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Abstract

Rice yellow mottle virus (RYMV) causes severe rice (Oryza sativa L.) yield loss. It has been endemic to sub-Saharan Africa and
Madagascar since 1966. Transmission (plant community level) and long-dispersal (regional and continental scale) models have
been established but viral spread in farming communities continues, while the conditions causing local disease outbreaks remain
unclear. We hypothesized that local outbreaks, comprising inter-plot virus spread and intra-plot disease aggravation, are signif-
icantly associated with individual farmers’ attributes and agronomic practices. To test this hypothesis, spatial autoregressive
models were constructed using variables collected by visual observation and farmer interviews. Field surveys were conducted
during four consecutive cropping seasons from 2011 to 2013 in the Lower Moshi Irrigation Scheme of Kilimanjaro, Tanzania.
Our models detected spatial dependence in inter-plot virus spread, but not in intra-plot disease aggravation. The probability of
inter-plot virus spread increased with use of the IR64 cultivar (26.9%), but decreased with straw removal (27.8%) and crop
rotation (47.7%). The probability of intra-plot disease aggravation decreased with herbicide application (24.3%) and crop rotation
(35.4%). A simple cost-benefit analysis suggested that inter-plot virus spread should be mitigated by cultivar replacement and
straw removal. When disease severity is critical, intra-plot disease aggravation should be inhibited by herbicide application, and
rice should be rotated with other crops. This is the first study to upscale the spatial autoregressive model from the experimental
field level to the farming community level, by obtaining variables through easy-to-implement techniques such as visual obser-
vation and farmer interview. Our models successfully identified candidate agronomic practices for the control of RYMV.
However, as the causal relationships between agronomic practices and RYMV outbreaks remain unknown, field trials are needed
to develop robust control measures.

Keywords Farmer interview - Rice production - Spatial autocorrelation - Spatial autoregression - Visual observation - Tanzania

1 Introduction

Rice yellow mottle virus (RYMYV, Fig. 1a) is a member of the
genus Sobemovirus in the family Solemoviridae (Sdmera et al.
2015). Its host range is restricted to rice (Oryza sativa L.) and
a few wild Poaceae. However, it has been endemic in rice-
growing regions of sub-Saharan Africa and Madagascar since
its discovery in 1966 near Lake Victoria in Kenya (Bakker
1974; Kouassi et al. 2005).

The characteristic symptoms of RYMV disease are mot-
tling, yellowish leaf streaking (Fig. 1b), decreased tillering
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(Fig. 1c), shoot stunting (Fig. lc), and spikelet sterility
(Bakker 1970; Fauquet and Thouvenel 1977; Abo et al.
2000). RYMV disease causes 10-100% yield loss depending
on plant age, cultivar susceptibility, and environmental factors
(Kouassi et al. 2005). Therefore, RYMYV is considered a major
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Fig. 1 Rice yellow mottle virus
(RYMV). (a) Electron
micrograph of virus particles. (b)
Leaf samples exhibiting
characteristic symptoms of
infection: yellowish streaking and
mottling leaves. (¢) Young
seedling grown in a pot and
naturally infected with RYMV.
(d) Ratoon exhibiting
characteristic symptoms of
infection. (e) Almost all ratoons
infected in a plot in the Upper
Mabogini system (see aerial
photograph, Fig. 2). (f) Greenish
and healthy seedlings growing
from seeds dropped during the
previous harvest (center) flanked
by infected ratoons in another
Upper Mabogini plot.

(a)

constraint on rice production in sub-Saharan Africa and
Madagascar (Savary et al. 2019; Suvi et al. 2019).

The mechanism of RYMV transmission at the plant com-
munity level is well established, with epidemiological models
proposed (Traoré et al. 2009); in wild reservoirs, rice stubble,
and elsewhere in the environment, RYMYV is disseminated to
rice seedlings via biotic agents such as Chrysomelidae beetles
(Bakker 1974). In seedbeds, close spacing facilitates biotic
(insect) and abiotic (wind dispersal; Sarra et al. 2004) RYMV
transmission. Uprooting, bundling, and transplanting
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contaminate healthy rice seedlings and disseminate primary
infection in the field (Traoré et al. 2006; Traoré et al. 2008;
Uke et al. 2014). The virus is transmitted from contaminated
soils to healthy transplanted seedlings (Traoré et al. 2008, Sarra
2005), with even a small volume able to transmit infection (Uke
et al. 2014). Reverse viral transmission from the field to the
environment also occurs via cows, donkeys, and other animals
during harvest (Sarra and Peters 2003). Birds also have been
implicated in RYMYV transmission (Peters et al. 2012).
Irrigation, double cropping, and the propagation of high-
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yielding Asian rice cultivars with high susceptibility may also
contribute to RYMYV spread (Fargette et al. 2006; Trovao et al.
2015).

Phylogeographic analysis has delineated long-distance
RYMV dispersal at the regional and continental scales (Traoré
et al. 2009). Earlier studies have demonstrated genetic RYMV
diversity within related agroecological zones (Konate et al. 1997;
N’Guessan et al. 2000). RYMV diversity progressively de-
creases from East to West Aftica (Pinel et al. 2000), with a strong
link between genetic and geographic distance (Abubakar et al.
2003). RYMYV originated in East Africa, dispersed towards West
Africa, and gradually differentiated (Fargette et al. 2004). It has
been hypothesized that in a wavelike process, wind-borne vec-
tors spread plant viruses and initiate new outbreaks on the con-
tinental scale (Fargette et al. 2006). An analysis of the molecular
diversity of RYMYV in the Zanzibar archipelago and Madagascar
revealed frequent spread over dozens of kilometers. This finding
was consistent with the flight range of beetle vectors, which in
rare cases may reach hundreds of kilometers (Rakotomalala et al.
2013). The intensity and extent of rice cultivation could be the
main determinant of RYMV emergence and spread (Trovao
et al. 2015). Nevertheless, this hypothesis was recently chal-
lenged (Dellicour et al. 2018).

Short- (plant community) and long- (regional and continen-
tal) distance RYMYV dispersal has been theoretically modeled.
However, the mechanism by which the virus spreads from
field to field at the community level is unknown. Thus, the
conditions conducive to local disease outbreaks are poorly
understood in viral epidemics (Traoré et al. 2009). In Africa,
there are patchy distributions of agronomic practices across
farming communities (Sekiya et al. 2017; Sekiya et al. 2020;
Senthilkumar et al. 2018); this pattern greatly affects viral
spread. Interactions among rice farmers in close proximity
also help disseminate the virus. RYMV likely spreads more
frequently between neighboring than remote plots through
biotic and abiotic agents. Therefore, spatial contiguity and
heterogeneity are important variables in any investigation of
RYMYV spread at the farming community level.

Spatial autoregressive models are powerful tools for ana-
lyzing the spread of plant disease. They account for spatial
contiguity and heterogeneity at the community level.
Autologistic models of plant disease spread integrate binary
response variables, including disease presence or absence.
These models were implicated in a pioneering work on the
development of statistical theory (Besag 1972). The
autologistic model has been applied to establish the incidence
of footrot disease in endive (Besag 1977). It was then integrat-
ed with environmental covariates and used to model the influ-
ence of soil moisture on Phyfophthora epidemics in bell pep-
per (Gumpertz et al., 1997). The autologistic model has been
applied with categorical data, such as a 1-4 disease rating
scale (Strauss 1992). It also has been used to assess anthrac-
nose disease in tropical pasture legumes (Smyth et al. 1992).

A spatial autoregressive probit model fitted with management
covariates has been applied to evaluate potato leaf roll virus
(PLRV) to identify efficacious management options (Marsh
et al. 2000). Spatial autoregressive models also have been
extensively and empirically tested in social science applica-
tions including crime analysis, environmetrics, epidemiology,
and public health (Anselin 2010).

The aim of this study was to identify mechanisms underlying
short-distance RYMYV transmission at the plant community level,
as well as long-distance viral dispersal at the regional and conti-
nental scales. Here, we tested the hypothesis that the spread of
RYMYV at the farming community level is associated with agro-
nomic practices used for each plot. To test this hypothesis, we
constructed a spatial autoregressive model, using visual diagnosis
of RYMV infection as the dependent variable, with farmers’
individual attributes and agronomic practices as independent var-
iables. In agronomic studies, spatial autoregressive models have
been successful, but limited to smaller-scale field experiments
(Florax et al. 2002; Gumpertz et al., 1997; Liu et al. 2015); these
models have rarely been employed at the farming community
level. The limited use of this analytical tool could be ascribed to
the difficulty of obtaining data for larger-scale variables. In this
study, we have upscaled the application of spatial autoregressive
models from the experimental field to the farming community
level by obtaining dependent and independent variables via easy-
to-implement techniques: visual observation and farmer inter-
views, respectively. We performed field surveys in the Lower
Moshi Irrigation Scheme (LMIS) in Tanzania (Fig. 2). Rice
farmers in the region have been practicing basic cultivation tech-
niques such as land preparation (plowing, bundling, and level-
ing), seedling nursery in seedbeds, transplanting of young seed-
lings in straight lines, application of basal and topdressing fertil-
izers, and irrigation using modern water supply facilities (see
more details in Sekiya et al. 2017 and Sekiya et al. 2020). IR64
has been the most popular rice cultivar, but TXD306 has been
gradually disseminated in the LMIS (Sekiya et al. 2013). Plant
residues are routinely removed for use as animal feed and bed-
ding by upland farmers at Mt. Kilimanjaro. Rice farmers have
obtained high yields with low incidences of serious disease
(Ikegami 1995). RYMV was nonetheless detected by immuno-
logical and molecular techniques in rice leaves collected from the
LMIS in 2010 (Uke et al. 2015). Thereafter, a growing number
of rice farmers complained of plant damage consistent with
RYMV infection.

2 Materials and methods
2.1 Lower Moshi Irrigation Scheme
The LMIS is located in the Moshi rural district of the

Kilimanjaro region (3°23'2"-3°28'42" S, 37°20'57"-37° 25'
14" E, 717-768 masl). The scheme was constructed in 1987

INRAD 4 springe



15 Page4of 15

Agron. Sustain. Dev. (2022) 42: 15

Fig. 2 Schematic of the Lower
Moshi Irrigation Scheme (LMIS).
Plots are overlaid on an aerial
photograph of LMIS, located in
the Moshi rural district of the
Kilimanjaro region (3°23"2"—
3°28'42" S, 37°20'57"-37° 25'
14" E, 717-768 masl). The
scheme extends ~12 km from
NW to SE, with a total area of
approximately 1100 ha. LMIS
introduces water from the Njoro
and Rau rivers flowing from Mt.
Kilimanjaro to irrigate the
Mabogini (MS) and Rau systems
(RS), respectively. Traditionally,
MS is further divided into the
Upper and Lower Mabogini
systems. For water-supply
planning, LMIS is divided into 45
blocks each of which consists of
39 to 140 plots of approximately
0.3 ha. Until the early 1990s, the
irrigation water was distributed
evenly throughout the scheme so
that the cropping intensity did not
vary from one block to another.
Due to the collapse of water the
management system, however,
the blocks upstream started using
more water than those
downstream. Generally, rice

0 05

Rau system (RS)

Mabogini system (MS)

Legend
LMIS plots

plants were grown twice a year in X
UM and once in 1 to 2 years in the
other areas.

2 3

- e s Kilometers

using financial aid from Japan. It extends for ~12 km from
NW to SE (Fig. 2). Its total area is 1100 ha, divided into
45 blocks, each consisting of 39—140 plots. Each plot area
is ~0.3 ha. From the late 1980s to the early 1990s, the
scheme was stewarded with a water distribution plan and
communal field management under the supervision of the
Kilimanjaro region. However, the system collapsed after
management was transferred from the Kilimanjaro region
to the farmers’ group.

Upstream farmers in Upper Mabogini system began an-
nual rice double-cropping between December and April
(rainy season) and between June and October (dry season).
By the late 1990s, it became difficult for some downstream
farmers in the Lower Mabogini and Rau systems to grow
rice, even only once per year. Downstream farmers who
are unable to grow rice during the rainy season must grow
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maize (Zea mays L.) instead, which requires supplemental
irrigation. IR54 was the most popular rice cultivar in the
1980s and 1990s. However, it was replaced by IR64 in the
2000s (Sekiya et al. 2013). TXD306 was then bred by the
Tanzanian Research Institute and has been gradually dis-
seminated in LMIS.

2.2 Field survey

A field survey was conducted in the first (July-December,
2011, dry), second (December 201 1-June 2012, rainy), third
(July—December 2012, dry), and fourth (January—June 2013,
rainy) cropping seasons. Two surveyors were selected from
the LMIS management office and Kilimanjaro Agricultural
Training Centre (KATC) to review RYMYV literature and pho-
tographs. They practiced visual observation to judge whether
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rice plant leaves were yellow because of RYMV infection or
other factors such as nutrient deficiency. The surveyors even-
tually learned to identify RYMYV infection readily by the char-
acteristic yellow leaf mottling it causes. The surveyors visited
the area 1 month after transplanting. The timings of transplant-
ing and visits differed between plots by < 1 month. Therefore,
the surveyors visited plots separately on the basis of plant
growth. First, a surveyor would inspect the plot to evaluate
the occurrence of RYMYV at a single point. Second, a surveyor
would walk slowly through the plot and thoroughly examine it
for RYMYV occurrence. To confirm the accuracy of these ob-
servations, 323 samples were collected from all plots visually
judged to be infected in the first and second cropping seasons.
Two or three leaves were collected from each of two or three
infected rice plants, cut into 2—3-cm segments, and mixed
thoroughly, placed in paper envelopes, and air-dried. RYMV
was detected by double antibody sandwich ELISA (DAS-
ELISA) (Clark and Adams 1977) with a kit containing poly-
clonal antibodies (NEOGEN Europe Ltd., Ayr, UK). A total
of 265 samples were RYMV-positive, confirming the accura-
cy of visual observation; therefore, the final field survey was
only visual in the third and fourth cropping seasons. In total,
the surveyors visited 1337, 874, 1170, and 835 plots in the
first, second, third, and fourth cropping seasons, respectively,
for visual detection of RYMV infection. Infection was then
calculated for the plot level from the ratio of RYM V-infected
rice hills to the total number of hills per plot. The RYMV
status classifications were 0%, 1-10%, 11-50%, and > 51%.

2.3 Farmer interviews

Questionnaire-based surveys were conducted between July
(transplanting period) and December (harvesting period) 2011,
in the first cropping season, and between May (heading period)
and June (harvesting period) 2012, in the second cropping sea-
son. As some LMIS landlords entrusted rice cultivation to their
employees, we expected that financial and temporal costs would
have to be incurred to locate absent landlords. Thence, the LMIS
management office selected landlords directly engaged in rice
cultivation. During this selection process, the number of target
landlords, and hence plots, were less than the numbers of field-
surveyed plots (1337, 874, 1170, and 835 plots in the first, sec-
ond, third, and fourth cropping season, respectively). Thereafter,
some landlords were visited individually, and groups of other
landlords were met at events such as church services.
Landlords were queried about their age and standard agronomic
practices, including soil preparation, seedling propagation, fallow
period, rice-maize farming systems, insecticide application, plant
residue treatment, cultivar types, and crop yield over the past 3
years. Some landlords were unable to grow rice either in the first
nor second cropping season due to either fallow periods or maize
cultivation in crop rotation. Moreover, many landlords were still
practicing rice cultivation when they were queried about field

practices, making it difficult to assess field practices in either
the first or second cropping seasons. Therefore, landlords were
requested to state the practices that they had conducted in the past
few seasons in their plots as “standard agronomic practices”.
Interviewee contact information was collected in the event that
contradictory data had to be clarified at a later time via telephone.
After this process, 221 landlords with 424 plots were then select-
ed from across LMIS for further analysis. Descriptive statistics of
the initially selected plots by landlord (the number of plots per
landlord) were 1.92, 1.87, 1 and 13 (mean, standard deviation,
minimum value, and maximum value, respectively). Although
the maximum number of plots per landlord was as large as 13,
the standard deviation was as small as 1.87, indicating that the
number of plots cultivated per farmer was relatively
homogeneous.

2.4 Data analysis

To analyze the relationship between RYMV status and
agronomic practices, the spatial autoregressive model
described by LeSage and Pace (2009) and Wilhelm and de
Matos (2013) was applied to field survey and farmer interview
data. The model is represented by the equation:

V' =pWy" +XB+e,e~N (0,021,) )

where y* is a latent variable related to a binary outcome var-
iable y;, y;=11ify;* >0, and y; = 0 if y;* < 0. Because this is the
first study to analyze the relationships between RYMYV status
and agronomic practices, dependent and independent vari-
ables that are predetermined or theoretically appropriate do
not exist; therefore, the selection of those variables was
exploratory.

Two variables, RYMV infection and RYMV aggravation,
were used as dependent variables. Infection indicates whether
or not a plot was infected at a given time or period, while
aggravation represents whether the initial RYMV status of a
plot got worse after a while. Here, RYMYV infection was esti-
mated in two different ways:

1) y;=11if> 1% ofthe rice hills in plot i was observed in the
first cropping seasons; otherwise, y; = 0 (model 1), and

2) y;=1if> 1% of'the rice hills in plot i was observed in one
in four cropping seasons; otherwise, y; = 0 (model 2).

Aggravation of RYMV infection was estimated in two dif-
ferent ways:

1) y;=1 if the infection rate of plot i increased from the first
to the fourth cropping seasons irrespective of the infection
rate in the second and third cropping seasons; otherwise,
y; = 0 (model 3). For example, RYMV spread was taken
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to be aggravated if < 1% of the rice hills were infected in
the first season and > 1% of the rice hills were infected in
the fourth season.

2) y; =1 if the infection rate of plot i in the first cropping
season increased in one in the subsequent three cropping
seasons, y; = 0 otherwise (model 4). For example, RYMV
spread would be scored as aggravated if < 1% of the rice
hills were infected in the first season, and 1-10% of the
rice hills were infected in the second season while < 1%
of rice hills were infected in the third and fourth seasons.

The parameter p captures spatial plot dependence.
When p is positive, a plot with nearby infected plots tends

to be infected itself and vice versa. W is the spatial weight
matrix representing spatial contiguity among plots. As
shown in Figs. 3 and 4, the plots were distributed more
densely in the northern part (Upper Mabogini system) and
more sparsely in the middle and southern parts (Lower
Mabogini and Rau systems). In this setting, it should be
inappropriate to create a nearest neighbor-type weight ma-
trix, since some plots in the distance of a target plot could
not be regarded to be contiguous in the middle or south-
ern parts. Furthermore, plots were not necessarily adjacent
in the northern part, making it once again inappropriate to
create a contiguity-based weighting matrix. It is therefore
straightforward to construct a spatial weight matrix based

Fig. 3 Distribution of plots (424 (@ (b)) = N
owned by 221 landlords) initially ﬁgﬁ'ﬁg;h. .,f-ﬂ,::;N A
selected across the Lower Moshi "'@‘"; i, "F*‘. i
Irrigation Scheme (LMIS) for = e
data collection. Blue plot, d= g&"_gai
dependent variable is 0; red plot, = ==
dependent variable is 1; gray plot, - —
missing values or an outlier e % = %
excluded from model estimations. } E i - P
(a) Distribution of a dependent =t W =5 24
variable (whether or not rice s; ﬁ qg%ﬁ‘f ;; : ‘{%ﬂ‘ )
yellow mottle virus [RYMV] % ; s o
infection was observed in the first ‘ S %
cropping season) used in model 1 S L&
(201 plots, 118 landlords). K4 4%} “%
(b) Distribution of a dependent [ Not infected (0) [ Not infected (0)
variable (whether or not RYMV
infection was observed in one in I nfected (1) I Infected (1)
four cropping seasons) used in the [ Missing . [ Missing . ‘
estimation of model 2 (228 plots, ~  LMIS plots s s | LMIS plots ‘ .
139 landlords). (¢) Distribution of T o s ol — Lo % o
a dependent variable (whether or - - -
not RYMYV infection status in the
first cropping season aggravated
in the fourth cropping season) (c) L (d) [T s 0o 05 1 2 3 4
used in the estimation of model 3 ﬂ'lgr;:;N n@rl‘lg;m -
(128 plots, 87 landlords). '“W'n iy ‘“"@’H”.!L::‘t
(d) Distribution of a dependent "&.%0 “-lni'ﬁQ
variable (whether or not RYMV =, =
infection status in the first ase c=e
cropping season aggravated in i =
one of the subsequent three s g
cropping seasons) used in the . - i = P
estimation of model 4 (128 plots, S Lty =5 MR
87 landlords). g% ﬁ 4;?"%‘51 s% f‘é ”?%ﬁ
le @QI %
b 3 P
[ Not aggravated (0) [ Not aggravated (0)
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LMIS plots . < LMIS plots >
o % \ SRl %
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on distance metrics; plots within a specified, small dis-  variables was not obtained for some of the initially selected
tance from a target plot were considered contiguous. 424 plots. Moreover, the age of one landlord was reported to
Then, the radius distance spatial weight matrix was em-  be more than 100 years. Then, RYMYV infection was estimated

ployed to represent contiguity in this study. An element  using 201 samples (plots) owned by 118 landlords in model 1,
W;; = 1 if plot j is located within a specified distance from 228 plots owned by 139 landlords in model 2, and 128 plots
plot i. Otherwise, Wj; = 0. Sensitivity was tested by ap-  owned by 87 landlords in models 3 and 4, after excluding
plying different radii. For our estimations, the weight ma-  those with missing values and the outlier. Descriptive statistics
trix was row-standardized; the sum of all row elements of the plots by landlord are 1.70, 1.69, 1, and 13 in model 1;

was set to unity.

1.64, 1.61, 1, and 13 in model 2; and 1.47, 1.08, 1, and 7 in

X is an independent variable matrix including the afore- models 3 and 4 (mean, standard deviation, minimum value,
mentioned farmer attributes and standard agronomic practices. and maximum value, respectively). Means and standard devi-
Some of the initially selected 221 landlords failed to provide  ations of the plots by landlord in models 1 (1.70 and 1.69) and
some independent variables, while one of the two dependent 2 (1.64 and 1.61) were relatively small but still comparable to

INRAD 4 springe



15 Page8of 15

Agron. Sustain. Dev. (2022) 42: 15

those in the initially selected plots (1.92 and 1.87), suggesting
little bias in the sampling of landlords from the initially select-
ed 221 landlords. Distributions of the estimated plots in
models 1 (Fig. 3a) and 2 (Fig. 3b) were not largely heteroge-
neous among the initially selected 424 plots, suggesting little
bias in plot sampling. However, mean and standard deviation
of'the plots by landlord in models 3 and 4 (1.47 and 1.08) were
small compared to those in the initially selected plots (1.92
and 1.87); the estimated plots in these two models were rela-
tively heterogeneously distributed in the Upper Mabogini sys-
tem (Fig. 3¢ and d), suggesting that the estimated plots in
models 3 and 4 may represent landlords with smaller numbers
of plots in Upper Mabogini system. Therefore, estimated re-
sults should be interpreted with caution.

0 is a parameter vector. The error term ¢ is assumed to be
normally distributed with variance 0.2, where 1, is a unit ma-
trix. The term 0.2 is conventionally set to unity for identification
(LeSage and Pace 2009). All parameters were estimated by the
Bayesian method with Markov Chain Monte Carlo (MCMC)
sampling and the “spatialprobit” package in R v. 3.5.3 (R Core
Team, Vienna, Austria). Details of the estimation procedure
may be found in works of LeSage and Pace (2009) and
Wilhelm and de Matos (2013). Here, the prior distributions of
pand S were Uni (—1, 1) and N (c, T), respectively; c is the prior
mean of multivariate normal distribution, and 7 is the prior
variance. Because no information was available on prior distri-
butions, the prior of p was considered uninformative, and the
theoretical range of p between —1 and 1 was employed. The
prior of 3 was also considered uninformative, and ¢ was treated
as a vector of zeros, and the diagonal elements of 7" were set at
le+12. In the MCMC sampling, 10,000 samples were drawn
with 5000 burn-in samples. The trace plots for all parameters
converged after 5000 burn-ins in the estimations of RYMV
infection and aggravation.

3 Results and discussion
3.1 Field survey and farmer interview

RYMV infection in each cropping season is shown in Fig. 4.
Infection was relatively dense in the northern part (Upper
Mabogini system) and sparse in the middle (Lower
Mabogini) and southern (Rau system) parts throughout all
four cropping seasons. In the first cropping season, RYMV
was almost completely confined in Upper Mabogini system,
where the infection ratios were low (1-10%) in most cases,
with a limited number of plots infected in the Lower Mabogini
and Rau systems (Fig. 4a). In the second cropping season, an
increased number of plots were found to be moderately (11—
50%) and highly (>50%) infected in Upper Mabogini system,
with viral spread in the northern part of Rau system (Fig. 4b).
In the third cropping season, the infection appeared to have
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diminished across the LMIS; highly infected plots (>50%)
almost disappeared in the Upper Mabogini system, with only
a limited number of plots infected (1-10%) in the Rau system
(Fig. 4c). In the fourth cropping season, however, RYMV
appeared to have regained momentum across the entire
LMIS; the numbers of moderately (11-50%) and highly
(>50%) infected plots increased again in Upper Mabogini,
and the infection was found in the western and southern parts
of the Rau system (Fig. 4d).

Descriptive statistics for the dataset collected from field
surveys and farmer interviews are shown in Table 1. The
mean infection rates were ~0.37 and ~0.6 for the first and all
four cropping seasons, respectively. The infection rate in-
creased from the first to fourth cropping seasons in ~37% of
all plots and from the first to one of four cropping seasons in
53% of all plots. These observed infection and aggravation
rates were consistent with farmer complaints that RYMV
had rapidly spread across LMIS during the survey period.

The average farmer age was 54 years, and the average
plot size was ~0.28 ha. As few as 41% of all plots were
plowed. As the transfer of scheme management dissolved
joint tractor ownership, most farmers had to hire private
tractor operators. To reduce this expense, some farmers
obviated plowing by using puddle irrigation. Upstream
farmers using double-cropping kept their plots wet
throughout the year and omitted plowing because of exces-
sive water. About 42% of the farmers purchased rice seeds,
either to introduce new cultivars or to purify existing cul-
tivars by renewing their seeds.

Approximately 73% of all farmers participated in commu-
nal nurseries, which had been introduced immediately after
scheme construction. They supported uniform rice plant
growth across the scheme and effective water distribution
planning. The transfer of scheme management had initially
reduced the proportion of farmers involved in the communal
nursery; however, their participation gradually increased be-
cause harvest synchronization attracted more traders to the
scheme. IR64 was still grown on ~80% of all plots, but
TXD306 was slowly disseminated across the scheme.

The average paddy yield was 7.9 t ha™', far surpassing
the national average of 2.1 t ha™' (Sekiya et al. 2017;
MAFC (Ministry of Agriculture Food Security and
Cooperatives), 2009). Modern irrigation infrastructure in-
cludes a flat land surface for smooth water flow (Ikegami
1995) and widespread adoption of basic cultivation tech-
niques (Sekiya et al. 2020). These practices have helped
increase crop yields. After harvest, plant residues such as
straw were removed from ~25% of all plots. In Tanzania,
plant residues are left in the rice fields after harvest and
incorporated into the soil before puddling water is intro-
duced. However, upland farmers at Mt. Kilimanjaro use
LMIS straw as animal feed and bedding, so plant residues
are removed from a substantial proportion of the plots in
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Table1 Descriptive statistics of data collected from field surveys of rice
yellow mottle virus (RYMYV) infection and farmer interviews. SD:
standard deviation; Min: minimum value; Max: maximum value; Obs.:
number of observations; Model 1: whether or not RYMV infection was
observed in the first cropping season (see Table 2); Model 2: whether or
not RYMV infection was observed in one of four cropping seasons (see

Table 3); Model 3: whether or not RYMYV infection status in the first
cropping season was aggravated in the fourth cropping season (see
Table 4); Model 4: whether or not RYMV infection status in the first
cropping season was aggravated in one of the subsequent three
cropping seasons (see Table 5).

Variable Mean SD Min Max Obs.
Dependent RYMYV infection (model 1) 0.372 0.487 0 1 349
RYMYV infection (model 2) 0.614 0.487 0 1 389
RYMYV aggravation (model 3) 0.370 0.498 0 1 227
RYMYV aggravation (model 4) 0.531 0.500 0 1 228
Independent Farmer age 54.322 13.813 22 88 304
Plot size (ha) 0.281 0.066 0.030 0.750 347
Plowing 0.413 0.494 0 1 315
Seed purchase 0.417 0.494 0 1 379
Communal nursery 0.725 0.447 0 1 404
IR64 0.803 0.398 0 1 351
Herbicide application 0.465 0.500 0 1 344
Paddy yield (t ha™) 7.875 1.481 1.400 12.444 323
Straw removal 0.251 0.434 0 1 342
Crop rotation 0.542 0.499 0 1 347
Table 2 Posterior means of each estimate and marginal effects of posterior mean of a variable effect; Rho: parameter of spatial

changes in each independent variable obtained from spatial
autoregressive model 1 for rice yellow mottle virus (RYMV) infection
in season 1 in the Lower Moshi Irrigation Scheme (LMIS), Tanzania.
Mean (Posterior means): posterior mean of an estimate; 95% LB: lower
bound of the 95% credible interval of an estimate; 95% UB: upper bound
of the 95% credible interval of an estimate; Mean (Marginal effect):

dependence; Obs.: number of observations. 90% LB and 90% UB for
posterior mean of IR64 are 0.037 and 1.017, respectively while 90% LB
and 90% UB for marginal effect of IR64 are 0.014 and 0.413,
respectively. 90% LB and 90% UB for posterior mean of straw removal
are -0.952 and -0.025, respectively while 90% LB and 90% UB for
marginal effect of straw removal are -0.382 and -0.009, respectively.

Posterior means Marginal effect

Mean 95% LB 95% UB Mean 95% LB 95% UB
Intercept 0.737 -1.224 2.698
Age —0.022 —0.038 —0.006 —0.008 —0.015 —0.002
Plot size (ha) -2.929 —6.678 0.754 —1.135 —2.714 0.287
Plowing —0.251 —0.708 0.208 —-0.097 —0.285 0.083
Seed purchase 0.599 0.153 1.048 0.234 0.056 0.446
Communal nursery 0.119 —0.481 0.728 0.047 —0.186 0.294
IR64 0.522 —0.049 1.121 0.203 —0.019 0.461
Herbicide application 0.161 —0.295 0.615 0.061 -0.120 0.240
Paddy yield (t ha ") 0.086 —0.057 0.234 0.034 —0.021 0.098
Straw removal —0.488 —1.056 0.065 —0.189 —0.424 0.026
Crop rotation —0.788 —1.383 —0.200 —0.298 —0.492 —0.088
Rho 0.380 0.103 0.619
Obs. 201
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LMIS. During water shortages, a maize (Zea mays L.)
rotation was grown under upland conditions (crop rota-
tion) in 54% of all plots.

3.2 Spatial contiguity of RYMV infection

A spatial autoregressive model was constructed for model 1
from visual examinations of RYMV infection in the first
cropping season and farmer interviews. Posterior means and
95% credible intervals for each estimate are shown in Table 2.
Spatial dependence (p) was detected for RYMYV infection. A
sensitivity analysis of the radius setting in the spatial weight
matrix (W) was conducted by increasing the radius from 0.1 to
1.0 km at 0.1-km intervals; p values were positive, and the
95% credible interval contained no zero up to radii of 0.4 km.
However, the p values became “nonsignificant” at radii equal
to or greater than 0.5. Hence, a plot located within ~0.4 km of
any RYMV-infected plot was susceptible to RYMYV infection
in the first cropping season.

The probability of infection in the first cropping sea-
son was increased for plots grown with purchased seeds.
When estimated with 90% credible intervals, the proba-
bility was increased for plots with the IR64. In contrast,
the probability of infection was decreased for crops
grown by elder farmers and when rice straw was re-
moved. With 90% credible intervals, the probability also
was lower when crops were rotated.

The marginal effects on infection associated with each inde-
pendent variable are also shown in Table 2. The combined
direct and indirect effects represent the total marginal effects.
Direct marginal effects indicated changes in infection caused by
a marginal change in an independent variable when the means

of other independent variables were considered. Indirect mar-
ginal effects capture effects of the spatial dependence of
RYMYV infection. While statistical significance is not applicable
in Bayesian estimations, nevertheless, a marginal effect is con-
sidered to be statistically significant when the 95% confidence
interval of the marginal effect contains no zero.

Our estimation indicated that seed purchase and preferen-
tial IR64 production could increase the probability of infection
by 23.4% and 20.3%, respectively. In contrast, 1-year increase
in age, straw removal, and crop rotation decreased the proba-
bility of infection by 0.8%, 18.9%, and 29.8%, respectively.
These results strongly suggest that inter-plot spread (RYMV
infection) in the first cropping season is associated with farmer
agronomic practices and experiences.

Another spatial autoregressive model was constructed
for model 2, in which the dependent variable was whether
or not a plot had been infected in at least one of the four
cropping seasons. Posterior means and 95% credible in-
tervals for each estimate are shown in Table 3. Spatial
dependence (p) was detected for RYMV infection, as
was the case for model 1. A sensitivity analysis of the
radius setting in the spatial weight matrix found that plots
located within ~0.8 km of any infected plot were suscep-
tible to infection. This “susceptible radius” was longer
than the 0.4 km estimated for model 1. The probability
of infection was increased for plots with high-yield and
grown with IR64. In contrast, the probability of infection
was decreased for plots in which rice straw was removed
and crops were rotated. The marginal effect estimates in-
dicated that preferential IR64 production and an increase
in paddy yield by 1 t ha™' could increase the probability
of RYMYV infection by 26.9% and 6.2%, respectively. In

Table 3 Posterior means of each

estimate and marginal effects of Posterior means Marginal effect
changes in each independent
variable obtained from spatial Mean 95% LB 95% UB Mean 95% LB 95% UB
autoregressive model 2 for rice
ye]]ow mottle virus (RYMYV) lntercept 1.482 -1.232 4438
infection observed beWeen the Age —-0.013 —-0.032 0.005 —0.003 —-0.007 0.001
first and fourth cropping seasons  py ¢ i (hg) 3516 -9.015 1131 ~0.801  -2.109 0252
in the Lower Moshi Irrigation )
Scheme (LMIS), Tanzania. Mean Plowing —0.103 —0.673 0.447 —-0.023 —0.155 0.101
(posterior means): Posterior mean Seed purchase 0.162 —0.401 0.714 0.035 -0.096 0.156
gf andestén;lat%;;% L;?bllower Communal nursery ~1.086 2812 0.458 ~0.249 -0.676 0.104

ound ot the o credible
interval of an estimate: 95% UB: IR64 1.196 0.496 1.927 0.269 0.118 0.435
upper bound of the 95% credible Herbicide application 0.163 —0.429 0.753 0.037 —0.095 0.178
interval of an estimate; Mean Paddy yield (t ha™") 0.273 0.089 0.465 0.062 0.021 0.107
(marginal effect): posterior mean  gyray, removal -1229 2,017 ~0.490 0278 —0.470 ~0.111
of a variable effect; Rho: .
parameter of spatial dependence; Crop rotation —2.140 -3.164 —1.224 -0.477 —0.662 -0.323
Obs.: number of observations. Rho 0.306 0.034 0.548

Obs. 228
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Table 4 Posterior means of each

estimate and marginal effects of Posterior means Marginal effect
changes in each independent
variable obtained from spatial Mean 95% LB 95% UB Mean 95% LB 95% UB
autoregressive model 3 for rice
yellow mottle virus (RYMV) Intercept 0.182 —-1.876 2274
aggravation in the Lower Moshi  Age 0.004 -0.014 0.022 0.002 -0.005 0.008
Irrigation Scheme (LMIS), Plot size (ha) 068 2877 4097 0241 1115 1.490
Tanzania. Mean (Posterior .
means): posterior mean of an Plowing 0.118 —0.391 0.626 0.043 —0.145 0.237
estimate; 95% LB: lower bound Seed purchase —0.284 —-0.789 0.232 —0.104 —0.311 0.083
of the 95%53;6(336 imervil of zn Communal nursery -0.105 ~0.702 0.483 -0.038 0258 0.179
estimate; 95% UB: upper boun . _
of the 95% credible interval of an IR64 0.370 0.262 1.025 0.133 0.099 0.384
estimate; Mean (Marginal effect): Herbicide application —0.668 -1.197 —0.146 —0.243 -0.476 —0.053
posterior mean of a variable Paddy yield (t ha ") -0.037 —0.186 0.110 -0.013 -0.069 0.042
effect; Rho: parameter of spatial = gyrayy removal 0.043 ~0.587 0.677 0.016 0216 0.256
dependence; Obs.: number of .
observations. Crop rotation —0.995 —1.803 —0.236 —-0.354 —0.639 —0.091
Rho 0.096 —-0.329 0.457
Obs. 128

contrast, straw removal and crop rotation decreased the
probability of RYMYV infection by 27.8% and 47.7%,
respectively.

The two models commonly disclosed that inter-plot
virus diffusion is enhanced by IR64 cultivation, but mit-
igated by removing plant residues and practicing crop
rotation. The susceptible radii (0.4 or 0.8 km) detected
by the two models lie within the recorded flight range of
beetle vectors (Rakotomalala et al. 2013). Hence, beetles
may contribute to inter-plot RYMV spread, especially
during plant growth (Bakker 1974). IR64 has been used
as a susceptibility check in several RYMV-resistant culti-
var breeding programs (Rakotomalala et al. 2008;
Ndikuryayo et al. 2020; Pidon et al. 2017). The adoption

of IR64 might increase RYMYV susceptibility in the pres-
ence of beetles. As post-harvest animal grazing is a com-
mon practice in LMIS, cattle and donkeys feeding on
straw and rice stubble might also contribute to inter-plot
dissemination (Sarra and Peters 2003; Traoré et al. 2009).
Post-harvest animal grazing and, by extension, inter-plot
RYMYV spread, could be reduced by removing plant resi-
due and practicing crop rotation.

3.3 Spatial contiguity of RYMV aggravation

A spatial autoregressive model was constructed for model
3, in which RYMV aggravation was estimated based on
whether or not the infection rate in the first season had

Table 5 Posterior means of each

estimate and marginal effects of Posterior means Marginal effect
changes in each independent
variable obtained from spatial Mean 95% LB 95% UB Mean 95% LB 95% UB
autoregressive model 4 for rice
yellow mottle virus (RYMV) Intercept —0.456 —2.544 1.640
aggravation in the Lower Moshi  Age 0.006 -0.012 0.025 0.002 ~0.004 0.008
Irrigation Scheme (LMIS), Plot size (ha) 1.484 2085 4857 0.448 ~0.674 1503
Tanzania. Mean (Posterior )
means): posterior mean of an Plowing 0.331 —0.188 0.848 0.102 —0.059 0.279
estimate; 95% LB: lower bound Seed purchase —0.243 -0.759 0.277 -0.076 -0.252 0.086
of the 950(/;5%;&[1}1];& imervil of zn Communal nursery 0.122 —0.482 0.728 0.038 —0.150 0.229
estimate; 95% : upper boun . .
of the 95% credible interval of an IR64 0.499 0.140 1.160 0.133 0.045 0.370
estimate; Mean (Marginal effect): Herbicide application —0.596 —1.153 —0.051 —0.184 —0.381 —0.016
posterior mean of a variable Paddy yield (t ha™") 0.006 —0.145 0.157 0.002 -0.044 0.050
effect; Rho: parameter of spatial ~ gyayy removal 0258  —0.894 0.377 ~0.079  —0.285 0.120
dependence; Obs.: number of .
observations. Crop rotation -1.497 —2.440 —0.627 —-0.452 —0.700 -0.214
Rho —0.010 —0.458 0.377
Obs. 128
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increased in the fourth cropping season. Posterior means
and 95% credible intervals for each estimate are shown in
Table 4. Although spatial contiguity was detected for
RYMV spread in the rice-farming community, spatial de-
pendence (p) was not detected for intra-plot RYMYV aggra-
vation. Without the spatial dependence, the constructed
model was regarded as a probit model, which predicted
that the probability of RYMV aggravation was relatively
lower for plots treated with herbicide and subjected to crop
rotation. The probability of aggravation was not affected
by individual farmer variables or other agronomic prac-
tices. The marginal effects on aggravation caused by the
changes in each independent variable are also shown in
Table 4. The estimation indicated that herbicide applica-
tion and crop rotation could decrease the probability of
RYMYV aggravation by 24.3% and 35.4%, respectively.

Another spatial autoregressive model was constructed for
model 4, in which RYMYV aggravation was estimated based
on whether or not the infection rate in the first season had
increased in any of the subsequent cropping seasons.
Posterior means, marginal effect, and 95% credible intervals
for each estimate are shown in Table 5. As we observed for
model 3, spatial dependence (p) was not detected in model 4.
This probit model also detected “significantly” negative ef-
fects in herbicide application and crop rotation as was the case
for the model 3. In this model, herbicide application and crop
rotation were estimated to decrease the probability of RYMV
aggravation by 18.4% and 45.2%, respectively.

The probit models both predicted that herbicide application
and crop rotation can mitigate intra-plot RYMV aggravation.
In LMIS, selective herbicides were applied during rice pro-
duction, whereas nonselective herbicides were used after har-
vest and/or before puddling. As nonselective herbicides might
reduce the virus population by damaging wild reservoirs and
infected rice stubble (Traoré et al. 2009), they may decrease
the risk of intra-plot RYMV aggravation. During the maize
phase of crop rotation, wet paddy soils are converted to dry
uplands, so infected plant residues and rice stubble are kept
dry for 3-4 months. RYMV infectivity diminishes when rice
straw is kept dry for over 42 days (Uke et al. 2014). Crop
rotation can reduce the virus population by drying infected
rice straw and stubble during maize production.

3.4 Agronomic measures against local RYMV
outbreaks

The present study identified specific reasonable agronomic
measures that farmers should adopt to attenuate RYMYV out-
breaks. Our models estimated that crop rotation is the most
effective modality for lowering the risk of inter-plot spread
(47.7%). As rice is traded at higher prices than maize in
Tanzania (Sekiya et al. 2020), LMIS farmers have benefited
from the price gap between rice and maize by implementing
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modern irrigation and advanced cultivation technologies
(Sekiya et al. 2017). With the current price gap, complete
replacement of rice with maize in crop rotation is impractical
as a preventive measure, as farmers would incur large finan-
cial losses. Although plant residue removal is less efficacious
than crop rotation as a defense against RYMYV dissemination
(27.8%), it is relatively easier to practice and has minimal
impact on revenue. The labor cost associated with plant resi-
due removal is negligible in LMIS, as upland farmers from
Mt. Kilimanjaro already collect it.

Replacement of IR64 with RYMV-resistant cultivars is
about as effective as plant residue removal at inhibiting
RYMV spread (26.9%). TXD306 was often grown instead
of IR64 and helped reduce the probability of inter-plot
RYMYV spread. The yield performance of TXD306 is appar-
ently comparable or superior to that of IR64 (Sekiya et al.
2015). Though an initial seed purchase investment would be
required, this cost should be lowered over time via self-seed
multiplication. Thus, replacement of IR64 with TXD306 is a
reasonable strategy for reducing inter-plot virus spread in a
cost-effective manner.

When RYMYV infection has already been established in a
plot, crop rotation is most effective for reducing the probabil-
ity of intra-plot RYMV aggravation (35.4%). Nevertheless,
crop rotation may cause farmers to incur substantial losses.
Crop rotation may be recommended when the RYMV infec-
tion rate is already too high to permit a reasonable rice yield
for the following season. In contrast, herbicide application is
effective against intra-plot RYMV aggravation (24.3%) and
has minimal impact on yield; however, the herbicide cost must
be calculated by considering the nature of herbicide and dose
and frequency for its effective use which are still unknown in
the present study. In addition to this financial cost, adverse
effects of herbicide application on health and environment
must be taken into consideration. Thus, rice farmers can likely
lower the risk of inter-plot virus spread by removing plant
residues and replacing cultivars. When disease severity is crit-
ical, herbicide application and crop rotation should be imple-
mented to reduce the probability of intra-plot RYMV
aggravation.

Our models identified candidate agronomic practices for
the effective control of RYMV spread. However, controlled
field trials are needed to establish causality, to better develop
robust preventative measures. Future research should endeav-
or to identify the agents (insects, livestock, or others) involved
in inter-plot virus spread and elucidate the mechanisms by
which each agronomic practice lowers the risks of viral spread
and intra-plot disease aggravation.

Wild reservoirs may be involved in both inter-plot and
inter-seasonal (between cropping seasons) virus spread.
Investigation into the roles of wild reservoirs in virus
spread should also provide important information to aid
in the development of preventative measures against



Agron. Sustain. Dev. (2022) 42: 15

Page 130f 15 15

RYMV outbreaks. While previous studies have reported
the importance of rice seedbeds in intra-plot disease ag-
gravation (Traoré et al. 2006; Traoré et al. 2009), the
participation in a communal nursery was only queried
in the current study. Further investigation into farmers’
handling of their seedlings may elucidate more detailed
mechanisms of intra-plot disease aggravation. The mech-
anism by which TXD306 reduces the probability of
inter-plot RYMV spread merits further investigation, as
this cultivar may itself be susceptible to RYMV (Uke
et al. 2015; Hubert et al. 2017). Hence, the manner in
which TXD306 inhibits inter-plot virus spread may not
necessarily be an attribute of its genetic profile.

3.5 Upscaling of spatial autoregressive analysis

Our spatial autoregressive model, constructed from visual di-
agnoses of RYMYV infection and farmer interviews, revealed
spatial contiguity of RYMV spread in the rice farming com-
munity. The incorporation of spatial contiguity has proven to
be more effective in the analysis of agronomic data than tra-
ditional statistical models, such as ordinary least squares
(OLS). A spatial autoregressive model indicated that
Phytophthora disease in bell pepper was associated with soil
moisture gradients (Gumpertz et al., 1997). It also strongly
related potato net necrosis with agronomic practices (Marsh
et al. 2000). Spatial autoregressive models are currently used
in precision agriculture investigations. Millet yield has been
associated with soil macronutrient variability (Florax et al.
2002). Cotton yield responses to nitrogen and nematicide ap-
plication rates were strongly influenced by landscape position
(Anselin et al. 2004) and soil texture (Liu et al. 2015), respec-
tively. However, these studies were limited to smaller-scale
field experiments, possibly because of the difficulty in mea-
suring explanatory variables such as soil moisture (Gumpertz
et al., 1997), macronutrients (Florax et al. 2002), texture, and
nematode populations (Liu et al. 2015) at larger scales. In
contrast, our findings indicate that this powerful analytical
tool can be upscaled from the experimental field to the farm-
ing community level by integrating the explanatory variables
acquired via farmer interviews.

4 Conclusion

RYMV is a significant constraint on rice production in
Sub-Saharan Africa. Viral transmission and dispersal
models have been established, but the mechanisms under-
lying viral spread in farming communities and conditions
causing local disease outbreaks remain unclear. We con-
structed spatial autoregression models using dependent
RYMYV infection rates and independent variables deter-
mined from field surveys and farmer interviews in

Tanzania. Inter-plot spread and intra-plot aggravation
were associated with local agronomic practices imple-
mented in each plot. We have demonstrated for the first
time that this simple data sampling process facilitated
model construction, allowing it to be expanded from the
small-scale field experiment to the large-scale field survey
level. Our study revealed close associations between
RYMV outbreaks and agronomic practices and lays the
foundation for improved control measures against
RYMYV. Nevertheless, the causal relationships remain to
be clarified before efficacious RYMV outbreak control
measures can be developed.
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