learning rate following (14).
15 end

Algorithm 2: Training an ensemble.
Design Parameters: Matrices

{Am, Bm,m = 1, ...,M}
1 Initialize parameters ΘT , ΘT , ΘT̃ randomly.
2 for m = 1, ...,M do
3 Collect a dataset Dx = {xk, xk+1, yk} as detailed

in Section III-A.
4 Collect a dataset Dz = {zk} as detailed in

Section III-B.
5 Call algorithm 1 to update parameters ΘT , ΘT ,

ΘT̃ . Save these parameters as the base model m.
6 end

A. Heat exchanger

In this subsection, we consider a counter-current heat ex-
changer (HEX) where two liquid streams exchange heat.
When no phase change occurs and under standard physical
assumptions, a simple PDE model is given by

Tt = −vhTs − κh(T − T )
T t = vcT s − κc(T − T )
T (t, 0) = Tin, T (t, 1) = T in,
T (0, s) = T0(s), T (0, s) = T 0(s),

(15)

where T denotes the temperature of the hot fluid and T
the temperature of the cold one, and vc, vh, κc, κh are some
positive parameters. We suppose to measure the output
temperatures of the fluids, i.e. T (1, t) and T (0, t). We refer
to [14] and references therein for more details about the



Fig. 1: Counter-current exchanger with inlet and outlet heat
flux.

PDE model (15) and its observability properties where an
infinite-dimensional observer is proposed. Here we follow a
different route and in particular we follow the methodology
proposed in Sections II and III. To this end, we first need to
discretize the PDE model (15) both in space and time. For the
spatial discretization, we follow the representation proposed
in [15], in which the heat exchanger is represented as a three
homogeneous-cell model, see Figure 1. It is supposed that
the temperature fluids are controlled via the mass flow rates
q and q̄. This representation gives a model which is described
by a bilinear ODE. Such an ODE is then discretized in time
using an Euler scheme with a time step δt = 1s. By using
the compact notations x = (T1, T2, T3, T 1, T 2, T 3)

T ∈ R6

and u = (Tin, T̄in, q, q̄) ∈ R4, we obtain the following multi-
variable discrete-time model with four inputs and two outputs

xk+1 = xk + δt
(
(e1uk,1 + Exk)uk,3+

ē1uk,2 + Ēxk)uk,4 + Fx
)

yk =

(
0 0 1 0 0 0
0 0 0 1 0 0

)
xk,

(16)

where E, F , Ē, e1 and ē1 are matrices and vectors that
depends on the physical parameters. In the simulations these
parameters are selected according to [15, Section 5].

In all simulations, we consider that the inlet temperatures
Tin and T̂in remain between 280K and 360K. Hence,
from physical consideration, all the state values initialized
in [280, 360] remain in this range and we can define X =
[280, 360]6. We also consider inlet mass flows in ]0; 0.05].

First, we apply the baseline methodology from [9] recalled
in Section III-A. Diagonal elements of the observer matrix A
are chosen equally spaced in [0.85, 0.95]. A result for varying
inputs is shown in Figure 2a. Whereas it exhibits good
asymptotic performance, a peaking phenomenon is observed
during the transient phase.

We extend this baseline as detailed in Section III-B. The
switching threshold is fixed to ϵT = 10−4. Figure 2b illus-
trates the improvement for the same initial conditions: during
the transient phase the peaking is limited and the estimation
accuracy is improved. Figure 3 plots the reconstruction error
|ẑ − T (T (ẑ))| used to detect if ẑ ∈ T (X ).

The state estimation accuracy is further evaluated on a
batch of 100 random initial conditions with random values
for the inputs. To assess the benefit of using an ensemble
model, the method detailed in Section III-C is applied with
5 base estimators (M = 5). Results reported in Figure 4 show
significant improvements in term of asymptotic accuracy.

(a) Baseline method from [9] (solid lines for x, dash lines for the
estimation x̂).

(b) Benefits of the extension of T̃ during the transient phase (solid
lines for x, dash lines for the estimation x̂).

Fig. 2: Heat exchanger: a simulation result for varying inputs.

B. A nonlinear observer for the Korteweg-de Vries model

The Korteweg-de Vries (KdV) equation is a nonlinear PDE
describing the behavior of long waves in a water channel.
To the best of our knowledge, although being a well-known
system, only linear local observers exist in the literature [16].
The studied system can be written as follows:

wt + wx + wxxx + wwx = 0
w(t, 0) = u(t), wx(t, L) = 0, wxx(t, L) = 0
w(0, x) = w0(x)
y(t) = w(t, L).

In order to discretize the KdV equation, we use the finite
difference scheme detailed in [16, Section 7]. We choose
dx = 35 points for the spatial discretization on the interval
[0, L] with L = 2π and a time step of 0.01 s. This spatial
discretization was found to be a good trade-off to obtain an
accurate model while keeping a tractable state dimension.
An example of trajectory is shown in Figure 5.

In order to obtain a meaningful exploration of the state
space during the learning procedure, the state space is
sampled considering the KdV model (IV-B). State values are



Fig. 3: Heat exchanger - switching condition for extension:
a simulation result for varying inputs.

Fig. 4: Heat exchanger - Mean error on 100 trajectories.

sampled from w(t, x) = a sin(b x+ c) with a, b and c being
randomly picked in [−1.5, 1.5] and [0, 2π]. We follow the
methodology proposed in Sections II and III with 5 base
estimators and a switching threshold fixed to ϵT = 10−4.
The simulation results illustrated in Figure 6 show a good
convergence of the state estimation in the autonomous case.

Fig. 5: KdV equation - An example of trajectory.

V. CONCLUSION

In this work we presented a approach to design an ob-
server for nonlinear non-autonomous discrete-time systems.
The new observer consists in a combination of the KKL
approach and a deep neural networks, to construct such
a transformation. In this work we gave an extension and
relax the conditions on the previous version of the observer.
We also assess the proposed method on large dimensional
nonlinear MIMO systems where the explicit solution is

Fig. 6: KdV equation - an estimation result. (solid lines for
x, dash lines for the estimation x̂)

practically impossible to obtain. The simulation results show
an interesting potential of the use of such an approach in
industrial applications.
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