
HAL Id: hal-04005688
https://hal.science/hal-04005688

Submitted on 27 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

At the roots of chocolate: understanding and optimizing
the cacao root-associated microbiome for ecosystem

services. A review
Jennifer E. Schmidt, Ashley Duval, Marney E. Isaac, Pierre Hohmann

To cite this version:
Jennifer E. Schmidt, Ashley Duval, Marney E. Isaac, Pierre Hohmann. At the roots of chocolate:
understanding and optimizing the cacao root-associated microbiome for ecosystem services. A review.
Agronomy for Sustainable Development, 2022, 42 (2), pp.14. �10.1007/s13593-021-00748-2�. �hal-
04005688�

https://hal.science/hal-04005688
https://hal.archives-ouvertes.fr


Vol.:(0123456789)1 3

https://doi.org/10.1007/s13593-021-00748-2

REVIEW ARTICLE

At the roots of chocolate: understanding and optimizing the cacao 
root‑associated microbiome for ecosystem services. A review

Jennifer E. Schmidt1 · Ashley DuVal1 · Marney E. Isaac2 · Pierre Hohmann3

Accepted: 10 December 2021 
© INRAE and Springer-Verlag France SAS, part of Springer Nature 2022

Abstract  
Crop root-associated microbiomes have been heralded for their potential to improve plant health and productivity. Optimizing 
beneficial interactions with rhizosphere microorganisms has been proposed to reduce reliance on external inputs, increase 
pathogen resistance, and alleviate abiotic stresses. Producers of Theobroma cacao, the economically important tropical per-
ennial whose pods are used to produce chocolate, are faced with numerous challenges to sustainable production and rising 
demand. Cacao further provides an interesting case study to complement the extensive plant microbiome research on annual 
crops in temperate regions. However, current knowledge of the cacao root-associated microbiome is limited. Characterizing 
the factors that influence the composition and functions of microbial communities associated with cacao roots is a key first 
step to developing microbiome-targeted interventions for improved agricultural sustainability in cacao agroecosystems. These 
rhizosphere engineering approaches can be understood within the framework of provisioning, regulating, and supporting 
ecosystem services. Here we review the potential of cacao root-associated microbiomes to solve current challenges to produc-
tion by increasing provisioning of ecosystem services. The major points are the following: (1) We describe factors affecting 
the cacao root-associated microbiome by expanding the traditional model of genotype-by-environment (G × E) interactions 
to include agricultural management (G × E × M) and discuss the unique aspects of this model in cacao agroforestry systems. 
(2) We then highlight how specific breeding targets and management practices can be optimized to enhance the ecosystem 
services mediated by the cacao root-associated microbiome. Such optimizations of ecosystem services will alleviate the 
reliance on external inputs and, eventually, contribute to more sustainable cacao production systems.

Keywords Agroforestry · Biocontrol · Breeding; Ecosystem services · G × E × M interactions · Plant–microbe interactions · 
Rhizosphere · Root-associated microbiome · Theobroma cacao
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1 Introduction

The tropical tree Theobroma cacao is highly valued for 
its pods, which are used to produce chocolate, cocoa but-
ter, and other commodities of global economic importance 
(Fig. 1). Though yields have increased slightly over the past 
60 years (Kozicka et al. 2018), yield gaps remain significant 
at up to 82% of yield potential (Aneani and Ofori-Frimpong 
2013), and cacao growers remain faced with numerous 
challenges to sustainable production as well as increasing 
global demand. Pests and diseases (Bailey and Meinhardt 
2016), insufficient soil nutrients (Hartemink 2005; Snoeck 
and Dubos 2018), pollination limitation (Groeneveld et al. 
2010), and the impacts of a changing climate (Lahive et al. 
2019) all reduce productivity far below the genetic potential 
of T. cacao. Yield stability is also remarkably low in cacao, 
with highly variable yields across years and even between 
adjacent trees (Jones and Maliphant 1958). Yield variabil-
ity is especially high during juvenile development (Bartley 
1970) and not fully explained by soil fertility (Dos Santos 
et al. 2017). As global demand for cocoa grows at an average 
of 2.5% per year, these challenges must be addressed without 
conversion of additional forested or protected area to cacao 
cultivation (ICCO 2015).

Soil microbial communities, including those in the rhizo-
sphere, are key mediators of ecosystem services (Wall et al. 
2012). Interest has therefore grown in “rhizosphere engi-
neering” or leveraging the root-associated microbiome of 
crop plants to enhance yields and other ecosystem services 
provided by agriculture (Ryan et al. 2009; Dessaux et al. 
2016). Ecosystem services mediated by the root-associ-
ated microbiome directly address many of the previously 
mentioned challenges to cacao production, from increased 
yields and yield stability (a provisioning service) to disease 

suppression (a regulating service) and nutrient cycling (a 
supporting service) (Fig. 2). As a perennial grown in the 
tropics, T. cacao provides an interesting complement to the 
extensive plant microbiome literature on annual crops in 
temperate climates as well as being a crop of global eco-
nomic importance facing challenges to sustainable pro-
duction. However, minimal understanding of the cacao 
root-associated microbiome currently prevents rhizosphere 
engineering concepts (e.g., via soil management, plant 
genetics, or bio-inoculation) from being used to enhance 
delivery of ecosystem services and address production chal-
lenges (Hohmann et al. 2020). Culture-dependent methods 
have been used to identify particular groups of rhizosphere 
microorganisms, e.g., actinomycetes (Barreto et al. 2008) 
and arbuscular mycorrhizae (Cuenca and Meneses 1996; 
Snoeck et al. 2010). Yet amplicon sequencing has been 
only used to characterize communities associated with other 
plant and soil regions, such as the phyllosphere (Christian 
et al. 2017; Santana et al. 2018), endophytic compartments 
(Rubini et al. 2005; Hanada et al. 2010; Wemheuer et al. 
2020), or bulk soil (Mpika et al. 2011; Buyer et al. 2017; 
Arévalo-Gardini et al. 2020). Numerous studies have also 
inoculated cacao roots with bacteria and fungi in an attempt 
to promote plant growth (Supplementary Table 1). Nonethe-
less, in the absence of comprehensive culture-independent 
studies, many questions about the cacao root-associated 
microbiome remain unanswered (Table 1).

Hypotheses about these unanswered questions can be 
generated by integrating relevant concepts from other 
crops with a synthesis of the literature on cacao agro-
ecosystems, including microbial communities associated 
with other parts of the cacao plant (e.g., phyllosphere). 
These other study systems can provide mechanistic 
insight in cases where studies have not directly exam-
ined the cacao root-associated microbiome. Host genet-
ics, environment, and agricultural management explain 
some variation in the composition and function of many 
crop microbiomes, but aspects of these factors unique 
to cacao agroforestry systems are likely to affect the 
cacao root-associated microbiome in new ways (Fig. 2, 
Table 1). In the first half of this literature review, we 
discuss potential drivers of variation in the cacao root-
associated microbiome.

Addressing current challenges to cacao production 
requires moving beyond the descriptive to the applied: 
optimizing the cacao root-associated microbiome to 
enhance the delivery of ecosystem services. Cacao agro-
forestry systems provide important regulating and support-
ing ecosystem services (Mortimer et al. 2018) in addition 
to valuable provisioning services for global consumers of 
chocolate. Less well understood is how specific breeding 
activities and management practices shape the potential of 
the cacao root-associated microbiome to deliver ecosystem Fig. 1  Theobroma cacao. Photograph by Dave Mackill.
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Fig. 2  Influences on the cacao 
root-associated microbiome and 
its mediation of ecosystem ser-
vices. Cacao genetics (G), envi-
ronmental gradients and scales 
(E), agricultural management 
(M), and G × E × M interactions 
are likely to contribute to varia-
tion in composition and function 
of the cacao root-associated 
microbiome. In turn, rhizosphere 
microorganisms mediate critical 
provisioning, supporting, and 
regulating ecosystem services. 
For further discussion of the pro-
cesses by which this occurs, refer 
to Sections 3.1 to 3.3. Figure cre-
ated with BioRender.

Table 1  Knowledge gaps related to the cacao rhizosphere microbiome.

Core microbiome • Which microbial taxa make up the core cacao microbiome (i.e., are present in the cacao rhizosphere across geno-
types, environments, and management systems)?

• Which taxa contribute to variable components affected by host genetics, environment, management, and other 
factors?

• What are the ecological roles and plant-relevant functions of core and variable taxa?
Genetic effects (G) • How much do cacao genotype, genetic background, and rhizosphere-related traits influence the rhizobiome?

• How do rootstock and scion identity affect the microbiome, independently and interactively? Do vigorous root-
stocks recruit more beneficial microbiota and can rootstock vigor be stacked with microbiome-mediated effects 
on growth and yield?

• How have domestication and breeding affected the microbiome of modern commercial T. cacao clones as com-
pared to wild Theobroma spp. and traditional cacao cultivars?

• To what degree are heritability and heterosis observed on traits associated with the cacao microbiome? What are 
the mechanisms involved? Can quantitative trait loci for microbiome composition be exploited in breeding (e.g., 
via marker-assisted selection or genomic prediction)?

Environmental effects (E) • How much does the cacao microbiome vary at different scales, i.e., between trees, plots, and growing regions?
• Which characteristics of the microenvironment have the greatest influence on microbiome composition and func-

tion?
• Is regional microbiome variation linked to sensory properties of chocolate (terroir)?

Management effects (M) • How do diversified agroforestry and organic management systems relate to rhizosphere microbiome function?
Regulating services • What is the role of cacao rhizosphere microbiome composition in resistance to major cacao pathogens?

• Can components of the microbiome (e.g., species diversity/composition, key microbial taxa) directly suppress 
specific pathogens or contribute to indirect mechanisms of pathogen suppression such as induced systemic resist-
ance or disease-suppressive soils?

• Is disease resistance among rootstocks related to variation in the rhizosphere microbiome?
Supporting services • What is the link between known differences among cacao cultivars in nutrient and heavy metal uptake and varia-

tion in rhizobiome composition?
• What are the mechanisms involved, e.g., related to siderophores, rhizosphere, and pH?
• What exudates might be involved in the recruitment of beneficial taxa?

Provisioning services • Can the potential impact of the microbiome on productivity and resilience be specified and quantified?
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services (Fig.  3). In the second half of this literature 
review, we present strategies that could be used to enhance 
microbiome-mediated ecosystem services in cacao agro-
forestry systems and discuss the processes responsible.

2  Drivers of variation in the cacao 
root‑associated microbiome

2.1  Host genetics (G)

The genetic identity of the host plant has a significant influ-
ence on the composition of the root-associated microbiome 
at both species and genotype levels (Bouffaud et al. 2014). 
The strong domestication bottleneck (reduction in genetic 
diversity due to founder effects during dispersal or selection) 
associated with certain common cultivars, the potential for 
heterosis in modern hybrids, the combination of sexual and 
vegetative reproduction, and rootstock-scion interactions 
may all impact the T. cacao root-associated microbiome 
(Table 1).

Domestication greatly reduced host genetic diversity 
among the first Criollo, Amelonado, Nacional, and Trini-
tario cultivars grown by Central and South American civili-
zations in comparison to the diversity present in the Upper 

Amazon, likely the center of origin of cacao (Motamayor 
et al., 2002; Motamayor et al., 2008). Sequence data from 
200 wild and domesticated cacao accessions has provided 
additional evidence that strong bottleneck events have given 
rise to cultivars with levels of homozygosity considered high 
for an outcrossing tree species (Cornejo et al. 2018). Two 
examples include the first two sequenced cultivars, Matina 
1–6 and Criollo 22, which are both highly homozygous 
and complementary, sharing less than 30% of their alleles 
(Argout et al. 2011; Motamayor et al. 2013). Nonetheless, it 
remains to be seen whether these broad differences in cacao 
genetic backgrounds and particularly fixation of different 
alleles through bottlenecks and domestication have led to 
reduced microbiome diversity or changes in plant-relevant 
functions of the root-associated microbiome. Some of these 
outcomes have been observed in the modern cultivars of 
other species, for instance, in the increased relative abun-
dance of Proteobacteria and Actinobacteria and decreased 
relative abundance of Bacteroidetes in many crops (Pérez-
Jaramillo et al., 2018), and the decreased β-diversity of the 
modern maize rhizosphere microbiome as compared to its 
wild ancestor (Schmidt et al. 2020).

Modern breeding has had a relatively short history in 
cacao, with the first selections and crosses made in Trinidad 
in the 1930s (Bartley 1994). Nonetheless, the development 

Fig. 3  Rhizobiome-targeted 
strategies to enhance ecosystem 
services. Interventions to opti-
mize the rhizosphere microbi-
ome for enhanced ecosystem 
services include breeding pro-
gress, the integration of shade 
trees, and microbial manipula-
tion. Solid arrows represent 
direct effects and dashed arrows 
represent indirect effects. C, 
carbon; PGPM, plant growth-
promoting microorganisms. 
Figure created with BioRender.
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of germplasm collections from farmers’ selections and wild 
collections and the development of hybrids from divergent 
genetic backgrounds may have impacted the root-associ-
ated microbiome. Molecular markers have allowed cacao 
germplasm to be classified into ten primary genetic groups 
with subgroups: Amelonado, Contamana, Criollo, Cururay, 
Guiana, Iquitos, Marañón, Nanay, Nacional, and Purús (Mot-
amayor et al., 2008; Zhang & Motilal, 2016). Even though 
current breeding programs utilize a very small percentage of 
the extant genetic diversity of the species, progress has still 
been made in the generation of high-yielding, disease-resist-
ant cultivars such as CCN-51 in Ecuador and R4 in Costa 
Rica (Phillips-Mora et al. 2009; Boza et al. 2014). Hybrids 
generated from genetically distant parents can show hetero-
sis for cacao yield components including wet bean weight 
per plant and wet bean weight per pod (Dias et al. 2003). 
Though studies on heterosis in perennial microbiomes are 
lacking due to the long timeframes required for perennial 
breeding programs, heterosis may extend to features of the 
cacao microbiome, as is the case for the maize rhizosphere 
and phyllosphere microbiomes (Wagner et al. 2020). In 
maize, rhizosphere bacterial and fungal communities differ 
between inbreds and their F1 hybrids. Furthermore, heter-
otic effects on alpha and beta diversity were observed, and 
specific features of the rhizosphere and leaf microbiomes 
showed midparent or better-parent heterosis, with greater 
heritability in the rhizosphere than phyllosphere.

The two major strategies employed in cacao breeding, 
open/controlled pollination and vegetative propagation 
(Laliberté and End 2015), likely impact the root-associated 
microbiome in very different ways. First, crosses made 
through pollination can generate novel genotypes that may 
be hard to predict, as cacao is highly heterogeneous and 
often does not breed true to type (Boza et al. 2013). Some 
degree of heritability has been found for the microbiome of 
a short-lived wild perennial (Wagner et al. 2016). However, 
against the complex background of cacao genetics, incom-
patibility mechanisms, and field mortality that contribute to 
imbalanced trial design, along with high levels of GxE, the 
signal of heritable microbial taxa may be difficult to discern.

Even when vegetative propagation is used, selected sci-
ons are invariably grafted onto heterozygous rootstocks 
from uncontrolled pollinations. Vegetative propagation of 
desirable clones onto rootstocks, which alters whole-plant 
physiology, are likely to contribute another level of com-
plexity to the root-associated microbiome due to potential 
effects of rootstock-scion interactions. Grafting reorganizes 
xylem tissue, lowering hydraulic conductivity of graft tis-
sue relative to the scion, and altering movement of water, 
ionic solutes, and growth hormones (Atkinson et al. 2001; 
Martinez-Ballesta et al. 2010). Rootstocks can affect scion 
gene expression and vigor, increase fruit quality, improve 
yields and resource use efficiency, contribute new genetic 

variation through epigenetic effects, and confer resistance 
to pathogens and abiotic stresses such as drought, salinity, 
and heavy metal contamination (Cookson and Ollat 2013; 
Gregory et al. 2013; Albacete et al. 2015; Warschefsky et al. 
2016). Although studies of grafted cacao have not evalu-
ated the microbiome, studies in grafted apple, grapevine, 
and tomato show that rootstock genotype has a small but 
significant effect on the composition of rhizosphere and/or 
endophytic microbial communities (Marasco et al. 2018; Liu 
et al. 2018; Poudel et al. 2019). Changes in root exudates 
may be responsible, as seedlings grafted to rootstocks dif-
fer in the quantity and quality of rhizodeposits in compari-
son to autografted seedlings (Song et al. 2016; Leisso et al. 
2017, 2018). Given that rootstock affects yield-related traits 
in cacao (Yin 2004, Romero Navarro et al. 2017), studying 
the impacts of vegetative propagation on the cacao root-
associated microbiome could help illuminate whether vig-
orous rootstocks are aided by a greater number of growth-
promoting microorganisms (Table 1).

2.2  Environment (E)

Heterogeneous environmental conditions can shape dis-
tinctive structural and functional characteristics of highly 
responsive plant root systems and root-associated microbial 
communities. Such environmental effects act along a range 
of scales: the broad climato-edaphic conditions, the man-
agement strategies at the plot scale, and the responsive root 
scale (Fig. 2). This plant environment scale is then disag-
gregated into further levels of analysis: the distribution of 
the whole root system in the soil profile, the growth and 
morphology of lateral roots, and the sites of exchange on 
absorptive roots. Each of these scales shapes various com-
ponents of root-associated microbial communities. Plant 
identity and substrate hotspots explain microbial community 
composition at the local scale, while climate, topography, 
and soil pH explain variability in microbial communities 
at the regional scale (de Vries et al. 2012), with soil type 
being more influential on the microbiome than host phylog-
eny (Yeoh et al. 2017).

Tropical soils pose unique agricultural management chal-
lenges, including low organic matter, nutrient imbalances, 
and acidity. These factors shape the bulk soil microbial com-
munity from which the rhizosphere microbiome is recruited, 
but the degree to which geographic variation affects rhizo-
sphere bacteria and fungi that are also influenced by cacao 
roots and root-environment interactions has rarely been 
studied. Notably, the relative abundance of different gen-
era of mycorrhizal fungi differs between cacao grown in 
tropical dry and moist forests (Guillermo Ramírez et al. 
2016), indicating that root-associated fungal communities 
are sensitive to regional differences in precipitation. Host-
mediated indirect effects on the cacao microbiome are also 
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likely; environmental factors account for as much as 70% 
of annual variation in cacao yields (De Almeida and Valle 
2007), and the proportion of variation attributable to envi-
ronment as opposed to genetics differs among yield com-
ponents (Doaré et al. 2020). Significant variation in cacao 
phenotypes and flavor precursor compounds occurs among 
climatic regions and soil types (Clapperton et al. 1994; 
Afoakwa et al. 2008; Aprotosoaie et al. 2016). Terroir has 
similarly been linked to the soil microbiome in wine grapes 
(Bokulich et al. 2016), and a recent review highlighted geo-
graphic differences in microbial communities responsible for 
cacao fermentation (Viesser et al. 2021), suggesting poten-
tial relationships between geographic variation in the cacao 
phytobiome, fermentation microbiome, and chocolate flavor 
profiles (Table 1).

While these bidirectional interactions (plant to environ-
ment and environment to plant) clearly influence broad 
microbial communities, it is the fine scale zone—site of 
direct plant-soil interaction in the rhizosphere—that is con-
tinuously influenced by plant roots through the rhizodeposi-
tion of exudates, mucilage, and sloughed cells (Bais et al. 
2006; Uren 2007; Moe 2013). Results predominantly show 
that higher rhizodeposition leads to higher microbial diver-
sity (Paterson et al. 2007) and strong effects on pore geom-
etry (Feeney et al. 2006). Simultaneously, changes in the 
root-associated microbial community can influence the plant 
both directly, by producing regulatory compounds, and indi-
rectly, via decomposition and the rate of accumulation of 
organic material (Hinsinger et al. 2009). We also know that 
important shifts in root trait expression have consequences 
for root exudates and rhizosphere chemistry, which can in 
turn impact root-associated microbial communities. For 
instance, Fulthorpe et al. (2020) showed that Coffea ara-
bica has an identifiable core microbiome and that fungal 
and bacterial communities varied with key root traits and 
environmental factors along a climatic gradient.

2.3  Management (M)

Evidence supports a suite of ecosystem functions and ser-
vices derived from shade tree pairings, including yield 
stability, climate regulation, disease mitigation, and 
localized soil fertility (Vaast et al. 2016; Somarriba and 
Lopez-Sampson 2018; Andres et al. 2018; Isaac and Bor-
den 2019; Niether et al. 2020). Shade trees provide diverse 
litter inputs that increase soil organic matter, leading to 
improved C sequestration (regulating service) and nutrient 
cycling (supporting service) as discussed in the context of 
management impacts on the cacao root-associated micro-
biome. Shaded cacao systems range from monocultures to 
diverse shade-tree systems, dominated by  N2 fixing spe-
cies, timber species, and fruit trees (Sauvadet et al. 2020a). 
In particular, leguminous tree roots and nodules contribute 

substantive nitrogen sources to soils in agroforestry sys-
tems, from direct pathways via N-rich root exudates or 
common mycorrhizal networks or from indirect pathways 
via litter, root and nodule decomposition, and mineraliza-
tion processes (Isaac and Borden 2019). However, given 
the heterogeneous conditions in which shade tree selection 
is made, there is the inconsistent evidence on cacao agro-
forestry success, suggesting a potential tradeoff between 
provisioning and regulating services (Ruf 2011; Blaser 
et al. 2017; Abdulai et al. 2018). Yield of cacao may be 
lower by around 25% in agroforestry systems, but total 
system yields are tenfold higher (Niether et al. 2020), 
demonstrating an indirect positive effect on provisioning 
services (Fig. 3). While an increase in pests and diseases 
is often attributed to agroforestry systems, negative effects 
on this regulating service can be avoided with appropriate 
phytosanitary measures such as pruning and diseased pod 
removal (Armengot et al. 2020).

Increased genetic and phenotypic diversity of roots in 
shade tree systems is likely to impact the microbiome, as 
microbial taxa vary across root phenotypic trait gradients 
(Saleem et al. 2018) and differ among tree species (Si et al. 
2018). Research into the effects of shade trees on the cacao 
rhizosphere has largely focused on shifts in root architecture 
(e.g., depth, distribution) or allocation to root mass (e.g., 
root to shoot ratio) in different species combinations (Moser 
et al. 2010; Schwendenmann et al. 2010; Isaac et al. 2014; 
Abou Rajab et al. 2016, 2018; Borden et al. 2019). Emerging 
research also shows the effects at the cacao root scale (e.g., 
root morphology (Abou Rajab et al. 2018)) and coordinated 
root trait response (Borden and Isaac 2019). Borden et al. 
(2019) showed that proportionally more biomass was allo-
cated to roots for cacao grown in mixture with shade trees 
in comparison to cacao in monoculture, with strong associa-
tions of greater root length and biomass densities to specific 
cations (higher  NH4

+ and  Ca2+). Furthermore, findings show 
a tendency for cacao roots to express acquisitive morpholog-
ical root traits and higher root turnover rates in agroforestry 
systems. Abou Rajab et al. (2018) observed this trend in 
cacao grown in multispecies mixture, although an opposite 
trend was observed for cacao in mixture with only Gliri-
cidia sepium. Based on research on other tree crop species 
(coffee; Fulthorpe et al. 2020), these key variances in root 
morphological and chemical response to environmental con-
ditions and shade tree management impact the microbiome 
via root and rhizosphere processes. Presumably, these root-
scale adaptations in agroforestry systems have strong effects 
on the root-associated microbiome, but this remains nearly 
completely unstudied. Wartenberg et al. (2017) found no 
significant relationship between tree diversity in cacao agro-
forestry and measures of microbial abundance. In contrast, 
Buyer et al. (2017) report that various agroforestry systems 
(with varying degrees of plant diversity) affected biological 
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changes in the soil; higher plant diversity was linked with 
higher gram-negative to gram-positive ratios. However, both 
of these studies were restricted to bulk soil. Further work 
needs to assess these measures in the rhizosphere of cacao 
under shade trees in order to determine the impacts of agro-
forestry on the cacao root-associated (Table 1).

The impacts of agricultural management on the cacao 
root-associated microbiome may be most clear at regional 
and plot scales. In a study of different cacao agroforestry 
systems within five regions of Cameroon, Wemheuer et al. 
(2020) found that management had stronger impacts than 
environmental variation on bacterial and fungal endo-
phytes of T. cacao. In other perennial microbiomes, direct 
impacts of management depend on the study system and 
the specific practice of interest: Coller et al. (2019) report 
that both management practices and geography shape 
the microbiome of vineyards, while Köberl et al. (2015) 
showed that neither biogeography nor various plot-scale 
management conditions (agroforestry) impacted the core 
microbiome of bananas.

Management practices that alter soil properties such 
as organic matter, pH, and moisture can affect the cacao 
root-associated indirectly (Fig. 2). Soil organic matter from 
aboveground litter and belowground root inputs provides 
nutrients and energy to microbial communities, and amend-
ment practices such as conventional fertilization or organic 
inputs can control microbial populations in the rhizosphere 
of tree crops (Munroe et al. 2015). Organically managed 
cacao agroforestry systems have 20% more soil organic 
carbon (Asigbaase et al. 2020) and four times more root 
biomass (Niether et al. 2019), which may account for the 
increased bacterial and fungal diversity in these systems 
(Suwastika et al. 2019). Similar effects on microbial diver-
sity and abundance due to organic matter could be expected 
from the litter and pruning residues in diversified agrofor-
estry systems relative to monocultures, which can add up 
to ten times as much nitrogen to surface soil as fertilizer 
inputs (Schneidewind et al. 2019). Conversely, continuous 
cropping that depletes soil organic matter and nutrients may 
have opposing effects on the diversity of the root-associated 
microbiome. In a study in Ghana following 17 years of con-
tinuous cropping of Amelonado, there was a loss of nearly 
55 t of humus  ha−1 and a depletion of more than 66% of 
the exchangeable bases in the soil profile as compared with 
an adjacent fallow (Ahenkorah et al. 1974). Nutrient input 
requirements increase considerably as shade levels decrease, 
and classic studies show that yields start to decline in condi-
tions with over 50% lighting without the addition of ferti-
lizers (Murray 1954; Evans and Murray 1955). Liming is 
commonly recommended in cacao production regions with 
acid soils such as Malaysia and Brazil to increase nutri-
ent availability (van Vliet and Giller 2017). This practice 
likely impacts composition and functions of the cacao 

root-associated microbiome, as soil pH is a key driver of 
microbiome composition (Fierer and Jackson 2006) and 
influences microbial carbon cycling (Malik et al. 2018). Plot 
scale management practices affecting water availability can 
also shape a crop microbiome in tree-based systems: Furze 
et al. (2017) showed that core AMF communities associ-
ated with soybean experienced significant shifts with water 
restrictions but only in tree-based agroecosystems.

3  Enhancing ecosystem services 
with the cacao root‑associated 
microbiome

There are various opportunities to enhance ecosystem ser-
vices in cacao agroforestry systems via interventions at the 
plant-soil interface (Fig. 3). Strategies such as breeding for 
specific microbe-related traits and functions, integration of 
shade trees, and manipulation of soil microbial communities 
vary in the directness and relative magnitude of their impacts 
on each category of ecosystem services. One direct route to 
enhancing disease suppression (regulating) or plant growth 
promotion (provisioning) would be to identify and augment 
the taxa responsible for those functions. While breeding 
for microbiome-mediated disease resistance could likewise 
directly impact disease suppression (regulating), breeding 
for resource use efficiency would affect nutrient cycling 
(supporting) and yield (provisioning) indirectly. Introduc-
ing shade trees and their diverse leaf litter, which serves as 
the substrate for numerous microbial metabolic processes, 
would have the strongest direct impacts on soil C sequestra-
tion (regulating) and nutrient cycling (supporting).

3.1  Provisioning services

3.1.1  Sustainable productivity

The growth-promoting potential of rhizosphere bacteria and 
fungi has long been of interest in many crops, and selected 
microorganisms are available as biofertilizers. These plant 
growth-promoting microorganisms (PGPM) are thought to 
act through both direct mechanisms, e.g., increasing plant 
access to nutrients by solubilizing phosphate and potassium 
or stimulating root growth, and indirect mechanisms such 
as pathogen suppression or enhanced abiotic stress resist-
ance (Lugtenberg and Kamilova 2009). Increasing the abun-
dance of PGPM would have a positive direct effect on yield 
(provisioning services, Fig. 3). Studies testing the effects of 
PGPM inoculation on cacao productivity are rare, however, 
and have frequently measured biomass at seedling stages 
rather than pod production or other yield components (Sup-
plementary Table 1). Furthermore, cacao yields are charac-
terized by high levels of tree-to-tree variability. Even within 
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plots of clonal trees, high levels of unaccounted-for varia-
tion have long been observed (Jones and Maliphant 1958; 
Murray and Cope 1959). Some studies have demonstrated 
that yield parameters correlate strongly with certain key 
nutrient concentrations in different soil horizons (Vanderlei 
et al. 2003) and with leaf functional traits (Sauvadet et al. 
2021). The potential role of the root-associated microbiome 
in improving yields and stabilizing productivity through 
contributions to nutrient cycling and water availability 
deserves further study (Table 1), especially considering that 
the longer lifespan of perennials and consistent presence of 
roots throughout the year are thought to make rhizosphere 
interactions more durable in tree crops than in annual crops 
(Mercado-Blanco et al. 2018).

3.2  Regulating services

Recent ecosystem services research in biodiverse and well-
designed agroforestry systems suggests ecosystem services 
extend beyond production alone. Key microbiome-mediated 
processes associated with regulating and supporting services 
are evident, yet understudied in cacao agroecosystems. 
Major regulating services that could be enhanced by the 
rhizosphere microbiome include disease suppression and 
carbon sequestration.

3.2.1  Microbiome‑mediated disease resistance

Biological control and disease‑suppressive soils Globally, 
pests and diseases constitute a major threat to cacao produc-
tion, accounting for at least 20–30% of lost production annu-
ally (Ploetz 2006). Many of the most devastating cacao path-
ogens primarily affect pods, leaves, or other aboveground 
tissues, while one major pathogen (Phytophthora spp.) and 
numerous minor pathogens have soil-borne stages (Supple-
mentary Table 2); the root-associated microbiome has the 
potential to act against both aboveground and belowground 
pathogens. Manipulation of the cacao root-associated micro-
biome to promote disease-suppressive taxa (e.g., biological 
control and suppressive soils) can complement breeding for 
rootstock resistance and microbiome-mediated resistance, a 
strategy with strong direct impacts on this regulating service 
(Fig. 3). For example, rhizosphere populations of mycopara-
sites are independent of cacao genotype and could thus be 
manipulated separately (Ten Hoopen and Krauss 2016).

Biological control, where specific bacterial or fungal taxa 
are applied as a preventative measure or augmented from 
the existing microbial community, is the primary way in 
which the microbiome has been managed to control cacao 
pathogens to date (e.g., Crozier et al., 2010; Loguercio et al., 
2009; Melnick et al., 2011; Suryanto et al., 2014). Microbial 
biocontrol agents (BCA) deliver protection against the target 

pathogen via direct mechanisms of action, such as myco-
parasitism and antibiosis, or indirect mechanisms including 
competition for rhizosphere resources and induced systemic 
resistance (Compant et al. 2005; Shoresh et al. 2010). Bio-
logical control studies have been conducted on many major 
cacao pathogens, particularly Phytophthora spp., Monilioph-
thora perniciosa, and M. roreri (Supplementary Table 2), 
and while these studies have mostly been conducted above-
ground, the direct and indirect mechanisms involved would 
likely be effective belowground as well.

Induced systemic resistance by rhizosphere bacteria and 
fungi, an indirect mechanism of biological control, has been 
reported in other tree species (Jetiyanon and Kloepper 2002; 
Eyles et al. 2010; Shoresh et al. 2010). Despite the chal-
lenges of implementing biological control in woody peren-
nials (Hohmann et al. 2012; Cazorla and Mercado-Blanco 
2016), high rates of promising BCA in the phyllosphere 
(Hanada et al. 2010) and moderate success in cacao trials to 
date (e.g., Melnick et al. 2008) suggest that BCA could be 
a promising component of integrated pest management in 
cacao. To reduce discrepancies in results between controlled 
and field conditions (e.g., Krauss & Soberanis, 2001), future 
studies should screen potential BCA under field-relevant 
conditions, as sterile settings may favor colonization traits 
over competitive traits that enhance soil persistence (Ten 
Hoopen and Krauss 2016). Furthermore, such studies should 
clarify the underlying mechanisms and context dependency 
of pathogen-BCA relationships (Hohmann et al. 2020) to 
guide decisions about managing the rhizosphere microbial 
community (Allen Herre et al., 2007). If specific beneficial 
microorganisms inhibit the pathogen directly, the emphasis 
should be on identifying those microorganisms and clarify-
ing the biochemical nature of the inhibition. In contrast, if 
pathogen suppression is due to indirect mechanisms, increas-
ing total microbial abundance is likely more important than 
introducing individual taxa.

Certain aspects of the phyllosphere may favor direct 
mechanisms of BCA action in comparison to the rhizos-
phere. First, microbial communities are relatively sparse in 
the harsh environment of the phyllosphere  (106–107 organ-
isms  cm−2 leaf, (Lindow and Brandl 2003)) in comparison 
to the comparatively well-populated rhizosphere  (108–109 
organisms  g−1 soil, (Berendsen et al. 2012)). Microbial BCA 
applied to leaves and pods may thus outnumber other micro-
organisms, increasing the frequency of BCA-pathogen inter-
actions that lead to pathogen inhibition. In the rhizosphere, 
denser microbial communities may enable pathogen persis-
tence through a greater frequency of neutral interactions or 
by outcompeting introduced BCA. Resource limitation in 
the phyllosphere also appears to be important for success-
ful biocontrol, as the effectiveness of inoculation against 
foliar pathogens such as Pseudomonas syringae is reduced 
in fertilized plants (Berg and Koskella 2018). Most foliar 
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endophytic fungi in cacao also function by outcompeting 
pathogens for resources, with 27–65% of endophytic isolates 
showing antagonistic activity such as resource competition 
but only 0–21% showing direct antibiosis against the major 
cacao pathogens M. perniciosa, M. roreri, or P. palmivora 
(Mejía et al. 2008). In the rhizosphere, exudation of organic 
compounds by roots and fertilization of agricultural fields 
create a comparatively resource-rich environment where bio-
control strategies should not rely on nutrient limitation to 
succeed. Alternative approaches to biocontrol should thus be 
investigated for soil-borne pathogens of cacao, which have 
been neglected in comparison to aboveground studies thus 
far (Supplementary Table 3).

Even with the recent shift from externally applied bio-
control agents to endophytes that may provide longer-
lasting benefits, Ten Hoopen and Krauss (2016) argue that 
biological control will only be one component of disease 
management strategies, as substantial improvements in 
formulation and application techniques are needed for it to 
become economically relevant. The native cacao endophyte 
Colletotrichum tropicale induces systemic changes in gene 
expression related to pathogen defense (Mejía et al. 2014), 
and the protection it confers against Phytophthora palmivora 
can be transferred to endophyte-free seedlings via leaf litter 
from colonized trees (Christian et al. 2017). Increasing the 
abundance and persistence in soil of C. tropicale or other 
rhizosphere microorganisms capable of inducing systemic 
resistance could therefore be important rhizosphere engi-
neering strategies.

The establishment of disease-suppressive soils provides 
an indirect mechanism by which the cacao root-associated 
microbiome could prevent disease. Observed in perennial 
crops including apple, suppressive soils are a phenomenon 
by which a cropping system exposed to a given soil-borne 
pathogen shifts over time such that the soil microbial com-
munity eventually confers disease resistance to the host 
plant. Weller et al. (2002) distinguish between general sup-
pressiveness, which is regulated by total microbial biomass 
and is non-transferrable, and specific suppressiveness, which 
is provided by a subset of microbial taxa and is transferrable 
between soils. In contrast to biological control, suppressive-
ness is frequently related to complex shifts in community 
composition involving many taxa rather than a single cul-
turable organism (Kinkel et al. 2011). While no suppres-
sive soils have been reported in cacao to our knowledge, 
bioinformatics approaches and multivariate analyses should 
be implemented for the cacao root-associated microbiome 
to identify and enhance potential mechanisms of resistance 
rooted in microbial ecology.

Breeding for disease resistance Despite observations of 
disease resistance in numerous cacao cultivars, progress in 
stacking traits and breeding for resistant rootstock has been 

encumbered by poor overlap in genotypes between contrast-
ing sites, different criteria for phenotypic screening, seasonal 
fluctuations in the levels of pathogen inoculum present, lim-
ited knowledge of potentially beneficial endophytes, and the 
confounding factors introduced by a poor understanding and 
characterization of open-pollinated rootstock. Pre-breeding 
and parental selections for resistant lines can be compli-
cated by inconsistencies in reported phenotypes and herit-
abilities around disease traits, which are evident in conflict-
ing records in databases compiled from multi-locational 
breeding trials such as the International Cacao Germplasm 
Database (www. icgd. rdg. ac. uk). This variability has been 
attributed to the prevalence of offtypes in collections (DuVal 
et al. 2017) and different approaches used in screening but 
also highlights an opportunity to explore the potential role 
of the root-associated microbiome on expression of disease 
traits for resistance breeding. Careful, controlled studies to 
better isolate and understand the relative contributions of 
environment, rootstock genetic effects, and plant–microbe 
interactions will be key in understanding the expression of 
complex resistance and tolerance traits.

While the role of plant-associated microbes for crop 
disease resistance is well recognized (e.g., Mendes et al. 
2011; Berendsen et al. 2012; Pieterse et al. 2016), host reg-
ulatory mechanisms that shape a beneficial or detrimental 
plant microbiome remain largely underutilized. There is 
increasing evidence for an exploitable genetic base for plant 
responsiveness to native soil microbiomes that plays a sig-
nificant part in driving root-associated microbial community 
composition and activity (Aira et al. 2010; Bulgarelli et al. 
2015; Walters et al. 2018; Wille et al. 2019). More specifi-
cally, genotypic differences in the regulation of beneficial 
plant–microbe interactions of various crops were shown for 
microbe-mediated resistance by individual strains (Sefloo 
et al. 2019) or entire communities (Elhady et al. 2018), 
responsiveness to soil microbial feedbacks (Hu et al. 2018), 
and microbe-induced resistance priming (Shrestha et al. 
2019). There are opportunities for cacao resistance breed-
ing programs to exploit this genotypic variation for enhanced 
ecosystem services (Fig. 3). Thus, new breeding strategies 
are called for in order to unravel hidden parts of complex 
holobiont defense mechanisms.

Recent studies have identified plant quantitative trait loci 
(QTLs) that explain microbiome structure as a first step 
towards marker-assisted selection (Lebeis 2015; Stringlis et al. 
2018; Hu et al. 2018; Bulgarelli 2019; Wehner et al. 2019; 
Zhang et al. 2019; Chen et al. 2020). Recent advances in 
genotyping technologies will allow the discovery of genomic 
loci and candidate genes involved in plant-microbiome 
interactions beyond model species. For instance, Bulgarelli 
(2019) reported a single QTL responsible for the recruit-
ment of specific members of the microbial community, and 
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Wehner et al. (2019) identified a QTL for microbe-induced 
leaf rust resistance. Combining plant genomic resources 
with metagenomic data of the associated microbiome can 
lead to the development of resistance markers in breeding 
programs. However, plant domestication and breeding under 
optimal supply of inputs such as synthetic fertilizers might 
have unintentionally selected against functional traits of the 
plant-associated microbial community (Morgan et al. 2005; 
Bennett et al. 2013; Bulgarelli et al. 2015; Schmidt et al. 2016; 
Pérez-Jaramillo et al. 2016; Hohmann and Messmer 2017). 
That is why it is crucial to integrate the microbial community 
of the target environment in early selection processes. The 
efficiency of microbiome-supported selection depends on the 
heritability of the trait. For instance, Wagner et al. (2016) 
showed significant G × E interaction effects of wild peren-
nial mustard (Boechera stricta) on microbiome community 
composition. The integration of the microbiome in the basic 
phenotype model Y ~ G × E can occur by disentangling E to 
include plant × microbe and plant × microbe × environment 
interactions (Wille et al. 2019). Oyserman et al. (2021) pro-
posed to expand the classical model by adding the micro-
biome (MB) as an explanatory factor, Y ~ G × E × MB, thus, 
explaining plant yield as a function of the genotype, environ-
ment, and microbiome interactions. For cacao, the model can 
be extended to account for possible interactions of rootstock 
 (GR) and scion genotypes  (GS) as well as management system 
(M): Y ~  GR ×  GS × E × MB × M.

Currently available cacao varieties have not specifically 
been selected to engage with a beneficial root-associated 
microbiome, partly as a result of common farming prac-
tices that either directly suppress microbes (e.g., via fungi-
cide applications) or hamper their engagement (e.g., due to 
the application of easily available nutrients). Plant-driven 
shifts of the microbial community are linked to environ-
mental factors such as climatic conditions, soil composition, 
or crop management (along with plant physiological and 
phenological effects) and can be utilized in breeding for 
local adaptation (Annicchiarico et al. 2005; Busby et al. 
2017; Sauvadet et al. 2021). Likewise, selection of cacao 
genotypes in more diverse cropping systems such as organic 
cultivation or agroforestry that harbor and maintain higher 
microbial diversity (Mäder et al. 2000; Chave et al. 2014; 
Granzow et al. 2017; Lori et al. 2017; Wang et al. 2017) 
is likely to accommodate beneficial plant–microbe interac-
tions. However, direct selection of such symbiotic interac-
tions is challenging. A recent EUCARPIA workshop on 
implementing plant–microbe interactions in plant breed-
ing highlighted the need for new tools and applications, 
namely high-throughput phenotyping, machine learning 
and modeling approaches, novel seed treatments and the 
focus on endophytes, plant genetic markers, gene editing, 
and monitoring and decision tools for genotype selection in 
general (Hohmann et al. 2020). Despite the need to close 

major knowledge gaps on the relationship between the 
composition of the root-associated microbiome composi-
tion and crop performance and ecosystem services (Finkel 
et al. 2017; Hartman et al. 2017; Oyserman et al. 2018), 
certain strategies and tools are available that cacao breed-
ers can use to integrate microbiome functions in breeding 
programs. For instance, Wille et al. (2020) developed a 
high-throughput screening system that identifies heritable 
and field-relevant variation for resistance against conjointly 
occurring root rot pathogens by incorporating the entire 
native soil microbiome as a key element of plant resist-
ance. Other studies matched microbial functions with 
root morphological traits for enhanced water and nutri-
ent uptake (Galindo-Castañeda et al., 2019) and drought 
and cold tolerance (Orozovic et al. 2019) as a means to 
directly select symbiosis-efficient plant genotypes in breed-
ing programs. Besides early-stage screening assays, plant 
selection should occur in target environments in order to 
incorporate plant–microbe as well as microbe-microbe 
interactions. Gaue (1998) concluded after years of red clo-
ver resistance breeding that selection against multiple soil-
borne pathogens was only successful under field conditions. 
Such approaches allow the selection of cacao genotypes that 
recruit a disease-suppressive or “healthy” root-associated 
microbiome, restricting the virulence of predominant patho-
gens, whereas experiments under axenic conditions alone 
can overestimate the importance of certain genes (Anderson 
et al. 2014; Wagner et al. 2016). Furthermore, selection 
sites can be assessed not only for soil type, soil structure, 
nutrient content, and pH, but also for soil microbial and 
rhizosphere communities. Via a comprehensive charac-
terization of the root-associated microbiome, Chang et al. 
(2017) were able to identify key microbial hubs that suc-
cessfully predicted soybean productivity. Such characteriza-
tions through metagenomic approaches would also enable 
cacao breeders to make well-informed choices of field sites 
for selection and variety testing.

We are at the beginning of unraveling the principles of 
how plant genotypes and their interaction with the native 
microbiome drive phenotypic variation in disease resistance. 
Challenges remain. Besides the need to better understand the 
heritability of microbiome-mediated disease resistance, we 
need to address the variability of soil microbiomes (includ-
ing varying pathogen compositions) in different environ-
ments. The analysis of functional genotypic variation in 
microbiome composition will help to identify microbial hubs 
and key pathogens that play a crucial role in the expres-
sion of disease resistance. This information will help to 
develop novel cacao breeding tools that make efficient use 
of plant–microbe interactions during the selection process.
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3.2.2  Soil carbon sequestration

Carbon (C) storage is a significant regulating service provided 
within all agroforestry systems (Jose 2009), and microbial 
processes are key to transforming litterfall and rhizodeposits 
into stable soil C (Cotrufo et al. 2013; Kallenbach et al. 
2016). Within the rhizosphere, microbial community 
composition influences the fate of soil C and C cycling rates, 
with shifting patterns of rhizodeposition affecting C use and 
fixation via the microbial community (Trivedi et al. 2013). 
The understudied pathway of microbial C use efficiency 
(CUE), the partitioning of C between microbial biomass and 
respiration, is strongly controlled by microbial physiology, 
with higher microbial CUE linked to increased soil C storage 
(Kallenbach et al. 2019; Saifuddin et al. 2019).

Limited knowledge of the cacao root-associated microbi-
ome means that its contributions to CUE and key C storage 
patterns in cacao rhizosphere soils remain poorly under-
stood. Nonetheless, it is clear that the integration of shade 
trees is key to increasing delivery of this regulating service, 
and the critical role of the root-associated in C sequestration 
in other systems indicates that this is a microbially mediated 
strategy. Aboveground and belowground C sequestration in 
shade trees can increase C storage by fivefold (Abou Rajab 
et al. 2016). Sauvadet et al. (2020a, b) showed that in cacao 
agroforestry systems, soil C mineralization was unchanged 
as compared to a cacao monoculture, but soil C content 
was either similar or higher depending on shade tree type 
and traits. Similarly, a meta-analysis of 52 comparisons of 
agroforestry systems and cacao monoculture found no dif-
ference in soil organic carbon (Niether et al. 2020). While 
no information was available on the microbial communities 
involved in these studies, such findings do support the need 
for further investigation into the effects of cacao manage-
ment on shifts in the core microbiome and subsequent effects 
on soil C sequestration patterns. Microbial mineralization 
and transformation of the nutrients contained in litter inputs 
can additionally reduce the reliance on external inputs to 
meet cacao nutrient demands, thus contributing a critical 
supporting service (Fig. 3).

3.3  Supporting services

Supporting services include nutrient and water cycling. 
Microbial metabolic processes cycle nutrients and alter 
soil redox conditions, mediating the bioavailability of plant 
macro- and micronutrients as well as heavy metals of con-
cern for human health. In addition, root-associated micro-
organisms including mycorrhizae help regulate plant water 
relations.

3.3.1  Cycling and availability of nutrient resources

Breeding approaches for genotypes adapted to low nutri-
ent availability may enhance root-associated microbiome-
mediated pathways for nutrient bioavailability (Rengel and 
Marschner 2005). Potential nutrient availability in the rhizo-
sphere is controlled by a range of mechanisms including 
root morphological responses and exudation of organic com-
pounds, which can then alter the abundance and composi-
tion of microbial communities. While both indirect (litterfall 
and decomposition) and direct (external inputs) pathways 
shape soil nutrient pools in cacao systems (Isaac et al. 2007; 
Mortimer et al. 2018), microbial activity strongly influences 
nutrient cycling and bioavailability, suggesting the need to 
consider the root-associated microbiome in breeding for 
increased resource use efficiency.

One opportunity to integrate plant and rhizosphere 
microbial components of resource use efficiency may be for 
potassium (K). Large amounts of K are required by cacao—
around 700 kg  ha−1 are required to produce 1 t of seeds per 
year, with a suggested lower limit of 0.20 meq K 100  g−1 
soil based on deficiencies in unshaded cacao (Ahenkorah 
1981). Trees with abundant supplies of K are more tolerant 
to adverse effects of water stress, with an inverse relation-
ship between K dose and leaf transpiration (Orchard 1978). 
Importantly, cacao cultivars have been observed to differ in 
their ability to harness non-exchangeable K in the soil, pro-
viding the necessary genetic variation for breeding (Wessel 
1971). Grapevine rootstocks contrasting in potassium uptake 
were found to differ in the relative abundance of potassium-
solubilizing microorganisms in the rhizosphere (D’Amico 
et al. 2018). Efforts should be made to understand whether 
cacao variation in K uptake is similarly linked to the root-
associated microbiome (Table 1); if so, understanding the 
underlying mechanisms could help optimize resource uptake 
and efficient use of inputs in cacao agroecosystems.

3.3.2  Reduced heavy metal uptake

Using the same principles as for increased resource use effi-
ciency, breeding programs integrating plant and microbial 
mechanisms could provide a pathway to reduced uptake of 
heavy metals. Microbial processes partially regulate root 
uptake of heavy metals by affecting bioavailability of these 
ions, particularly in the rhizosphere in the topsoil where 
roots, microorganisms, and metals such as aluminum (Al) 
and cadmium (Cd) are concentrated (Cañizales-Paredes 
et al. 2012; Gramlich et al. 2018; Niether et al. 2019).

Cadmium, which can be translocated from soil into cacao 
beans, is extremely detrimental to human health and has 
become a topic of interest in cacao due to recently imposed 
limits on concentrations in chocolate in the European Union. 
Cacao studies have shown genetic differences and G × E × M 
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interactions affecting Cd acquisition and partitioning, but 
potential links to the root-associated microbiome have been 
tested only in other crops. Genetic differences among cacao 
cultivars in Cd uptake from a given soil have been found in 
a survey of 70 Peruvian cacao plantations (Arévalo-Gardini 
et al. 2017) and 77 cacao accessions in a genetic library 
(Lewis et al. 2018), although another study of 11 cultivars at 
a single site found no genetic effects on rootstock, scion, and 
leaf Cd concentrations (Engbersen et al. 2019). Allocation of 
Cd to vegetative and reproductive parts also differs among 
cultivars and with pod maturation, as shown by greater 
variability in leaf and bean Cd than in soil Cd (Lewis et al. 
2018). A number of mechanisms could be responsible for 
cacao variation in Cd uptake (e.g., differences in root system 
size or morphology, transporter kinetics, microbial inter-
actions, or root exudation of metal-chelating compounds 
(Lewis et al. 2018)) and partitioning (e.g., xylem-to-phloem 
loading of Cd during bean maturation (Engbersen et al. 
(2019)). Grafting may help reduce Cd uptake, though more 
research is needed. In one study, CCN51 had 50% lower 
leaf Cd content when grown on its own rootstock than when 
grafted onto rootstock obtained from hybrids of CCN51 and 
ICS95 (Arévalo-Gardini et al. 2017).

Root exudates deserve further study as a potential 
breeding target to manipulate Cd availability in the rhizo-
sphere, either directly or indirectly via microbial recruit-
ment (Table 1). Many plant species alter the quality and/
or quantity of root exudates upon exposure to heavy metals 
(Bali et al. 2020), potentially increasing or decreasing Cd 
bioavailability depending on the compounds involved (Luo 
et al. 2014). It was recently demonstrated that strigolactones, 
a class of plant hormones key to mediating abiotic stresses 
such as drought and salinity (Saeed et al. 2017), could be 
exogenously applied to promote endogenous production, 
effectively reducing Cd uptake and accumulation in switch-
grass seedlings (Tai et al. 2017). In addition, exudates may 
provide a mechanism to recruit beneficial microbial taxa that 
reduce heavy metal bioavailability.

Aluminum (Al) toxicity and responses in cacao repre-
sent an important but understudied topic (de Almeida et al. 
2015), as Al toxicity limits agricultural productivity in 
roughly half of the arable land in cacao-producing regions 
(Ahenkorah 1981). Al toxicity reduces the plant’s ability 
to extract water and nutrients from the soil, and in condi-
tions of low pH such as most tropical soils, Al is dissolved 
and becomes toxic to many plants including cacao (Borém 
et al. 2012). In a small study, two genotypes (Catongo and 
Theobahia) showed significant differences in their tolerance 
to Al phytotoxicity, with Theobahia responding with higher 
growth and improved mineral nutrition (Ribeiro et al. 2013). 
Al uptake and exclusion should be assessed in more varie-
ties to determine variation in aluminum tolerance and the 
potential for breeding in cacao.

Arbuscular mycorrhizal fungi (AMF), important sym-
bionts of cacao and many other plant species, have been 
shown to alleviate Cd and Al toxicity via mechanisms that 
reduce their activity and translocation to shoots (Seguel 
et al. 2013; Rufykiri et al. 2000; Cui et al. 2019; Chen 
et al. 2004; Rask et al. 2019). Microbial processes regulate 
bioavailability of metals such as Cd and Al through effects 
on the soil physicochemical environment: altering pH or 
metal ion valency; directly binding the ions; synthesiz-
ing organic compounds that solubilize or sequester metal 
ions; or in the case of cadmium, producing  H2S to form 
an insoluble CdS precipitate (Bali et al. 2020). Alterna-
tively, microorganisms can also affect heavy metal uptake 
through root-related mechanisms such as increasing root 
surface area or increasing transfer of ions from the rhizo-
sphere into the plant (Sessitsch et al. 2013). Augmenta-
tion of heavy metal-chelating bacteria is being explored 
to reduce Cd and Al uptake and toxicity in other crops 
(Panhwar et al. 2015; Mora et al. 2017; Dutta and Bora 
2019; Zeng et al. 2020). Breeding cacao varieties to recruit 
beneficial Cd- and Al-chelating microorganisms could 
complement plant-mediated tolerance mechanisms.

3.3.3  Water relations

Favorable microclimate modifications provided by the 
integration of shade trees affect water relations (regulating 
service; Fig. 3). Cacao yield is highly sensitive to the tim-
ing and degree of water deficits (Moser et al. 2010). Recent 
models suggest that water stress will become increasingly 
important for cacao production as the climate in growing 
regions is predicted to significantly change (Schroth et al. 
2016), although the impacts of water stress will not be 
evenly distributed due to seasonal and regional variability 
in precipitation patterns under climate change (Black et al. 
2020). The effect of shade trees on cacao water stress var-
ies depending on soil moisture availability: shade trees can 
exacerbate water stress via increased competition in dry soils 
or alleviate water stress through reduced evapotranspira-
tion in shaded cacao (Somarriba et al. 2018). Niether et al. 
(2020) found 1.7% lower soil volumetric water content and 
more moderate temperatures in agroforestry systems as com-
pared to cacao monocultures, highlighting the strong impact 
of shade trees on the soil microenvironment and consequent 
impacts on water-related supporting services.

Recent studies suggest that cacao adapts to water deficits 
via changes in morphology and growth patterns (Lahive 
et al. 2019; Borden et al. 2020) and that these differences 
in cacao root morphology in response to water deficits are 
genotype-specific (dos Santos et al. 2014). Broadly, changes 
in root morphology, carbon deposition, and root exudates 
are stimulated under water stress, which can then alter soil 
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microorganism composition (Hartman and Tringe 2019). 
The root-associated microbiome provides water-related 
supporting services and confers abiotic stress tolerance 
during and after drought via complex feedbacks (De Vries 
et al. 2020), which are highly dependent on soil C chem-
istry (Bhattacharjee et al. 2020). Yet no work to date has 
documented the role of this root response to water stress on 
rhizosphere microbial communities nor the role of the cacao 
root-associated microbiome in conferring resilience under 
water deficits.

4  Challenges and future perspectives

With so much potential to increase the ecosystem services 
associated with cacao production, it is perhaps surprising 
that so many questions about the cacao root-associated 
microbiome remain unanswered. The long timeframes 
involved in perennial breeding have constrained under-
standing of plant–microbe interactions in agroforestry sys-
tems, but recent advances in molecular methods could help 
accelerate breeding cycles. The broad geographic range 
of T. cacao and diverse, decentralized smallholder farms 
that produce the majority of the world’s cacao may have 
presented logistical barriers for sampling. Cacao produc-
tion often occurs on small farms that may limit the feasi-
bility of large numbers of replicates, for example. In the 
context of this variation, efforts to identify and augment 
beneficial taxa should be conducted at the local scale, ide-
ally within a participatory framework that capitalizes on 
native soil microbial communities to address production 
challenges of greatest concern to local farmers. Establish-
ment of long-term research trials in multiple agroecologi-
cal zones would also be of great benefit for knowledge 
transfer across regions, particularly in the context of cli-
mate change and adaptation. Rapid breeding strategies and 
locally focused research combined with global knowledge 
transfer could help optimize the natural capital of the 
cacao root-associated microbiome, alleviating reliance on 
external inputs and increasing the sustainability of cacao 
production in the future.
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