

Fe-based Single Atom Electrocatalyst Structure Probed by X-ray Emission Spectroscopy

Viktoriia Saveleva, Kavita Kumar, Pascal Theis, Nicole Segura Salas, Ulrike Kramm, Frederic Jaouen, Frédéric Maillard, Pieter Glatzel

▶ To cite this version:

Viktoriia Saveleva, Kavita Kumar, Pascal Theis, Nicole Segura Salas, Ulrike Kramm, et al.. Fe-based Single Atom Electrocatalyst Structure Probed by X-ray Emission Spectroscopy. Gordon Research Conference, Feb 2023, Lucca, Italy. , Reactions at Surface Active Sites: From Single Atoms and 2D Materials to Electrified Interfaces, 10.15151/ESRF-ES-799089889 . hal-04005436

HAL Id: hal-04005436 https://hal.science/hal-04005436

Submitted on 26 Feb 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The European Synchrotron

Fe-based Single Atom Electrocatalyst Structure **Probed by X-ray Emission Spectroscopy**

<u>Viktoriia A. Saveleva¹, Kavita Kumar², Pascal Theis³, Nicole Segura Salas³, Ulrike I. Kramm³, Frédéric</u> Jaouen⁴, Frédéric Maillard², Pieter Glatzel¹

¹ ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France

² Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France

³ TU Darmstadt, Department of Chemistry, Catalysts and Electrocatalysts Group, Technical University of Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany

⁴ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France

viktoriia.saveleva@esrf.fr

Evaluation of the electrocatalyst performance data includes an electrode preparation step. In this work, we compare the structural composition of several Fe-N-C materials prepared via different synthesis routes and used to electrocatalyze the oxygen reduction reaction in proton-exchange membrane fuel cells, before and after catalyst layer preparation using high energy resolution fluorescence detected X-ray absorption (HERFD XANES) and X-ray emission spectroscopies (XES). The measurements were performed at beamline ID26 of the European synchrotron (ESRF).

Overview

Powder vs Electrode: Kβ HERFD XANES & XES

Fe-N-C Catalysts Overview

Role of Nafion ionomer

References

- Asset, T. and Atanassov, P. Iron-Nitrogen-Carbon Catalysts for Proton Exchange Membrane Fuel Cells, Joule, 2020, 4, 33–44.
- 2. Kumar, K.; et al. Physical and Chemical Considerations for Improving Catalytic Activity and Stability of Non-Precious Metal Oxygen Reduction Reaction Catalysts, ACS Catal. 2018, 8 (12), 11264–11276.
- Scharf, J.; et al. Relation between half-cell and fuel cell activity and stability of FeNC catalysts for the oxygen reduction reaction, SusMat 2022, 2 (5), 630–645.
- Paul, S.; et al. Influence of the metal center in M–N–C catalysts on the CO2 reduction reaction on gas diffusion electrodes, ACS Catal. 2021, 11 (9), 5850–5864. 4.
- 5. Ducotté, L.; et al. Mechanical aspects of the ID26 emission spectrometer II: improving stability for a large instrument by the use of multiple air pad supports, Diamond Light Source Proceedings 2010, 1 (Issue MEDSI-6), 26.

Acknowledgment

We acknowledge the European Synchrotron Radiation Facility for provision of beamtime at ID26 beamline (DOI: 10.15151/ESRF-ES-799089889). P.T. and U.I.K. acknowledge financial support by the BMBF young researcher group FeNC-StRedO (funding) number 03XP0092). F.M., F.J. and K.K. gratefully acknowledge financial support from the French National Research Agency through the ANIMA (grant number ANR-19-CE05–0039) and the DEEP (grant number ANR-21-CE05-0021) projects.

ESRF – The European Synchrotron – 71 Avenue des Martyrs, Grenoble, FRANCE - Tel +33 (0)4 76 88 20 00