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The AC 0 -Complexity Of Visibly Pushdown Languages

We study the question of which visibly pushdown languages (VPLs) are in the complexity class AC 0 and how to effectively decide this question. Our contribution is to introduce a particular subclass of one-turn VPLs, called intermediate VPLs, for which the raised question is entirely unclear: to the best of our knowledge our research community is unaware of containment or non-containment in AC 0 for any intermediate VPL. Our main result states that there is an algorithm that, given a visibly pushdown automaton, correctly outputs either that its language is in AC 0 , outputs some m ≥ 2 such that MOD m is constant-depth reducible to L (implying that L is not in AC 0 ), or outputs a finite disjoint union of intermediate VPLs that L is constant-depth equivalent to. In the latter case one can moreover effectively compute k, l ∈ N >0 with k ̸ = l such that the concrete intermediate VPL L(S → ε | ac k-1 Sb 1 | ac l-1 Sb 2 ) is constant-depth reducible to the language L. Due to their particular nature we conjecture that either all intermediate VPLs are in AC 0 or all are not. As a corollary of our main result we obtain that in case the input language is a visibly counter language our algorithm can effectively determine if it is in AC 0 -hence our main result generalizes a result by Krebs et al. stating that it is decidable if a given visibly counter language is in AC 0 (when restricted to well-matched words).

For our proofs we revisit so-called Ext-algebras (introduced by Czarnetzki et al.), which are closely related to forest algebras (introduced by Bojańczyk and Walukiewicz), and use Green's relations.

Introduction

This paper studies the circuit complexity of formal word languages. It is well-known that the regular word languages are characterized as the languages recognizable by finite monoids. When restricting the finite monoids to be aperiodic Schützenberger proved that one obtains precisely the star-free regular languages [START_REF] Paul | On finite monoids having only trivial subgroups[END_REF]. In terms of logic, these correspond to the languages definable in first-order logic FO[<] by a result of McNaughton and Papert [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF]. The more general class of regular languages expressible in FO[arb], i.e. first-order logic with arbitrary numerical predicates, coincides with the regular languages in AC 0 [START_REF] Gurevich | A logic for constant-depth circuits[END_REF][START_REF] Immerman | Languages that capture complexity classes[END_REF]. These can be characterized algebraically as the regular languages whose syntactic morphism is quasi-aperiodic [START_REF] Barrington | Regular languages in nc 1[END_REF]. The latter algebraic characterization also shows that it is decidable if a regular language is in AC 0 .

Generalizing regular languages, input-driven languages were introduced by Mehlhorn [START_REF] Mehlhorn | Pebbling Moutain Ranges and its Application of DCFL-Recognition[END_REF]. They are described by pushdown automata whose input alphabet is partitioned into letters that are either of type call, internal, or return. Rediscovered by Alur and Madhusudan in 2004 [START_REF] Alur | Visibly pushdown languages[END_REF] under the name of visibly pushdown languages (VPLs), it was shown that they enjoy many of the desirable effective closure properties of the regular languages. For instance, the visibly pushdown languages form an effective Boolean algebra. Algebraically, VPLs were characterized by Alur et al. [START_REF] Alur | Congruences for visibly pushdown languages[END_REF] by congruences on well-matched words of finite index. Extending upon these, Czarnetzki et al. introduced socalled Ext-algebras [START_REF] Czarnetzki | Visibly pushdown languages and free profinite algebras[END_REF]; these involve pairs of monoids (R, O) where O is a submonoid of R R . Being tailored towards recognizing word languages, Ext-algebras are closely connected to forest algebras, introduced by Bojańczyk and Walukiewicz [START_REF] Bojanczyk | Forest algebras[END_REF]: in [START_REF] Czarnetzki | Visibly pushdown languages and free profinite algebras[END_REF] it is shown that a language of well-matched words is visibly pushdown if, and only if, its syntactic Ext-algebra is finite. While context-free languages are generally in LOGCFL = SAC 1 , the visibly pushdown languages, as the regular languages, are known to be in NC 1 [START_REF] Dymond | Input-driven languages are in log n depth[END_REF]. By a famous result of Barrington [4], there already exist regular languages that are NC 1 -hard. In this paper we study the question of which visibly pushdown languages are in AC 0 and how one can effectively decide this question.

Related work. Visibly pushdown languages (VPLs) were introduced [START_REF] Alur | Visibly pushdown languages[END_REF] via deterministic visibly pushdown automata (DVPA for short). Inspired by forest algebras [START_REF] Bojanczyk | Forest algebras[END_REF] the paper [START_REF] Czarnetzki | Visibly pushdown languages and free profinite algebras[END_REF] introduces Ext-algebras. Unfortunately, the definition of Ext-algebra morphisms in [START_REF] Czarnetzki | Visibly pushdown languages and free profinite algebras[END_REF] is incorrect in that it provably does not lead to freeness.

The regular languages that are in AC 0 were effectively characterized by Barrington et al. [START_REF] Barrington | Regular languages in nc 1[END_REF]: a regular language is in AC 0 if, and only if, its syntactic morphism is quasi-aperiodic. By an automatatheoretic approach, Krebs et al. [START_REF] Krebs | Visibly counter languages and constant depth circuits[END_REF] effectively characterized the visibly counter languages that are in AC 0 . These are particular VPLs that are essentially accepted by visibly pushdown automata that use only one stack symbol. In his PhD thesis [START_REF] Ludwig | Tree-Structured Problems and Parallel Computation[END_REF] Ludwig already considers the question of which VPLs are in AC 0 . Yet, his conjectural characterization contains several serious flaws -a detailled discussion of these shortcomings can be found in Section 8.

Our contribution. We reintroduce Ext-algebras, fix the notion of Ext-algebra morphisms and define the languages they recognize. We also reintroduce the syntactic Ext-algebra of languages of well-matched words. We rigorously prove classical results like freeness and minimality of syntactic Ext-algebras with respect to recognition. We prove that a language of well-matched words is a VPL if, and only if, it is recognizable by a finite Ext-algebra. While these results essentially revisit the constructions of [START_REF] Czarnetzki | Visibly pushdown languages and free profinite algebras[END_REF], we use Ext-algebras as a technical tool for studying the complexity of visibly pushdown languages.

Fix a visibly pushdown alphabet Σ, i.e. Σ is partitioned into Σ call (call letters), Σ int (internal letters), and Σ ret (return letters). Denoting ∆(u) as the difference between the number of occurrences of call and return letters in u ∈ Σ * a word w ∈ Σ * is well-matched if ∆(w) = 0 and ∆(u) ≥ 0 for all prefixes u of w. A context is a pair (u, v) such that uv is well-matched -contexts have a natural composition operation:

(u, v) • (u ′ , v ′ ) = (uu ′ , v ′ v).
We introduce the following notions: a set of contexts R is length-synchronous if |u|/|v| = |u ′ |/|v ′ | for all (u, v), (u ′ , v ′ ) ∈ R with ∆(u), ∆(u ′ ) > 0 and weakly length-synchronous if u = u ′ implies |v| = |v ′ | and v = v ′ implies |u| = |u ′ | for all (u, v), (u ′ , v ′ ) ∈ R with ∆(u), ∆(u ′ ) > 0. Any language L of well-matched words induces a congruence ≡ L on contexts: (u, v) ≡ L (u ′ , v ′ ) if xuwvy ∈ L ⇔ xu ′ wv ′ y ∈ L for all contexts (x, y) and all well-matched words w. We introduce the notion of quasicounterfreeness: a VPL is quasi-counterfree if for all contexts σ ∈ Σ k × Σ l we have σ n ≡ L σ n+1 for some n ∈ N or all contexts in Σ k × Σ l are not ≡ L -equivalent to σ • σ. Finally, we introduce our central class of intermediate VPLs: a VPL is intermediate if it is quasi-counterfree and generated by a context-free grammar containing the production S → G ε, where S is the start nonterminal and whose other productions are of the form T → G uT ′ v such that uv is well-matched, u ∈ (Σ * int Σ call Σ * int ) + and v ∈ (Σ * int Σ ret Σ * int ) + such that the set of contexts {(u, v) | S ⇒ * G uSv} is weakly length-synchronous but not length-synchronous. Note that intermediate VPLs are particular one-turn visibly pushdown languages, that is, visibly pushdown languages that are subsets of (Σ \ Σ ret ) * (Σ \ Σ call ) * . As an example, for all k, l ≥ 1 with k ̸ = l a concrete intermediate VPL, denoted by L k,l is the one that is generated by the context-free grammar S → ε | ac k-1 Sb 1 | ac l-1 Sb 2 : here a is a call letter, c is an internal letter and b 1 and b 2 are return letters.

As far as we know our community is unaware of whether at all there is some intermediate VPL that is provably in AC 0 or provably not in AC 0 -analogous remarks apply to ACC 0 .

Our main result states that there is an algorithm that, given a DVPA A correctly outputs either L(A) ∈ AC 0 , outputs some m ≥ 2 such that MOD m is constant-depth reducible to L (thus witnessing that L(A) ̸ ∈ AC 0 ), or outputs a non-empty disjoint finite union of intermediate VPLs that L(A) is constant-depth equivalent to. In the latter case one can moreover effectively compute k, l ∈ N >0 with k ̸ = l such that the above-mentioned L k,l is constant-depth reducible to L(A). We conjecture that either all intermediate VPLs are in AC 0 or all are not: note that together with our main result this conjecture implies the existence of an algorithm that can determine if a given visibly pushdown language is in AC 0 . As a corollary of our main result we obtain that in case the input language is a visibly counter language our algorithm can determine if it is in AC 0 , hence our main result generalizes a result by Krebs et al. stating that it is decidable if a given visibly counter lanugage is in AC 0 (when restricted to well-matched words).

For our main result we extensively study Ext-algebras, the syntactic morphisms of VPLs, and make use of Green's relations.

Organization. Our paper is organized as follows. We introduce notation and give an overview of our main result in Section 2. In Section 3 we first recall general algebraic concepts and then revisit Ext-algebras and their correspondence to visibly pushdown languages. Section 4 introduces central notions like length-synchronicity and weak length-synchronicity for Ext-algebra morphisms and visibly pushdown languages. The proof of our main result is content of Section 5. In Section 6 we concern ourselves with the computability of the syntactic Ext-algebra as well as decidability of quasi-aperiodicity and (weak) length-synchronicity. We conclude in Section 7.

Preliminaries

By N we denote the non-negative integers and by N >0 the positive integers. For integers i, j ∈ Z we denote by [i, j] the set {i, . . . , j}. For any function f : X → Y and any subset Z ⊆ X we denote by f | Z : Z → Y the restriction of f to domain Z, i.e. f | Z (z) = f (z) for all z ∈ Z.

For all words w = w 1 • • • w n , where w i ∈ Σ for all i ∈ [1, n], and for subsets Γ ⊆ Σ, let |w| Γ = |{i ∈ [1, |w|] | w i ∈ Γ}| denote the number of occurrences of letters in Γ. For all a ∈ Γ we write |w| a to denote |w| {a} .

We define the languages

EQUALITY = {w ∈ {0, 1} * : |w| 0 = |w| 1 } and MOD m = {w ∈ {0, 1} * : m divides |w| 1 }
for each m ≥ 2.

A visibly pushdown alphabet is a finite alphabet Σ = Σ call ∪ Σ int ∪ Σ ret , where the alphabets Σ call , Σ int , and Σ ret are pairwise disjoint.

Definition 2.1. The set of well-matched words over a visibly pushdown alphabet Σ, denoted by Σ △ , is the smallest set satisfying the following:

• ε ∈ Σ △ and c ∈ Σ △ for all c ∈ Σ int ,

• awb ∈ Σ △ for all w ∈ Σ △ , a ∈ Σ call and b ∈ Σ ret , and

• uv ∈ Σ △ for all u, v ∈ Σ △ \ {ε}.
A well-matched word w ∈ Σ △ is one-turn if w ∈ (Σ\Σ ret ) * (Σ\Σ call ) * . A language L ⊆ Σ △ is oneturn if it contains only one-turn words. Let Σ be a visibly pushdown alphabet. We define ∆ : Σ * → Z to be the height monoid morphism such that ∆(w) = |w| Σ call -|w| Σret for all w ∈ Σ * . A context is a pair (u, v) ∈ Σ * × Σ * such that uv ∈ Σ △ . The composition of two contexts (u, v), (x, y) ∈ Con(Σ) is defined as (u, v) • (x, y) = (ux, yv). For σ ∈ Con(Σ) by σ k we denote the k-fold composition σ •• • ••σ. For any context (u, v) ∈ Con(Σ) and well-matched word w ∈ Σ △ we define (u, v)w = uwv. An equivalence relation ≡ on Con(Σ) is a congruence if for all χ, χ ′ , σ, τ ∈ Con(Σ) we have that σ ≡ τ implies χ • σ • χ ′ ≡ χ • τ • χ ′ . Given a congruence ≡ over Con(Σ) we denote by [σ] ≡ the equivalence class of σ. Given a language of well-matched words L ⊆ Σ △ we write σ ≡ L τ if for all χ ∈ Con(Σ) and all w ∈ Σ △ we have (χ • σ)w ∈ L if, and only if, (χ • τ )w ∈ L. Clearly, ≡ L is a congruence.

Let us briefly introduce context-free grammars. A context-free grammar is a tuple G = (V, Σ, P, S), where V is a finite set of nonterminals, Σ is a non-empty finite alphabet, P ⊆ V × (V ∪ Σ) * is a finite set of productions, and S ∈ V is the start nonterminal. We write T → G y whenever (T, y) ∈ P . The binary relation ⇒ G over (V ∪ Σ) * is defined as u ⇒ G v if there exists a production T → G y and x, z ∈ (V ∪ Σ) * such that u = xT z and v = xyz. By L(G) = {w ∈ Σ * | S ⇒ * G w} we denote the language of G where ⇒ * G is the reflexive transitive closure of ⇒ G . In the following we introduce deterministic visibly pushdown automata, remarking that nondeterministic visibly pushdown automata are determinizable [START_REF] Alur | Visibly pushdown languages[END_REF]. Definition 2.2. A deterministic visibly pushdown automaton (DVPA) is a tuple A = (Q, Σ, Γ, δ, q 0 , F, ⊥), where

• Q is a finite set of states,
• Σ is a visibly pushdown alphabet, the input alphabet,

• Γ is a finite alphabet, the stack alphabet,

• q 0 ∈ Q is the initial state,

• F ⊆ Q is the set of final states,

• ⊥ ∈ Γ is the bottom-of-stack symbol, and

• δ : Q × Σ × Γ → Q × {ε} ∪ Γ ∪ (Γ \ {⊥})Γ is the transition function such that for all q ∈ Q, a ∈ Σ, α ∈ Γ: -if a ∈ Σ call , then δ(q, a, α) ∈ Q × (Γ \ {⊥})α,
if a ∈ Σ ret , then δ(q, a, α) ∈ Q × {ε}, and

-if a ∈ Σ int , then δ(q, a, α) ∈ Q × {α}.
We define the extended transition function δ : Q × Σ * × Γ * → Q × Γ * inductively as

• δ(q, ε, β) = (q, β) for all q ∈ Q and β ∈ Γ * ,

• δ(q, w, ε) = (q, ε) for all q ∈ Q and w ∈ Σ + , and

• δ(q, aw, αβ) = δ(p, w, γβ), where δ(q, a, α) = (p, γ) for all q ∈ Q, a ∈ Σ, w ∈ Σ * , α ∈ Γ and β ∈ Γ * .

The language accepted by A is the language L(A) = {w ∈ Σ * | δ(q 0 , w, ⊥) ∈ F × {⊥}}. We call such a language a visibly pushdown language (VPL). We remark that visibly pushdown languages are always subsets of Σ △ . We refer to [START_REF] Harrison | Introduction to Formal Language Theory[END_REF] for further details on formal language theory.

Semi-linear sets. Given d ∈ N >0 , for ⃗ x = (x 1 , . . . , x d ), ⃗ y = (y 1 , . . . , y d ) ∈ N d we define ⃗ x + ⃗ y = (x 1 + y 1 , . . . , x d + y d ). We define the norm of a vector ⃗ x ∈ N d as

∥⃗ x∥ = max{x i | i ∈ [1, d]}. For X, Y ⊆ N d define X + Y = {⃗ x + ⃗ y | ⃗ x ∈ X, ⃗ y ∈ Y }.
For ⃗ x = (x 1 , . . . , x d ) ∈ N d and n ∈ N we define n⃗ x = (nx 1 , . . . , nx d ) and N⃗ x = {n⃗ x | n ∈ N}. A set X ⊆ N d is linear if X = ⃗ y + k i=1 N⃗ x i for k ∈ N and y, x 1 , . . . , x k ∈ N d and it is semilinear if X is a finite union of linear sets.

Complexity and logic

We assume familiarity with standard circuit complexity, we refer to [START_REF] Vollmer | Introduction to Circuit Complexity -A Uniform Approach[END_REF][START_REF] Jukna | Boolean Function Complexity -Advances and Frontiers[END_REF] for an introduction to the topic. Recall the following Boolean functions: the AND-function, the OR-function, the majority function (that outputs 1 if the majority of its inputs are 1s), and the mod m function (that outputs 1 if the number of its inputs that are 1s is divisible by m) for all m ≥ 2.

A circuit family (C n ) n∈N decides a binary language L ⊆ {0, 1} * if C n is a circuit with n inputs such that L ∩ {0, 1} n = {x 1 . . . x n ∈ {0, 1} n | C n (x 1 , . . . , x n ) = 1} for all n ∈ N. In this paper, we will consider circuits deciding languages over arbitrary finite alphabets: to do this, we just consider implicitly that any language over an arbitrary finite alphabet comes with a fixed binary encoding that encodes each letter as a block of bits of fixed size. By ≤ cd we mean constant-depth truth table reducibility (or just constant-depth reducibility) as introduced in [START_REF] Ashok | Constant depth reducibility[END_REF]. Formally for two languages K ⊆ Γ * and L ⊆ Σ * for finite alphabets Σ, Γ, we write K ≤ cd L in case there is a polynomial p, a constant d ∈ N, and circuit family (C n ) n∈N deciding L such that each circuit C n satisfies the following: it is of depth at most d and size at most p(n) and its non-input gates are either ANDlabeled, OR-labeled, or so-called oracle gates, labeled by L, that are gates deciding L ∩ Σ m , where m ≤ p(n), such that there is no path from the output of an oracle gate to an input of another oracle gate. We write K = cd L if K ≤ cd L and L ≤ cd K; we also say that K and L are constant-depth equivalent. We say a language L is hard for a complexity class C (or just C-hard

) if L ′ ≤ cd L for all L ′ ∈ C. We say L is C-complete if L is C-hard and L ∈ C.
The following complexity classes are relevant in this paper:

• AC 0 is the class of all languages decided by circuit families with NOT gates, AND, OR gates of unbounded fan-in, constant depth and polynomial size;

• ACC 0 is the class of all languages decided by circuit families with NOT gates, AND, OR and modular gates (for some fixed m) of unbounded fan-in, constant depth and polynomial size;

• TC 0 is the class of all languages decided by circuit families with NOT gates, AND, OR and majority gates of unbounded fan-in, constant depth and polynomial size;

• NC 1 is the class of all languages decided by circuit families with NOT gates, AND, OR gates of bounded fan-in, logarithmic depth and polynomial size.

We also consider the framework of first order logic over finite words. (See [START_REF] Immerman | Descriptive complexity[END_REF][START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF] for a proper introduction to the topic.) A numerical predicate of arity r ∈ N >0 is a symbol of arity r associated to a subset of N >0 r . Given a class C of numerical predicates and a finite alphabet Σ, we call FO Σ [C]formula a first order formula over finite words using the alphabet Σ and numerical predicates from the class C. On occasions, we might also consider FO Σ,↭ [C]-formulas that in comparison to the previous ones can use an additional binary predicate ↭ and are interpreted on structures (w, M ) with w ∈ Σ * and M ⊆ [1, |w|] 2 , where everything is interpreted as for FO Σ [C]-formulas on w excepted for ↭ that is interpreted by M . Given a class C of numerical predicates, by FO[C] we denote the class of all languages over any finite alphabet Σ defined by a FO Σ [C]-sentence. A classical result at the interplay of circuit complexity and logic is that AC 0 = FO[arb], where arb denotes the class of all numerical predicates (see [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF]Theorem IX.2.1] or [START_REF] Immerman | Descriptive complexity[END_REF]Corollary 5.32]). The other numerical predicates that we will encounter in this paper are <, + and MOD m for all m ∈ N >0 (gathered together in the set MOD = {MOD m | m > 0}).

Main result

The notion of length-synchronicity and weak length-synchronicity will be a central notion in our main result. In the following Σ always denotes a visibly pushdown alphabet. 

Definition 2.3 ((Weak) Length-Synchronicity). Let R ⊆ Con(Σ) be a set of contexts. • R is length-synchronous if |u|/|v| = |u ′ |/|v ′ | for all (u, v), (u ′ , v ′ ) ∈ R with ∆(u), ∆(u ′ ) > 0. • R is weakly length-synchronous if u = u ′ implies |v| = |v ′ | and v = v ′ implies |u| = |u ′ | for all (u, v), (u ′ , v ′ ) ∈ R with ∆(u), ∆(u ′ ) > 0. Note that a set of contexts R is weakly length-synchronous if R is length-synchronous. Indeed, if, say (u, v), (u, v ′ ) ∈ R
Definition 2.4 (Quasi-Counterfree). A VPL L ⊆ Σ △ is quasi-counterfree if for all σ = (u, v) ∈ Con(Σ) we have σ n ≡ L σ n+1 for some n ∈ N or for all τ ∈ Σ |u| × Σ |v| ∩ Con(Σ) we have τ ̸ ≡ L σ • σ.
We will later show that quasi-counterfreeness of a VPL L ⊆ Σ △ is equivalent to the condition that there is no k, l ∈ N such that there is a subset of Con(Σ) ∩ Σ k × Σ l that forms a non-trivial group when considering the associated equivalence classes with respect to ≡ L (Proposition 4.18).

Example 2.5. Consider the visibly pushdown alphabet Σ, where Σ call = {a}, Σ int = {c} and

Σ ret = {b 1 , b 2 }. For all k, l ∈ N >0 satisfying k ̸ = l, consider the language L k,l generated by the context-free grammar S → ac k-1 Sb 1 | ac l-1 Sb 2 | ε . We have that the set of contexts {(u, v) ∈ Con(Σ) | S ⇒ *
G uSv} is weakly length-synchronous since both the relation and its reverse is a partial function -however, it is not length-synchronous. It is also not hard to see that L k,l is quasi-counterfree.

We say a context-free grammar G = (V, Σ, P, S) is vertically visibly pushdown if the underlying alphabet Σ is a visibly pushdown alphabet, S → G ε, and all other productions of G are of the form

T → G uT ′ v, where uv ∈ Σ △ is one-turn such that u ∈ (Σ * int Σ call Σ * int ) + and v ∈ (Σ * int Σ ret Σ * int ) + .
Note that each grammar generating L k,l in Example 2.5 is vertically visibly pushdown. The following remark is obvious. Conjecture 2.8. There is no intermediate VPL that is in ACC 0 or TC 0 -hard under constant-depth reductions.

In fact, the authors are not even aware of any intermediate VPL that is provably not in AC 0 . An indication for the inadequacies of known techniques to prove it is that the robustness [START_REF] Jukna | Boolean Function Complexity -Advances and Frontiers[END_REF] of intermediate VPLs can be proven to be constant. Further techniques, based for instance on the switching lemma [START_REF] Håstad | Almost optimal lower bounds for small depth circuits[END_REF] or on the polynomial method [START_REF] Beigel | The polynomial method in circuit complexity[END_REF] also do not seem to be applicable.

Our main result is the following theorem.

Theorem 2.9. There is an algorithm that, given a DVPA A, correctly outputs either

• L(A) ∈ AC 0 , • m ≥ 2 such that MOD m ≤ cd L(A) (hence implying L(A) ̸ ∈ AC 0 ), • vertically visibly pushdown grammars G 1 , . . . , G m each generating intermediate VPLs such that L = cd m i=1 L(G i ). In this case one can moreover effectively compute k, l ∈ N with k ̸ = l such that L k,l ≤ cd L(A).
Theorem 2.9 and the following conjecture imply the existence of an algorithm that decides if a given visibly pushdown language is in AC 0 . Conjecture 2.10. Either all intermediate VPLs are in AC 0 or all are not.

Corollary for visibly counter languages

A visibly counter automaton with threshold m (m-VCA) over a visibly pushdown alphabet Σ is a tuple A = (Q, Σ, q 0 , F, δ 0 , . . . , δ m ), where Q is a finite set of states, q 0 is the initial state, F ⊆ Q is a set of final states, m ≥ 0 is a threshold, and

δ i : Q × Σ → Q is a transition function for each i ∈ [0, m].
A configuration of A is an element of Q × N. For any two configurations (q, n), (q ′ , n ′ ) and any x ∈ Σ we define (q, n)

x -→ A (q ′ , n ′ ) if q ′ = δ min(n,m) (q, x) and n ′ = n + ∆(x). The relation x -→ A is naturally extended to w -→ A for w ∈ Σ * . By L(A) = {w ∈ Σ △ | ∃q ∈ F : (q 0 , 0) w -→ A (
q, 0)} we denote the language (of well-matched words) of A. We remark that the language of any m-VCA is a visibly pushdown language. We also remark that the languages of m-VCAs are defined to be sets of well-matched words as in [START_REF] Bárány | Regularity problems for visibly pushdown languages[END_REF], whereas in [START_REF] Krebs | Visibly counter languages and constant depth circuits[END_REF] the well-matched requirement is not present.

The following corollary implies the main result of [START_REF] Krebs | Visibly counter languages and constant depth circuits[END_REF] when restricted to well-matched words.

Corollary 2.11.

There is an algorithm that, given an m-VCA A, correctly outputs either that

L(A) is in AC 0 or some m ≥ 2 such that MOD m ≤ cd L(A) (hence implying L(A) ̸ ∈ AC 0 ).
For the proof of Corollary 2.11 we refer to Section 5.5.

3 Language-theoretic and algebraic foundations and Ext-Algebras

Basic algebraic automata theory

For a thorough introduction to algebraic automata theory, we refer the reader to the two classical references of the domain by Eilenberg [START_REF] Eilenberg | Automata, Languages, and Machines. Volume A. Pure and applied mathematics[END_REF][START_REF] Eilenberg | Automata, Languages, and Machines. Volume B. Pure and applied mathematics[END_REF] and Pin [START_REF] Pin | Varieties of Formal Languages[END_REF], but also to the following central reference in automata theory [START_REF]Handbook of Automata Theory[END_REF]Chapter 1].

A semigroup is a pair (M, •), where M is a non-empty set and • is a binary operation on M that is associative, i.e. x • (y • z) = (x • y) • z for all x, y, z ∈ M . Usually, when the operation is clear from the context, we write it multiplicatively and write just M instead of (M, •). The semigroup M is trivial if |M | = 1, and non-trivial otherwise. A subsemigroup of M is a semigroup N such that N is a subset of M and the operation of N is the restriction of the operation of M to N . We often just write xy to denote x • y. An idempotent of a semigroup M is an element x ∈ M satisfying x = xx. The idempotent power of a finite semigroup M is the smallest positive integer ω such that x ω is an idempotent for all x ∈ M . The zero of a semigroup M is the unique element x ∈ M (if it exists) satisfying xy = yx = x for all y ∈ M . A monoid is a semigroup M with a neutral element, that is, an element e ∈ M such that x • e = e • x = x for all x ∈ M . We usually denote the neutral element of a monoid M by 1 M . A submonoid of M is a monoid N that is a subsemigroup of M containing 1 M (which is thus also the neutral element of N ). Consider some monoid M . A congruence on M is an equivalence relation ∼ on M that satisfies vxz ∼ vyz for all v, z ∈ M and all x, y ∈ M with x ∼ y. We denote by [x] ∼ the equivalence class of x ∈ M . The quotient of M with respect to a congruence ≡ is the monoid M /≡ with base set M /≡= {[m] ≡ | m ∈ M } and operation given by

[x] ≡ • [y] ≡ = [xy] ≡ for all x, y ∈ M .
A group is a monoid M in which for all x ∈ M there exists an inverse, that is, an element

x ′ ∈ M such that xx ′ = x ′ x = 1 M .
Each element in a group M has a unique inverse, so we denote by x -1 the unique inverse of an x ∈ M . A subgroup of a group M is a submonoid of M that is a group. Given a semigroup M , a set S and a subsemigroup N of M , whenever N ⊆ S, N is said to be contained in S. A semigroup M is aperiodic if it does not contain any non-trivial group. It is well-known that a finite semigroup M is aperiodic if, and only if, given ω the idempotent power of M , it holds that x ω = x ω+1 for all x ∈ M if, and only if, there exists k ∈ N >0 such that x k = x k+1 for all x ∈ M .

A morphism from a monoid M to a monoid N is a mapping φ : M → N such that φ(1 M ) = 1 N and φ(xy) = φ(x)φ(y) for all x, y ∈ M . If M = Σ * and N = Γ * where Σ and Γ are finite alphabets, we call φ length-multiplying whenever there exists k ∈ N such that φ(Σ) ⊆ Γ k . Let φ : Σ * → M be a morphism, where Σ is a finite alphabet and M is finite. Then there exists l ∈ N >0 such that φ(Σ l ) = φ(Σ 2l ): this implies that φ(Σ l ) is a semigroup. The smallest such l is called the stability index of the morphism φ. It is easily shown that if φ(Σ n ) contains a non-trivial group for some n ∈ N, then so does φ(Σ l ). We say that h is quasi-aperiodic if φ(Σ n ) does not contain any nontrivial group for all n ∈ N, which is equivalent to the fact that φ(Σ l ) is aperiodic. (See [START_REF] Barrington | Regular languages in nc 1[END_REF][START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF] for the original definition and [START_REF] Straubing | On logical descriptions of regular languages[END_REF] for the definition using the stability index, though it has been only formulated for surjective morphisms.)

A language L over a finite alphabet Σ is recognized by a monoid M if there is a morphism φ : Σ * → M and F ⊆ M such that L = φ -1 (F ). The syntactic monoid of a language L ⊆ Σ * is the quotient of Σ * by the congruence ∼ L (called the syntactic congruence of L) defined by x ∼ L y for x, y ∈ Σ * whenever for all u, v ∈ Σ * , uxv ∈ L ⇔ uyv ∈ L. The syntactic monoid of L recognizes L via the syntactic morphism of L sending any word w ∈ Σ * to [w] ∼ L . A fundamental and well-known result is that a language L is regular if, and only if, it is recognized by a finite monoid if, and only if, its syntactic monoid is finite.

Ext-algebras

This section builds on [START_REF] Czarnetzki | Visibly pushdown languages and free profinite algebras[END_REF], but identifies an inaccuracy in the definition of Ext-algebra morphisms to establish freeness.

Let (M, •, 1 M ) be a monoid. For each m ∈ M , we shall respectively denote by left m and right m the left-multiplication map x → m • x and the right-multiplication map x → x • m.

Definition 3.1. An Ext-algebra (R, O, •, •) consists of a monoid (R, •, 1 R ) and a monoid (O, •, 1 O )
that is a submonoid of (R R , •) containing the maps left r and right r for each r ∈ R. Definition 3.2. Let (R, O) and (S, P ) be Ext-algebras. An Ext-algebra morphism from (R, O) to (S, P ) is a pair (φ, ψ) of monoid morphisms φ : R → S and ψ : O → P such that:

• for all e ∈ O and r ∈ R we have ψ(e)(φ(r)) = φ(e(r));

• for all r ∈ R we have ψ(left r ) = left φ(r) and ψ(right r ) = right φ(r) .

We write (φ, ψ) : (R, O) → (S, P ). The morphism (φ, ψ) is called surjective (respectively bijective) if both φ and ψ are surjective (respectively bijective).

When it is clear from the context, we shall write morphism to mean Ext-algebra morphism.

Remark 3.3. In the above definition, φ is totally determined by ψ, because for each r ∈ R, we have • (R, O) is a quotient of (S, P ) whenever there exists a surjective morphism from (S, P ) to (R, O).

φ(r) = φ(left r (1 R )) = ψ(left r )(φ(1 R )) = ψ(left r )(1 S ).
• (R, O) divides (S, P ) whenever (R, O) is a quotient of a sub-Ext-algebra of (S, P ).

For the rest of this section, let us fix some visibly pushdown alphabet Σ.

Definition 3.5. For all (u, v) ∈ Con(Σ), consider the function ext u,v : Σ △ → Σ * such that ext u,v (x) = uxv for all x ∈ Σ △ . We call ext u,v = ext x 1 ,y 1 • • • • • ext xm,ym a factorization of ext u,v . That is, u = x 1 . . . x m , v = y m • • • y 1 .
The following lemma states that each ext u,v has a unique factorization when restricting the (x i , y i ) to be from Σ △ × Σ △ or from Σ call × Σ ret and minimizing the number of (x i , y i ) ∈ Σ △ × Σ △ : we obtain its so-called stair factorization. Lemma 3.6. For all ext u,v there exists a unique factorization

ext u,v = ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x h-1 ,y h-1 • ext a h-1 ,b h-1 • ext x h ,y h satisfying h ≥ 1, x i , y i ∈ Σ △ for all i ∈ [1, h] and a i ∈ Σ call and b i ∈ Σ ret for all i ∈ [1, h -1]. In particular, ext u,v is in fact a function from Σ △ to Σ △ .
Proof. We show additionally that the required factorization must satisfy h = ∆(u) + 1. We prove the statement by induction on |uv|. In case |uv| ≤ 1, then either ext u,v = ext ε,ε , or there is some c ∈ Σ int such that ext u,v = ext ε,c or ext u,v = ext c,ε . In any of these cases, we uniquely factorize ext u,v as ext x 1 ,y 1 with x 1 = u and y 1 = v.

Let us consider the case when |uv| ≥ 2 and let h = ∆(u) + 1. Note that since uv ∈ Σ △ we have u ∈ Σ △ if, and only if, v ∈ Σ △ . In case u, v ∈ Σ △ we have ∆(u) = 0, hence the only factorization of the desired form is indeed ext u,v = ext x 1 ,y 1 , where x 1 = u and y 1 = v. Let us finally treat the case when u, v / ∈ Σ △ , thus ∆(u) ≥ 1 and hence h ≥ 2. Let x be the maximal prefix of u satisfying x ∈ Σ △ and let y be the maximal suffix of v satisfying y ∈ Σ △ . Due to maximality of x and y there

must exist a ∈ Σ call , b ∈ Σ ret , and u ′ , v ′ ∈ Σ * such that u = xau ′ , v = v ′ by and u ′ v ′ ∈ Σ △ with ∆(u ′ ) = ∆(u) -1 = h -2. Let ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x h-2 ,y h-2 • ext a h-2 ,b h-2 • ext x h-1 ,y h-1
be the unique factorization of the desired form for ext u ′ ,v ′ by induction hypothesis. We claim that

ext x,y • ext a,b • ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x h-2 ,y h-2 • ext a h-2 ,b h-2 • ext x h-1 ,y h-1
is the unique factorization of the desired form for ext u,v . Indeed, since ∆(u) ≥ 1 any potential factorization of the desired form for ext u,v must be of the form

ext x ′ ,y ′ • ext a ′ ,b ′ •π, where x ′ is a prefix of u satisfying x ′ ∈ Σ △ , y ′ is a suffix of v satisfying y ′ ∈ Σ △ , a ′ ∈ Σ call ,
and b ′ ∈ Σ ret . In particular x ′ is a prefix of x and y ′ is suffix of y. In case x ′ = x and y ′ = y it follows a ′ = a and b ′ = b and uniqueness follows from induction hypothesis. It remains to consider the case when x ′ is a strict prefix of x or y ′ is a strict suffix of y. We only treat the former case. It must hold x = x ′ a ′ s for some s ∈ Σ + such that a ′ s ∈ Σ △ . But then π is a factorization for ext su ′ ,v ′ z for some z ∈ Σ * which is a contradiction since ∆(s) = -1 due to a ′ s ∈ Σ △ .

In the following we will denote the unique factorization provided by Lemma 3.6 as the stair factorization of ext u,v . Consider now the set O(Σ △ ) of all functions ext u,v for (u, v) ∈ Con(Σ): it is a subset of (Σ △ ) Σ △ closed under composition. Thus, (O(Σ △ ), •) is a submonoid of ((Σ △ ) Σ △ , •). Since for all w ∈ Σ △ we have left w = ext w,ε and right w = ext ε,w , the set O(Σ △ ) contains the functions left w and right w for all w ∈ Σ △ . Hence, (Σ △ , O(Σ △ ), •, •) is an Ext-algebra. The following important proposition establishes freeness of (Σ △ , O(Σ △ )). Proposition 3.7. Let (R, O) be an Ext-algebra and consider two functions φ : Σ int → R and

ψ : {ext a,b | a ∈ Σ call , b ∈ Σ ret } → O. Then there exists a unique Ext-algebra morphism (φ, ψ) from (Σ △ , O(Σ △ )) to (R, O) satisfying φ(c) = φ(c) for each c ∈ Σ int and ψ(ext a,b ) = ψ(ext a,b ) for each a ∈ Σ call , b ∈ Σ ret .
Proof. We define φ based on a refinement of the structural definition of well-matched words. For each w ∈ Σ △ we inductively define:

φ(w) =            1 R if w = ε (type 1) φ(c) if w = c ∈ Σ int (type 2) ψ(ext a,b )(φ(x)) if w = axb for a ∈ Σ call , b ∈ Σ ret and x ∈ Σ △ (type 3) φ(x)φ(y) if w = xy for x, y ∈ Σ △ \ {ε}, where |x| is minimal (type 4)
Observe that the four above types give unique decompositions. For proving that φ is indeed a monoid morphism one proves that for all w, v ∈ Σ △ we have φ(wv) = φ(w)φ(v) by structural induction on w given by the four types. The case v = ε is direct, we only treat the case v ∈ Σ △ \ {ε} in the following. If w is of type 1 we have φ(wv

) = φ(v) = 1 R • φ(v) = φ(w)φ(v).
If w is of type 2 or 3, then wv is of type 4 and w is the shortest prefix of wv with w ∈ Σ △ \ {ε}, hence φ(wv) = φ(w)φ(v). If w is of type 4, then w = xy for some x, y ∈ Σ △ \ {ε}, where x is of minimal length. Then wv is of type 4, where wv = x(yv) and x is the shortest prefix of wv with

x ∈ Σ △ \ {ε}. Hence φ(wv) = φ(x)φ(yv) = φ(x)φ(y)φ(v) = φ(xy)φ(v) = φ(w)φ(v)
, where the first equality follows by definition of φ and the second and third equality follow from the induction hypothesis. Given any

ext u,v ∈ O(Σ △ ) let ext u,v = ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x h-1 ,y h-1 • ext a h-1 ,b h-1 • ext x h ,y h
be the unique stair factorization given by Lemma 3.6. We define

ψ(ext u,v ) = ⃝ h-1 i=1 left φ(x i ) • right φ(y i ) • ψ(ext a i ,b i ) • left φ(x h ) • right φ(y h ) .
For showing that ψ is indeed a monoid morphism, one proves ψ(ext

uu ′ ,v ′ v ) = ψ(ext u,v ) • ψ(ext u ′ ,v ′ ) for all ext u,v , ext u ′ ,v ′ ∈ O(Σ △
) by observing simply that the unique stair factorization of ext uu ′ ,v ′ v is obtained by composing the unique stair factorizations of ext u,v and ext u ′ ,v ′ . We now show that (φ, ψ) is in fact an Ext-algebra morphism. The discussion above first shows that both φ : Σ △ → R and ψ : O(Σ △ ) → O are monoid morphisms. Next, let us prove that for all ext u,v ∈ O(Σ △ ) and w ∈ Σ △ we have ψ(ext u,v )(φ(w)) = φ(ext u,v (w)). Let

ext u,v = ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x h-1 ,y h-1 • ext a h-1 ,b h-1 • ext x h ,y h
be the unique stair factorization of ext u,v provided by Lemma 3.6. If h = 1, then

ψ(ext u,v )(φ(w)) = left φ(x h ) • right φ(y h ) (φ(w)) = φ(x h wy h ) = φ(ext u,v (w)) .
Otherwise, we have

ψ(ext u,v )(φ(w)) = ⃝ h-1 i=1 left φ(x i ) • right φ(y i ) • ψ(ext a i ,b i ) • left φ(x h ) • right φ(y h ) (φ(w)) = ⃝ h-1 i=1 left φ(x i ) • right φ(y i ) • ψ(ext a i ,b i ) φ(x h wy h ) = ⃝ h-2 i=1 left φ(x i ) • right φ(y i ) • ψ(ext a i ,b i ) • left φ(x h-1 ) • right φ(y h-1 ) • ψ(ext a h-1 ,b h-1 ) φ(x h wy h ) = ⃝ h-2 i=1 left φ(x i ) • right φ(y i ) • ψ(ext a i ,b i ) • left φ(x h-1 ) • right φ(y h-1 ) φ(a h-1 x h wy h b h-1 ) = ⃝ h-2 i=1 left φ(x i ) • right φ(y i ) • ψ(ext a i ,b i ) φ(x h-1 a h-1 x h wy h b h-1 y h-1 ) = • • • =φ(x 1 a 1 • • • x h-1 a h-1 x h wy h b h-1 y h-1 • • • b 1 y 1 ) =φ(ext u,v (w)) .
Let us prove that for all w ∈ Σ △ we have ψ(left w ) = left φ(w) . Noting that the unique stair factorization of left w is ext w,ε we obtain

ψ(left w ) = ψ(ext w,ε ) = left φ(w) • right φ(ε) = left φ(w) • right 1 R = left φ(w) • 1 O = left φ(w) .
One proves ψ(right w ) = right φ(w) for all w ∈ Σ △ analogously.

Therefore, (φ, ψ) is an Ext-algebra morphism and it is the unique one satisfying φ(c) = φ(c) for each c ∈ Σ int and ψ(ext a,b ) = ψ(ext a,b ) for each a ∈ Σ call , b ∈ Σ ret . Take indeed any such Ext-algebra morphism (φ ′ , ψ ′ ): using the properties of Ext-algebra morphisms, it is straightforward to prove that then φ(w) = φ ′ (w) for all w ∈ Σ △ by structural induction on w and then to prove that ψ(ext u,v ) = ψ ′ (ext u,v ) for all ext u,v ∈ O(Σ △ ) by using the unique stair factorization of ext u,v provided by Lemma 3.6.

Remark 3.8. The second condition in Definition 3.2, i.e. for all r ∈ R we have ψ(left r ) = left φ(r) and ψ(right r ) = right φ(r) , does not appear in the definition of Ext-algebra morphisms given in [START_REF] Czarnetzki | Visibly pushdown languages and free profinite algebras[END_REF].

But this is actually problematic, because then Proposition 3.7 would not hold in general.

Indeed, consider for instance the visibly pushdown alphabet Γ where Γ call = {a}, Γ int = ∅ and Γ ret = {b}, where R the is semi-lattice on two elements {0, 1} such that 1 • 1 = 1 and 0 • 1 = 1 • 0 = 0 • 0 = 0; and moreover O is defined as {id, 0, 1} with 0(0) = 0(1) = 0 and 1(0) = 1(1) = 1. Then (R, O) is an Ext-algebra. Let us define the function φ : Γ △ → R by φ(w) = 1 for all w ∈ Γ △ and the function ψ : O(Γ △ ) → O by ψ(ext a n ,b n ) = id for all n ∈ N and ψ(ext u,v ) = 1 for all u, v ∈ Γ * with uv ∈ Γ △ and (u ∈ aΓ * bΓ * or v ∈ Γ * aΓ * b). The pair (φ, ψ) forms a morphism from (Γ △ , O(Γ △ )) to (R, O), but it is not the only one sending ext a,b to id, because we could also take ψ to send all elements of O(Γ △ ) to id. Definition 3.9. A language L ⊆ Σ △ is recognized by an Ext-algebra (R, O) whenever there exists a morphism (φ, ψ) We set R = {acb 1 , ε, c, cab 1 , ab 1 } with multiplication given by the following table:

: (Σ △ , O(Σ △ )) → (R, O) such that L = φ -1 (F ) for some F ⊆ R.
• acb 1 ε c cab 1 ab 1 acb 1 acb 1 acb 1 acb 1 acb 1 acb 1 ε acb 1 ε c cab 1 ab 1 c acb 1 c acb 1 acb 1 cab 1 cab 1 acb 1 cab 1 acb 1 acb 1 acb 1 ab 1 acb 1 ab 1 acb 1 acb 1 acb 1
Thus, observe that ε = 1 R and acb 1 is the zero of R. Omitting its multiplication table, we set the monoid O to be the following

O = {(acb 1 , ε), (ε, ε), (c, ε), (ε, c), (ab 1 , ε), (ε, ab 1 ), (cab 1 , ε)} ∪ {(a, b 2 ), (ca, b 2 ), (ca, ab 1 b 2 ), (ca, b 1 ), (a, ab 1 b 2 ), (a, b 1 )},
where the elements in the first set comprise {left r , right r | r ∈ R}, more precisely

• (acb 1 , ε) = left acb 1 = right acb 1 , • (ε, ε) = left ε = right ε = 1 O , • (c, ε) = left c , • (ε, c) = right c , • (ab 1 , ε) = left ab 1 , • (ε, ab 1 ) = right ab 1 , • (cab 1 , ε) = left cab 1 = right cab 1 ,
and where the elements from the second set are the following functions from R to R, respectively:

• (a, b 2 ): r acb 1 ε c cab 1 ab 1 (a, b 2 )(r) acb 1 acb 1 ab 1 ab 1 acb 1 • (ca, b 2 ): r acb 1 ε c cab 1 ab 1 (ca, b 2 )(r) acb 1 acb 1 cab 1 cab 1 acb 1 • (ca, ab 1 b 2 ): r acb 1 ε c cab 1 ab 1 (ca, ab 1 b 2 )(r) acb 1 acb 1 cab 1 acb 1 acb 1 • (ca, b 1 ): r acb 1 ε c cab 1 ab 1 (ca, b 1 )(r) acb 1 cab 1 acb 1 acb 1 cab 1 • (a, ab 1 b 2 ): r acb 1 ε c cab 1 ab 1 (a, ab 1 b 2 )(r) acb 1 acb 1 ab 1 acb 1 acb 1 • (a, b 1 ): r acb 1 ε c cab 1 ab 1 (a, b 1 )(r) acb 1 ab 1 acb 1 acb 1 ab 1 .
Consider the unique morphism (φ, ψ)

: (Γ △ , O(Γ △ )) → (R, O) that (thanks to Proposition 3.7) satisfies φ(c) = c, ψ(ext a,b 1 ) = (a, b 1 ) and ψ(ext a,b 2 ) = (a, b 2 ). We have L = φ -1 ({ε, ab 1 }).
Definition 3.11. Let (R, O) be an Ext-algebra. An equivalence relation on (R, O) is an equivalence relation ∼ on R. We say an equivalence relation ∼ is a congruence on (R, O) whenever for all e ∈ O and for all x, y ∈ R we have that x ∼ y implies e(x) ∼ e(y). In case ∼ is a congruence we denote by (R, O)/∼ the pair (R/∼, O ′ ), where

O ′ = {e ′ ∈ (R/∼) R/∼ | ∃e ∈ O ∀x ∈ R : e ′ ([x] ∼ ) = [e(x)] ∼ }.
The following lemma actually shows that (R, O)/∼ is again an Ext-algebra, that we call the quotient of (R, O) by ∼. Lemma 3.12. Let (R, O) be an Ext-algebra and ∼ be a congruence on (R, O). Proof. Let u, v ∈ R such that u ∼ v. Take any x, y ∈ R: we have that

Then (R/∼, O ′ ), with O ′ = {e ′ ∈ (R/∼) R/∼ | ∃e ∈ O ∀x ∈ R : e ′ ([x] ∼ ) = [e(x)] ∼ } a submonoid of (R/∼) R/∼ ,
xuy = right y • left x (u) ∼ right y • left x (v) = xvy by definition of congruence. Thus, ∼ is a congruence on R. This implies that R/∼ is a monoid. Let e ′ , f ′ ∈ O ′ : this means there exist e, f ∈ O such that e ′ ([r] ∼ ) = [e(r)] ∼ and f ′ ([r] ∼ ) = [f (r)] ∼ for all r ∈ R. Given any r ∈ R, we thus have e ′ • f ′ ([r] ∼ ) = e ′ ([f (r)] ∼ ) = [e(f (r))] ∼ = [e • f (r)] ∼ , so that e ′ • f ′ ∈ O ′ . Therefore, O ′ is a submonoid of (R/∼) R/∼ that contains the functions left [r]∼ and right [r]∼ for all [r] ∼ ∈ R/∼. Thus, (R/∼, O ′ ) is an Ext-algebra.
Now define the functions φ : R → R/∼ and ψ : O → O ′ by respectively φ(r) = [r] ∼ for all r ∈ R and ψ(e) = e ′ with e ′ ∈ O ′ such that e ′ ([r] ∼ ) = [e(r)] ∼ for all r ∈ R: this is well-defined because ∼ is a congruence on (R, O). Since ∼ is a congruence on R, φ is a surjective monoid morphism. Further, let e, f ∈ O. We have

ψ(e) • ψ(f )([r] ∼ ) = ψ(e)([f (r)] ∼ ) = [e(f (r))] ∼ = [e • f (r)] ∼ = ψ(e • f )([r] ∼ ) for all r ∈ R, so that ψ(e) • ψ(f ) = ψ(e • f ). Therefore, as ψ(1 O )([r] ∼ ) = [1 O (r)] ∼ = [r] ∼ for all r ∈ R, it
follows that ψ is also a monoid morphism, that is obviously surjective. By construction, we do of course have that

ψ(e)(φ(r)) = ψ(e)([r] ∼ ) = [e(r)] ∼ = φ(e(r))
for all e ∈ O and r ∈ R. Moreover, for all r ∈ R, it holds that

ψ(left r )([x] ∼ ) = [left r (x)] ∼ = [rx] ∼ = [r] ∼ [x] ∼ = left φ(r) ([x] ∼ )
for all x ∈ R, so that ψ(left r ) = left φ(r) . Similarly, we can prove that ψ(right r ) = right φ(r) for all r ∈ R. Thus, (φ, ψ) is a surjective morphism from (R, O) to (R/∼, O ′ ).

The lemma also proves that the pair (φ, ψ) of functions φ : R → R/∼ and ψ : O → O ′ satisfying φ(r) = [r] ∼ for all r ∈ R and ψ(e)([r] ∼ ) = [e(r)] ∼ for all e ∈ O and r ∈ R is a surjective morphism from (R, O) to (R, O)/∼. We also call this pair (φ, ψ) the morphism associated to the congruence ∼.

Definition 3.13. The syntactic congruence of a language L ⊆ Σ △ is the congruence ∼ L on (Σ △ , O(Σ △ )) defined by u ∼ L v for u, v ∈ Σ △ whenever e(u) ∈ L ⇔ e(v) ∈ L for all e ∈ O(Σ △ ). We define the syntactic Ext-algebra of L to be (R L , O L ) = (Σ △ , O(Σ △ ))/∼ L and the syntactic morphism of L to be the morphism (φ L , ψ L ) associated to ∼ L .

Note that the syntactic

Ext-algebra (R L , O L ) of L recognizes L via the syntactic morphism (φ L , ψ L ). Indeed, for all u, v ∈ Σ △ , we have that if u ∼ L v, then u ∈ L ⇔ v ∈ L. This implies that L = φ -1 L (φ L (L))
. For instance, it can be proven that the Ext-algebra recognizing the language L 1,2 in Example 3.10 is in fact a certain presentation of the syntactic Ext-algebra of L 1,2 .

The next lemma states that all languages recognized by an Ext-algebra are also recognized by the Ext-algebras it divides. Lemma 3.14. Let (R, O) and (S, P ) be two Ext-algebras such that (R, O) divides (S, P ). Then any language L ⊆ Σ △ recognized by (R, O) is also recognized by (S, P ).

Proof. Let L ⊆ Σ △ be a language recognized by (R, O). This means that there exists a morphism (φ, ψ) : (Σ △ , O(Σ △ )) → (R, O) such that L = φ -1 (F ) for some F ⊆ R. We will prove the lemma by combining the following two points:

(1) if (R, O) is a sub-Ext-algebra of (S, P ), then so does (S, P ) recognize L, and

(2) if (R, O) is a quotient of (S, P ), then so does (S, P ) recognize L.

For Point [START_REF] Alur | Congruences for visibly pushdown languages[END_REF], assume that (R, O) is a sub-Ext-algebra of (S, P ). This means that R is a submonoid of S and that there exists a submonoid O ′ of P satisfying O = O ′ | R . Take an arbitrary function σ : O → P such that σ(e)| R = e for all e ∈ O. Let us consider the unique morphism

(φ ′ , ψ ′ ) : (Σ △ , O(Σ △ )) → (S, P ) such that φ ′ (c) = φ(c) for all c ∈ Σ int and ψ ′ (ext a,b ) = σ(ψ(ext a,b )) for all a ∈ Σ call , b ∈ Σ ret ,
given to us by Proposition 3.7. We can prove by induction on w that φ ′ (w) = φ(w) for all w ∈ Σ △ :

• w = ε. Then φ ′ (w) = 1 S = 1 R = φ(w). • w = c for some c ∈ Σ int . Then φ ′ (w) = φ ′ (c) = φ(c) = φ(w). • w = aw ′ b for some a ∈ Σ call , b ∈ Σ ret and w ′ ∈ Σ △ . Then φ ′ (w) = φ ′ (ext a,b (w ′ )) = ψ ′ (ext a,b )(φ ′ (w ′ )) IH = σ(ψ(ext a,b ))(φ(w ′ )) = σ(ψ(ext a,b ))| R (φ(w ′ )) = ψ(ext a,b )(φ(w ′ )) = φ(ext a,b (w ′ )) = φ(w) . • w = uv for some u, v ∈ Σ △ \ {ε}. Then φ ′ (w) = φ ′ (u)φ ′ (v) IH = φ(u)φ(v) = φ(w) .
Thus, φ ′-1 (F ) = L, which implies that (S, P ) recognizes L.

For Point [START_REF] Alur | Visibly pushdown languages[END_REF], assume that (R, O) is a quotient of (S, P ). This means that there exists a surjective morphism (α, β) : (S, P ) → (R, O). Let us define an arbitrary function ρ : Σ int → S such that ρ(c) ∈ α -1 (φ(c)) for all c ∈ Σ int as well as an arbitrary function σ :

{ext a,b | a ∈ Σ call , b ∈ Σ ret } → P such that σ(ext a,b ) ∈ β -1 (ψ(ext a,b )) for all a ∈ Σ call , b ∈ Σ ret . Now, take the unique morphism (φ ′ , ψ ′ ) : (Σ △ , O(Σ △
)) → (S, P ) given by Proposition 3.7 for ρ and σ: we claim that it is such that α(φ ′ (w)) = φ(w) for all w ∈ Σ △ . We can prove it by induction on w:

• w = ε. Then α(φ ′ (w)) = α(1 S ) = 1 R = φ(w). • w = c for some c ∈ Σ int . Then α(φ ′ (w)) = α(ρ(c)) = φ(c) = φ(w). • w = aw ′ b for some a ∈ Σ call , b ∈ Σ ret and w ′ ∈ Σ △ . Then α(φ ′ (w)) = α φ ′ (ext a,b (w ′ )) = α ψ ′ (ext a,b )(φ ′ (w ′ )) = β(ψ ′ (ext a,b )) α(φ ′ (w ′ )) IH = β(σ(ext a,b ))(φ(w ′ )) = ψ(ext a,b )(φ(w ′ )) = φ(ext a,b (w ′ )) = φ(w) . • w = uv for some u, v ∈ Σ △ \ {ε}. Then α(φ ′ (w)) = α(φ ′ (u))α(φ ′ (v)) IH = φ(u)φ(v) = φ(w) .
Therefore, φ ′-1 (α -1 (F )) = L, which implies that (S, P ) recognizes L.

Next, we show that any language recognized by an Ext-algebra is also recognized by one of its sub-Ext-algebras via a surjective morphism.

Lemma 3.15. Let (φ, ψ) : (Σ △ , O(Σ △ )) → (R, O) be a morphism and let L ⊆ Σ △ be a language recognized by (R, O) via (φ, ψ). Then φ(Σ △ ), ψ(O(Σ △ ))| φ(Σ △ ) is a sub-Ext-algebra of (R, O) recognizing L via the surjective morphism (φ, ψ ′ ) where ψ ′ (ext u,v ) = ψ(ext u,v )| φ(Σ △ ) for all ext u,v ∈ O(Σ △ ). Proof. Since (R, O) recognizes L via (φ, ψ), this means that there exists F ⊆ R such that φ -1 (F ) = L. We have that φ(Σ △ ) is a submonoid of R and ψ(O(Σ △ )) is a submonoid of O. Observe that for all e ∈ ψ(O(Σ △ )) and r ∈ φ(Σ △ ), we have e(r) = ψ(ext u,v )(φ(w)) = φ(uwv) ∈ φ(Σ △ ) because ψ(ext u,v ) = e for ext u,v ∈ O(Σ △ ) and r = φ(w) for w ∈ Σ △ . Moreover, for all e, f ∈ ψ(O(Σ △ )), it holds that e| φ(Σ △ ) • f | φ(Σ △ ) = (e • f )| φ(Σ △ ) . Therefore, ψ(O(Σ △ ))| φ(Σ △ ) is a sub- monoid of φ(Σ △ ) φ(Σ △ ) . In addition, for each r ∈ φ(Σ △ ), we have that r = φ(w) for some w ∈ Σ △ and thus that left r = left φ(w) = ψ(left w )| φ(Σ △ ) = ψ(ext w,ε )| φ(Σ △ )
as well as

right r = ψ(ext ε,w )| φ(Σ △ ) . Thus, φ(Σ △ ), ψ(O(Σ △ ))| φ(Σ △ ) is a sub-Ext-algebra of (R, O). It is clear that φ is a surjective monoid morphism from Σ △ to φ(Σ △ ). Further, ψ ′ (ext u,v ) • ψ ′ (ext u ′ ,v ′ ) = ψ(ext u,v )| φ(Σ △ ) • ψ(ext u ′ ,v ′ )| φ(Σ △ ) = ψ(ext u,v ) • ψ(ext u ′ ,v ′ ) φ(Σ △ ) = ψ(ext u,v • ext u ′ ,v ′ )| φ(Σ △ ) = ψ ′ (ext u,v • ext u ′ ,v ′ ) for all ext u,v , ext u ′ ,v ′ ∈ O(Σ △ ), hence since ψ ′ (ext ε,ε ) = 1 O | φ(Σ △ ) , it follows that ψ ′ is a surjective monoid morphism from O(Σ △ ) to ψ(O(Σ △ ))| φ(Σ △ )
. Moreover, we have

• ψ ′ (ext u,v )(φ(w)) = ψ(ext u,v )| φ(Σ △ ) (φ(w)) = ψ(ext u,v )(φ(w)) = φ(ext u,v (w)) for all ext u,v ∈ O(Σ △ ) and w ∈ Σ △ ; • ψ ′ (left w ) = ψ(ext w,ε )| φ(Σ △ ) = left φ(w) and ψ ′ (right w ) = right φ(w) for all w ∈ Σ △ .
Therefore, (φ, ψ ′ ) is a surjective morphism recognizing L.

The following lemma states that a language is recognized by an Ext-algebra via a surjective morphism if, and only if, the syntactic morphism of the language factors through the former morphism.

Lemma 3.16. Let (φ, ψ) : (Σ △ , O(Σ △ )) → (R, O) be a surjective morphism, let L ⊆ Σ △ and let (φ L , ψ L ) : (Σ △ , O(Σ △ )) → (R L , O L ) be the syntactic morphism of L. Then (R, O) recognizes L via (φ, ψ) if and only if there is a surjective morphism (α, β) : (R, O) → (R L , O L ) such that φ L = α • φ (we say that (φ L , ψ L ) factors through (φ, ψ)).
Proof. Assume first that there is a surjective morphism (α, β)

: (R, O) → (R L , O L ) such that φ L = α • φ. Then φ -1 α -1 (φ(L)) = (α • φ) -1 φ L (L)) = φ -1 L (φ L (L)) = L , hence (R, O) recognizes L via (φ, ψ).
Assume now that (R, O) recognizes L via (φ, ψ). This means that there exists F ⊆ R satisfying φ -1 (F ) = L. Take w, w ′ ∈ Σ △ such that φ(w) = φ(w ′ ). Then, given any e ∈ O(Σ △ ), we have that

φ(e(w)) = ψ(e)(φ(w)) = ψ(e)(φ(w ′ )) = φ(e(w ′ )) . Therefore, since φ -1 (F ) = L, it holds that w ∼ L w ′ , that is, φ L (w) = φ L (w ′ ). Take ext u,v , ext u ′ ,v ′ ∈ O(Σ △ ) such that ψ(ext u,v ) = ψ(ext u ′ ,v ′ ). Then, for each w ∈ Σ △ , we have that φ(ext u,v (w)) = ψ(ext u,v )(φ(w)) = ψ(ext u ′ ,v ′ )(φ(w)) = φ(ext u ′ ,v ′ (w)) , that is, ext u,v (w) ∼ L ext u ′ ,v ′ (w). Hence, ψ L (ext u,v ) = ψ L (ext u ′ ,v ′ ).
We can now define the functions α : R → R L and

β : O → O L such that α(φ(w)) = φ L (w) for all w ∈ Σ △ and β(ψ(ext u,v )) = ψ L (ext u,v ) for all ext u,v ∈ O(Σ △ ):
those are well-defined by surjectivity of (φ, ψ) and what we have proven just above. Since

(φ L , ψ L ) is a surjective morphism from (Σ △ , O(Σ △ )) to (R L , O L ), we can easily prove that (α, β) is a surjective morphism from (R, O) to (R L , O L ) that does of course satisfy φ L = α • φ.
The following proposition shows that the syntactic Ext-algebra of a given language of wellmatched words is the least Ext-algebra recognizing this language. Proposition 3.17. An Ext-algebra (R, O) recognizes a language L ⊆ Σ △ if, and only if, its syntactic

Ext-algebra (R L , O L ) divides (R, O).
Proof. Let (R, O) be an Ext-algebra and let L ⊆ Σ △ be a language. Consider also its syntactic Ext-algebra (R L , O L ) and its syntactic morphism (φ L , ψ L ).

Implication from right to left. Assume that the syntactic Ext-algebra (R L , O L ) of L divides (R, O). We have that (R L , O L ) recognizes L and we then use Lemma 3.14 to conclude that (R, O) does also recognize L.

Implication from left to right. Assume that (R, O) recognizes L through a morphism (φ, ψ) : (Σ △ , O(Σ △ )) → (R, O). By Lemma 3.15, we have that φ(Σ △ ), ψ(O(Σ △ ))| φ(Σ △ ) = (R ′ , O ′ ) is a sub-Ext-algebra of (R, O) recognizing L via the surjective morphism (φ, ψ ′ ) where ψ ′ (ext u,v ) = ψ(ext u,v )| φ(Σ △ ) for all ext u,v ∈ O(Σ △ ).
Then, by Lemma 3.16, there exists a surjective morphism

(α, β) : (R ′ , O ′ ) → (R L , O L ) such that φ L = α • φ. Thus, we have that (R L , O L ) divides (R, O).
We say that an Ext-algebra (R, O) is finite whenever R is finite (which is the case if and only if O is finite). The following theorem establishes the equivalence between visibly pushdown languages and languages recognizable by finite Ext-algebras. Its proof provides effective translations from DVPAs to Ext-algebras and vice versa. Theorem 3.18. A language L ⊆ Σ △ is a VPL if, and only if, it is recognized by a finite Ext-algebra.

Proof. Let L ⊆ Σ △ be a language. Before we prove the theorem we have the following claim, which can be easily proven by induction on |u| and structural induction on w, respectively.

Claim. Let A = (Q, Σ, Γ, δ, q 0 , F, ⊥) be a DVPA. We denote by π Q the projection of Q × Γ * on Q and by π Γ * the projection of Q × Γ * on Γ * . It holds that L(A) ⊆ Σ △ and additionally we have that δ(q, uv, σ) = δ π Q ( δ(q, u, σ)), v, π Γ * ( δ(q, u, σ))
and δ(q, w, ασ) = π Q ( δ(q, w, α)), ασ

for all q ∈ Q, u, v ∈ Σ * , σ ∈ Γ * , w ∈ Σ △ and α ∈ Γ.
Implication from left to right. Assume that L is a VPL. This means there exists a DVPA A = (Q, Σ, Γ, δ, q 0 , F, ⊥) such that L(A) = L. Consider the operation * on R = Q Q×Γ defined so that for all f, g ∈ R, we have f * g(q, α) = g(f (q, α), α) for all q ∈ Q and α ∈ Γ. Observe that for all f, g, h ∈ Q Q×Γ , we have

(f * g) * h(q, α) = h(f * g(q, α), α) = h(g(f (q, α), α), α) = g * h(f (q, α), α) = f * (g * h)(q, α)
for all q ∈ Q and α ∈ Γ. Thus * is associative and since it also has i ∈ R with i(q, α) = q for all q ∈ Q and α ∈ Γ as an identity, we have that R = Q Q×Γ with operation * forms a monoid. Take O to be the monoid R R (for composition). Since O clearly contains the functions left r and right r for all r ∈ R, it follows that (R, O) is a finite Ext-algebra. We now prove that it recognizes L.

For each w ∈ Σ △ , define f w ∈ R by f w (q, α) = π Q ( δ(q, w, α)) for all q ∈ Q and α ∈ Γ. Let us consider the unique morphism (φ, ψ) : (Σ △ , O(Σ △ )) → (R, O), given by Proposition 3.7, such that for each c ∈ Σ int , we have φ(c) = f c and for each a ∈ Σ call , b ∈ Σ ret , we have that ψ(ext a,b ) sends any f ∈ R to g ∈ R satisfying that g(q, α) = π Q δ(f (p, β), b, β) with δ(q, a, α) = (p, βα) for all q ∈ Q and α ∈ Γ.
We claim that for all w ∈ Σ △ , we have that φ(w) = f w . We prove it by induction on w.

• w = ε. Then φ(w) = i = f w . • w = c for some c ∈ Σ int . Then φ(w) = f c = f w . • w = aw ′ b for some a ∈ Σ call , b ∈ Σ ret and w ′ ∈ Σ △ . Then φ(w) = φ(ext a,b (w ′ )) = ψ(ext a,b )(φ(w ′ )) IH = ψ(ext a,b )(f w ′ ) .
So φ(w) = g such that for all q ∈ Q and α ∈ Γ, if we set δ(q, a, α) = (p, βα), we have, recalling that δ extends δ,

g(q, α) = π Q δ(f w ′ (p, β), b, β) = π Q δ π Q ( δ(p, w ′ , β)), b, β = π Q δ π Q ( δ(p, w ′ , β)), b, β = π Q δ π Q ( δ(q, aw ′ , α)), b, π Γ * ( δ(q, aw ′ , α)) = π Q ( δ(q, aw ′ b, α)) = f aw ′ b (q, α) = f w (q, α) . Thus φ(w) = f w . • w = uv for some u, v ∈ Σ △ \ {ε}. Then φ(w) = φ(u) * φ(v) IH = f u * f v . But f u * f v (q, α) = f v (f u (q, α), α) = f v π Q ( δ(q, u, α)), α = π Q δ π Q ( δ(q, u, α)), v, α = π Q δ π Q ( δ(q, u, α)), v, π Γ * ( δ(q, u, α)) = π Q ( δ(q, uv, α)) = f uv (q, α) for all q ∈ Q and α ∈ Γ. Therefore φ(w) = f w . Finally, set P = {f ∈ R | f (q 0 , ⊥) ∈ F }. It holds that φ -1 (P ) = {w ∈ Σ △ | f w (q 0 , ⊥) ∈ F } = {w ∈ Σ △ | π Q ( δ(q 0 , w, ⊥)) ∈ F } = {w ∈ Σ △ | δ(q 0 , w, ⊥) ∈ F × {⊥}} = L(A) = L . Therefore, (R, O) recognizes L.
Implication from right to left. Assume there exists a finite Ext-algebra (R, O) that recognizes L. This means that there exists a morphism (φ, ψ)

: (Σ △ , O(Σ △ )) → (R, O) such that L = φ -1 (F ) for some F ⊆ R. Let us now define the DVPA A = (Q, Σ, Γ, δ, 1, F, ⊥), where Q = R, 1 = 1 R , Γ = R × Σ call ∪ {⊥}, and δ(r, a, α) =            (1, (r, a)α) if a ∈ Σ call (sψ(ext b,a )(r), ε) if a ∈ Σ ret and α = (s, b) ∈ R × Σ call (r, ε) if a ∈ Σ ret and α = ⊥ (rφ(c), α) if a ∈ Σ int
for all r ∈ R, a ∈ Σ and α ∈ Γ. We prove that δ(r, w, σ) = (rφ(w), σ) for all r ∈ R, w ∈ Σ △ and σ ∈ Γ * ⊥ by induction on w.

• w = ε. Then δ(r, w, σ) = (r, σ) = (rφ(w), σ).

• w = c for some c ∈ Σ int . Then δ(r, w, σ) = (rφ(c), σ) = (rφ(w), σ).

• w = aw ′ b for some a ∈ Σ call , b ∈ Σ ret and w ′ ∈ Σ △ . Then δ(r, w, σ) = δ(1, w ′ b, (r, a)σ) = δ π Q (1, w ′ , (r, a)σ), b, π Γ * (1, w ′ , (r, a)σ) IH = δ(φ(w ′ ), b, (r, a)σ) = rψ(ext a,b )(φ(w ′ )), σ = (rφ(w), σ) . • w = uv for some u, v ∈ Σ △ \ {ε}. Then δ(r, w, σ) = δ π Q ( δ(r, u, σ)), v, π Γ * ( δ(r, u, σ)) IH = δ(rφ(u), v, σ) IH = (rφ(u)φ(v), σ) = (rφ(w), σ) .
Hence,

L(A) = {w ∈ Σ △ | δ(1, w, ⊥) ∈ F × {⊥}} = {w ∈ Σ △ | π Q ( δ(1, w, ⊥)) ∈ F } = {w ∈ Σ △ | φ(w) ∈ F } = φ -1 (F ) = L .
Therefore, L is a VPL.

(Weak) length-synchronicity, nesting depth, and quasi-aperiodicity

For the rest of this section let us fix a visibly pushdown alphabet Σ, a finite Ext-algebra (R, O) and consider a morphism (φ, ψ)

: (Σ △ , O(Σ △ )) → (R, O).
Suitably adjusting the pumping lemma for context-free language we introduce a pumping lemma for Ext-algebra morphisms in Section 4.1.

In Section 4.2 we extend the notions of weak length-synchronicity and length-synchronicity to Extalgebras morphisms and to visibly pushdown languages. It is shown that for languages generated by vertically visibly pushdown grammars, (weak) length-synchronicity of the relation of the generating grammar coincides with (weak) length-synchronicity of language. We concern ourselves with the nesting depth of visibly pushdown languages in Section 4.3. Finally in Section 4.4 we introduce quasi-aperiodicity of Ext-algebra morphisms and prove that a VPL is quasi-counterfree if, and only if, its syntactic morphism is quasi-aperiodic.

A pumping lemma for Ext-algebra morphisms

The following is an adaption of the pumping lemma for context-free languages to Ext-algebra morphisms. It states that if uv ∈ Σ △ and u (resp. v) contains a well-matched factor that is sufficiently long, we can pump certain infixes of u (resp. v): thus, one can find longer and longer words u 1 , u 2 , . . .

(resp. v 1 , v 2 , . . .) such that u 1 v, u 2 v, . . . ∈ Σ △ (resp. uv 1 , uv 2 , . . . ∈ Σ △
) and the morphism ψ sends ext u,v to the same element in O as ext u i ,v (resp. as ext u,v i ).

Lemma 4.1 (Pumping Lemma

). There exists n ∈ N >0 such that for all ext u,v ∈ O(Σ △ ) we have:

• If there exists a factor w ∈ Σ △ of u satisfying |w| ≥ n, then u = sxzyt with s, x, z, y, t ∈ Σ * such that |xy| ≥ 1, |xzy| ≤ n and for all i ∈ N, sx i zy i tv ∈ Σ △ and ψ(ext u,v ) = ψ(ext sx i zy i t,v ).

• If there exists a factor w ∈ Σ △ of v satisfying |w| ≥ n, then v = sxzyt with s, x, z, y, t ∈ Σ * such that |xy| ≥ 1, |xzy| ≤ n and for all i ∈ N, usx i zy i t ∈ Σ △ and ψ(ext u,v ) = ψ(ext u,sx i zy i t ).

Proof. For each r ∈ R, let n r ∈ N >0 be the pumping constant for the context-free language φ -1 (r): it is a VPL and hence a context-free language by Theorem 3.18. We set n = max r∈R n r . Let ext u,v ∈ O(Σ △ ) be such that there exists a factor w ∈ Σ △ of u satisfying |w| ≥ n. Let

ext u,v = ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x h-1 ,y h-1 • ext a h-1 ,b h-1 • ext x h ,y h
be the stair factorization of ext u,v provided by Lemma 3.6. Since no factor of u spanning one of the a j 's in the factorization can be well-matched, there must exist some j ∈

[1, h] satisfying |x j | ≥ n, so that if we set u ′ = x 1 a 1 • • • x j-1 a j-1 , v ′ = b j-1 y j-1 • • • b 1 y 1 , u ′′ = a j x j+1 • • • a h-1 x h and v ′′ = y h b h-1 • • • y j+1 b j y j , we have u ′ v ′ , u ′′ v ′′ ∈ Σ △ and ext u,v = ext u ′ ,v ′ • ext x j ,ε • ext u ′′ ,v ′′ .
By the pumping lemma for context-free languages we have

x j = x ′ xzyy ′ with x ′ , x, z, y, y ′ ∈ Σ * such that |xy| ≥ 1, |xzy| ≤ n and for all i ∈ N, x ′ x i zy i y ′ ∈ Σ △ and φ(x j ) = φ(x ′ x i zy i y ′ ).
This implies that if we set s = u ′ x ′ and t = y ′ u ′′ , then for all i ∈ N, we have

sx i zy i tv = ext u ′ ,v ′ • ext x ′ x i zy i y ′ ,ε • ext u ′′ ,v ′′ (ε) ∈ Σ △ and ψ(ext u,v ) = ψ(ext u ′ ,v ′ ) • left φ(x j ) • ψ(ext u ′′ ,v ′′ ) = ψ(ext u ′ ,v ′ ) • left φ(x ′ x i zy i y ′ ) • ψ(ext u ′′ ,v ′′ ) = ψ(ext u ′ ,v ′ ) • ψ(ext x ′ x i zy i y ′ ,ε ) • ψ(ext u ′′ ,v ′′ ) = ψ(ext sx i zy i t,v ) .
We handle the case where for ext u,v ∈ O(Σ △ ) there exists a factor w ∈ Σ △ of v such that |w| ≥ n symmetrically.

Weak length-synchronicity and length-synchronicity

In this section we introduce the notions of weak length-synchronicity and length-synchronicity for Ext-algebra morphisms and visibly pushdown languages. Before we do that, let us give some motivation how TC 0 -hardness can be proven if the syntactic morphism maps certain ext u,v , ext u ′ ,v with |u| ̸ = |u ′ | to particular idempotents. For these we require the following notion of reachability. For F ⊆ R we say that an element r ∈ R is F -reachable if e(r) ∈ F for some e ∈ O. We say e ∈ O is F -reachable if e(r) is F -reachable for some r ∈ R. Although we will mainly study F -reachable elements over finite Ext-algebras we remark that the notion of F -reachability is defined over any Ext-algebra, in particular over

(Σ △ , O(Σ △ )). Fix any VPL L, its syntactic Ext-algebra (R L , O L ) along with its syntactic morphism (φ L , ψ L ). Assume some idempotent e ∈ O L that is φ(L)-reachable. We claim that if ψ L (ext u,v ) = ψ L (ext u ′ ,v ) = e and ∆(u), ∆(u ′ ) > 0 for some ext u,v , ext u ′ ,v ∈ O(Σ △ ) with |u| ̸ = |u ′ |, then L is TC 0 -hard.
We remark that we must have ∆(u) = ∆(u ′ ). Exploiting the fact that |u| ̸ = |u ′ | we give a constant-depth reduction from the TC 0 -complete language EQUALITY to L.

Since ψ L (ext u,v ) is φ L (L)-reachable, we can fix some x, y, z ∈ Σ * such that xuyvz ∈ L. Given a word w ∈ {0, 1} * of length 2n (binary words of odd length can directly be rejected) we map it to xh(w)zv n•(|u|+|u ′ |) y, where h : {0, 1} * → Σ * is the length-multiplying morphism satisfiying h(0) = u |u ′ | and h(1) = u ′|u| : one can prove that w ∈ EQUALITY if, and only if,

h(w)v n•(|u|+|u ′ |) ∈ Σ △ if, and only if, xh(w)zv n•(|u|+|u ′ |) y ∈ L. Dually, one can show that L is TC 0 -hard in case ψ L (ext u,v ) = ψ L (ext u,v ′ ) = e and ∆(u) > 0 for some ext u,v , ext u,v ′ ∈ O(Σ △ ) with |v| ̸ = |v ′ |.
The following definition of weak length-synchronicity captures the situation when such idempotents do not exist -it adapts the notion of weak length-synchronicity of sets of contexts, given in Definition 2.3, to morphisms and VPLs, respectively. Recall that R ⊆ Con(Σ) is defined to be weakly length-

synchronous if u = u ′ implies |v| = |v ′ | and v = v ′ implies |u| = |u ′ | for all (u, v), (u ′ , v ′ ) ∈ R satisfying ∆(u), ∆(u ′ ) > 0. Definition 4.2.
For all e ∈ O define the sets of contexts R e and U e as follows:

R e = {(u, v) ∈ Con(Σ) | ψ(ext u,v ) = e} and U e = {(u, v) ∈ Con(Σ) | e • ψ(ext u,v ) = e} Definition 4.3 (Weak Length-Synchronicity). The morphism (φ, ψ) : (Σ △ , O(Σ △ )) → (R, O) is F -weakly-length-synchronous (where F ⊆ R) if for all F -reachable idempotents e ∈ O the set of contexts R e is weakly length-synchronous. We call a VPL L ⊆ Σ △ weakly length-synchronous if its syntactic morphism (φ L , ψ L ) is φ L (L)-weakly-length-synchronous.
In fact, F -weak-length-synchronicity actually implies weak length-synchronicity of the set of contexts associated to any subsemigroup of F -reachable elements. Lemma 4.4. For all F ⊆ R and subsemigroup P of O, if all elements in P are F -reachable and (φ, ψ) is F -weakly-length-synchronous, then e∈P R e is weakly length-synchronous.

Proof. Let F ⊆ R and P be a subsemigroup of O. Assume all elements in P are F -reachable and (φ, ψ) is F -weakly-length-synchronous.

Let (u, v), (u ′ , v) ∈ Con(Σ) be such that ∆(u), ∆(u ′ ) > 0 and ψ(ext u,v ), ψ(ext u ′ ,v ) ∈ P . Set e = ψ(ext u,v ) and f = ψ(ext u ′ ,v ). By hypothesis, given ω ∈ N >0 the idempotent power of O, we have (e ω f ω ) ω ∈ P , hence (e ω f ω ) ω is an F -reachable idempotent and thus R (e ω f ω ) ω is weakly length-synchronous. But

ψ(ext (u 2•ω u ′ω ) ω ,v 3•ω 2 ) = (e ω f ω ) ω = ψ(ext (u ω u ′2•ω ) ω ,v 3•ω 2 ) so since ∆((u 2•ω u ′ω ) ω ) = ∆((u ω u ′2•ω ) ω ) > 0, we obtain ω • (2 • ω • |u| + ω • |u ′ |) = ω • (ω • |u| + 2 • ω • |u ′ |) ⇐⇒ 2 • |u| + |u ′ | = |u| + 2 • |u ′ | ⇐⇒ |u| = |u ′ | .
In the same way, one can prove that for all (u, v), (u, v ′ ) ∈ Con(Σ) such that ∆(u) > 0 and

ψ(ext u,v ), ψ(ext u,v ′ ) ∈ P , we have |v| = |v ′ |.
Therefore, e∈P R e is weakly length-synchronous.

Instead of considering those pairs (u, v) such that ext u,v is being mapped to an F -reachable idempotent, the following characterization of weak length-synchronicity consider pairs (u, v) such that ext u,v is being mapped to an element that behaves neutrally with respect to right multiplication with an F -reachable element that is not necessarily idempotent. Proposition 4.5. For all F ⊆ R we have that (φ, ψ) is F -weakly-length-synchronous if, and only if, for all F -reachable e ∈ O the set of contexts U e is weakly length-synchrononous.

Proof. Let F ⊆ R.

If

U e = {(u, v) ∈ Con(Σ) | e • ψ(ext u,v ) = e} is weakly length-synchronous for all F -reachable e ∈ O, then in particular the set of contexts R e = {(u, v) ∈ Con(Σ) | ψ(ext u,v ) = e} is weakly length-synchronous for all F -reachable idempotents e ∈ O.
Conversely, assume that (φ, ψ) is F -weakly-length-synchronous. Fix any F -reachable e ∈ O. We need to prove that U e is weakly length-synchronous. It is clear that 

P = {f ∈ O | e • f =
ext u,v = ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x h-1 ,y h-1 • ext a h-1 ,b h-1 • ext x h ,y h satisfies |x i |, |y i | ≤ n for all i ∈ [1, h],
As above, the following definition adapts the notion of length-synchronicity of sets of contexts, given in Definition 2.3, to Ext-algebra morphisms and VPLs, respectively.

Definition 4.7 (Length-Synchronicity). The morphism (φ, ψ) : (Σ △ , O(Σ △ )) → (R, O) is F -length- synchronous (where F ⊆ R) if for all F -reachable idempotents e ∈ O the set of contexts R e is length-synchronous. We call a VPL L ⊆ Σ △ length-synchronous if its syntactic morphism (φ L , ψ L ) is φ L (L)-length-synchronous. Example 4.8. Consider our running example L 1,2 = L(S → aSb 1 | acSb 2 | ε). Recall that the monoid O L 1,2 of the syntactic Ext-algebra (R L 1,2 , O L 1,2 ) and syntactic morphism (φ L 1,2 , ψ L 1,2 ) of L 1,2 , given in Example 3.10, has the idempotents (ε, ε), (acb 1 , ε) and (a, b 1 ). Also recall that φ L 1,2 (L 1,2 ) = {ε, ab 1 }. Since ψ -1 L 1,2 ((ε, ε)) = {ext ε,ε } and (acb 1 , ε) is a zero we have that O L 1,2 '
s only idempotent that is {ε, ab 1 }-reachable and whose pre-image under ψ L 1,2 contains at least one ext u,v with ∆(u) > 0 is the idempotent (a, b 1 ). However, both ext a,b 1 and ext ac,b 2 , where

∆(a) = ∆(ac) = 1 > 0, are sent to the idempotent (a, b 1 ) = (a, b 2 ) • (c, ε). Since |a|/|b 1 | = 1 ̸ = 2 = |ac|/|b 2 |, we have that L 1,2 is not length-synchronous. On the other hand, note that if any ext u,v and ext u ′ ,v (resp. ext u,v and ext u,v ′ ) are sent to (a, b 1 ) then u = u ′ and thus |u| = |u ′ | (resp. v = v ′ and thus |v| = |v ′ |). Hence, L 1,2 is weakly length-synchronous.
As above, F -length-synchronicity actually implies length-synchronicity of the set of contexts associated to any subsemigroup of F -reachable elements. Lemma 4.9. For all F ⊆ R and subsemigroup P of O, if all elements in P are F -reachable and (φ, ψ) is F -length-synchronous, then e∈P R e is length-synchronous.

Proof. Let F ⊆ R and P be a subsemigroup of O. Assume all elements in P are F -reachable and 

(φ, ψ) is F -length-synchronous. Let (u, v), (u ′ , v ′ ) ∈ Con(Σ) be such that ∆(u), ∆(u ′ ) > 0 and ψ(ext u,v ), ψ(ext u ′ ,v ′ ) ∈ P . Set e = ψ(ext u,v ) and f = ψ(ext u ′ ,v ′ ). By hypothesis, given ω ∈ N >0 the idempotent power of O, we have (e ω f ω ) ω ∈ P , hence (e ω f ω ) ω is an F -reachable idempotent and thus R (e ω f ω ) ω is length- synchronous. But ψ(ext (u 2•ω u ′ω ) ω ,(v ′ω v 2•ω ) ω ) = (e ω f ω ) ω = ψ(ext (u ω u ′2•ω ) ω ,(v ′2•ω v ω ) ω ) so since ∆((u 2•ω u ′ω ) ω ), ∆((u ω u ′2•ω ) ω ) > 0, setting (x, y) = ((u 2•ω u ′ω ) ω , (v ′ω v 2•ω ) ω ) and (x ′ , y ′ ) = ((u ω u ′2•ω ) ω , (v ′2•ω v ω ) ω ),
= c d = a-c b-d ) |x| |y| = |x ′ | |y ′ | =⇒ |x| |y| = |x ′ | |y ′ | = |x| + |x ′ | |y| + |y ′ | = ω 2 • (|u| + |u ′ |) ω 2 • (|v| + |v ′ |) =⇒ |x| -ω 2 • (|u| + |u ′ |) |y| -ω 2 • (|v| + |v ′ |) = |x ′ | -ω 2 • (|u| + |u ′ |) |y ′ | -ω 2 • (|v| + |v ′ |) (1) 
=⇒ |u| |v| = ω 2 • |u| ω 2 • |v| (1) = ω 2 • |u ′ | ω 2 • |v ′ | = |u ′ | |v ′ | .
Therefore, e∈P R e is length-synchronous.

The two following propositions characterize length-synchronicity of Ext-algebra morphisms, which will be of particular importance when approximating the matching relation of a lengthsynchronous VPL in terms of FO[+]. This will be an important ingredient to proving that VPLs that both are length-synchronous and have a quasi-aperiodic syntactic morphism (a notion to be defined in Subsection 4.4) are in FO[+] and thus in AC 0 . Proposition 4.10. For all F ⊆ R, we have that (φ, ψ) is F -length-synchronous if, and only if, for all F -reachable e ∈ O the set of contexts U e is length-synchronous.

Proof. Let F ⊆ R.

If

U e = {(u, v) ∈ Con(Σ) | e • ψ(ext u,v ) = e} is length-synchronous for all F -reachable e ∈ O, then in particular the set of contexts R e = {(u, v) ∈ Con(Σ) | ψ(ext u,v ) = e} is length-synchronous for all F -reachable idempotents e ∈ O.
Conversely, assume that (φ, ψ) is F -length-synchronous. Fix any F -reachable e ∈ O. We need to prove that U e is length-synchronous. It is clear that P = {f ∈ O | e • f = e} forms a subsemigroup of O whose elements are all F -reachable, by F -reachability of e. Therefore, by Lemma 4.9, f ∈P R f = U e is length-synchronous. Proposition 4.11. Let F ⊆ R and assume (φ, ψ) is F -weakly-length-synchronous. Then for all F -reachable e ∈ O the following two statements are equivalent.

1. The set of contexts U e is length-synchronous.

There exist

α ∈ Q >0 , β ∈ N, γ ∈ N >0 such that for all (u, v) ∈ U e with ∆(u) > 0 we have: (a) |u| |v| = α. (b) For all u ′ , v ′ ∈ Σ + with u ′ prefix of u and v ′ suffix of v such that |u ′ | |v ′ | = α, we have that -∆(v ′ ) -β ≤ ∆(u ′ ) ≤ -∆(v ′ ) + β. (c) For all factors u ′ ∈ Σ * of u such that |u ′ | = γ, we have ∆(u ′ ) ≥ 1. (d) For all factors v ′ ∈ Σ * of v such that |v ′ | = γ, we have ∆(v ′ ) ≤ -1.
Proof. The implication from Point 2 to Point 1 is trivial since Point 2 (a) implies Point 1.

Let us now prove that Point 1 implies Point 2. Fix any e ∈ O that is F -reachable and assume that U e is length-synchronous. Point 2 (a) follows immediately from length-synchronicity of U e . We can hence write α = A B for some A, B ∈ N >0 . For proving Point 2 (b), we define β = (n + 1) • (|O| + max(A, B) + 1), where n is the constant taken from Lemma 4.1. Let (u, v) ∈ U e with ∆(u) > 0 and let

ext u,v = ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x h-1 ,y h-1 • ext a h-1 ,b h-1 • ext x h ,y h
be the stair factorization of ext u,v according to Lemma 3.6. Since our morphism (φ, ψ) is F -weaklylength-synchronous by assumption, we have

|x i |, |y i | ≤ n by Lemma 4.6. Let u ′ ∈ Σ * be a prefix of u and v ′ be a suffix of v such that |u ′ | |v ′ | = α. If (u ′ , v ′ ) = (u, v) we are done since then ∆(u ′ ) = -∆(v ′
). Thus, it remains to consider the case when u ′ is a strict prefix of u and v ′ is a strict suffix of v:

indeed, due to |u| |v| = |u ′ | |v ′ | = α we have that u ′ is a strict prefix of u if, and only if, v ′ is a strict suffix of v. Let j ∈ [1, h] be maximal such that x 1 • • • a j-1 x j is a prefix of u ′ and y j b j-1 • • • y 1 is a suffix of v ′ . If j = 1 we are done, since then min{|u ′ |, |v ′ |} ≤ n, so that |∆(u ′ ) + ∆(v ′ )| ≤ |u ′ | + |v ′ | ≤ n + n • max(A, B) ≤ β. So assume now that j > 1, which implies that ∆(u ′′ ) > 0. Note that j < h since (u ′ , v ′ ) ̸ = (u, v).
Hence there exist unique words s, t ∈ Σ * such that u ′ = u ′′ s and v ′ = tv ′′ , where 

u ′′ = x 1 • • • a j-1 x j and v ′′ = y j b j-1 • • • y 1 . By maximality of j we have min{|s|, |t|} ≤ n. Setting f = ψ(ext u ′′ ,v ′′ ) and g = ψ(ext a j x j+1 •••a h-1 x h ,y h b h-1 •••y j+1 b j ) we have ψ(ext u,v ) = f • g. We claim that there exist ext xg,yg ∈ O(Σ △ ) such that ψ(ext xg,yg ) = g
|s| = |u ′ | + |x g | + α(|t| -|y g | -|v ′ |) = |x g | + α(|t| -|y g |) (2) 
|t| = |s| -|u ′ | -|x g | α + |y g | + |v ′ | = |s| -|x g | α + |y g | . (3) 
Finally, we obtain

|∆(u ′ ) + ∆(v ′ )| = |∆(u ′′ s) + ∆(tv ′′ )| ∆(u ′′ )=-∆(v ′′ ) = |∆(s) + ∆(t)| ≤ |s| + |t| = min(|s|, |t|) + max(|s|, |t|) ≤ n + max(|s|, |t|) (2), (3) 
≤ n + max |x g | + α(n -|y g |), n -|x g | α + |y g | ≤ n + |O| • (n + 1) + n • max(A, B) ≤ (n + 1) • (|O| + max(A, B) + 1) = β .
This proves Point 2 (b). For Point 2 (c) and Point 2 (d) we set γ = (⌈ n 2 ⌉ + 1) • (n + 1) + n and remark that γ does not depend on u nor v. We only prove Point 2 (c), the proof of Point 2 (d) is analogous. As above, let

ext u,v = ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x h-1 ,y h-1 • ext a h-1 ,b h-1 • ext x h ,y h
be the stair factorization of ext u,v according to Lemma 3.6. Let u ′ with |u ′ | ≥ γ be a factor of u and hence of x

1 a 1 x 2 • • • x h-1 a h-1 x h . By definition of stair factorization we have ∆(x i ) = 0 for all i ∈ [1, h] and ∆(a i ) = 1 for all i ∈ [1, h -1]. Let w be the longest prefix of u ′ such that ∆(w) = min{∆(x) | x is a prefix of u ′ }. Since |x 1 |, |y 1 |, . . . , |x h |, |y h | ≤ n, it immediately follows ∆(w) ≥ -n
2 and |w| ≤ n. By the same reason, every prefix of the form ws of u ′ satisfies ∆(ws) ≥ ∆(w) + |s| n+1 . Thus we have

∆(u ′ ) ≥ ∆(w) + |u ′ | -|w| n + 1 ≥ - n 2 + ((⌈ n 2 ⌉ + 1) • (n + 1) + n) -n n + 1 ≥ 1 .
The following proposition relates, for languages L generated by vertically visibly pushdown grammars G, (weak) length-synchronicity of L with (weak) length-synchronicity of R(G). Proposition 4.12. Let L = L(G) for some vertically visibly pushdown grammar G = (V, Σ, P, S).

Moreover, let R(G) = {(u, v) ∈ Con(Σ) | S ⇒ * G uSv}.
Then the following equivalences hold:

1. L(G) is length-synchronous if, and only if, R(G) is length-synchronous. 

R e = {(u, v) ∈ Con(Σ) | ψ L (ext u,v ) = e}. Let F = {e ∈ O L | ∃ ext u,v ∈ ψ -1 L (e) : (u, v) ∈ R(G)}.
Observe that F is a submonoid of O L all of whose elements are φ L (L)-reachable since G is vertically visibly pushdown. Also observe that R(G) = f ∈F R f . We claim that since G is vertically visibly pushdown, there exists a constant

C > 0 such that 1 C ≤ |x| |y| ≤ C for all (x, y) ∈ R(G) \ {(ε, ε)}: indeed, one can take C = A B where A = max max{|u|, |v|} T → G uT ′ v and B = min min{|u|, |v|} T → G uT ′ v since whenever T ⇒ *
G xT ′ y thanks to a derivation comprising k ∈ N >0 steps, we have

1 C = k • B k • A ≤ |x| |y| ≤ k • A k • B = C .
Next, we prove that for all φ L (L)-reachable idempotents e ∈ O L there exist g, h ∈ O L such that g • e • h ∈ F . Fix any such φ L (L)-reachable idempotent e ∈ O L . Without loss of generality let us assume that e is not the identity in O L (indeed, if e is the identity in O L , then we are done since we can then choose g = h = e ∈ F ). Thus there exist g ∈ O L and r ∈ R L such that

(g • e)(r) ∈ φ L (L). Moreover, let ext u ′ ,v ′ ∈ ψ -1 L (g), ext u,v ∈ ψ -1 L (e), and 
w ∈ φ -1 L (r). Observe that we must have (u, v) ̸ = (ε, ε) since ψ L (ext ε,ε ) is the identity in O L . Since e is an idempotent we have that u ′ u n wv n v ′ ∈ L for all n ≥ 1. Fix a sufficiently large N ≥ 1 such that |u ′ |+|u| (N -1)|u|+|w|+N |v|+|v ′ | ≤ 1 C and |u ′ |+N |u|+|w|+(N -1)|v| |v|+|v ′ | ≥ C, which exists due to (u, v) ̸ = (ε, ε). Since u ′ u N wv N v ′ ∈ L there exists (x, y) ∈ R(G) \ {(ε, ε)} such that xy = u ′ u N wv N v ′ , S ⇒ * G xSy, |x| ≥ |u ′ u|, and |y| ≥ |vv ′ |. Let (x ′ , y ′ ) ∈ Σ * × Σ * be such that (x, y) = (u ′ ux ′ , y ′ vv ′ ). As (u ′ , v ′ ), (u, v), (x, y) ∈ Con(Σ), x ′ ∈ (Σ \ Σ ret ) * , and y ′ ∈ (Σ \ Σ call ) * , we can conclude (x ′ , y ′ ) ∈ Con(Σ). That is, (x, y) = (u ′ , v ′ ) • (u, v) • (x ′ , y ′ ) ∈ R(G). Hence, g • e • ψ L (ext x ′ ,y ′ ) = ψ L (ext u ′ ux ′ ,y ′ vv ′ ) = ψ L (ext x,y ) ∈ F.
We are now ready to prove Point 1. For the first direction, let us assume that L(G) is lengthsynchronous. Recalling that F is a submonoid of O L all of whose elements are φ L (L)-reachable, we obtain that R(G) = f ∈F R f is length-synchronous by Lemma 4.9.

Conversely, let us assume that R(G) is length-synchronous. Assume by contradiction that L(G) is not length-synchronous. Hence R e is not length-synchronous for some φ L (L)-reachable

idempotent e ∈ O L , i.e. ψ L (ext u,v ) = ψ L (ext u ′ ,v ′ ) = e for some ext u,v , ext u ′ ,v ′ ∈ O(Σ △ ) such that ∆(u), ∆(u ′ ) > 0 and |u| |v| ̸ = |u ′ | |v ′ | .
Without loss of generality we may assume that

|v| = |v ′ | (indeed, if |v| ̸ = |v ′ |, then ext u |v ′ | ,v |v ′ | , ext (u ′ ) |v| ,(v ′ ) |v| satisfies the desired property). As a consequence we have |u| ̸ = |u ′ |, say |u| < |u ′ | without loss of generality. Since e is a φ L (L)-reachable idempotent, as argued above, there exist g, h ∈ O L such that g • e • h = f ′ for some f ′ ∈ F . Let us fix ext x h ,y h ∈ ψ -1 L (h) and ext xg,yg ∈ ψ -1 L (g). We have ψ L (ext xgux h ,y h vyg ) = f ′ = ψ L (ext xgu ′ x h ,y h v ′ yg ). Since |x g ux h | < |x g u ′ x h | and |y h vy g | = |y h v ′ y g | it follows that R f ′ is not length-synchronous, contradicting our assumption that R(G) = f ∈F R f is length-synchronous.
Let us next prove Point 2.

Let us first assume that L(G) is weakly length-synchronous. Again, since F is a submonoid of O L all of whose elements are φ L (L)-reachable, we obtain that R(G) = f ∈F R f is weakly lengthsynchronous by Lemma 4.4.

Conversely, assume R(G) is weakly length-synchronous. Assume by contradiction that R e is not weakly length-synchronous for some φ L (g) and some ext x h ,y h ∈ ψ -1 L (h). Analogously, as argued above, we have

L (L)-reachable idempotent e ∈ O L . Thus, ψ L (ext u,v ) = ψ L (ext u ′ ,v ′ ) = e for some ext u,v , ext u ′ ,v ′ ∈ O(Σ △ ) such that ∆(u), ∆(u ′ ) >
ψ L (ext xgux h ,y h vyg ) = ψ L (ext xgux h ,y h v ′ yg ) = f ′ , ∆(x g ux h ) > 0, and |y h vy g | ̸ = |y h v ′ y g |, implying that R f ′ is not weakly length-synchronous, a contradiction to our assumption that R(G) = f ∈F R f is weakly length-synchronous.

The nesting depth of visibly pushdown languages

Another central notion is the nesting depth of well-matched words, which is the Horton-Strahler number [START_REF] Esparza | A brief history of strahler numbers[END_REF] of the underlying trees. Definition 4.13. The nesting depth of well-matched words is given by the function nd : Σ △ → N defined inductively as follows:

• nd(ε) = 0; • nd(c) = 0 for all c ∈ Σ int ; • nd(uv) = max{nd(u), nd(v)} for all u ∈ Σ call Σ △ Σ ret ∪ Σ int and v ∈ Σ △ \ {ε}; • nd(awb) = nd(w) + 1 if w = uv with u, v ∈ Σ △ and nd(w) = nd(u) = nd(v) nd(w) otherwise for all a ∈ Σ call , b ∈ Σ ret and w ∈ Σ △ .
An important property of weakly length-synchronous VPLs is that their words have bounded nesting depth. Proposition 4.14. For each weakly length-synchronous VPL L ⊆ Σ △ there exists a constant d ∈ N such that L ⊆ {w ∈ Σ △ | nd(w) ≤ d}. Proposition 4.14 is proved in several steps. For these we introduce a factorization that can be seen as one that witnesses the nesting depth of a word. Definition 4.15. A nesting-maximal stair factorization of w ∈ Σ △ with nd(w) ≥ 1 is a factorization of w as

w = ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x k ,y k • ext a k ,b k (w ′ ) such that k ≥ 0, x i , y i ∈ Σ △ , a i ∈ Σ call , and b i ∈ Σ ret for all i ∈ [1, l], and w ′ ∈ Σ * int satisfying that for all i ∈ [1, k] we have nd(ext x i ,y i (w i )) = nd(w i ),
where

w i = ext a i ,b i • ext x i+1 ,y i+1 • • • • • ext a k ,b k (w ′ ).
Lemma 4.16. All words w ∈ Σ △ have a nesting-maximal stair factorization.

Proof. The proof goes by structural induction on w.

• w = ε. Then we are done because w contains only internal letters.

• w = c for a c ∈ Σ int . Then we are again done because w contains only internal letters.

• w = aw ′ b for a ∈ Σ call , b ∈ Σ ret and w ′ ∈ Σ △ . By using the inductive hypothesis, w ′ has a nesting-maximal stair factorization

ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x k ,y k • ext a k ,b k (w ′′ ). It directly follows that ext a,b • ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x k ,y k • ext a k ,b k (w ′′
) is a nesting-maximal stair factorization of w.

• w = uv for u, v ∈ Σ △ \ {ε}. Then w can be decomposed as

z 1 • • • z m with z 1 , . . . , z m ∈ Σ call Σ △ Σ ret ∪ Σ int and m ∈ N, m ≥ 2.
In this case, either z i ∈ Σ int for all i ∈ [1, m] and thus we are done because w contains only internal letters, or there exists some i ∈ [1, m] such that z i ∈ Σ call Σ △ Σ ret and has maximal nesting depth, i.e. nd(w) = nd(z i ). In this second subcase, we have that

z i = az ′ i b with a ∈ Σ call , b ∈ Σ ret and z ′ i ∈ Σ △ . By using the inductive hypothesis, z ′ i has a nesting-maximal stair factorization ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x k ,y k • ext a k ,b k (w ′′ ). Therefore, ext z 1 •••z i-1 ,z i+1 •••z k • ext a,b • ext x 1 ,y 1 • ext a 1 ,b 1 • . . . ext x k ,y k • ext a k ,b k (w ′′ )
is a nesting-maximal stair factorization of w.

The following lemma will be a useful tool for proofs by induction on the nesting depth of wellmatched words. Lemma 4.17.

Let u = a 1 vb 1 ∈ Σ △ for some a 1 ∈ Σ call , b 1 ∈ Σ ret , and v ∈ Σ △ such that nd(u) = d > 0. Moreover, let u = ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x k ,y k • ext a k ,b k (u ′ ) be a nesting- maximal stair factorization of u (i.e. x 1 = y 1 = ε). Then there exists h ∈ [1, k] such that, setting u i = ext a i ,b i • ext x i+1 ,y i+1 • • • • • ext a k ,b k (u ′ ) for all i ∈ [1, k] and u k+1 = u ′ , we have 1. nd(u) = nd(u h ) = d,
2. nd(u h+1 ) = d -1, and 3. nd(x 1 ), nd(y 1 ), . . . , nd(x h ), nd(y h ) < d.

Proof. Let u j = ext a j ,b j • ext x j+1 ,y j+1 • • • • • ext a k ,b k (u ′ ) for all j ∈ [1, k]
. Note that we have nd(u) = nd(u 1 ) = d > 0 by assumption. Moreover, nd(u j ) ≥ nd(u j+1 ) for all j ∈ [1, k -1] by definition of nesting depth. Thus, since nd(u k ) = 1 > 0 = nd(u k+1 ), it follows that 

h = min{j ∈ [1, k] | nd(u j ) > nd(u j+1 )}
nd(u) ≥ nd(u j-1 ) = nd(a j-1 x j u j y j b j-1 ) ≥ min(nd(x j ), nd(u j )) + 1 ≥ d + 1 > d = nd(u) ,
which is a contradiction.

We are now ready to prove Proposition 4.14.

Proof of Proposition 4.14. Let L ⊆ Σ △ be a weakly length-synchronous VPL. We claim that nd(L) ≤ n + 1, where n is the pumping constant from Lemma 4.1. Assume by contradiction that nd(u) = d for some u ∈ L and some

d > n + 1. Let u = ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x k ,y k • ext a k ,b k (u ′
) be a nesting-maximal stair factorization of u according to Lemma 4.16. According to Lemma 4.17 there 

exists i ∈ [1, k] such that, setting u j = ext a j ,b j • ext x j+1 ,y j+1 • • • • • ext a k ,b k (u ′ ) for all j ∈ [1, k] and u k+1 = u ′ , we have nd(u) = nd(u i ) = d and nd(u i+1 ) = d -1. Since d -1 > n > 0, we must have i + 1 ≤ k, so that u i = a i x i+1 u i+1 y i+1 b i with u i+1 ∈ Σ call Σ △ Σ ret

Quasi-aperiodicity and its correspondence with quasi-counterfreeness

Let us revisit the notion of quasi-aperiodicity. It has already been defined for visibly pushdown languages in [START_REF] Ludwig | Tree-Structured Problems and Parallel Computation[END_REF]. Let us define

O(Σ △ ) k,l = {ext u,v ∈ O(Σ △ ) : |u| = k, |v| = l} for all k, l ∈ N. We say the morphism (φ, ψ) : (Σ △ , O(Σ △ )) → (R, O) is quasi-aperiodic if all semigroups contained in the set ψ(O(Σ △ ) k,l ) are aperiodic for all k, l ∈ N.
The following proposition relates quasi-counterfreeness of a VPL with quasi-aperiodicity of its syntactic morphism. Proposition 4.18. A VPL L ⊆ Σ △ is quasi-counterfree if, and only if, its syntactic morphism is quasi-aperiodic.

Proof. Recall that (R L , O L ) = (Σ △ , O(Σ △ ))/∼ L by Definition 3.13. Hence for all (u, v), (u ′ , v ′ ) ∈ Con(Σ) we have (u, v) ≡ L (u ′ , v ′ ) if, and only if, ψ L (ext u,v ) = ψ L (ext u ′ ,v ′ ).
First, let us assume that

(φ L , ψ L ) : (Σ △ , O(Σ △ )) → (R L , O L ) is quasi-aperiodic.
Assume by contradiction that L is not quasi-counterfree. Thus, there exists some σ = (u, v) ∈ Con(Σ) such that σ n ̸ ≡ L σ n+1 for all n ∈ N and τ ≡ L σ • σ for some τ = (x, y) ∈ Con(Σ) ∩ Σ |u| × Σ |v| . The latter can equivalently be rephrased as ψ L (ext x,y ) = ψ L (ext u 2 ,v 2 ). By choice of σ and the fact that ≡ L has finite index there exist s ≥ 1 and t ≥ 2 such that σ s+i ≡ L σ s+i+t for all i ≥ 0 and σ s+i ̸ ≡ L σ s+j for all i, j ∈ [0, t -1] with i ̸ = j. It follows that the set

G = ψ L ({ext u s+i ,v s+i | i ∈ [0, t -1]}) is a non-trivial group with identity g 0 = ψ L (ext u s+k ,v s+k ) ∈ ψ L (O(Σ △ ) (s+k)|u|,(s+k)|v| ),
where k is the unique integer in [0, t-1] such that s+k is divisible by t. Also observe that G is a cyclic group that is generated by

g 1 = ψ L (ext u s+k+1 ,v s+k+1 ). That is G = {g 0 , g 1 , . . . , g t-1 }, where g i = g i 1 for all i ∈ [2, t-1]. But note that due to ψ L (ext x,y ) = ψ L (ext u 2 ,v 2 ) we obtain g 1 = ψ L (ext u s+k+1 ,v s+k+1 ) = ψ L (ext xu s+k-1 ,v s+k-1 y )
and thus g 0 , g 1 ∈ ψ L (O(Σ △ ) (s+k)|u|,(s+k)|v| ) due to |x| = |u| and |y| = |v|. Since g i = g t-1-i 0 g i 1 for all i ∈ [0, t-1] we obtain that G = {g 0 , g 1 , . . . , g t-1 } is contained in ψ L (O(Σ △ ) (t-1)(s+k)|u|,(t-1)(s+k)|v| ), hereby contradicting quasi-aperiodicity of (φ L , ψ L ).

For the converse direction, let us assume that L is quasi-counterfree. Assume by contradiction that (φ L , ψ L ) is not quasi-aperiodic. That is, for some k, l ∈ N the set ψ L (O(Σ △ ) k,l ) contains a non-trivial group G. Let g 0 ∈ G be the identity of G. Fix some g ∈ G with g ̸ = g 0 and some

ext u,v ∈ O(Σ △ ) k,l such that ψ L (ext u,v ) = g. Let σ = (u, v) ∈ Con(Σ) ∩ Σ k × Σ l . Since g is not the identity in G we have that ψ L (ext u n ,u n ) ̸ = ψ L (ext u n+1 ,v n+1 ) for all n ∈ N, equivalently σ n ̸ ≡ L σ n+1 for all n ∈ N. But since moreover ψ L (ext u n ,v n ) is in G and thus in ψ L (O(Σ △ ) k,l ) for all n ∈ N it follows that σ • σ ≡ L τ for some τ ∈ Con(Σ) ∩ Σ k × Σ l .
We thus obtain a contradiction to our assumption that L is quasi-counterfree.

Proof of the main theorem

Before giving an overview of the proof of Theorem 2.9 we will state a proposition saying that the syntactic Ext-algebra and the syntactic morphism of a given visibly pushdown language L is computable and that it is decidable if L is quasi-aperiodic, length-synchronous, and weakly lengthsynchronous, respectively. Its proof is subject of Section 6.

Proposition 5.1. The following computability and decidability results hold:

1. Given a DVPA A, one can effectively compute the syntactic Ext-algebra of L = L(A), its syntactic morphism (φ L , ψ L ) and φ L (L).

2. Given a morphism (φ, ψ) : (Σ △ , O(Σ △ )) → (R, O) for a visibly pushdown alphabet Σ and a finite Ext-algebra (R, O), all of the following are decidable for (φ, ψ):

(a) Quasi-aperiodicity. In case (φ, ψ) is not quasi-aperiodic, one can effectively compute k, l ∈ N such that ψ(O(Σ △ ) k,l ) is not aperiodic.

(b) F -length-synchronicity for a given F ⊆ R. In case (φ, ψ) is not F -length-synchronous, one can effectively compute a quadruple (k, l, k ′ , l ′ ) ∈ N 4 >0 such that there exist uv, u ′ v ′ ∈ Σ △ and some andk l ̸ = k ′ l ′ . (c) F -weakly-length-synchronicity for a given F ⊆ R.

F -reachable idempotent e ∈ O such that ψ(ext u,v ) = ψ(ext u ′ ,v ′ ) = e, ∆(u) > 0, ∆(u ′ ) > 0, k = |u|, l = |v|, k ′ = |u ′ |, l ′ = |v ′ |,

Proof outline for Theorem 2.9

Towards proving our main result (Theorem 2.9), given a DVPA A, where L = L(A) is a VPL over a visibly pushdown alphabet Σ, we apply Proposition 5.1 and compute its syntactic Ext-algebra (R L , O L ) along with its syntactic morphism (φ L , ψ L ) and the subset φ L (L). Then we make the following effective case distinction which immediately implies Theorem 2.9.

1. If L is not weakly length-synchronous, then L is TC 0 -hard and hence not in AC 0 (Proposition 5.4 in Section 5.2). Thus, we can output any m > 1 since MOD m ≤ cd EQUALITY ≤ cd L for any m > 1.

2. If L is not quasi-aperiodic, then one can effectively compute some m ≥ 2 such that MOD m ≤ cd L (Proposition 5.5 in Section 5.2).

3. If L is length-synchronous and (φ L , ψ L ) is quasi-aperiodic, then L ∈ AC 0 (Theorem 5.7 in Section 5.3).

4. If L is weakly length-synchronous but not length-synchronous, and its syntactic morphism (φ L , ψ L ) is quasi-aperiodic, one can effectively compute vertically visibly pushdown grammars G 1 , . . . , G m generating intermediate VPLs such that L = cd m i=1 L(G i ) (Theorem 5.17 in Section 5.4). Moreover, already if a VPL L is weakly length-synchronous but not lengthsynchronous, one can effectively compute k, l ∈ N >0 with k ̸ = l such that L k,l ≤ cd L (Proposition 5.24 in Section 5.4).

We refer to Section 5.5 for the proof of Corollary 2.11.

Lower bounds

The following visibly pushdown languages are helpful for proving lower bounds. Definition 5.2. Let L ⊆ Σ △ be a VPL. For each e ∈ O L and for # ̸ ∈ Σ a fresh internal letter we define

L e = {u#v | (u, v) ∈ Con(Σ) : ψ L (ext u,v ) = e} and L e↑ = {u#v | (u, v) ∈ Con(Σ) : ∆(u) > 0, ψ(ext u,v ) = e} = L e ∩{u#v | (u, v) ∈ Con(Σ) : ∆(u) > 0}.
The next lemma shows that both φ -1 L (r) and L e are constant-depth reducible to L in case r ∈ R L and e ∈ O L are φ L (L)-reachable, respectively. Lemma 5.3. Let L ⊆ Σ △ be a VPL. Then

• φ -1 L (r) ≤ cd L for all φ L (L)-reachable r ∈ R L , and • L e ≤ cd L for all φ L (L)-reachable e ∈ O L .
Proof. To show the first point, let us fix some φ L (L)-reachable r ∈ R L . Thus, there exist w r ∈ Σ △ and (u r , v r ) ∈ Con(Σ) such that φ L (w r ) = r and φ L (u r w r v r ) ∈ φ L (L). By definition of the syntactic morphism of L (Definition 3.13) for all r 1 , r 2 ∈ R L with r 1 ̸ = r 2 there exists some e r 1 ,r

2 ∈ O L such that e r 1 ,r 2 (r 1 ) ∈ φ L (L) ⇔ e r 1 ,r 2 (r 2 ) ̸ ∈ φ L (L). For each such e r 1 ,r 2 ∈ O L fix (u r 1 ,r 2 , v r 1 ,r 2 ) ∈ Con(Σ) with ψ L (ext ur 1 ,r 2 ,vr 1 ,r 2 ) = e r 1 ,r 2 .
Hence, for all w ∈ Σ * we have

w ∈ φ -1 L (r) ⇐⇒ u r wv r ∈ L ∧ r ′ ∈R L r̸ =r ′ u r,r ′ wv r,r ′ ∈ L ↔ u r,r ′ w r v r,r ′ ∈ L , thus showing φ -1 L (r) ≤ cd L.
For the second point, let us fix some φ L (L)-reachable e ∈ O L . Fix some (u e , v e ) ∈ Con(Σ) such that ψ L (ext ue,ve ) = e. Thus, again, there exist w e ∈ Σ △ and (u ′ e , v ′ e ) ∈ Con(Σ) such that φ L (u ′ e u e w e v e v ′ e ) ∈ φ L (L). Again by definition of the syntactic morphism of L (Definition 3.13), for all e 1 , e 2 ∈ O L with e 1 ̸ = e 2 there exist some f e 1 ,e 2 ∈ O L and some r e 1 ,e 2 ∈ R L such that f e 1 ,e 2 (e 1 (r e 1 ,e 2 )) ∈ φ L (L) ⇔ f e 1 ,e 2 (e 2 (r e 1 ,e 2 )) ̸ ∈ φ L (L). For each such f e 1 ,e 2 and r e 1 ,e 2 fix, respectively, (u e 1 ,e 2 , v e 1 ,e 2 ) ∈ Con(Σ) and w e 1 ,e 2 ∈ Σ △ such that ψ L (ext ue 1 ,e 2 ,ve 1 ,e 2 ) = f e 1 ,e 2 and φ L (w e 1 ,e 2 ) = r e 1 ,e 2 , respectively. Hence, for all u#v ∈ Σ * #Σ * we have The following lower bound has already been sketched in Section 4.

u#v ∈ L e ⇐⇒ u ′
Proposition 5.4. If L is not weakly length-synchronous, then L is TC 0 -hard.

Proof. Recall that (R L , O L ) is the syntactic Ext-algebra of L and (φ L , ψ L ) : (Σ △ , O(Σ △ )) → (R L , O L ) is its syntactic morphism. Assume that (φ L , ψ L ) is not φ L (L)-weakly-length-synchronous. Assume first there exist ext u,v , ext u ′ ,v ∈ O(Σ △ ) satisfying that ψ L (ext u,v ) = ψ L (ext u ′ ,v ) that is a φ L (L)-reachable idempotent such that ∆(u), ∆(u ′ ) > 0, but |u| ̸ = |u ′ |. We exploit the fact that |u| ̸ = |u ′ | to reduce EQUALITY = {w ∈ {0, 1} * : |w| 0 = |w| 1 } to L ψ L (extu,v)
. The constant-depth reduction works as follows on input w ∈ {0, 1} * :

1. Check if |w| = 2n for some n ∈ N, reject if it is not the case.

2. Compute w ′ = α(w), where αα{0, 1} * → Σ * is the length-multiplying morphism satisfying α(1) = u |u ′ | and α(0) = u ′|u| .

Accept whenever w

′ #v n(|u|+|u ′ |) ∈ L ψ(extu,v) .
Bearing in mind that 0 < ∆(u) = -∆(v) = ∆(u ′ ), the latter forms a valid reduction, because given a word w ∈ {0, 1} * of length 2n for an n ∈ N that contains k ∈ [0, 2n] many 1's, for w ′ #v n(|u|+|u ′ |) to be in L ψ L (extu,v) , it is in particular required that w ′ v n(|u|+|u ′ |) is well-matched, so it is necessary and sufficient that

k • ∆(u) • |u ′ | + (2n -k) • ∆(u ′ ) • |u| = -n • ∆(v) • (|u| + |u ′ |) ⇐⇒ (k -n) • ∆(u) • |u ′ | + (n -k) • ∆(u ′ ) • |u| = 0 ⇐⇒ (k -n) • ∆(u) • (|u ′ | -|u|) = 0 ⇐⇒ k = n .
Additionally applying Lemma 5.3 we obtain EQUALITY

≤ cd L ψ L (extu,v) ≤ cd L. Assume now there exist ext u,v , ext u,v ′ ∈ O(Σ △ ) satisfying that ψ L (ext u,v ) = ψ L (ext u,v ′ ) is an φ L (L)-reachable idempotent such that ∆(u) > 0 but |v| ̸ = |v ′ |.
Symmetrically, one can prove that we also have EQUALITY ≤ cd L in this case.

In conclusion, as EQUALITY is TC 0 -complete under constant-depth reductions, it follows that L is TC 0 -hard under constant-depth reductions.

The following proposition has essentially already been shown in [START_REF] Ludwig | Tree-Structured Problems and Parallel Computation[END_REF]Proposition 135], yet with some inaccuracies (we refer to Section 8) that we fix here. Proposition 5.5. If L is not quasi-aperiodic, then one can effectively compute some m ≥ 2 such that MOD m ≤ cd L.

Proof. Since L is not quasi-aperiodic, by Point 2 (a) Proposition 5.1 one can effectively compute k, l ∈ N such that ψ L (O(Σ △ ) k,l ) is not aperiodic. Thus, one can compute m ≥ 2 such that ψ L (O(Σ △ ) k,l ) contains the additive group G = ([0, m -1], +, 0) of Z/mZ for some prime number m. Moreover, there exist

ext u 0 ,v 0 , ext u 1 ,v 1 ∈ O(Σ △ ) k,l such that ψ L (ext u 0 ,v 0 ) = 0 G and ψ L (ext u 1 ,v 1 ) = 1 G .
Since G is a group both ψ L (ext u 0 ,v 0 ) and ψ L (ext u 1 ,v 1 ) are φ L (L)-reachable. Moreover there exist xy, z ∈ Σ △ such that xu 0 zv 0 y ∈ L if, and only if, xu 1 zv 1 y ̸ ∈ L. Let us assume without loss of generality that xu 0 zv 0 y ̸ ∈ L and xu 1 zv 1 y ∈ L (the case when xu 0 zv 0 y ∈ L and xu 1 zv 1 y ̸ ∈ L can be proven analogously). Let h ↑ , h ↓ : {0, 1} * → Σ * be the length-multiplying morphisms satisfying h ↑ (i) = u i and h ↓ (i) = v i for all i ∈ {0, 1}. We claim that

w ∈ MOD m ⇐⇒ m-1 i=1 xh ↑ (w) i m-2 zh ↓ (w R ) i m-2 y ̸ ∈ L. Let w i = xh ↑ (w) i m-2 zh ↓ (w R ) i m-2 y for all i ∈ [1, m -1]. Observe that w i ∈ Σ △ for all i ∈ [1, m -1]
directly by definition of the morphisms h ↑ and h ↓ .

To show the above equivalence, let us first assume that |w| 1 is divisible by m. Then we have

ψ L (ext h ↑ (w),h ↓ (w R ) ) = ψ L (ext u 0 ,v 0 ) = 0 G , and consequently ψ L (ext h ↑ (w) i m-2 ,h ↓ (w) i m-2 ) = 0 G for all i ∈ [1, m -1]. It follows w i ̸ ∈ L for all i ∈ [1, m -1], as desired. Conversely, assume that |w| 1 is not divisible by m, i.e. |w| 1 ≡ i mod m for some i ∈ [1, m -1]. Hence ψ L (ext h ↑ (w),h ↑ (w R ) ) = i G ̸ = 0 G and thus ψ L (ext h ↑ (w) i m-2 ,h ↑ (w R ) i m-2 ) = (i m-1 mod m) G = 1 G by Fermat's Little Theorem. Hence w i ∈ L as required.
Altogether we obtain MOD m ≤ cd L.

The non-solvable case

In this additional section we prove a stronger lower bound, namely when the syntactic morphism not only is not quasi-aperiodic but the syntactic Ext-algebra not solvable. For this we revisit solvable groups and introduce solvable Ext-algebras.

Let G be a finite group. The word problem for G is the question, given a word

w 1 • • • w n over G, to decide if their product w 1 • • • w n in G evaluates to 1 G . The commutator of g, h ∈ G is ghg -1 h -1 ∈ G, denoted by [g, h]. The commutator subgroup [G, G] of G is the subgroup of G that is generated by the commutators of G. We say that G is perfect if G = [G, G].
We say that G is solvable if in the series of commutator subgroups (a.k.a. derived series) G (0) , G (1) , . . . a trivial group is contained, where G (0) = G and G (i+1) = [G (i) , G (i) ] for all i ∈ N. Thus, note that any non-solvable finite group contains a perfect subgroup.

We say the Ext-algebra (R, O) is solvable if all subsets of R or O that are groups (under the multiplication of R, resp. of O) are solvable. It is worth mentioning that one can prove that if

(φ, ψ) : (Σ △ , O(Σ △ )) → (R, O) is quasi-aperiodic, then (R, O) is solvable. In fact, one can prove that if (φ, ψ) is quasi-aperiodic, then (R, O) must contain only Abelian groups.
Our proof that L is NC 1 -hard (and thus TC 0 -hard) when (R L , O L ) is not solvable can be reduced to the case for words [START_REF] Barrington | Bounded-Width Polynomial-Size Branching Programs Recognize Exactly Those Languages in NC 1[END_REF], by showing that already ψ L (O(Σ △ ) k,l ) contains such a non-solvable group for some fixed k, l ≥ 0. Proposition 5.6. If (R L , O L ) is not solvable, then L is NC 1 -hard and thus not in AC 0 .

Before we prove the proposition we remark that not every subset G ⊆ R L (resp. G ⊆ O L ) that is a group is necessarily a submonoid of R L (resp. O L ); in particular the neutral element of G need not necessarily be the neutral element of O L . Indeed, for instance assume R L = {1, a, b} where It is also worth mentioning that since R is (isomorphic to) a submonoid of O we could have equivalently defined an Ext-algebra to be solvable if all subsets of O that are groups are solvable.

Proof of Proposition 5.6. Assume (R L , O L ) is not solvable. Then there exists a subset G ⊆ O L , where G is a non-trivial perfect group, i.e. G = [G, G]. Let ω be the idempotent power of G. For all g, h ∈ G there exist ext ug,vg ,

ext u h ,v h ∈ O(Σ △ ) such that [g, h] = ghg -1 h -1 = ghg ω-1 h ω-1 = ψ L ext ugu h u ω-1 g u ω-1 h ,v ω-1 h v ω-1 g v h vg and 1 G = g ω h ω = ψ L (ext u ω g u ω h ,v ω h v ω g ).
Therefore, for all g, h ∈ G we have

[g, h] = ψ L     ext ugu h u ω-1 g u ω-1 h ,v ω-1 h v ω-1 g v h vg • ⃝ (g ′ ,h ′ )∈G 2 (g ′ ,h ′ )̸ =(g,h) ext u ω g ′ u ω h ′ ,v ω h ′ ,v ω g ′     . Hence, {[g, h] | g, h ∈ G} ⊆ O(Σ △ ) k,l for k = (g,h)∈G 2 (|u g | + |u h |) • ω and l = (g,h)∈G 2 (|v h | + |v g |) • ω .
Since G = [G, G] every element of G can be written as the product of at most |G| elements in {[g, h] | g, h ∈ G} and, in fact, even as the product of exactly |G| elements in {[g, h] | g, h ∈ G}, since it contains the identity 1 G . Thus, we can conclude that G ⊆ ψ L (O(Σ △ ) k•|G|,l•|G| . Since the word problem of any non-solvable finite group is NC 1 -hard by [START_REF] Barrington | Bounded-Width Polynomial-Size Branching Programs Recognize Exactly Those Languages in NC 1[END_REF] and G ⊆ ψ L (O(Σ △ ) k•|G|,l•|G| , it follows that the word problem for G is constant-depth reducible to L. Hence L is NC 1 -hard and in particular TC 0 -hard.

In AC 0 : Length-synchronous and quasi-aperiodic

This section is devoted to the following theorem.

Theorem 5.7. If L is length-synchronous and (φ L , ψ L ) is quasi-aperiodic, then L is in FO[+] and thus in AC 0 .

For the rest of this section let us fix a VPL L, its syntactic Ext-algebra (R L , O L ), and its syntactic morphism

(φ L , ψ L ) : (Σ △ , O(Σ △ )) → (R L , O L ).
Before we explain our proof strategy we introduce approximate matchings and horizontal and vertical evaluation languages. Approximate matchings generalize the classical matching relation on well-matched words with respect to our VPL L in the sense that they are subsets of the matching relation but must equal the matching relation on all those words that are in L. Approximate matchings in the context of visibly pushdown languages were introduced by Ludwig [START_REF] Ludwig | Tree-Structured Problems and Parallel Computation[END_REF]. We then introduce suitably padded word languages mimicking the evaluation problem of the horizontal monoid R L and the vertical monoid O L , respectively.

Approximate matchings. For any word w ∈ Σ * , we say that two positions i, j ∈ [1, |w|] in w are matched whenever i < j, w i ∈ Σ call , w j ∈ Σ ret and w i+1 • • • w j-1 ∈ Σ △ ; we also say that i is matched to j in w. Observe that a word w over Σ is well-matched if and only if for each position i ∈ [1, |w|],

• if i ∈ Σ call , then there exists a position j ∈ [1, |w|] such that i is matched to j in w;

• if i ∈ Σ ret , then there exists a position j ∈ [1, |w|] such that j is matched to i in w.

Given a word w ∈ Σ △ , we denote by M △ (w) its matching relation (or matching), that is the relation

{(i, j) ∈ [1, |w|] 2 | i is matched to j in w} . An approximate matching relative to L ⊆ Σ △ is a function M : Σ * → N >0
2 such that M (w) = M △ (w) for all w ∈ L and M (w) ⊆ M △ (w) for all w ∈ Σ * \ L.

Horizontal and vertical evaluation languages. For all k ∈ N, we define

O(Σ △ ) k, * = {ext u,v ∈ O(Σ △ ) : |u| = k} and O(Σ △ ) * ,k = {ext u,v ∈ O(Σ △ ) : |v| = k} . We also define O(Σ △ ) ↑ = {ext u,v ∈ O(Σ △ ) | ∆(u) > 0} and finally for all k ∈ N, we define O(Σ △ ) k, * ↑ = O(Σ △ ) k, * ∩ O(Σ △ ) ↑ and O(Σ △ ) * ,k ↑ = O(Σ △ ) * ,k ∩ O(Σ △ ) ↑ .
Consider the alphabets

Γ φ L = φ L (Σ △ \ {ε}) ∪ {$} and Γ ψ L = ψ L O(Σ △ ) ↑ ∪ {$} for a letter $ / ∈ R L ∪ O L .
We also define

V φ L = {$ k s | k ∈ N, s ∈ φ L (Σ k+1 )} * and V ψ L = $ k f k ∈ N, f ∈ ψ L O(Σ △ ) k+1, * ↑ * . Define the φ L -evaluation morphism eval φ L : Γ * φ L → R L by eval φ L (s) = s for all s ∈ φ L (Σ △ \{ε}) and eval φ L ($) = 1 R . Similarly, define the ψ L -evaluation morphism eval ψ L : Γ * ψ L → O L by eval ψ L (f ) = f for all f ∈ ψ L O(Σ △ ) ↑ and eval ψ L ($) = 1 O L .
Finally, for all r ∈ R L , we set

E φ L ,r = V φ L ∩ eval -1 φ L (r)
and for all e ∈ O L , we set

E ψ L ,e = V ψ L ∩ eval -1 ψ L (e) .

Strategy for the proof of Theorem 5.7

We are now ready to give the proof strategy for Theorem 5.7. The proof consists of the following steps.

1. Lemma 5.9: V φ L and V ψ L are regular languages whose syntactic morphisms are quasi-aperiodic.

2. Proposition 5.10: Let L be a VPL whose syntactic morphism (φ L , ψ L ) is quasi-aperiodic.

• For all r ∈ R L , the language E φ L ,r is regular and its syntactic morphism is quasi-aperiodic.

• For all e ∈ O L , if for each φ L (L)-reachable idempotent f ∈ O L such that there exist

g, h ∈ O L satisfying e = g • f • h we have that R f = {(u, v) ∈ Con(Σ) | ψ L (ext u,v ) = f } is length-synchronous, then E ψ L ,
e is a regular language whose syntactic morphism is quasi-aperiodic.

3. Proposition 5.12: If L ⊆ Σ △ is length-synchronous, then there exists an

FO Σ [+]-formula µ(x, y) such that M : Σ * → N >0 2 defined by M (w) = {(i, j) ∈ [1, |w|] 2 | w |= µ(i, j
)} for all w ∈ Σ * is an approximate matching relative to L. 

L (L)-reachable idempotent f ∈ O L we have that R f = {(u, v) ∈ Con(Σ) | ψ L (ext u,v ) = f } is length-synchronous, so Point 2 implies that E φ L ,r
and E ψ L ,e are quasi-aperiodic for all r ∈ R L and all e ∈ O L , respectively. Finally, combining the FO Σ,↭ [+]-sentence of Point 4 with the FO Σ [+]-formula given by Point 3 that defines an approximate matching relative to L yields an FO Σ [+]-sentence defining L, thus proving Theorem 5.7.

5.3.2 V φ L and V ψ L are quasi-aperiodic (Proof of Point 1)
Before proving Point 1 in the proof strategy for Theorem 5.7 we require the following auxiliary lemma. It provides an important periodicity property of Ext-algebra morphisms.

Lemma 5.8. The following periodicity holds:

1. There exist t ∈ N and p ∈ N >0 such that φ L (Σ △ ∩ Σ i ) = φ L (Σ △ ∩ Σ j ) for all i, j ∈ N satisfying i, j ≥ t and i ≡ j (mod p).

2. There exist t ∈ N and p ∈ N >0 such that

ψ L O(Σ △ ) i, * ↑ = ψ L O(Σ △ ) j, *
↑ for all i, j ∈ N satisfying i, j ≥ t and i ≡ j (mod p).

There exist t ∈ N and p

∈ N >0 such that ψ L O(Σ △ ) * ,i ↑ = ψ L O(Σ △ ) * ,j
↑ for all i, j ∈ N satisfying i, j ≥ t and i ≡ j (mod p).

Proof. To prove Point 1 recall that φ -1 L (r) is a VPL and hence a context-free language for all r ∈ R L . By Parikh's Theorem [START_REF] Esparza | Parikh's theorem: A simple and direct automaton construction[END_REF]Section 3] it follows that S r = {|w| : w ∈ Σ △ , φ L (w) = r} ⊆ N is a semilinear set for all r ∈ R L . It follows that for all U ⊆ R L the set S U = {|w| : w ∈ Σ △ , φ L (w) ∈ U } ⊆ N is semilinear since semilinear sets are closed under union. Point 1 follows immediately from this observation.

Next we prove Point 2, Point 3 can be proven analogously. According to Lemma 6.4 in Section 6 for # ̸ ∈ Σ the language

L e = {u#v | uv ∈ Σ △ : ψ L (ext u,v ) = e} is a VPL for all e ∈ O L . As the language K = {u#v | u, v ∈ Σ △ } is obviously a VPL, it follows that for all e ∈ O L the language L e ↑ = L e \ K = {u#v | uv ∈ Σ △ : ψ L (ext u,v ) = e, ∆(u) > 0} ⊆ L e
is a VPL as well. By Lemma 6.5 in Section 6 the set

S e = {(k, l) ∈ N × N | ∃u ∈ Σ k , v ∈ l : u#v ∈ L e ↑ }
is semilinear as well for all e ∈ O L . As a consequence we obtain that for all Y ⊆ O L the set The following lemma holds irrespective of whether the syntactic morphism (φ L , ψ L ) of L is quasi-aperiodic or not. Lemma 5.9. V φ L , V ψ L are regular languages whose syntactic morphisms are quasi-aperiodic.

S Y = {(k, l) ∈ N × N | ∃u ∈ Σ k , v ∈ Σ l , e ∈ Y : u#v ∈ L e ↑ } ⊆ N × N
Proof. Take t ∈ N and p ∈ N >0 given by Lemma 5.8 such that

ψ L O(Σ △ ) i, * ↑ = ψ L O(Σ △ ) j, *
↑ for all i, j ∈ N satisfying i, j ≥ t and i ≡ j (mod p). Define θ t,p : N → N as

θ t,p (n) = n if n < t min{n ′ ∈ N | n ′ ≥ t ∧ n ′ ≡ n (mod p)} otherwise
for all n ∈ N. Take M to be the syntactic monoid of V ψ L and h : Γ * ψ L → M to be its syntactic morphism.

If there exists f ∈ ψ L O(Σ △ ) ↑ and k ∈ N such that $ k f / ∈ V ψ L , let us fix some f ⊥ and k ⊥ that satisfy this. Observe that for all k ∈ N, we have that

h($ k ) = h($ θt,p(k) ). Further, for all n ∈ N >0 , k 1 , . . . , k n+1 ∈ N and f 1 , . . . , f n ∈ ψ L O(Σ △ ) ↑ , we have h($ k 1 f 1 • • • $ kn f n $ k n+1 ) = h($ θt,p(k 1 ) f 1 α$ θt,p(k n+1 ) ), where α = ε if $ k 2 f 2 • • • $ kn f n ∈ V ψ L $ k ⊥ f ⊥ otherwise .
Therefore, M is finite and thus V ψ L is regular. Let l ∈ N >0 be the stability index of h and take q ∈ N >0 such that q • l ≥ t and q • l ≡ 0 (mod p). By definition, we have h(Γ l ψ L ) = h(Γ q•l ψ L ). Thus, to show that h is quasi-aperiodic it is sufficient to prove that for all m ∈ h(Γ q•l ψ L ), we have m 2 = m 3 . Indeed, given m ∈ h(Γ q•l ψ L ), only the following three cases can occur. 1. m = h($ q•l ). In this case, we have

m 2 = h($ 2•q•l ) = h($ θt,p(2•q•l) ) = h($ θt,p(q•l) ) = h($ q•l ) = m ,
where the third equality follows from θ t,p (2

• q • l) = θ t,p (q • l). 2. m = h($ k 1 f $ k ⊥ f ⊥ $ k 2 ) for f ∈ ψ L O(Σ △ ) ↑ and k 1 , k 2 ∈ N satisfying θ t,p (k 1 ) = k 1 and θ t,p (k 2 ) = k 2 .
In this case, we have

m 2 = h($ k 1 f $ k ⊥ f ⊥ $ k 1 +k 2 f $ k ⊥ f ⊥ $ k 2 ) = h($ k 1 f $ k ⊥ f ⊥ $ k 2 ) = m ,
where the second equality follows from

$ k ⊥ f ⊥ $ k 1 +k 2 f $ k ⊥ f ⊥ / ∈ V ψ L . 3. m = h($ k 1 f $ k 2 ) for f ∈ ψ L O(Σ △ ) ↑ and k 1 , k 2 ∈ N satisfying θ t,p (k 1 ) = k 1 and θ t,p (k 2 ) = k 2 . If f ∈ ψ L O(Σ △ ) k 1 +k 2 +1, * ↑ , then m 2 = h($ k 1 f $ k 1 +k 2 f $ k 2 ) = h($ k 1 f $ k 2 ) = m because $ k 1 +k 2 f ∈ V ψ L . Otherwise, f / ∈ ψ L O(Σ △ ) k 1 +k 2 +1, *
↑ and then

m 2 = h($ k 1 f $ k 1 +k 2 f $ k 2 ) = h($ k 1 f $ k ⊥ f ⊥ $ k 2 ) because $ k 1 +k 2 f / ∈ V ψ L , so m 3 = h($ k 1 f $ k ⊥ f ⊥ $ k 1 +k 2 f $ k 2 ) = h($ k 1 f $ k ⊥ f ⊥ $ k 2 ) = m 2 because $ k ⊥ f ⊥ $ k 1 +k 2 f / ∈ V ψ L .
Therefore, V ψ L is a regular language whose syntactic morphism is quasi-aperiodic. One important consequence of Lemma 5.9 is that for all r ∈ R L and e ∈ O L , the languages E φ L ,r and E ψ L ,e are in fact regular languages. The following proposition gives conditions under which those languages have moreover quasi-aperiodic syntactic morphisms when the syntactic morphism of L itself is.

Proposition 5.10. Let L be a VPL whose syntactic morphism (φ L , ψ L ) is quasi-aperiodic.

• For all r ∈ R L , the language E φ L ,r is regular and its syntactic morphism is quasi-aperiodic.

• For all e ∈ O L , if for each φ L (L)-reachable idempotent f ∈ O L such that there exist g, h ∈ O L satisfying e = g • f • h 1 we have that R f = {(u, v) ∈ Con(Σ) | ψ L (ext u,v ) = f } is length- synchronous, then E ψ L ,
e is a regular language whose syntactic morphism is quasi-aperiodic.

Proof. We already know that for all r ∈ R L and e ∈ O L , the languages E φ L ,r and E ψ L ,e are regular.

To prove the lemma, we then just have to prove that

• if there exists r ∈ R L such that the syntactic morphism of E φ L ,r is not quasi-aperiodic, then there exists k ∈ N such that φ(Σ △ ∩ Σ k ) contains a semigroup that is not aperiodic;

• if there exists e ∈ O L such that the syntactic morphism of E ψ L ,e is not quasi-aperiodic and for each φ

L (L)-reachable idempotent f ∈ O L such that there exist f ′ , f ′′ ∈ O L satisfying e = f ′ • f • f ′′ we have that R f = {(u, v) ∈ Σ * × Σ * | uv ∈ Σ △ , ∆(u) > 0, ψ L (ext u,v ) = f } is length-synchronous, then there exist k, l ∈ N such that ψ L (O(Σ △ ) k,l
) contains a semigroup that is not aperiodic.

Indeed, the first point allows to conclude that (φ L , ψ L ) is not quasi-aperiodic, since if there exists a non-aperiodic semigroup

S contained in φ L (Σ △ ∩ Σ k ), then {left s | s ∈ S} is a semigroup contained in ψ L (O(Σ △ ) k,0 ) (because for each s ∈ S, there exists w ∈ Σ △ ∩ Σ k satisfying φ L (w) = s, so that ψ L (ext w,ε ) = left φ L (w) = left s )
. But this semigroup is non-aperiodic as well, since as S is non-aperiodic, it must be that for all i ∈ N >0 , there exists s ∈ S such that s i ̸ = s i+1 , so that left s i ̸ = left s i+1 . We only prove the second point, the first point can be proved in a similar way by leaving out the last paragraph of the following proof, that is the sole place where we need, given an e ∈ O L , length-

synchronicity of R f for each φ L (L)-reachable idempotent f ∈ O L such that there exist f ′ , f ′′ ∈ O L satisfying e = f ′ • f • f ′′ .
Take t ∈ N and p ∈ N >0 given by Lemma 5.8 such that

ψ L O(Σ △ ) i, * ↑ = ψ L O(Σ △ ) j, *
↑ for all i, j ∈ N satisfying i, j ≥ t and i ≡ j (mod p).

Assume there exists e ∈ O L such that the syntactic morphism of E ψ L ,e is not quasi-aperiodic. Take M to be the syntactic monoid of E ψ L ,e and h : Γ * ψ L → M to be its syntactic morphism. Let s ∈ N >0 be the stability index of h and let ω ≥ 2 be a multiple both of the idempotent power of M and the idempotent power of O L . Non-quasi-aperiodicity of h implies that there exists g ∈ h(Γ s ψ L ) satisfying g ω ̸ = g ω+1 .

By definition of the stability index, there exists w ∈ Γ q•s ψ L for q ∈ N >0 such that q•s ≥ t and q•s ≡ 0 (mod p) satisfying h(w) = g. Since t ≤ q • s ≤ q • s • ω ≤ q • s • (ω + 1) and q • s ≡ q • s • ω ≡ q • s • (ω + 1) (mod p), we cannot have w = $ q•s , for otherwise we would have 

g ω = h($ q•s•ω ) = h($ q•s•(ω+1) ) = g ω+1 because ψ L O(Σ △ ) q•s•ω+k+1, * ↑ = ψ L O(Σ △ ) q•s•(ω+1)+k+1, * ↑ for all k ∈ N. Therefore, we have w = $ k 1 f 1 • • • $ kn f n $ k n+1 for n ∈ N >0 , k 1 , . . . , k n+1 ∈ N and f 1 , . . . , f n ∈ ψ L O(Σ △ ) ↑ . Since g ω ̸ = g ω+1 , there exist x, y ∈ Γ * ψ L such that either xw ω y ∈ E ψ L ,
′ with k x , k y ∈ N and x ′ , y ′ ∈ Γ * ψ L satisfying x ′ , $ kx+k 1 f 1 , $ k 2 f 2 , . . . , $ kn f n , $ k n+1 +k 1 f 1 , $ k n+1 +ky y ′ ∈ V ψ L and eval ψ L (x ′ ) • (f 1 • • • • • f n ) ω • eval ψ L (y ′ ) = e.
Therefore, we also have xw ω+1 y ∈ V ψ L , hence since xw ω+1 y / ∈ E ψ L ,e we necessarily have

e = eval ψ L (x ′ ) • (f 1 • • • • • f n ) ω • eval ψ L (y ′ ) ̸ = eval ψ L (xw ω+1 y) = eval ψ L (x ′ ) • (f 1 • • • • • f n ) ω+1 • eval ψ L (y ′ ) .
Thus we have (f

1 • • • • • f n ) ω ̸ = (f 1 • • • • • f n ) ω+1 and $ k n+1 +k 1 f 1 $ k 2 f 2 • • • $ kn f n ∈ V ψ L .
This is also true for the case when xw ω y / ∈ E ψ L ,e and xw ω+1 y ∈ E ψ L ,e . Therefore, we have

(f 1 • • • • • f n ) ω ̸ = (f 1 • • • • • f n ) ω+1 with (f 1 • • • • • f n ) i ∈ ψ L O(Σ △ ) q•s•i, * ↑ = ψ L O(Σ △ ) q•s, * ↑ for each i ∈ N >0 because k n+1 +k 1 +• • •+k n +n = q•s ≥ t and k n+1 +k 1 +• • •+k n +n = q • s ≡ 0 (mod p). But given ω ′ the idempotent power of {(f 1 • • • • • f n ) i | i ∈ N >0 }, we have that (f 1 • • • • • f n ) ω = (f 1 • • • • • f n ) ωω ′ = (f 1 • • • • • f n ) ω ′ , so that (f 1 • • • • • f n ) ω ′ ̸ = (f 1 • • • • • f n ) ω ′ +1 , hence {(f 1 • • • • • f n ) i | i ∈ N >0 } is not aperiodic.
Assume additionally that for each φ L (L)-reachable idempotent f ∈ O L such that there exist

f ′ , f ′′ ∈ O L satisfying e = f ′ • f • f ′′ we have that R f = {(u, v) ∈ Σ * × Σ * | uv ∈ Σ △ , ∆(u) > 0, ψ L (ext u,v ) = f } is length-synchronous. For each i ∈ N >0 , let ext u i ,v i ∈ ψ L O(Σ △ ) q•s, * ↑ such that ψ L (ext u i ,v i ) = (f 1 • • • • • f n ) i . If (f 1 • • • • • f n ) ω
were not φ L (L)-reachable, then it would imply that ext uω,vω is not L-reachable. This would in turn entail that for all z ∈ Σ △ and ext

α,β ∈ O(Σ △ ) we have ext α,β (ext uω,vω (z)) / ∈ L ∧ ext α,β (ext u 1 uω,vωv 1 (z)) = ext αu 1 ,v 1 β (ext uω,vω (z)) / ∈ L , so that it would follow that (f 1 • • • • • f n ) ω = ψ L (ext uω,vω ) = ψ L (ext u 1 uω,vωv 1 ) = (f 1 • • • • • f n ) ω+1 , a contradiction. Hence, since (f 1 • • • • • f n ) ω is a φ L (L)-reachable idempotent and e = eval ψ L (x ′ ) • (f 1 • • • • • f n ) ω • eval ψ L (y ′ ) if xw ω y ∈ E ψ L ,e and xw ω+1 y / ∈ E ψ L ,e eval ψ L (x ′ ) • (f 1 • • • • • f n ) ω+1 • eval ψ L (y ′ ) otherwise (xw ω y / ∈ E ψ L ,e and xw ω+1 y ∈ E ψ L ,e ) , it follows that R (f 1 •••••fn) ω is length-synchronous. So for all i ∈ N, i ≥ 2, since ψ L (ext u ω 1 ,v ω 1 ) = ψ L (ext u ω i ,v ω i ) = (f 1 • • • • • f n ) ω with ∆(u ω 1 ) > 0 and ∆(u ω i ) > 0, since |u 1 | = |u i |, we have |u ω 1 | |v ω 1 | = |u ω i | |v ω i | ⇒ |u 1 | |v 1 | = |u i | |v i | ⇒ |v 1 | = |v i | .
To conclude, we obtain that the non-aperiodic semigroup

{(f 1 • • • • • f n ) i | i ∈ N >0 } is contained in ψ L (O(Σ △ ) q•s,|v 1 | ).
The following remark states that the length-synchronicity precondition in the second point of Proposition 5.10 is important. In fact it shows that weak length-synchronicity is not sufficient. Remark 5.11. For the second point of Proposition 5.10 it is generally not sufficient to assume, given e, that for each φ

L (L)-reachable idempotent f ∈ O L such that there exist g, h ∈ O L satisfying e = g • f • h we have that R f = {(u, v) ∈ Σ * × Σ * | uv ∈ Σ △ , ∆(u) > 0, ψ L (ext u,v ) = f }
is weakly length-synchronous. Indeed, the VPL K generated by the grammar with rules

S → aSb 1 | acT b 2 | ε T → aT b 1 | acSb 2 .
using S as start symbol is not length-synchronous, but weakly length-synchronous, and has a quasiaperiodic syntactic morphism. However, for the syntactic Ext-algebra (R K , O K ) and the syntactic morphism (φ K , ψ K ) of K, we claim that there exists a φ K (K)-reachable e ∈ O K such that E ψ K ,e is a regular language whose syntactic morphism is not quasi-aperiodic while, as K is weakly lengthsynchronous, for each

φ L (L)-reachable idempotent f ∈ O L we have that R f = {(u, v) ∈ Σ * × Σ * | uv ∈ Σ △ , ∆(u) > 0, ψ L (ext u,v ) = f } is weakly length-synchronous.
Let Γ be the visibly pushdown alphabet of K. Note that we have Consider the length-multiplying monoid morphism β : {0, 1} * → Γ * ψ K such that β(0) = e 0 e 0 and β(1) = $e 1 . Then MOD 2 = β -1 (E ψ K ,e 0 ), so E ψ K ,e 0 cannot have a quasi-aperiodic syntactic morphism, for otherwise, by closure of the class of regular languages whose syntactic morphism is quasi-aperiodic under inverses of length-multiplying morphisms (see [START_REF] Straubing | On logical descriptions of regular languages[END_REF]), we would have that MOD 2 has a quasi-aperiodic syntactic morphism.

K ⊂ L 1,2 , where L 1,2 = L(S → aSb 1 |acSb 2 |ε) is the VPL initially introduced in Example 2.5. For all uv, u ′ v ′ ∈ L 1,2 with u, u ′ ∈ {a, c} + , v, v ′ ∈ {b 1 , b 2 } + , |u| c ≡ |u ′ | c (mod 2) we have xuzvy ∈ K ⇔ xu ′ zv ′ y ∈ K for all xy, z ∈ Γ △ . This implies that if we set e 0 = ψ K (ext a,b 1 ) and e 1 = ψ K (ext ac,b 2 ), we have that for all uv ∈ L 1,2 with u ∈ {a, c} + , v ∈ {b 1 , b 2 } + , it holds that ψ K (ext u,v ) = e |u|c

Approximate matching relation in FO[+] (Proof of Point 3)

The following proposition states that there is a FO Σ [+]-definable approximate matching relative to any length-synchronous visibly pushdown language. Proposition 5.12. If L ⊆ Σ △ is length-synchronous, then there exists an

FO Σ [+]-formula η(x, y) such that M : Σ * → N >0 2 defined by M (w) = {(i, j) ∈ [1, |w|] 2 | w |= η(i, j)} for all w ∈ Σ * is an approximate matching relative to L.
The technical heart of the proof is the following lemma whose proof is postponed and will take most part of this subsubsection. This lemma realizes the characterization of length-synchronicity given by Proposition 4.11 via an FO Σ [+]-formula. Lemma 5.13. Assume that (φ L , ψ L ) is weakly length-synchronous. Let e ∈ O L be φ L (L)-reachable and assume that U e = {(u, v) ∈ Con(Σ) | e•ψ L (ext u,v ) = e} is length-synchronous. Then there exists an FO Σ [+]-formula π e (x, x ′ , y ′ , y) such that for all w ∈ Σ + and i, i ′ , j ′ , j ∈ [1, |w|], i ≤ i ′ < j ′ ≤ j the following holds,

• if w |= π e (i, i ′ , j ′ , j), then w i • • • w i ′ w j ′ • • • w j ∈ Σ △ and • if w i • • • w i ′ w j ′ • • • w j ∈ Σ △ and (w i . . . w i ′ , w j ′ . . . w j ) ∈ U e , then w |= π e (i, i ′ , j ′ , j). formula π es p to witness that w is p +1 • • • w it p w jt p • • • w js p -1 is
indeed a well-matched word. It will thus remain to verify that w it p • • • w is p+1 w js p+1 • • • w it p is well-matched for all p ∈ [0, q]: this can be guaranteed by evaluating κ dp (i tp , i s p+1 , j s p+1 , i tp ). We can now define our final formula µ ↑ d :

µ ↑ d (x, y) = q∈[0,|O L |] d 0 ,...,dq ≥1: q+d 0 +•••+dq ≤3|0| ∃x 1 . . . x q+1 ∃x ′ 0 . . . x ′ q ∃y 1 . . . y q+1 ∃y ′ 1 . . . y ′ 0 x 0 ≤ x 1 < x ′ 1 < x 2 < • • • < x ′ q < y ′ q < y q < • • • < y ′ 1 < y 1 ≤ y ′ 0 ∧ x ′ 0 = x ∧ y ′ 0 = y ∧ µ d-1 (x q+1 + 1, y q+1 -1) ∧ q p=1   e∈O L φ L (L)-reachable π e (x p + 1, x ′ p , y ′ p , y p -1)   ∧ q p=0 κ dp (x ′ p , x p+1 , y p+1 , y ′ p )   .
The following remark is obvious but will be important in Section 5.4.

Remark 5.15. When constructing our predicate µ ↑ d , we could have replaced any subset of the predicates π e , where e is φ L (L)-reachable from above, by the predicate π exact e expressing that for all w ∈ Σ + and i, i

′ , j ′ , j ∈ [1, |w|], i ≤ i ′ < j ′ ≤ j it holds: w |= π exact e (i, i ′ , j ′ , j) ⇐⇒ w i . . . w i ′ w j ′ . . . w j ∈ Σ △ , e • ψ L (ext w i •••w i ′ ,w j ′ •••w j ) = e, and 
∆(w i • • • w i ′ ) > 0
It remains to prove Lemma 5.13.

Proof of Lemma 5.13

In essence, our proof is inspired by the approach taken in [24, Proof of Proposition 126], which is itself a flawed adaptation (we refer to Section 8 for more details) of the approach taken in [23, Proof of Lemma 15].

Let α e ∈ Q >0 , β e ∈ N and γ e ∈ N >0 given by Proposition 4.11 for e. There exist unique n e , d e ∈ N >0 that are relatively prime such that α e = ne de . We are going to build an FO[+]-formula π e (x, x ′ , y ′ , y) such that for all w ∈ Σ + and i, i ′ , j ′ , j ∈ [1, |w|], i ≤ i ′ < j ′ ≤ j, we have that w |= π e (i, i ′ , j ′ , j) if, and only if, all of the following conditions are satisfied:

(i) i ′ -i+1 j-j ′ +1 = ne de ; (ii) -β e ≤ ∆(w i • • • w i+k•ne-1 w j-k•de+1 • • • w j ) ≤ β e for all k ∈ N >0 such that k ≤ (j -j ′ + 1)/d e and ∆(w i • • • w i ′ w j ′ • • • w j ) = 0; (iii) ∆(w i+(q-1)•γe • • • w i+q•γe-1 ) ≥ 1 for all q ∈ N >0 with q • γ e ≤ i ′ -i + 1 and ∆(w i • • • w i+p-1 ) ≥ 0 for all p ∈ [1, i ′ -i + 1]; (iv) ∆(w j-q•γe+1 • • • w j-(q-1)•γe ) ≤ -1 for all q ∈ N >0 with q •γ e ≤ j -j ′ +1 and ∆(w j-p+1 • • • w j ) ≤ 0 for all p ∈ [1, j -j ′ + 1].
Let us first prove that these four conditions whose conjunction the FO[+]-formula π e (x, x ′ , y ′ , y) will express, indeed imply the two conditions of the lemma.

If conditions (i) to (iv) are satisfied for a w ∈ Σ + and i, i

′ , j ′ , j ∈ [1, |w|], i ≤ i ′ < j ′ ≤ j, we actu- ally have that w i • • • w i ′ w j ′ • • • w j ∈ Σ △ . Indeed, condition (ii) ensures that ∆(w i • • • w i ′ w j ′ • • • w j ) = 0. Conditions (iii) and (iv) then additionally imply that ∆(w i • • • w i+p-1 ) ≥ 0 for all p ∈ [1, i ′ -i + 1] and ∆(w i • • • w i ′ w j ′ • • • w j ′ +p-1 ) ≥ 0 for all p ∈ [1, j -j ′ + 1]. This is because if there were a p ∈ [1, j-j ′ +1] such that ∆(w i • • • w i ′ w j ′ • • • w j ′ +p-1 ) < 0, then it should be that ∆(w j ′ +p • • • w j ) > 0 with p ≤ j -j ′ as we already know that ∆(w i • • • w i ′ w j ′ • • • w j ) = 0:
this would be a contradiction to condition (iv).

Conversely, let us fix some w ∈ Σ + and indices i, i

′ , j ′ , j ∈ [1, |w|] such that i ≤ i ′ < j ′ ≤ j, w i • • • w i ′ w j ′ • • • w j ∈ Σ △ , ∆(w i • • • w i ′ ) > 0 and e • ψ L (ext w i •••w i ′ ,w j ′ •••w j ) = e.
In the terminology of Proposition 4.11, for F = φ L (L), we have

(w i • • • w i ′ , w j ′ • • • w j ) ∈ U e .
We claim that Points (i) to (iv) are actually satisfied. Indeed, recalling that L is length-synchronous by assumption, 2(a) of Proposition 4.11 for e in fact states that that Point (i) is satisfied. Next, since for all k ∈

N >0 such that k ≤ j-j ′ +1 de = i ′ -i+1 ne , the word w i • • • w i+k•ne-1 is a prefix of w i • • • w i ′ and the word w j-k•de+1 • • • w j is a suffix of w j ′ • • • w j such that |w i •••w i+k•ne-1 | |wj-k•d e+1 •••w j | = k•ne k•de = α e , it must hold that -β e ≤ ∆(w i • • • w i+k•ne-1 w j-k•de+1 • • • w j ) ≤ β e by Point 2(b) of Proposition 4.11. We have that ∆(w i • • • w i ′ w j ′ • • • w j ) = 0 immediately follows from our assumption w i • • • w i ′ w j ′ • • • w j ∈ Σ △ , thus Point (ii) holds. Another consequence of our assumption w i • • • w i ′ w j ′ • • • w j ∈ Σ △ is that ∆(w i • • • w i+p-1 ) ≥ 0 for all p ∈ [1, i ′ -i + 1] and ∆(w i • • • w i ′ w j ′ • • • w j ′ +p-1 ) ≥ 0 for all p ∈ [1, j -j ′ + 1]. This implies that ∆(w j-p+1 • • • w j ) ≤ 0 for all p ∈ [1, j -j ′ + 1], as already argued above. Since w i+(q-1)•γe • • • w i+q•γe-1 is a factor of w i • • • w i ′ of length γ e for all q ∈ N >0 such that q • γ e ≤ i ′ -i + 1 and w j-q•γe+1 • • • w j-(q-1)
•γe is a factor of w j ′ • • • w j of length γ e for all q ∈ N >0 such that q • γ e ≤ j -j ′ + 1, by Points 2(c) and 2(d) of Proposition 4.11, we finally have that conditions (iii) and (iv) are also satisfied.

It now remains to construct the formula π e (x, x ′ , y ′ , y). We set

π e (x, x ′ , y ′ , y) =(x ′ -x + 1) • d e = (y -y ′ + 1) • n e ∧ µ ne,de,βe (x, x ′ , y ′ , y)∧ ν + γe (x, x ′ ) ∧ ν - γe (y ′ , y),
where the first line checks condition (i), the FO[+]-formula µ ne,de,βe (x, x ′ , y ′ , y) will check condition (ii) under the assumption condition (i) is satisfied and the FO[+]-formulas ν + γe (x, x ′ ) and ν - γe (y ′ , y) respectively will check conditions (iii) and (iv). We now explain how to build those formulas.

Helper formulas. For all k ∈ N >0 and h ∈ Z such that -k ≤ h ≤ k, we let

H h k (x) = I,J⊆[1,k] I∩J=∅ |I|-|J|=h p∈I Σ call (x + p -1) ∧ p∈J Σ ret (x + p -1) ∧ p∈[1,k]\(I∪J) Σ int (x + p -1)
such that for all w ∈ Σ + and i ∈ [1, |w|] 

such that i ≤ |w| -k + 1, we have w |= H h k (i) if, and only if, ∆(w i • • • w i+k-1 ) = h. For all n, d ∈ N >0 relatively prime and h ∈ Z, -n -d ≤ h ≤ n + d, we define D h n,d (x, y, z) = -n≤h 1 ≤n -d≤h 2 ≤d h 1 +h 2 =h H h 1 n x + (z -1) • n ∧ H h 2 d y -z • d + 1 ,
such that for all w ∈ Σ + and i, j, k

∈ [1, |w|] with i + k • n -1 ≤ |w| and j -k • d + 1 ≥ 1, we have w |= D h n,d (i, j, k) if, and only if, ∆(w i+(k-1)•n • • • w i+k•n-1 w j-k•d+1 • • • w j-(k-1)•d ) = h .
Formula µ n,d,q (x, x ′ , y ′ , y). For each p ∈ N let Γ p = {a -p , . . . , a -1 , a 0 , a 1 , . . . , a p } and define ∆ p : Γ * p → Z to be the p-height monoid morphism satisfying ∆ p (a h ) = h for all a h ∈ Γ p . Consider the language

L p,q = {w ∈ Γ * p | ∆ p (w) = 0 ∧ ∀i ∈ [1, |w|], -q ≤ ∆ p (w 1 • • • w i ) ≤ q} .
We claim that this language is recognized by a finite aperiodic monoid. This implies, by a theorem by McNaughton and Papert (see [29, Theorem VI.1.1]), that there exists an FO Γ n+d [<]-sentence μp,q defining L p,q . Let now n, d ∈ N >0 relatively prime and q ∈ N. Consider w ∈ Σ + and i, i

′ , j ′ , j ∈ [1, |w|] such that i ≤ i ′ < j ′ ≤ j and i ′ -i+1 j-j ′ +1 = n d .
We want to check whether we have

-q ≤ ∆(w i • • • w i+k•n-1 w j-k•d+1 • • • w j ) ≤ q for all k ∈ N >0 such that k ≤ (j -j ′ + 1)/d and moreover ∆(w i • • • w i ′ w j ′ • • • w j ) = 0.
Since n and d are relatively prime, this means that there exists l ∈

[1, |w|] such that i ′ -i + 1 = l • n and j -j ′ + 1 = l • d. We can hence decompose w i • • • w i ′ as u 1 • • • u l with u 1 , . . . , u l ∈ Σ n and w j ′ • • • w j as v l • • • v 1 with v 1 , . . . , v l ∈ Σ d . Observe that ∆(u i v i ) ∈ [-n -d, n + d] for all i ∈ [1, l].
Using this decomposition, we now need to check whether -q ≤ ∆(u

1 v 1 ) + • • • + ∆(u k v k ) ≤ q for all k ∈ [1, l] and ∆(u 1 v 1 ) + • • • + ∆(u l v l ) = 0. This is equivalent to checking whether the word w = a ∆(u 1 v 1 ) • • • a ∆(u l v l ) in Γ *
n+d belongs to L n+d,q . We thus transform the FO Γ n+d [<]-sentence μn+d,q into an FO Σ [+]-formula µ n,d,q (x, x ′ , y ′ , y) by • replacing any quantification ∃zρ(z) by ∃z z ≤ (y -y ′ + 1)/d ∧ ρ(z) ;

• replacing any quantification ∀zρ(z) by ∀z z ≤ (y -y ′ + 1)/d → ρ(z) ;

• replacing any atomic formula of the form a h (z) for a h ∈ Γ n+d by D h n,d (x, y, z). By this translation for all w ∈ Σ + and i, i

′ , j ′ , j ∈ [1, |w|] with i ≤ i ′ < j ′ ≤ j and i ′ -i+1 j-j ′ +1 = n d we have w |= µ n,d,q (i, i ′ , j ′ , j) if, and only if, -q ≤ ∆(w i • • • w i+k•n-1 w j-k•d+1 • • • w j ) ≤ q for all k ∈ N >0 , k ≤ (j -j ′ + 1)/d and ∆(w i • • • w i ′ w j ′ • • • w j ) = 0.
It remains to show that L p,q is recognized by a finite aperiodic monoid for all p, q ∈ N. Set Q q = {-q, . . . , -1, 0, 1, . . . , q, ⊥} and consider the monoid Q q Qq with function composition from left to right. For each a h ∈ Γ p , we define the function f a h : Q q → Q q to be such that

f a h (h ′ ) = h ′ + h if h ′ ̸ = ⊥ and -q ≤ h ′ + h ≤ q ⊥ otherwise
for all h ′ ∈ Q q . We take M p,q to be the submonoid of Q q Qq generated by {f a h | a h ∈ Γ p } and define φ p,q : Γ * p → M p,q as the unique monoid morphism such that φ p,q (a h ) = f a h for all a h ∈ Γ p . It is straightforward to show, by induction on the length of w, that for all w ∈ Γ * p and all h ∈ Q q , we have

φ p,q (w)(h) = h + ∆ p (w) if h ̸ = ⊥ and -q ≤ h + ∆ p (w 1 • • • w i ) ≤ q for all i ∈ [1, |w|] ⊥ otherwise.
Thus L p,q = φ -1 p,q ({f ∈ M p,q | f (0) = 0}). We claim that the monoid M p,q is aperiodic. Indeed, take f ∈ M p,q ; we claim that f 2q+1 = f 2q+2 . Since M p,q is generated by {f a h | a h ∈ Γ p }, there exists w ∈ Γ * p satisfying φ p,q (w) = f . There are three subcases to consider.

• If ∆ p (w) = 0, then since h + ∆ p (w n-1 w 1 • • • w i ) = h + ∆ p (w 1 • • • w i ) for all h ∈ Z, -q ≤ h ≤ q,
for all n ∈ N >0 and i ∈ [1, |w|], we have that f n = f for all n ∈ N >0 .

• If ∆ p (w) > 0, then since q < h + ∆ p (w 2q+1 ) ≤ h + ∆ p (w 2q+2 ) for all h ∈ Z, -q ≤ h ≤ q, both f 2q+1 and f 2q+2 must be equal to the function sending every element to ⊥.

• If ∆ p (w) < 0, then since h + ∆ p (w 2q+2 ) ≤ h + ∆ p (w 2q+1 ) < -q for all h ∈ Z, -q ≤ h ≤ q, both f 2q+1 and f 2q+2 must be equal to the function sending every element to ⊥.

Formula ν + l (x, x ′ ). For all l ∈ N >0 , we let

ν + l (x, x ′ ) = l 2 p=1 x ′ -x + 1 ≥ p → p k=1 k h=0 H h k (x) ∧ ∀z z • l ≤ x ′ -x + 1 → l h=1 H h l x + (z -1) • l . Fix any w ∈ Σ + and i, i ′ ∈ [1, |w|] such that i ≤ i ′ . We have w |= ν + l (i, i ′ ) if, and only if, ∆(w i • • • w i+p-1 ) ≥ 0 for all p ∈ [1, min{l 2 , i ′ -i+1}] and ∆(w i+(q-1)•l • • • w i+q•l-1 ) ≥ 1 for all q ∈ N >0 such that q • l ≤ i ′ -i + 1. The latter is clearly equivalent to having ∆(w i+(q-1)•l • • • w i+q•l-1 ) ≥ 1 for all q ∈ N >0 , q • l ≤ i ′ -i + 1 and ∆(w i • • • w i+p-1 ) ≥ 0 for all p ∈ [1, i ′ -i + 1], as required.
Formula ν - l (y ′ , y). For all l ∈ N >0 , we let

ν - l (y ′ , y) = l 2 p=1 y -y ′ + 1 ≥ p → p k=1 k h=0 H -h k (y -k + 1) ∧ ∀z z • l ≤ y -y ′ + 1 → l h=1 H -h l y -z • l + 1 .
Therefore, analogously as for ν + l (x, x ′ ), for all w ∈ Σ + and j ′ , j ∈ [1, |w|] such that j ′ ≤ j, we have w |= ν - l (j ′ , j) if, and only if, ∆(w j-q•l+1 • • • w j-(q-1)•l ) ≤ -1 for all q ∈ N >0 such that q •l ≤ j -j ′ +1 and ∆(w j-p+1 • • • w j ) ≤ 0 for all p ∈ [1, j -j ′ + 1].

Evaluation in FO[+] (Proof of Point 4)

The following proposition states that every VPL L that has bounded nesting depth and for which the horizontal and vertical evaluation languages E φ L ,r and E ψ L ,e are quasi-aperiodic for all φ L (L)reachable r and e, respectively, is definable by an FO Σ,↭ [+]-sentence in case an approximate matching is present as built-in predicate.

Proposition 5.16. Assume a VPL L has bounded nesting depth and • E φ L ,r is a regular language whose syntactic morphism is quasi-aperiodic for all φ L (L)-reachable r ∈ R L , and

• E ψ L ,e is a regular language whose syntactic morphism is quasi-aperiodic for all φ L (L)-reachable e ∈ O L .

Then there exists an FO Σ,↭ [+]-sentence η such that for any approximate matching M relative to L, we have w ∈ L if, and only if, (w, M (w)) |= η for all w ∈ Σ * .

Proof. By hypothesis, there exists d L ∈ N bounding the nesting depth of the words in L. By hypothesis also, for each φ L (L)-reachable r ∈ R L , the language E φ L ,r is regular and its syntactic morphism is quasi-aperiodic. This implies, by [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF]Theorem VI.4.1], that for each φ L (L)reachable r ∈ R L , there exists an

FO Γφ L [<, MOD]-sentence ν φ L ,r defining E φ L ,r .
Finally, by hypothesis, for each φ L (L)-reachable e ∈ O L , the language E ψ L ,e is regular and its syntactic morphism is quasi-aperiodic. Again, by [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF]Theorem VI.4.1], for each φ L (L)-reachable e ∈ O L , there exists an FO Γ ψ L [<, MOD]-sentence ν ψ L ,e defining E ψ L ,e .

Auxiliary formulas. We introduce a few auxiliary formulas that all assume access to the full matching relation M △ (w), represented by the relational symbol ↭.

First let us define a formula A such that for all w ∈ Σ △ and i, j, k

∈ [1, |w|] satisfying w i • • • w j ∈ Σ △ , we have that (w, M △ (w)) |= A(i, j, k) if, and only if, i ≤ k < j and ∆(w i • • • w k ) > 0. We let A(x, y, z) = ∃x ′ ∃y ′ (x ≤ x ′ ≤ z < y ′ ≤ y ∧ x ′ ↭ y ′ ) .
Next, we define a formula U such that for all w ∈ Σ △ and i, i ′ , k ∈ [1, |w|], we have that (w, M △ (w)) |= U (i, i ′ , k) if, and only if, i ≤ k ≤ i ′ and k is matched to some position larger than i ′ in w. We let

U (x, x ′ , z) = x ≤ z ≤ x ′ ∧ ∃t(z ↭ t ∧ x ′ < t) .
The last formulas we introduce are N d which express that the infix w i • • • w j ∈ Σ △ of w ∈ Σ △ has nesting depth at least d ≥ 0. More precisely, for all d ∈ N, we introduce auxiliary formulas N d such that for all w ∈ Σ △ and i, j ∈ [1, |w|] 

satisfying w i • • • w j ∈ Σ △ , we have that (w, M △ (w)) |= N d (i, j) if, and only if, nd(w i • • • w j ) ≥ d. The case d = 0 is trivial since we can set N 0 (i, j) = ⊤.
Take w ∈ Σ △ such that nd(w) = d ′ ≥ 1. Note that then w can be factorized as w = w 1 uw 2 such that w 1 , w 2 ∈ Σ △ , u ∈ Σ call Σ △ Σ ret and nd(w) = nd(u) = d ′ . This means that u = a 1 vb 1 for a 1 ∈ Σ call , b 1 ∈ Σ ret and v ∈ Σ △ . We then apply Lemma 4.16 and Lemma 4.17 implying that u has a nesting-maximal stair factorization

u = ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x k ,y k • ext a k ,b k (u ′ ) for which there exists h ∈ [1, k] such that, setting u i = ext a i ,b i • ext x i+1 ,y i+1 • • • • • ext a k ,b k (u ′ ) for all i ∈ [1, k] and u k+1 = u ′ , we have nd(u) = nd(u h ) = d ′ and nd(ext x h+1 ,y h+1 • ext a h+1 ,b h+1 • • • • • ext a k ,b k (u ′ )) = nd(u h+1 ) = d ′ -1.
Thus, by definition of the nesting depth of a well-matched word,

u h = a h z 1 z 2 b h for z 1 , z 2 ∈ Σ △ satisfying nd(z 1 ) = nd(z 2 ) = d ′ -1.
Hence, we set

N 1 (x, y) = ∃x ′ ∃y ′ (x ≤ x ′ < y ′ ≤ y ∧ x ′ ↭ y ′ )
and for d ≥ 2 we set

N d (x, y) = ∃x ′ ∃y ′ ∃z x ≤ x ′ < z < y ′ ≤ y ∧ x ′ ↭ y ′ ∧ ¬A(x ′ + 1, y ′ -1, z)∧ N d-1 (x ′ + 1, z) ∧ N d-1 (z + 1, y ′ -1) .
Main construction. To build the FO Σ,↭ [+]-sentence η, we build FO Σ,↭ [+]-formulas

• η ↑ d,r (x, y) for all d ∈ N and all φ L (L)-reachable r ∈ R L and • η d,r (x, y) for all d ∈ N and all φ L (L)-reachable r ∈ R L that also assume access to the full matching relation M ∆ (w). They will have the following properties for all w ∈ Σ △ and all i, j ∈ [1, |w|]:

• if i is matched to j in w, then (w, M △ (w)) |= η ↑ d,r (i, j) if, and only if, nd(w i • • • w j ) ≤ d and φ L (w i • • • w j ) = r and • if w i • • • w j ∈ Σ △ , then (w, M △ (w)) |= η d,r (i, j) if, and only if, nd(w i • • • w j ) ≤ d and φ L (w i • • • w j ) = r.
Let the formula E be defined as ∀x(x ̸ = x) if ε ∈ L and ⊥ = ∃x(x ̸ = x) otherwise. Our final formula η will then be defined as

η =∀z∃t (Σ call (z) → z ↭ t) ∧ (Σ ret (z) → t ↭ z) ∧ E ∨ ∃x∃y ¬∃x ′ (x ′ < x) ∧ ¬∃y ′ (y < y ′ ) ∧ r∈φ L (L) η d L ,r (x, y) . 
It now remains to build η ↑ d,r (x, y) and η d,r (x, y) for all d ∈ N and φ L (L)-reachable r ∈ R L . The construction is by induction on d. Let r ∈ R L that is φ L (L)-reachable. We define η ↑ 0,r (x, y) = ⊥. We define η 0,r as η 0,r (x, y) = ¬N 1 (x, y) ∧ τ 0 (ν φ L ,r ) , where the translation τ 0 is inductively defined as follows:

• τ 0 (z < z ′ ) = z < z ′ ; • τ 0 (s(z)) = c∈φ -1 L (s)∩Σ int c(z) for all s ∈ φ L (Σ △ \ {ε}); • τ 0 (MOD m (z)) = ∃t (z = x → 1 = t • m) ∧ (z ̸ = x → z -x + 1 = t • m) for all m ∈ N >0 ; • τ 0 ($(z)) = ⊥; • τ 0 (ρ 1 (z 1 ) ∧ ρ 2 (z 2 )) = τ 0 (ρ 1 (z 1 )) ∧ τ 0 (ρ 1 (z 2 )); • τ 0 (¬ρ(z)) = ¬τ 0 (ρ(z)); • τ 0 (∃zρ(z, z)) = ∃z x ≤ z ≤ y ∧ τ 0 (ρ(z, z)) . Now let d > 0.
Let us first define η d,r when assuming that we have already defined η ↑ d,r . Given w ∈ Σ △ \ {ε} and i, j ∈ [1, |w|] 

such that w i • • • w j ∈ Σ △ \ {ε}, note that in case nd(w i • • • w j ) ≤ d, then one can factorize w i • • • w j as w i • • • w j = u 1 • • • u m such that u ℓ ∈ Σ int ∪ Σ call Σ △ Σ ret and nd(u ℓ ) ≤ d for all ℓ ∈ [1, m]. Note also that if φ L (w i • • • w j ) = r, as r is φ L (L)-reachable, then φ L (u ℓ ) is φ L (L)-reachable for all ℓ ∈ [1, m]. Using these observations we define η d,r (x, y) = ¬N d+1 (x, y) ∧ ∀z x ≤ z ≤ y → τ 1 ($(z)) ∨ s∈φ L (Σ △ \{ε}) φ L (L)-reachable τ 1 (s(z)) ∧ τ 1 (ν φ L ,r ) ,
where the translation τ 1 agrees with the above translation τ 0 (where, as expected, occurrences of τ 0 are replaced by τ 1 ) except for the following kinds of subformulas:

• τ 1 ($(z)) = A(x, y, z);

• τ 1 (s(z)) = ¬A(x, y, z) ∧ c∈φ -1 L (s)∩Σ int c(z) ∨ ∃t x ≤ t ≤ y ∧ t ↭ z ∧ η ↑ d,s (t, z) if s is φ L (L)-reachable, τ 1 (s(z)) = ⊥ otherwise.
It remains to define η ↑ d,r . We first construct for all φ L (L)-reachable e ∈ O L a formula χ d,e (x, x ′ , y ′ , y) such that for all w ∈ Σ △ and i, i

′ , j ′ , j ∈ [1, |w|], i ≤ i ′ < j ′ ≤ j we have that if w i • • • w i ′ w j ′ • • • w j ∈ Σ △ and i ′ is matched to j ′ in w, then given ext w i •••w i ′ ,w j ′ •••w j = ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x k ,y k • ext a k ,b k the stair factorization of ext w i •••w i ′ ,w j ′ •••w j provided by Lemma 3.6, we have (w, M △ (w)) |= χ d,e (i, i ′ , j ′ , j) if, and only if, nd(x ℓ ), nd(y ℓ ) < d for all ℓ ∈ [1, k] and ψ L (ext w i •••w i ′ ,w j ′ •••w j ) = e.
Given w, i, i ′ , j ′ , j and the associated stair factorization as above, note that if ψ L (ext 

w i •••w i ′ ,w j ′ •••w j ) = e,
σ i • • • σ i ′ ∈ E ψ L ,e , where σ q = left φ L (xm) • right φ L (ym) • ψ L (ext am,bm ) if q = p m for m ∈ [1, k] $ otherwise for all q ∈ [i, i ′ ]. Hence we set χ d,e (x, x ′ , y ′ , y) = ∀z x ≤ z ≤ x ′ → τ 2 ($(z)) ∨ f ∈ψ L O(Σ △ ) ↑ φ L (L)-reachable τ 2 (f (z)) ∧ τ 2 (ν ψ L ,e ) ,
where the translation τ 2 agrees with translation τ 0 (where, as expected, occurrences of τ 0 are replaced by τ 2 ) with the following exceptions:

• τ 2 (∃zρ(z, z)) = ∃z x ≤ z ≤ x ′ ∧ τ 2 (ρ(z, z)) • τ 2 ($(z)) = ¬U (x, x ′ , z) • τ 2 (f (z)) = ∃t U (x, x ′ , z) ∧ z ↭ t ∧ ι d,f (x, x ′ , y ′ , y, z, t) ∨ ζ d,f (x, x ′ , z, t) if f is φ L (L)-reachable ⊥ otherwise for all f ∈ ψ L O(Σ △ ) ↑ , where ι d,f (x, x ′ , y ′ , y, z, t) =¬∃z ′ U (x, x ′ , z ′ ) ∧ z ′ < z ∧ a∈Σ call ,b∈Σret,r ′ ,r ′′ ∈R L f =left r ′ •right r ′′ •ψ L (ext a,b ) a(z) ∧ b(t)∧ x < z ∧ η d-1,r ′ (x, z -1) ∨ F r ′ (x, z) ∧ t < y ∧ η d-1,r ′′ (t + 1, y) ∨ F r ′′ (y, t) with F s (x, z) = x = z if s = 1 R L ⊥ otherwise for all φ L (L)-reachable s ∈ R L and ζ d,f (x, x ′ , z, t) = ∃z ′ ∃t ′ U (x, x ′ , z ′ ) ∧ z ′ < z ∧ ¬∃z ′′ z ′ < z ′′ < z ∧ U (x, x ′ , z ′′ ) ∧ z ′ ↭ t ′ ∧ a∈Σ call ,b∈Σret,r ′ ,r ′′ ∈R L f =left r ′ •right r ′′ •ψ L (ext a,b ) a(z) ∧ b(t)∧ η d-1,r ′ (z ′ + 1, z -1) ∧ η d-1,r ′′ (t + 1, t ′ -1)
.

We now construct η ↑ d,r itself. Given w ∈ Σ △ \ {ε} and i, j ∈ [1, |w|] such that i is matched to j in w, observe first that the infix

w i • • • w j is of the form w i • • • w j = a 1 vb 1 ∈ Σ △ for some a 1 ∈ Σ call , b 1 ∈ Σ ret ,
and v ∈ Σ △ . As above, we can directly express nd(w i • • • w j ) ≤ d via the formula ¬N d+1 . Assuming this holds, towards expressing that φ L (w i • • • w j ) = r, we make use of Lemma 4.16 and Lemma 4.17: for the infix w i • • • w j there is a nesting-maximal stair factorization

w i • • • w j = ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x k ,y k • ext a k ,b k (u ′ )
such that we have 1. nd(x 1 ), nd(y 1 ), . . . , nd(x k ), nd(y k ) < d; and

2. if φ L (w i • • • w j ) = r, as r is φ L (L)-reachable, then ψ L (ext x 1 ,y 1 • ext a 1 ,b 1 • • • ••ext x k ,y k • ext a k ,b k )
and φ L (u ′ ) are φ L (L)-reachable.

By these points, we can use the formulas {χ d,e (x, x ′ , y ′ , y)

| e ∈ O L φ L (L)-reachable} to evaluate ψ L (ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x k ,y k • ext a k ,b k ) and the formulas {η 0,r ′ | r ′ ∈ R L φ L (L)-reachable} to evaluate φ L (u ′ ).
We are now ready to give the formula η ↑ d,r . We set

η ↑ d,r (x, y) = ¬N d+1 (x, y) ∧ ∃x ′ ∃y ′ x ≤ x ′ < y ′ ≤ y ∧ x ′ ↭ y ′ ∧ r ′ ∈R L ,e∈O L e(r ′ )=r χ d,e (x, x ′ , y ′ , y) ∧ η 0,r ′ (x ′ + 1, y ′ -1) .

The intermediate case

The following theorem effectively characterizes the remaining case, namely those VPLs that are weakly length-synchronous but not length-synchronous and whose syntactic morphism is quasiaperiodic: such VPLs are shown to be constant-depth equivalent to a non-empty disjoint union of intermediate VPLs. The computability of k, l ∈ N with k ̸ = l such that L k,l ≤ cd L is subject of Section 5.4.2.

Theorem 5.17. If L is weakly length-synchronous but not length-synchronous, and its syntactic morphism (φ L , ψ L ) is quasi-aperiodic, one can effectively compute vertically visibly pushdown grammars G 1 , . . . , G m generating intermediate VPLs such that L = cd m i=1 L(G i ).

Before we give the proof of the theorem we need a bit of notation. Let L ⊆ Σ △ be a VPL that is weakly length-synchronous, not length-synchronous, and whose syntactic morphism (φ L , ψ L ) is quasi-aperiodic. By Proposition 5.1 one can effectively compute its syntactic Ext-algebra (R L , O L ), (φ L , ψ L ) and φ L (L) from (a given DVPA for) L.

For all e ∈ O L recall that

U e = {(u, v) ∈ Con(Σ) | e • ψ L (ext u,v ) = e}.
For all φ L (L)-reachable e ∈ O L and some fresh internal letter # ̸ ∈ Σ let

M e = {u#v | (u, v) ∈ Con(Σ), ∆(u) > 0, e • ψ L (ext u,v ) = e}.
Note that since L is assumed to be weakly length-synchronous, by Proposition 4.5, U e is weakly length-synchronous for all φ L (L)-reachable e ∈ O L . Also note that since

M e = {L f | f ∈ O L : e • f = e} ∩ {u#v | uv ∈ Σ △ , ∆(u) > 0}
, since for all languages L f one can effectively compute Ext-algebras recognizing them by Lemma 6.4, and since one can effectively computable an Ext-algebra recognizing the language {u#v | uv ∈ Σ △ , ∆(u) > 0}, we obtain that one can effectively compute an Ext-algebra recognizing M e ⊆ Σ * #Σ * . The set

S e = {(k, l) ∈ N 2 | ∃(u, v) ∈ Σ k × Σ l : u#v ∈ M e } ⊆ N 2
>0 is hence effectively semilinear by Lemma 6.5. Note that the word relation U e is length-synchronous if, and only if, there exists some α ∈ Q >0 such that k l = α for all (k, l) ∈ S e . Lemma 6.7 implies that the latter condition is decidable. As a consequence one can effectively compute the set

Z = {e ∈ O L | e is φ L (L)-reachable and U e is not length-synchronous}.
Observe that since L is not length-synchronous by assumption, we have Z ̸ = ∅ (Proposition 4.10).

Let us introduce two fresh copies Σ = { σ | σ ∈ Σ} and Σ = {σ | σ ∈ Σ} of our alphabet Σ. Let ϑ : ( Σ ∪ Σ) * → Σ * and ϑ : (Σ ∪ Σ) * → Σ * be the (letter-to-letter and hence length-multiplying)

morphisms satisfying ϑ(σ) = ϑ( σ) = σ and ϑ(σ) = ϑ(σ) = σ for all σ ∈ Σ. Conversely, let ϑ -1 : ( Σ ∪ Σ) * → Σ * and ϑ -1 : (Σ ∪ Σ) * → Σ * be the morphisms satisfying ϑ -1 ( σ) = ϑ -1 (σ) = σ and ϑ -1 (σ) = ϑ -1 (σ) = σ for all σ ∈ Σ.

We define a new visibly pushdown alphabet

Υ = Υ call ∪ Υ int ∪ Υ ret where Υ call = Σ call , Υ int = Σ int ∪ Σ ∪ Σ ∪ {#}, and Υ ret = Σ ret .
For every word u#v ∈ M e consider the unique factorization

u#v = ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x k ,y k • ext a k ,b k • ext x k+1 ,y k+1 (#)
where k ≥ 1, x 1 , . . . , x k+1 , y 1 , . . . , y k+1 ∈ Σ △ , a 1 , . . . , a k ∈ Σ call , and b 1 , . . . , b k ∈ Σ ret . For these we define

(u#v) ‡ = ext ϑ(x 1 ),ϑ(y 1 ) • ext a 1 ,b 1 • • • • • ext ϑ(x k ),ϑ(y k ) • ext a k ,b k • ext ϑ(x k+1 ),ϑ(y k+1 ) (ε) ∈ Υ △ .
consists of the union of {S e → Ge ε} and

S f → Ge ϑ(x 1 )a ϑ(x 2 )S g ϑ(y 2 )bϑ(y 1 ) f, g ∈ O L , x 1 , x 2 , y 1 , y 2 ∈ Σ △ , |x 1 |, |x 2 |, |y 1 |, |y 2 | ≤ n, a ∈ Σ call , b ∈ Σ ret , f • ψ L (ext x 1 ax 2 ,y 2 by 1 ) = g .
As a consequence we obtain

R(G e ) = ϑ(x 1 ) . . . a k ϑ(x x+1 ), ϑ(y k+1 )b k . . . ϑ(y 1 ) x 1 , . . . , x k+1 , x 1 , . . . , y k+1 ∈ Σ △ , a 1 , . . . , a k ∈ Σ call , b 1 , . . . , b k ∈ Σ ret , e • ψ L (ext a 1 ...a k x k+1 ,y k+1 b k ...y 1 ) = e = ϑ(x 1 ) . . . a k ϑ(x x+1 ), ϑ(y k+1 )b k . . . ϑ(y 1 ) x 1 , . . . , x k+1 , x 1 , . . . , y k+1 ∈ Σ △ , a 1 , . . . , a k ∈ Σ call , b 1 , . . . , b k ∈ Σ ret , (x 1 . . . a k x k+1 , y k+1 b k . . . y 1 ) ∈ U e .
It follows that R(G e ) is weakly length-synchronous since U e is: indeed, if R(G e ) were not weakly length-synchronous and without loss of generality there were to exist (u, v),

(u ′ , v ′ ) ∈ R(G e ) with u = u ′ and |v| ̸ = |v ′ |, then both ( ϑ -1 (u), ϑ -1 (v)) and ( ϑ -1 (u ′ ), ϑ -1 (v ′ )) would be in U e by definition. Yet ϑ -1 (u) = ϑ -1 (u ′ ) and |ϑ -1 (v)| = |v| ̸ = |v ′ | = ϑ -1 (v ′ )
, so this would contradict that U e is indeed weakly length-synchronous. Analogously it follows that R(G e ) is not length-synchronous since U e is not length-synchronous by assumption.

Lemma 5.20. N e ≤ cd M e for all e ∈ Z.

Proof. Assume we are given w ∈ Υ * . To decide if w ∈ N e using an oracle to M e we do the following constant-depth computation:

1. Accept if w = ε, otherwise continue.

2. Check if w = uv for some u ∈ ( Σ ∪ Σ call ) * and some v ∈ (Σ ∪ Σ ret ) * , reject if this is not the case.

3. Check whether u can be factorized as 

u = x 1 a 1 • • • x k a k x k+1 , where k ≥ 1, x 1 , . . . , x k+1 ∈ {x ∈ Σ * | |x| ≤ n ∧ ϑ -1 (x) ∈ Σ △ }
ϑ -1 (x 1 )a 1 • • • ϑ -1 (x k-1 )a k ϑ -1 (x k+1 )#ϑ -1 (y l+1 )b l ϑ -1 (y l+1 ) • • • b 1 ϑ -1 (y 1 )
is in M e .

Lemma 5.23. L ≤ cd e∈Z M e .

Proof. By assumption L is weakly length-synchronous but not length-synchronous, and its syntactic morphism (φ L , ψ L ) is quasi-aperiodic. There is a constant d L such that all words in L have nesting depth at most d L by Proposition 4.14.

By the first point of Proposition 5.10 we may assume that the evaluation language E φ L ,r is regular and its syntactic morphism is quasi-aperiodic for all φ L (L)-reachable r ∈ R L . This implies, by [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF]Theorem VI.4.1], that for each φ L (L)-reachable r ∈ R L , there exists an FO Γφ L [<, MOD]-sentence ν φ L ,r defining E φ L ,r .

As L is not length-synchronous we cannot assume analogous sentences for the evaluation languages E ψ L ,e for all φ L (L)-reachable e ∈ O L . Indeed, Remark 5.11 provides an example of a weakly length-synchronous but non-length-synchronous VPL whose syntactic morphism is quasi-aperiodic but for which some evaluation language E ψ L ,e for e ∈ O L that is φ L (L)-reachable has a non-quasiaperiodic syntactic morphism.

However, let e ∈ O L be such that

R e = {(u, v) ∈ Con(Σ) | ψ L (ext u,v ) = e} is length-synchronous. Take any φ L (L)-reachable idempotent f ∈ O L such that there exist g, h ∈ O L satisfying e = g •f •h. There exist ext xg,yg , ext x h ,y h ∈ O(Σ △ ) such that ψ L (ext xg,yg ) = g and ψ L (ext x h ,y h ) = h. Let (u, v), (u ′ , v ′ ) ∈ Con(Σ) such that ∆(u), ∆(u ′ ) > 0 and ψ L (ext u,v ) = ψ L (ext u ′ ,v ′ ) = f . Because f is idempotent, we have that ψ L (ext u |v ′ | ,v |v ′ | ) = ψ L (ext u ′|v| ,v ′|v| ) = f , thus ψ L (ext xgu |v ′ | x h ,y h v |v ′ | yg ) = ψ L (ext xgu ′|v| x h ,y h v ′|v| yg ) = e.
Therefore, because of length-synchronicity of R e , it follows that

x g u |v ′ | x h y h v |v ′ | y g = x g u ′|v| x h y h v ′|v| y g |x g | + |v ′ | • |u| + |x h | |y h | + |v ′ | • |v| + |y g | = |x g | + |v| • |u ′ | + |x h | |y h | + |v| • |v ′ | + |y g | v ′ • |u| = |v| • u ′ |u| |v| = |u ′ | |v ′ | . So we can conclude that R f = {(u, v) ∈ Con(Σ) | ψ L (ext u,v ) = f } is length-synchronous.
Thus, by the second point of Proposition 5.10 we may assume that the evaluation language E ψ L ,e is regular and its syntactic morphism is quasi-aperiodic for all φ L (L)-reachable e ∈ O L with R e lengthsynchronous. This implies again, by [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF]Theorem VI.4.1], that for each φ L (L)-reachable e ∈ O L with R e length-synchronous, there exists an

FO Γ ψ L [<, MOD]-sentence ν ψ L ,e defining E ψ L ,e .
For proving L ≤ cd e∈Z M e we must thus make use of the oracles to e∈Z M e . All of the following predicates can be computed by a circuit family of constant depth and polynomial size with access to these oracles. More concretely, by accessing oracles to e∈Z M e , for all e ∈ Z we may assume that we have a predicate π exact e such that for all w ∈ Σ + and i, i ′ , j ′ , j ∈ [1, |w|], i ≤ i ′ < j ′ ≤ j the following holds:

w |= π exact e (i, i ′ , j ′ , j) ⇐⇒ w i • • • w i ′ w j ′ • • • w j ∈ Σ △ , e • ψ L (ext w i •••w i ′ ,w j ′ •••w j ) = e and (4) ∆(w i • • • w i ′ ) > 0
For all φ L (L)-reachable e ∈ O L that are not in Z we may assume, by Lemma 5.13, that we have the FO[+]-definable (and hence constant-depth computable) predicate π e at hand. It has the following properties: for all w ∈ Σ + and i, i ′ , j ′ , j ∈ [1, |w|], i ≤ i ′ < j ′ ≤ j:

• if w |= π e (i, i ′ , j ′ , j), then w i • • • w i ′ w j ′ • • • w j ∈ Σ △ and • if w i • • • w i ′ w j ′ • • • w j ∈ Σ △ , ∆(w i • • • w i ′ ) > 0 and e • ψ L (ext w i •••w i ′ ,w j ′ •••w j ) = e, then w |= π e (i, i ′ , j ′ , j).
We can first build an approximate matching µ relative to L. This is done totally analogously as done in Section 5.3.4 by replacing the there appearing π e for each e ∈ Z by our predicate π exact e : indeed, Remark 5.15 states that the predicates π e from of Lemma 5.13 could have been replaced by the predicate π exact e . Thus, as in the proof of Proposition 5.16 we may assume that we have full access to the matching relation M ∆ (w) of our input word w.

For verifying if a given word w ∈ Σ △ is in L we follow the same approach as the main construction in Section 5.3.5. It is however important to stress that this time we cannot assume quasi-aperiodicity of the syntactic morphisms of the evaluation languages E ψ L ,e for all φ L (L)-reachable e ∈ O L . Still, we build formulas

• η ↑ d,r (x, y) for all d ∈ [0, d L ] and all φ L (L)-reachable r ∈ R L and • η d,r (x, y) for all d ∈ [0, d L ]
and all φ L (L)-reachable r ∈ R L that will have the following properties (as η d,r and η ↑ d,r ) for all w ∈ Σ △ and all i, j ∈ [1, |w|]:

• if i is matched to j in w, then (w, M △ (w)) |= η ↑ d,r (i, j) if, and only if, nd(w i • • • w j ) ≤ d and φ L (w i • • • w j ) = r; • if w i • • • w j ∈ Σ △ , then (w, M △ (w)) |= η d,r (i, j) if, and only if, nd(w i • • • w j ) ≤ d and φ L (w i • • • w j ) = r.
It remains to define the formulas η d,r and η ↑ d,r for all d ∈ [0, d L ] and all φ L (L)-reachable r ∈ R L . For the definition of the η ↑ 0,r and the η 0,r we can simply reuse η 0,r and η ↑ 0,r as in the proof of Proposition 5.16 respectively (η 0,r will make use of our sentence ν φ L ,r ). So let us assume d > 0.

We first construct for all φ L (L)-reachable e ∈ O L a formula χ d,e (x, x ′ , y ′ , y) such that for all w ∈ Σ △ and i, i ′ , j ′ , j ∈

[1, |w|], i ≤ i ′ < j ′ ≤ j we have that if w i • • • w i ′ w j ′ • • • w j ∈ Σ △ and i ′ is matched to j ′ in w, then given ext w i •••w i ′ ,w j ′ •••w j = ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x k ,y k • ext a k ,b k the stair factorization of ext w i •••w i ′ ,w j ′ •••w j provided by Lemma 3.6, we have (w, M △ (w)) |= χ d,e (i, i ′ , j ′ , j) if, and only if, nd(x ℓ ), nd(y ℓ ) < d for all ℓ ∈ [1, k] and ψ L (ext w i •••w i ′ ,w j ′ •••w j ) = e. Given w, i, i ′ , j ′ , j
and the associated stair factorization as above, note that if ψ L (ext

w i •••w i ′ ,w j ′ •••w j ) = e, as e is φ L (L)-reachable, then φ L (x ℓ ) and φ L (y ℓ ) are φ L (L)-reachable for all ℓ ∈ [1, k]. If additionally nd(x ℓ ), nd(y ℓ ) < d for all ℓ ∈ [1, k], we can inductively make use of the formulas {η d-1,r ′ | r ′ ∈ R L φ L (L)-reachable} in order to evaluate φ L (x 1 ), φ L (y 1 ), . . . , φ L (x k ), φ L (y k ).
As expected, the problems are, firstly, that we cannot access our evaluation languages E ψ L ,e and, secondly, that we have to build a formula that may not depend on k. As in Section 5.3.4 we define the product

e ℓ,ℓ ′ = ψ L (ext x ℓ ,y ℓ • ext a ℓ ,b ℓ • • • • • ext x ℓ ′ ,y ℓ ′ • ext a ℓ ′ ,b ℓ ′ ) and e ℓ = e 1,ℓ for all ℓ, ℓ ′ ∈ [1, k]. For e ∈ O L we say an interval I = [s, t] ⊆ [1, k] is e-repetitive if s < t and e s = e t . We say [s, t] ⊆ [1, k] is repetitive if it is e-repetitive for some e ∈ O L .
By Claim 5.14 there exist indices

1 = t 0 ≤ s 1 < t 1 < s 2 < t 2 < • • • < s q < t q ≤ s q+1 = k such that [s 1 , t 1 ], . . . , [s q , t q ] are all repetitive and for D 0 = [t 0 , s 1 ], D 1 = [t 1 , s 2 ], . . . , D q = [t q , s q+1 ] we have q + q p=0 |D p | ≤ 3 |O L |. Let i = i 1 < • • • < i k and j k < • • • < j 1 =
j be the positions that correspond to the positions of the letters a 1 , . . . , a k ∈ Σ call and b k , . . . , b 1 ∈ Σ ret of the factorization of ext w

i •••w i ′ ,w j ′ •••w j in w, respectively: more precisely i ℓ = i + |x 1 • • • a ℓ-1 x ℓ | and j ℓ = x 1 a 1 • • • x k a k w i ′ +1 • • • w j ′ -1 b k y k • • • b ℓ+1 y ℓ+1 + 1 for all ℓ ∈ [1, k].
Since the non-empty interval [s p , t p ] is repetitive for all p ∈ [1, q], we have e sp = e tp and thus obtain

e sp = e tp = e sp • ψ(ext x sp+1 •••at p ,bt p •••y sp+1 ) .
Given p ∈ [1, q], if e sp ∈ Z, we can use the predicate π exact es p to check the above equality; we set θ d,es p (x, x ′ , y ′ , y) = π exact es p (x, x ′ , y ′ , y). If e sp / ∈ Z and is φ L (L)-reachable, then U es p is lengthsynchronous, so for all e ′ ∈ O L such that e sp • e ′ = e sp , we have that e ′ is φ L (L)-reachable and

R e ′ = {(u, v) ∈ Σ * × Σ * | uv ∈ Σ △ , ∆(u) > 0, ψ L (ext u,v ) = e ′ }
is length-synchronous. So to check the above equality, we can use the formula θ d,es p (x, x ′ , y ′ , y) built by taking the disjunction over all e ′ ∈ O L such that e sp • e ′ = e sp of the formulas defined inductively completely analogously as χ d,e ′ (x, x ′ , y ′ , x ′ ) in Section 5.3.5 (using the sentence ν ψ L ,e ′ defining E ψ L ,e ′ ): we simply replace every occurrence of η d-1,r by η d-1,r .

Next, for all m > 0 and all φ L (L)-reachable f ∈ O L we will construct a formula α d,m,f (x, x ′ , y ′ , y) such that for all w ∈ Σ △ and i, i

′ , j ′ , j ∈ [1, |w|], i ≤ i ′ < j ′ ≤ j we have that if w i • • • w i ′ w j ′ • • • w j ∈ Σ △ and i ′ is matched to j ′ in w, then given ext w i •••w i ′ ,w j ′ •••w j = ext x 1 ,y 1 • ext a 1 ,b 1 • • • • • ext x k ,y k • ext a k ,b k the stair factorization of ext w i •••w i ′ ,w j ′ •••w j provided by Lemma 3.6, we have (w, M △ (w)) |= α d,m,f (i, i ′ , j ′ , j) if, and only if, nd(x ℓ ), nd(y ℓ ) < d for all ℓ ∈ [1, k], ∆(w i • • • w i ′ ) = -∆(w j ′ • • • w j ) = m and ψ L (ext w i •••w i ′ ,w j ′ •••w j ) = e. For σ = (σ 1 , . . . , σ m ) ∈ Σ m call , ξ = (ξ 1 . . . , ξ m ) ∈ Σ m ret , r = (r 1 , . . . , r m ) ∈ R L m , and r † = (r † 1 , . . . , r † m ) ∈ R L m we define (σ, ξ, r, r † ) = ⃝ m g=1 left rg • right r † g • ψ L (ext σg,ξg ).
The formula α d,m,f can be expressed as follows:

α d,m,f (x, x ′ , y ′ , y) = σ∈Σ m call ,ξ∈Σ m ret r,r † ∈R L m :f = (σ,ξ,r,r † ) ∃x 1 , . . . , x m ∃y 1 , . . . , y m x ′ = x m ∧ y ′ = y m ∧ x ≤ x 1 < • • • < x m < y m < • • • < y 1 ≤ y∧ m g=1 σ g (x g ) ∧ ξ g (y g ) ∧ x g ↭ y g ∧ ∀z (x ≤ z ≤ x ′ ∧ m g=1 z ̸ = x g ) → ¬U (x, x ′ , z) ∧ x < x 1 ∧ η d-1,r 1 (x, x 1 -1) ∨ F r 1 (x, x 1 ) ∧ y 1 < y ∧ η d-1,r † 1 (y 1 + 1, y) ∨ F r † 1 (y 1 , y) ∧ m g=2 η d-1,rg (x g-1 + 1, x g -1) ∧ m g=2 η d-1,r † g (y g + 1, y g-1 -1)
Proof of Proposition 6.1. By Theorem 3.18 we first compute from our DVPA A on the visibly pushdown alphabet Σ an Ext-algebra 2 be the lexicographic order on N × N, i.e. (i, j) ≺ (k, l) if, and only if either i < k, or i = k and j < l.

(R A , O A ), a morphism (φ A , ψ A ) : (Σ △ , O(Σ △ )) → (R A , O A ), and a subset F A ⊆ R A such that L(A) = φ -1 A (F A ). For an Ext-algebra (R, O) define #(R, O) = (|R| , |O|). Let ≺⊆ (N × N)
Observe that since (R A , O A ) recognizes L, we have that the syntactic Ext-algebra (R L , O L ) of L divides (R A , O A ) by Proposition 3.17, so that #(R L , O L ) ≤ #(R A , O A ). In fact, we have that any Ext-algebra (R, O) having [1, i] 

• x • α(1 R ) = α α -1 (x)α -1 (α(1 R )) = α(α -1 (x)) = α α -1 (α(1 R ))α -1 (x) = α(1 R ) • x for all
x ∈ R; and

• for all x, y, z ∈ R, we have Clearly the identity of R is the identity of R ′ . Associativity is immediate except for products of the form r 1 • f • r 2 , r 1 • r 2 • f , and f • r 1 • r 2 , where f ∈ O and r 1 , r 2 ∈ R. In the first case we have

x • (y • z) = α α -1 (x)α -1 α α -1 (y)α -1 (z) = α α -1 (x)α -1 (y)α -1 (z) = α α -1 α α -1 (x)α -1 (y) α -1 (z) = (x • y) • z .
(r 1 • f ) • r 2 = (left r 1 • f ) • r 2 = right r 2 • (left r 1 • f ) = (right r 2 • left r 1 ) • f = (left r 1 • right r 2 ) • f = r 1 • (right r 2 • f ) = r 1 • (f • r 2 ) .
In the second case we have

(r 1 • r 2 ) • f = left r 1 r 2 • f = (left r 1 • left r 2 ) • f = left r 1 • (left r 2 • f ) = r 1 • (r 2 • f )
and in the third case we have

f • (r 1 • r 2 ) = right r 1 r 2 • f = (right r 2 • right r 1 ) • f = right r 2 • (right r 1 • f ) = (f • r 1 ) • r 2 .
We define O ′ = (R ′ ) R ′ which is clearly a monoid for composition and thus directly get that (R ′ , O ′ ) is an Ext-algebra. Applying Proposition 3. Finally assume w = xy for some x, y ∈ Σ ′△ \ {ε}. The case when x or y is neither in Σ △ nor of the form u#v with uv ∈ Σ △ is easily handled by applying the induction hypothesis and observing that ⊥ is a zero in R ′ . Two other immediate cases are when both x and y are in Σ △ and when both x and y are of the form u#v with uv ∈ Σ △ . Consider the case when x ∈ Σ △ \ {ε} and y = u#v with uv ∈ Σ △ , hence w = xu#v. The induction hypothesis yields φ ′ (x) = φ(x) ∈ R and φ ′ (y) = ψ(ext u,v ) ∈ O. We obtain

φ ′ (xy) = φ ′ (x) • φ ′ (y) = φ(x) • ψ(ext u,v ) = left φ(x) • ψ(ext u,v ) = ψ(ext xu,v )
It is clear that (φ, ψ) is F -weakly-length-synchronous if and only if for each idempotent e ∈ O that is F -reachable, there does not exist any (x 1 , x 2 ) ∈ P (K e↑ ) such that x 1 ̸ = x 2 . Therefore, to decide whether (φ, ψ) is F -weakly-length-synchronous, we go through all e ∈ O: if e is an idempotent that is F -reachable, we compute the set P (K e↑ ) and reject if it contains a vector (x 1 , x 2 ) such that x 1 ̸ = x 2 (which is easy to check given a semilinear presentation of the set), otherwise we continue. Finally, if we were able to go through all those elements without rejecting, we accept.

Proof of Lemma 6.9. Let Σ ′ be the alphabet that emerges from Σ ∪ Σ by additionally declaring # as an internal letter. We will construct an Ext-algebra (R ′ , O ′ ) and a morphism (φ ′ , ψ ′ ) from (Σ ′△ , O(Σ ′ ) △ ) to (R ′ , O ′ ) such that for some subset F ⊆ R ′ we have K e = φ ′-1 (F ).

Let R = {r | r ∈ R}. We define R ′ = R ∪ R ∪ P(O 2 ) \ ∅ ∪ {⊥, 1}, for some fresh zero ⊥ and identity 1, where multiplication between two elements in R ′ is defined as follows:

• for all r 1 , r 2 ∈ R, 

r 1 • r 2 = r 1 r 2 r 1 • r 2 = ⊥

Conclusion

In this paper we have studied the question which visibly pushdown languages lie in the complexity class AC 0 . We have introduced the notions of length-synchronicity, weak length-synchronicity and quasicounterfreeness. We have introduced intermediate VPLs: these are quasi-counterfree VPLs generated by context-free grammars G involving the production S → G ε for the start nonterminal S and whose further productions are all of the form T → G uT ′ v, where uv is well-matched, u ∈ (Σ * int Σ call Σ * int ) + , v ∈ (Σ * int Σ ret Σ * int ) + , and the set of contexts {(u, v) ∈ Con(Σ) | S ⇒ * G uSv} weakly-length synchronous but not length-synchronous. To the best of our knowledge our community is unaware of whether at all there is an intermediate VPL that is provably in AC 0 (even in ACC 0 ) or provably not in AC 0 . We conjecture that none of the intermediate VPLs are in ACC 0 nor TC 0 -hard.

Our main result states that there is an algorithm that, given a visibly pushdown language L, outputs if L surely lies in AC 0 , surely does not lie in AC 0 (by providing some m > 1 such that MOD m is constant-depth reducible to L), or outputs a disjoint finite union of intermediate VPLs that L is constant-depth equivalant to. In the latter case one can moreover compute distinct k, l ∈ N >0 such that already L k,l = L(S → ε | ac k-1 Sb 1 | ac l-1 Sb 2 ) is constant-depth reducible to L.

We conjecture that due to the particular nature of intermediate VPLs, either all of them are in AC 0 or all are not: this conjecture together with our main result indeed implies that there is an algorithm that decides if a given visibly pushdown language is in AC 0 .

As main tools we carefully revisited Ext-algebras, introduced by Czarnetzki et al. [START_REF] Czarnetzki | Visibly pushdown languages and free profinite algebras[END_REF], being closely related to forest algebras, introduced by Bojańczyk and Walukiewicz [START_REF] Bojanczyk | Forest algebras[END_REF]. For the reductions from L k,l we made use of Green's relations.

Natural questions arise. Is there any concrete intermediate VPL that is provably in ACC 0 , provably not in AC 0 , or hard for TC 0 ? Another exciting question is whether one can effectively compute those visibly pushdown languages that lie in the complexity class TC 0 . Is there is a TC 0 /NC 1 complexity dichotomy? For these questions new techniques seem to be necessary. In this context it is already interesting to mention there is an NC 1 -complete visibly pushdown language whose syntactic Ext-algebra is aperiodic. Another exciting question is to give an algebraic characterization of the visibly counter languages.

Some errata in previous work

The following section summarizes some crucial errata in [START_REF] Ludwig | Tree-Structured Problems and Parallel Computation[END_REF].

1. On page 176 line 8 it is written if a VPL has SHB there exist unique rationals ∆ ↑ m and ∆ ↓ m such that for (u, v) ∈ η -1 L (m) we unambiguously have ∆(u) |u| = ∆ ↑ m and ∆(v) |v| = ∆ ↓ m

The following language is a counter-example to this claim: consider the VPL generated by the context-free grammar S → aSb | a ′ cSb ′ | ε, where a, a ′ are call letters, b, b ′ are return letters and c is an internal letter. This rest of the section makes use of the above.

2. The previous point leads to problems, for instance the last two sentences on page 176 are problematic. By definition, it does not follow that for each m there is a unique slope γ such that for all (u, v) ∈ η -1 (m) we have γ = ∆(u) |u| . 3. The reduction in Proposition 135 has some problems. Firstly, one cannot assume that αuβvγ is necessarily in L. It can be assumed without loss of generality though. Secondly, if p > 2, then w → αϕ(w)βψ(w R )γ could possibly be mapped to an element i ∈ Z p , where i ̸ ∈ {0, 1}: in this case it is not clear if αϕ(w)βψ(w R )γ is in L or not. 12. The statement of Proposition 144 is wrong. Consider the language generated by the grammar S → aSb | a 1 cb 1 | a 2 ccb 2 which is a visibly counter language that does not have the SHB property. However, it is in AC 0 .

13. Corollary 145 is wrong due to the previous point.

14. In the proof on page 192 in line 3 one cannot assume that an idempotent m ′ ∈ V exists for which η -1 L (m ′ ) is also a witness. 15. Statement of Lemma 146 is unclear since ⇝ L is not clearly defined. [START_REF] Gurevich | A logic for constant-depth circuits[END_REF]. Lemma 147 is unclear since ⇝ L is not clearly defined. There is no proof given.

  , where |v| ̸ = |v ′ | and ∆(u) > 0, then |u|, |v|, |v ′ | > 0 and so the quotients |u| |v| and |u| |v ′ | are distinct, thus violating length-synchronicity of R.

Remark 2 . 6 .

 26 The languages generated by vertically visibly pushdown grammars are one-turn VPLs. Definition 2.7 (Intermediate VPL). A VPL L is intermediate if it is quasi-counterfree and L = L(G) for some vertically visibly pushdown grammar G for which R(G) = {(u, v) ∈ Con(Σ) | S ⇒ * G uSv} is weakly-length synchronous but not length synchronous. Thus the languages L k,l from Example 2.5 are all intermediate VPLs. Loosely speaking, they are the simplest intermediate VPLs. We have the following conjecture.

Definition 3 . 4 .

 34 Let (R, O) and (S, P ) be Ext-algebras. Then • (R, O) is a sub-Ext-algebra of (S, P ) whenever R is a submonoid of S and there exists a submonoid O ′ of P such that O = {e| R | e ∈ O ′ }, so that we may denote O by O ′ | R .

Example 3 . 10 .

 310 Consider the language L 1,2 = L(S → aSb 1 | acSb 2 | ε) from Example 2.5 over the visibly pushdown alphabet Γ, where Γ int = {c}, Γ call = {a} and Γ ret = {b 1 , b 2 }. Consider the Ext-algebra (R, O) defined as follows.

  is an Ext-algebra and the pair (φ, ψ) of functions φ : R → R/∼ and ψ : O → O ′ satisfying φ(r) = [r] ∼ for all r ∈ R and ψ(e)([r] ∼ ) = [e(r)] ∼ for all e ∈ O and r ∈ R is a surjective morphism from (R, O) to (R/∼, O ′ ).

  e} forms a subsemigroup of O whose elements are all F -reachable, by F -reachability of e. Therefore, by Lemma 4.4, f ∈P R f = U e is weakly length-synchronous. Using Lemma 4.1 and Proposition 4.5, the following proposition follows immediately. Proposition 4.6. Let n be the pumping constant from Lemma 4.1, let F ⊆ R, let e ∈ O be F -reachable, and let ext u,v be such that ∆(u) > 0 and e • ψ(ext u,v ) = e. If (φ, ψ) is F -weaklylength-synchronous, then the stair factorization

  we obtain (using that for a, b, c, d > 0 we have that a b = c d implies a b = c d = a+c b+d and, if additionally a > c, it implies a b

  and |x g |, |y g | ≤ |O| • (n + 1): indeed, by the pigeonhole principle and Lemma 4.6 (as e • f • g = e and ∆(u ′′ ) > 0), any ext x,y ∈ O(Σ △ ) such that ψ(ext x,y ) = g and max(|x|, |y|) > |O|•(n+1) must have a stair factorization according to Lemma 3.6 with an h > |O| and can thus be factorized as ext x,y = ext x ′ ,y ′ • ext x ′′ ,y ′′ • ext x ′′′ ,y ′′′ such that ψ(ext x,y ) = ψ(ext x ′ ,y ′ ) • ψ(ext x ′′′ ,y ′′′ ), where moreover (x ′′ , y ′′ ) ∈ Σ + × Σ + . Thus, ψ(ext u ′′ xg,ygv ′′ ) = ψ(ext u,v ) and therefore (u ′′ x g , y g v ′′ ) ∈ U e with ∆(u ′′ x g ) > 0. It follows α = |u ′′ xg| |ygv ′′ | = |u ′ |-|s|+|xg| |yg|+|v ′ |-|t| , or equivalently, using |u ′ | |v ′ | = α:

2 .

 2 L(G) is weakly length-synchronous if, and only if, R(G) is weakly length-synchronous. Proof. Let L = L(G) for a vertically visibly pushdown grammar G = (V, Σ, P, S). Moreover, let (φ L , ψ L ) : (O(Σ), Σ △ ) → (R L , O L ) be the syntactic morphism. For all e ∈ O L recall the set of contexts

  0 and moreover either u = u ′ and |v| ̸ = |v ′ | or v = v ′ and |u| ̸ = |u ′ |. Without loss of generality let us assume that u = u ′ and |v| ̸ = |v ′ |. As mentioned above, there exist g, h ∈ O L such that g • e • h = f ′ for some f ′ ∈ F . Fix some ext xg,yg ∈ ψ -1

  is well-defined and nd(u) = nd(u 1 ) = nd(u h ) = d, thus showing Point 1. Since d = nd(u h ) ≤ nd(u h+1 ) + 1 and nd(u h+1 ) < nd(u h ) = d it follows nd(u h+1 ) = d -1, thus showing Point 2. To prove Point 3, assume by contradiction that nd(x j ) ≥ d or nd(y j ) ≥ d for some j ∈ [1, h]. Without loss of generality assume nd(x j ) ≥ d. Since x 1 = y 1 = ε and d > 0 we must have j ∈ [2, h]. It follows

  and nd(x i+1 u i+1 y i+1 ) = nd(u i+1 ) = d -1. Hence it follows that nd(x i+1 ) = d -1 or nd(y i+1 ) = d -1. Without loss of generality let us assume nd(y i+1 ) = d -1 > n. A simple induction shows that |x| ≥ 2 nd(x) -1 ≥ nd(x) for all x ∈ Σ △ . Thus, we have |y i+1 | ≥ nd(y i+1 ) > n, contradicting Proposition 4.6.

1

  • r = 1 • r = r for all r ∈ R and where a • b = b • a = b and a • a = b • b = a; the subset {a, b} forms the additive group of Z/2Z with neutral element a.

4 .

 4 Proposition 5.16: Assume a VPL L has bounded nesting depth and • E φ L ,r is a regular language whose syntactic morphism is quasi-aperiodic for all φ L (L)reachable r ∈ R L , and• E ψ L ,e is a regular language whose syntactic morphism is quasi-aperiodic for all φ L (L)reachable e ∈ O L .Then there exists an FO Σ,↭ [+]-sentence η such that for any approximate matching M relative to L, we have w ∈ L if, and only if, (w, M (w)) |= η for all w ∈ Σ * .Let us argue that Points 2, 3 and 4 indeed imply Theorem 5.7 (Point 1 will be used in the proof of Point 2). Length-synchronicity of L implies weak length-synchronicity of L and thus bounded nesting depth of L (Proposition 4.14). Point 2 implies the other assumptions of Point 4: lengthsynchronicity of L means by definition that for each φ

  is semilinear as well since semilinear sets are closed under union. Since for all Y ⊆ O L the set {k ∈ N | ψ L (O(Σ △ ) k, * ↑ = Y } is nothing but the projection of S Y onto the first component and semilinear sets are closed under projection, Point 2 follows.

5. 3 . 3

 33 Quasi-aperiodicity of evaluation languages E φ L ,r and E ψ L ,e (Proof of Point 2)

  e and xw ω+1 y / ∈ E ψ L ,e , or xw ω y / ∈ E ψ L ,e and xw ω+1 y ∈ E ψ L ,e . Assume the first case holds. Then we have x = x ′ $ kx and y = $ ky y

mod 2 .

 2 Therefore, while e 0 ̸ = e 1 , we have e 0 • e 1 = e 1 • e 0 = e 1 and e 0 • e 0 = e 1 • e 1 = e 0 .

  as e is φ L (L)-reachable, then φ L (x ℓ ) and φ L (y ℓ ) are φ L (L)-reachable for all ℓ ∈[1, k]. If additionally nd(x ℓ ), nd(y ℓ ) < d for all ℓ ∈ [1, k], we can inductively make use of the formulas {η d-1,r ′ | r ′ ∈ R L φ L (L)-reachable} in order to evaluate φ L (x 1 ), φ L (y 1 ), . . . , φ L (x k ), φ L (y k ). Let p 1 , . . . , p k ∈ [i, i ′ ] be the positions in w i • • • w i ′ where, respectively, a 1 , . . . , a k in the above factorization of ext w i •••w i ′ ,w j ′ •••w j appear: the formula χ d,e will verify if

  for i ∈ [1, |R L |] as base set, satisfying #(R, O) ≤ #(R L , O L ) and recognizing L via a morphism (φ, ψ) : (Σ △ , O(Σ △ )) → (R, O) is a presentation of (R L , O L ) with (φ, ψ) and F presentations of, respectively, (φ L , ψ L ) and φ L (L). Indeed, since such an Ext-algebra recognizes L, by Proposition 3.17 it is divided by(R L , O L ): this implies that #(R L , O L ) ≤ #(R, O), but as also #(R, O) ≤ #(R L , O L ), we have #(R, O) = #(R L , O L ). The morphism (φ, ψ) must be surjective, otherwise, by Lemma 3.15, φ(Σ △ ), ψ(O(Σ △ ))| φ(Σ △ ) would be a sub-Ext-algebra of (R, O) recognizing L such that # φ(Σ △ ), ψ(O(Σ △ ))| φ(Σ △ ) < #(R, O) = #(R L , O L ) while (R L , O L ) divides φ(Σ △ ), ψ(O(Σ △ ))| φ(Σ △ ), which is contradictory. Therefore, by Lemma 3.16, there is a surjective morphism (α, β) : (R, O) → (R L , O L ), that must be bijective, such that φ L = α • φ, so that (R, O) is a presentation of (R L , O L ) with (φ, ψ) and F presentations of, respectively, (φ L , ψ L ) and φ L (L).Under the assumption that such an Ext-algebra exists, we compute (R L , O L ), (φ L , ψ L ) and φ L (L) by enumerating all the finitely many triples made of a finite Ext-algebra (R, O), a morphism(φ, ψ) : (Σ △ , O(Σ △ )) → (R, O) and a subset F ⊆ R such that R has [1, i] for i ∈ [1, |R A |] as base set and #(R, O) ≤ #(R A , O A ). For each of these we test whether φ -1 (F ) = φ -1 A (F A ),which is possible by the above claim and take (R, O), (φ, ψ) and F from a triple validating this test with #(R, O) minimal with respect to ≺. It remains to prove that an Ext-algebra (R, O) having [1, i] for i ∈ [1, |R L |] as base set, satisfying #(R, O) ≤ #(R L , O L ) and recognizing L exists. Take any bijection α : R L → [1, |R L |]. We define R to be the monoid with base set [1, |R L |] and operation defined by x • y = α α -1 (x)α -1 (y) for all x, y ∈ [1, |R L |]. This is a monoid because

  Define the functionβ : O L → R R by β(f ′ )(x) = α f ′ (α -1 (x)) for all f ′ ∈ O L and x ∈ R.Set O to be the monoid with base set β(O L ) and with composition as operation. This is a monoid because• β(1 O )(x) = α 1 O (α -1 (x)) = x = id R (x) for all x ∈ R; and

  [START_REF] Bojanczyk | Forest algebras[END_REF], we define the morphism (φ ′ , ψ ′ ) : (Σ ′△ , O(Σ ′ ) △ ) → (R ′ , O ′ ) as the unique one satisfying φ ′ (c) = φ(c) for all c ∈ Σ int , φ ′ (#) = id O and where for alla ∈ Σ call , b ∈ Σ ret , we have ψ ′ (ext a,b )(x) = a,b )(x) if x ∈ R ψ(ext a,b ) • x if x ∈ O ⊥ otherwise (i.e. if x = ⊥)for all x ∈ R ′ . It suffices to prove the following claim, which directly implies the desired equalityφ ′-1 (e) = {u#v | uv ∈ Σ △ s.t. ψ(ext u,v ) = e}. For all w ∈ Σ ′△ we have φ ′ (w) = if w ∈ Σ △ ψ(ext u,v ) if w = u#v for some uv ∈ Σ △ ⊥ otherwise.We prove it by structural induction on w. The cases when w = ε or w = c ∈ Σ int follow immediately from the definition of φ ′ . In casew = # = ε#ε, we have φ ′ (w) = id O = ψ(ext ε,ε ).For the inductive step first assume w = aw ′ b for some w ′ ∈ Σ ′△ . If w ′ is neither in Σ △ nor of the form u#v with uv ∈ Σ △ , then φ ′ (w ′ ) = ⊥ by induction hypothesis and thus φ′ (w) = ψ ′ (ext a,b )(φ ′ (w ′ )) = ψ ′ (ext a,b )(⊥) = ⊥ as required. If w ′ ∈ Σ △ , then φ ′ (w ′ ) = φ(w ′ ) ∈ R by induction hypothesis, and hence φ ′ (w) = ψ ′ (ext a,b )(φ ′ (w ′ )) = ψ ′ (ext a,b )(φ(w ′ )) = ψ(ext a,b )(φ(w ′ )) = φ(w) as required. If w ′ = u#v with uv ∈ Σ △ , i.e. w = au#vb, then φ ′ (w ′ ) = ψ(ext u,v ) ∈ Oby induction hypothesis. Hence, we have φ ′ (w) = ψ ′ (ext a,b )(φ ′ (w ′ )) = ψ ′ (ext a,b )(ψ(ext u,v )) = ψ(ext a,b ) • ψ(ext u,v ) = ψ(ext au,vb ).

r 1 • 2 = {(left r 1 • e 1 ,

 1211 r 2 = r 2 r 1 r 1 • r 2 = ⊥ ;• for all r ∈ R and E ∈ P(O 2 ) \ ∅,r • E = {(left r • e 1 , e 2 ) | (e 1 , e 2 ) ∈ E} E • r = ⊥ E • r = {(e 1 , left r • e 2 ) | (e 1 , e 2 ) ∈ E} r • E = ⊥ ; • for all E 1 , E 2 ∈ P(O 2 ) \ ∅, we have E 1 • E 2 = ⊥;• ⊥ acts as a zero, i.e. ⊥ • r ′ = r ′ • ⊥ = ⊥ for all r ′ ∈ R ′ ;• 1 acts as an identity, i.e.1 • r ′ = r ′ • 1 = r ′ for all r ′ ∈ R ′ .Associativity is immediate except for products of the formr 1 • r 2 • r 3 , r 1 • E • r 2 , r 1 • r 2 • E and E • r 1 • r 2 , where E ∈ P(O 2 ) \ ∅ and r 1 , r 2 , r 3 ∈ R.In the first case we have(r 1 • r 2 ) • r 3 = r 2 r 1 • r 3 = r 3 r 2 r 1 = r 1 • r 3 r 2 = r 1 • (r 2 • r 3 ) .In the second case we have(r 1 • E) • r 2 = {(left r 1 • e 1 , e 2 ) | (e 1 , e 2 ) ∈ E} • r left r 2 • e 2 ) | (e 1 , e 2 ) ∈ E} = r 1 • {(e 1 , left r 2 • e 2 ) | (e 1 , e 2 ) ∈ E} = r 1 • (E • r 2 ) .In the third case we have(r 1 • r 2 ) • E = {(left r 1 r 2 • e 1 , e 2 ) | (e 1 , e 2 ) ∈ E} = {(left r 1 • left r 2 • e 1 , e 2 ) | (e 1 , e 2 ) ∈ E} = r 1 • {(left r 2 • e 1 , e 2 ) | (e 1 , e 2 ) ∈ E} = r 1 • (r 2 • E) if x ∈ Σ △ \ {ε} and φ ′ (w) = φ(x ′ ) • {(ψ(ext u,v ), ψ(ext u ′ ,v )) | v ∈ Σ * , uv, u ′ v ∈ Σ △ } = ⊥ if x = x ′ for x ′ ∈ Σ △ \ {ε}, as required.Eventually, let us treat the case when x = u#u ′ with (u, u ′ ) ∈ P and y ∈ (Σ △ ∪Σ △ )\{ε}, hence w = u#u ′ y. The induction hypothesis yields φ′ (x) = {(ψ(ext u,v ), ψ(ext u ′ ,v )) | v ∈ Σ * , uv, u ′ v ∈ Σ △ } ∈ P(O 2 ) \ ∅ and φ ′ (y) = φ(y) ∈ R if y ∈ Σ △ \ {ε} φ(y ′ ) ∈ R if y = y ′ for y ′ ∈ Σ △ \ {ε} . We obtain φ ′ (w) = φ ′ (x) • φ ′ (y) = {(ψ(ext u,v ), ψ(ext u ′ ,v )) | v ∈ Σ * , uv, u ′ v ∈ Σ △ } • φ(y ′ ) = {(ψ(ext u,v ), left φ(y ′ ) • ψ(ext u ′ ,v )) | v ∈ Σ * , uv, u ′ v ∈ Σ △ } = {(ψ(ext u,v ), ψ(ext y ′ u ′ ,v )) | v ∈ Σ * , uv, y ′ u ′ v ∈ Σ △ } if y = y ′ for y ′ ∈ Σ △ \ {ε} and φ ′ (w) = {(ψ(ext u,v ), ψ(ext u ′ ,v )) | v ∈ Σ * , uv, u ′ v ∈ Σ △ } • φ(y) = ⊥ ifx ∈ Σ △ \ {ε}, as required, because y ′ u ′ = u ′ y ′ in the first case.

4 . 8 . 9 .

 489 Top of page 182: The quotient n ↑ v /d ↑ v ∈ Q. As mentioned in Point 1 its existence does not follow from the definition of bounded corridor. The construction of the approximate matching (proof of Proposition 126 relies on this). 5. Page 184: The relation ⇝ L is not well-defined. Proposition 126 essentially states a property that ⇝ L should satisfy, but the relation ⇝ L is defined by the formula appearing in Proposition 126. Yet, the formulas appearing already rely on the wrong observation that unique slopes exist (Point 1 from above). This has consequences for Lemma 127, Conjecture 128, Corollary 129, Conjecture 130, Conjecture 132, and Proposition 137. 6. Conjecture 128: If one were to interpret ⇝ L it as "the matching relation", then the Conjecture 128 is easily seen to be wrong. The VPL generated by the grammar S → acbc | aSb | ε does not satisfy SHB, but its matching relation is definable in FO[arb].7. Page 177, line -6. It is written If such an m exists, we also find such an element that is idempotent. The language generated by the grammar S → aSb | a 1 cb 1 | a 2 ccb 2 is a counter-example. The statement of Proposition 131 is wrong. The language {a n b n | n ≥ 0} * is a counterexample. Proposition 131: the proof has problems since the morphism is not length-multiplying. 10. Page 181: In the characterization the first bullet point is incorrect. 11. The statement of Lemma 125 is wrong. Counter-example: L = {a n b n | n ≥ 0} * . Clearly, cancel |H L | (w) = Σ * int for all w ∈ L but L does not have the WSHB.

  e uw e vv ′ e ∈ L ∧ e ′ ∈O L e̸ =e ′ u e,e ′ uw e,e ′ vv e,e ′ ∈ L ↔ u e,e ′ u e w e,e ′ v e v e,e ′ ∈ L , thus showing L e ≤ cd L.

  and a 1 , . . . , a k ∈ Σ call and whether v can be factorized asv = y l+1 b l y l • • • a 1 y 1 , where l ≥ 1, y 1 , . . . , y l+1 ∈ {y ∈ Σ * | |y| ≤ n ∧ ϑ -1 (y) ∈ Σ △ }and b 1 , . . . , b l ∈ Σ ret . Reject if it is not possible. (Observe that this is doable by a constant depth and polynomial size circuit family since we test membership in finite sets that do not depend on the input.)

4. Finally accept if, and only if, the word

In the terminology of Green's relations, to be introduced in the proof of Proposition 5.24, this is equivalent to the fact that e ≤ J f .

Building an approximate matching assuming predicates π e . Let us prove Proposition 5.12 by making use of Lemma 5.13.

Proof of Proposition 5.12. By assumption (φ L , ψ L ) is φ L (L)-length-synchronous. Thus, the set of contexts U e is length-synchronous for all φ L (L)-reachable e ∈ O L by Proposition 4.10. Moreover, there exists d L ∈ N bounding the nesting depth of the words in L Proposition 4.14. For defining our desired formula µ, we will construct FO Σ [+] formulas µ d and µ ↑ d for all 0 ≤ d ≤ d L with the following properties: for all w ∈ Σ + and for all i, j ∈ [1, |w|], we have

• if w ∈ L, w i . . . w j ∈ Σ △ , nd(w i . . . w j ) ≤ d and i is matched to j in w, then w |= µ ↑ d (i, j), and • if w ∈ L, nd(w i . . . w j ) ≤ d and w i . . . w j ∈ Σ △ , then w |= µ d (i, j).

We therefore define µ = µ d L . The construction of µ ↑ d and µ d is by induction on d. We set µ 0 (i, j) = ⊥ and µ 0 (i, j) = ∀z x ≤ z ≤ y → Σ int (z) .

Let us assume d > 0. The formula µ d is easily defined assuming µ ↑ d . We define

It remains to define µ ↑ d . Let us assume u = w i . . . w j ∈ Σ △ , that i is matched to j in w and that nd(u) = d > 0. Hence, u = a 1 vb 1 ∈ Σ △ for some a 1 ∈ Σ call , b 1 ∈ Σ ret , and v ∈ Σ △ . We then apply Lemma 4.17 which states that u has a nesting-maximal stair factoriza-

) for all ℓ ∈ [1, k] and u k+1 = u ′ , we have 1. nd(u) = nd(u h ) = d, 2. nd(u h+1 ) = d -1, and 3. nd(x 1 ), nd(y 1 ), . . . , nd(x h ), nd(y h ) < d.

We remark that x 1 = y 1 = ε. Let i = i 1 < • • • < i h and j h < • • • < j 1 = j be the positions that correspond to the positions of the letters a 1 , . . . , a h ∈ Σ call and b 1 , . . . , b h ∈ Σ ret of u in w, respectively: more precisely

The formula η ↑ d could guess the positions i = i 1 < • • • < i h and j h < • • • < j 1 = j and verify the following (recalling that x 1 = y 1 = ε):

(a) the infix w i h +1 • • • w j h -1 = ext x h+1 ,y h+1 (u h+1 ) is well-matched, and (b) the word

Point (a) can be realized via the formula µ d-1 by making use of Point 2 from above, whereas Point (b) can be realized by the following ad-hoc formula, this time making use of Point 3 and from above:

The problem with this approach is that the size of the formula depends on the size of w. For instance, for a ∈ Σ call , b ∈ Σ ret , c ∈ Σ int , and u = a n cb n we have nd(u) = nd(acb) = 1 for all n ≥ 1. Hence we would have h = n -1, so h would depend on u which is problematic. Therefore, towards expressing Point (b) by a formula whose size only depends on |O L |, let us define, for all ℓ, ℓ ′ ∈ [1, h], the product

) and e ℓ = e 1,ℓ .

We remark that all e ℓ,ℓ ′ are φ L (L)-reachable since w is assumed to be in L. For e ∈ O L we say an interval I = [s, t] ⊆ [1, h] is e-repetitive if s < t and e s = e t . We say [s, t] ⊆ [1, h] is repetitive if it is e-repetitive for some e ∈ O L .

Claim 5.14. There exist indices 1 = t 0 ≤ s 1 < t 1 < s 2 < t 2 < • • • < s q < t q ≤ s q+1 = h such that [s 1 , t 1 ], . . . , [s q , t q ] are all repetitive and for D 0 = [t 0 , s 1 ], D 1 = [t 1 , s 2 ], . . . , D q = [t q , s q+1 ] we have q + q p=0 |D p | ≤ 3|O L |.

Proof of the Claim. For all z ∈ [1, h] let λ(z) = max{ℓ ∈ [1, h] | e ℓ = e z }. Observe λ(z) ≥ z for all z ∈ [1, h] and that |λ([1, h])| ≤ |O L |. We define t 0 = 1. Let p > 0 and assume that we have already defined t p-1 . In case t p-1 = h we are done and define q = p -1 and s q+1 = h. So let us assume t p-1 < h. In case there exists z ∈ [t p-1 , h] such that z < λ(z) we define s p = min{z ∈ [t p-1 , h] | z < λ(z)} and t p = λ(s p ), otherwise (i.e. in case z = λ(z) for all z ∈ [t p-1 , h]) we are done and define q = p -1 and s q+1 = h. Immediately by definition we have

we would have e s p-1 = e t p-1 = e sp , so λ(s p ) = λ(s p-1 ) = t p-1 = s p < λ(s p ), a contradiction) and e sp = e tp for all p ∈ [1, q]. Moreover, the intervals [s 1 , t 1 ], . . . , [s q , t q ] are indeed all repetitive. Since moreover

Clearly, these sets are pairwise disjoint. Moreover, by construction, the only elements z ∈ q p=0 D p such that z < λ(z) are those in X = {s 1 , . . . , s q }, so that all elements z ∈ ( q p=0 D p ) \ X satisfy z = λ(z), i.e. are elements from λ( [1, h]). Thus, we obtain q

Since, for all p ∈ [1, q], the non-empty interval [s p , t p ] is repetitive, we have e sp = e tp and thus obtain

Hence, we have w |= π es p (i sp + 1, i tp , j tp , j sp -1) where π es p is the formula given by Lemma 5.13 (recall that e sp is φ L (L)-reachable and that U es p is length-synchronous). We can therefore use the Notably, (u#v) ‡ does not contain the letter #. Finally, for all e ∈ Z we define the language

Remark 5.18. Let be n ∈ N be the constant from Lemma 4.6 for L and let e ∈ Z. When setting F = φ L (L) and (φ, ψ) = (φ L , ψ L ), Lemma 4.6 states that the factorization 

of every word (u#v) ‡ ∈ N e \ {ε} we have ϑ(x 1 ) , . . . , ϑ(x k+1 ) , ϑ(y 1 ) , . . . , ϑ(y k+1 ) ≤ n.

Proof strategy

We are now ready to give the proof strategy for Theorem 5.17. The proof consists of the following steps. Let us argue that Theorem 5.17 follows from the above steps. By Point 1 for all e ∈ Z we have that N e is an intermediate VPL, for which moreover one can effectively compute a vertically visibly pushdown grammar G e witnessing that N e is indeed intermediate. Recalling that Z ̸ = ∅, it remains to argue that L = cd {N e | e ∈ Z}. Before we prove this let us recall some basics of constant-depth reductions. For this, let K, L 1 , . . . , L n , K 1 , . . . , K n be languages. Firstly, observe that if

Hence we obtain the following sequence of reductions showing that L = cd {N e | e ∈ Z}.

Lemma 5. [START_REF] Immerman | Languages that capture complexity classes[END_REF]. N e is an intermediate language for all e ∈ Z. Moreover, one can effectively compute a vertically visibly pushdown grammar witnessing that N e is indeed an intermediate VPL.

Proof. Let e ∈ Z. For showing that N e is an intermediate VPL we first show that N e is quasicounterfree. To this end we show that (φ Ne , ψ Ne ) of N e is quasi-aperiodic, which is equivalent by Proposition 4.18.

Assume by contradiction that (φ Ne , ψ Ne ) is not quasi-aperiodic. Then there exist k, l ∈ N such that ψ Ne (O(Υ △ ) k,l ) contains a non-trivial group, say G ⊆ O Ne . Let g 0 be the identity of G and let g 1 ∈ G be such that g 1 ̸ = g 0 . Thus, we have g i+1 1 ̸ = g i 1 for all N >0 . We claim that all g ∈ G are φ Ne (N e ) reachable: indeed, if g ∈ G were not φ Ne (N e )-reachable, then the same would hold for all g ′ ∈ G since g ′ = g ′ g -1 g, hence implying that g ′ is the (one and only) zero of O Ne , contradicting that G is non-trivial. Fix some ext u 0 ,v 0 , ext u 1 ,v 1 ∈ O(Υ △ ) k,l such that ψ Ne (ext u 0 ,v 0 ) = g 0 and ψ Ne (ext u 1 ,v 1 ) = g 1 . Note that we must have k > 0 or l > 0 for otherwise we would have u 0 = u 1 = ε and v 0 = v 1 = ε, a contradiction to g 0 ̸ = g 1 . We moreover claim that u 0 , u 1 ̸ ∈ Σ * and hence 2p . This implies that for all i ∈ N >0 , we have

Hence, as

). We show that the latter semigroup is not aperiodic by showing ψ L (ext u ′p-1

there exist ext x,y ∈ O(Υ △ ) and w ∈ Υ △ such that, without loss of generality

By definition of M e we obtain

and

Thus, we must have ψ L (ext u ′p-1

) i+1 , as required. As this is true for each i ∈ N >0 , the semigroup {ψ L (ext u ′p-1

It remains to show that one can compute a vertically visibly pushdown grammar G e with L(G e ) = N e such that R(G e ) is weakly length-synchronous but not length-synchronous. By Remark 5.18 each non-empty word in N e is of the form

for some k ≥ 1 and some words x 1 , . . . , x k+1 , y 1 , . . . , y k+1 ∈ Σ △ all of which have length at most n such that moreover e•ψ L (ext u,v ) = e. We construct the grammar G e = (V, Υ, P, S e ) as follows. The set of nonterminals is 

To decide if w ∈ M e using an oracle to N e we do the following constant-depth computation:

1. Check if w = u#v for some u ∈ Σ + and some v ∈ Σ + , reject otherwise.

2. For all return letters b ∈ Σ ret and all positions j within u at which b appears, check whether there exists a position i within u such that 1 ≤ j -i ≤ n -1 and the infix w i • • • w j is in Σ △ . (As above, this is doable by a constant depth and polynomial size circuit family since we check well-matchedness of at most a fixed number of words that does not depend on the input.) Reject if it is not the case.

3. For all call letters a ∈ Σ call and all positions i within v at which a appears, check whether there exists a position j within v such that 1 ≤ j -i ≤ n -1 and the infix

Reject if it is not the case.

4.

For each position i within u, compute P call (i) where P call is the unary predicate defined by w |= P call (i) if, and only if, i is a position within u, w i ∈ Σ call , and there does not exist any position j within u such that 1 ≤ j -i ≤ n -1 and the infix

5. For each position j within v, compute P ret (j) where P ret is the unary predicate defined by w |= P ret (j) if, and only if, j is a position within v, w j ∈ Σ ret , and there does not exist any position i within v such that 1 ≤ j -i ≤ n -1 and the infix

Accept if, and only if, the word u

Proof. Note that the following equivalence holds:

) must also be φ L (L)-reachable. Assume we are given w ∈ (Σ∪{#}) * . To decide if w ∈ M e we do the following constant-depth computation using oracles to

Finally, accept if, and only if for all φ

Hence, in combination with the second check, the third check is successful if, and only if ∆(u) > 0.

with

We are now ready to define the formula χ d,e :

The inductive definition of η ↑ d,r is completely analogous to the definition of η d,r in Section 5.3.5: we simply replace every occurrence of η d-1,r by η d-1,r and every occurrence of χ d,e by χ d,e

The inductive definition of η d,r is completely analogous to the definition of η d,r in Section 5.3.5: we access the horizontal evaluation languages E φ L ,r for all φ L (L)-reachable r ∈ R L by making use of the sentence ν φ,r and the already defined η ↑ d,r .

Computation of k, l

The following proposition implies the computability of k, l ∈ N such that L k,l ≤ cd L already when VPL L is weakly length-synchronous but not length-synchronous.

Proposition 5.24. If a VPL L is weakly length-synchronous but not length-synchronous, one can effectively compute k, l ∈ N >0 with k ̸ = l such that L k,l ≤ cd L .

Proof. Let L ⊆ Σ △ be a weakly length-synchronous VPL that is not length-synchronous. According to Point 2 (b) of Proposition 5.1 one can effectively compute a quadruple

• ∆(u), ∆(u ′ ) > 0, and

We can explicitly compute such ext u,v and ext u ′ ,v ′ by just doing an exhaustive search. This enables us to assume without loss of generality while maintaining effective computability that 
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• We write x ≤ J y whenever there are elements e, f of O L such that x = e • y • f . We write

x J y if x ≤ J y and y ≤ J x. We finally write x < J y if x ≤ J y and x ̸ J y.

• We write x ≤ R y whenever there is an element e of O L such that x = y • e. We write x R y if x ≤ R y and y ≤ R x.

• We write x ≤ L y whenever there is an element e of O L such that x = e • y. We write x L y if x ≤ L y and y ≤ L x.

• We write x H y if x R y and x L y.

Observe that because ∆(u) = ∆(u ′ ), we have that uv ′ ∈ Σ △ and u ′ v ∈ Σ △ , so that we can consider the elements ext uuu,vv

We claim that we actually have

By a classical property of Green's relations (see [START_REF] Pin | Varieties of Formal Languages[END_REF]Chapter 3

By another classical result on Green's relations [26, Chapter 3, Corollary 1.7], as x is an idempotent, its H-class is a group, hence for ω ∈ N >0 the idempotent power of O L , we would have (x • y • x) ω = x ω = x (as the only idempotent element in a group is the identity). This would finally entail that ψ L (ext

We distinguish three cases. In each of these we prove that there exist k, l ∈ N >0 , k ̸ = l such that L k,l ≤ cd L ψ L (extu,v) , so that since L ψ L (extu,v) ≤ cd L (by Lemma 5.3) and by transitivity of ≤ cd we have L k,l ≤ cd L.

Case |v| = |v ′ |. In that case, we necessarily have |u| ̸ = |u ′ |. Then, we can exploit the fact that matching u 3 with vv ′ v or uu ′ u with v 3 makes us fall down to a smaller J-class to reduce L 3|u|,2|u|+|u ′ | to L ψ L (extu,v) . The constant-depth reduction works as follows on input w ∈ Σ * :

2. build x ′ by sending ac 3|u|-1 to u 3 , ac 2|u|+|u ′ |-1 to uu ′ u and y ′ by sending b 1 to v 3 and b 2 to vv ′ v;

This forms a valid reduction. Indeed, take a word w = xy with x ∈ (ac 3|u|-1 + ac 2|u|+|u ′ |-1 ) n for n ∈ N and y ∈ (b 1 +b 2 ) m for m ∈ N and consider x ′ #y ′ produced by the reduction with x ′ ∈ (u

) . Our algorithm therefore outputs the pair (k, l) = (3k 0 , 2k 0 + k ′ 0 ).

Case |u| = |u ′ |. This case is symmetric to the previous case. Our algorithm outputs the pair (k, l) = (2l 0 + l ′ 0 , 3l 0 ).

Then, we can again exploit the fact that matching u 3 with vv ′ v or uu ′ u with v 3 makes us fall down to a smaller J-class to reduce

The constant-depth reduction works as follows on input w ∈ Σ * : 
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If we assume that (z i , t i ) = (ac A•B ′ -1 , b 2 ), then we prove in the same way that either x ′ y ′ is not well-matched or it is well-matched and ψ L (ext x ′ ,y ′ ) < J ψ L (ext u,v ).

• It holds that n < m and z

because m > n and ∆(v) < 0 as well as ∆(v ′ ) < 0. Therefore, x ′ y ′ is not well-matched.

• It holds that n > m and

Symmetrically to the previous case, we can also show that then, x ′ y ′ is not well-matched.

Hence, our algorithm outputs the pair

Proof of Corollary 2.11

Let A = (Q, Σ, q 0 , F, δ 0 , . . . , δ m ) be a m-VCA and let L = L(A). One easily computes from A ′ a DVPA such that L(A ′ ) = L. Details of this standard translation are omitted. It will be sufficient to prove that L is weakly length-synchronous if, and only if, L is length-synchronous: indeed, one can simply perform the case distinction of Section 5.1 and observe that, under the assumption that weak length-synchronicity and length synchronicity coincide, the algorithm for Theorem 2.9 will either output that L is in AC 0 or some m ≥ 2 such that MOD m ≤ cd L.

It thus suffices to prove that if L is not length-synchronous, then L is not weakly lengthsynchronous. Let (R L , O L ) be the syntactic Ext-algebra of L along with with its syntactic morphism

. The behavior of the m-VCA can be described as follows. To each ext u,v ∈ O(Σ △ ) we assign the triple ζ(ext u,v ) = (j, (f i ) i∈[0,m] , (g i ) i∈[0,m] ) ∈ M, where

• f i (q) = q ′ where q ′ ∈ Q is the unique state such that q(i) u -→ A q ′ (i + j) for all q ∈ Q and all i ∈ [0, m], and • g i (q) = q ′ , where q ′ ∈ Q is the unique state such that q ′ (i + j) v -→ A q ′ (i) for all q ∈ Q and all i ∈ [0, m].

Over M we define the product

). We claim ⊙ M is associative. For this, let us fix

Since j, j ′ , j ′′ , m ≥ 0 we have min( j +j ′′ , m) = min(min(j +j ′ , m)+j ′′ , m) = min(j +j ′ +j ′′ , m) = min(j + min(j ′ + j ′′ , m), m)) = min(j + j, m) associativity holds on the first component. For each

the latter of which is the i th component of the third component of m ⊙ M m ′′ , as required. Clearly (0, (id

) is the identity of M with respect to ⊙ M , hence (M, ⊙ M ) is a monoid. The following points can easily be verified.

The function

For all ext

Now assume that L is not length-synchronous. We will prove that L is not length-synchronous.

By assumption there exist a φ L (L)-reachable idempotent e ∈ O L and

Without loss of generality we may assume ∆(u) = ∆(u ′ ). Let ω denote the idempotent power of M. Consider the elements

By definition we have ζ(ext x,y ) = ζ(ext x ′ ,y ′ ), and since We will prove the different statements appearing in Proposition 5.1 in the following subsections.

Computability of the syntactic Ext-algebra. This paragraph will be devoted to proving Point 1 of Proposition 5.1, rephrased in the following proposition. 

For the following claim we avoid the tedious standard algebraic constructions on Ext-algebras to show decidability of the equivalence problem, since the latter decidability has already been established in [START_REF] Alur | Visibly pushdown languages[END_REF]. Claim 6.2. There is an algorithm that decides, given two morphisms into finite Ext-algebras (φ 1 , ψ 1 ) :

for Σ a visibly pushdown alphabet and subsets

Proof of the Claim. The proof of Theorem 3.18 shows that one can effectively compute DVPAs A 1 and A 2 such that L(A 1 ) = φ -1 1 (F 1 ) and L(A 2 ) = φ -1 2 (F 2 ). By [START_REF] Alur | Visibly pushdown languages[END_REF] one can effectively decide if

Then (R, O) is an Ext-algebra, because for all r ′ ∈ R L , we have

for all x ∈ R and β(right r ′ )(x) = right α(r ′ ) (x) for all x ∈ R, so that left r , right r ∈ O for all r ∈ R by surjectivity of α.

We now define (φ, ψ)

)) for all a ∈ Σ call , b ∈ Σ ret given by Proposition 3.7. It is easy to show that then, φ(w) = α(φ L (w)) for all w ∈ Σ △ by structural induction on w. Hence, by injectivity of α, we have

Decidability of quasi-aperiodicity. This paragraph is devoted to proving Point 2 (a) of Proposition 5.1, rephrased in the following proposition. Proposition 6.3. Given a morphism (φ, ψ) : (Σ △ , O(Σ △ )) → (R, O) for Σ a visibly pushdown alphabet and (R, O) a finite Ext-algebra, it is decidable if (φ, ψ) is quasi-aperiodic. If (φ, ψ) is not quasi-aperiodic, one can effectively compute k, l ∈ N such that ψ(O(Σ △ ) k,l ) is not aperiodic.

For the rest of this paragraph, let us fix a morphism (φ, ψ) : (Σ △ , O(Σ △ )) → (R, O), where Σ is a visibly pushdown alphabet and (R, O) is some finite Ext-algebra that is the input to our problem. We first have the following lemma. Lemma 6.4. For all e ∈ O one can effectively compute a finite Ext-algebra recognizing L e = {u#v | uv ∈ Σ △ : ψ(ext u,v ) = e}, where # is a fresh internal letter that does not appear in Σ, along with an associated morphism and subset.

Proof. Let Σ ′ be the alphabet that emerges from Σ by additionally declaring # as an internal letter. We will construct an Ext-algebra (R ′ , O ′ ) and a morphism

We define R ′ = R ∪ O ∪ {⊥}, for some fresh zero ⊥, where multiplication between two elements in R ′ is defined as follows:

• multiplication between two elements in R is inherited from the monoid R;

as required. Finally, let us treat the case when x = u#v with uv ∈ Σ △ and y ∈ Σ △ \ {ε}, i.e. w = u#vy. The induction hypothesis yields φ

as required.

The next goal will be to prove that the set of pairs of word lengths (|u|, |v|) of words u#v ∈ L e is effectively semilinear for each e ∈ O.

A (realtime) pushdown automaton (PDA for short) is a tuple A = (Q, Σ, Γ, Ω, q 0 , F, ⊥), where Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite stack alphabet, q 0 ∈ Q is an initial state,

Lemma 6.5. Let A be a DVPA that accepts a language over a visibly pushdown alphabet

is effectively semilinear.

Proof. We first compute a PDA A ′ accepting the same language as A, i.e. L(A ′ ) = L(A). Let us assume without loss of generality that 0, 1 ̸ ∈ Σ ′ . We claim that from A ′ = (Q, Σ ′ , Γ, Ω, q 0 , F, ⊥) one can compute a PDA A ′′ such that

Indeed, the PDA A ′′ can simply be computed as follows: we set

where Ω ′ is the union of {(⟨p, i⟩, i, X, ⟨q, i⟩, α) | i ∈ {0, 1}, ∃c ∈ Σ ′ \ {#} : (p, c, X, q, α) ∈ Ω} and {(⟨p, 0⟩, #, X, ⟨q, 1⟩, α) | (p, #, X, q, α) ∈ Ω}. Finally, we apply Parikh's Theorem, cf. [14, Section 3], which implies that the set

We are now ready to prove Proposition 6.3.

Proof of Proposition 6.3. Let e ∈ O. By Lemma 6.4 we first compute a finite Ext-algebra recoginizing L e , along with an associated morphism and subset. From the latter we can compute (by Theorem 3.18) a DVPA A e accepting L e . We then use Lemma 6.5 to conclude that the set

is effectively semilinear, and this holds for all e ∈ O. We make use of the folklore fact that semilinear sets are effectively closed under Boolean operations, cf. [START_REF] Chistikov | The taming of the semi-linear set[END_REF] for a recent study. To decide whether (φ, ψ) is quasi-aperiodic, we go through all possible subsets U ⊆ O: if it is a subsemigroup of O that is a non-trivial group, we compute the set e∈U P (L e ) and reject if it is non-empty (which is easy to check given a semilinear presentation of the set), otherwise we continue. If we were able to go through all those subsets without rejecting, we accept.

Thus, if (φ, ψ) is not quasi-aperiodic we can find a subset U ⊆ O that contains a non-trivial group and output a pair (k, l) ∈ e∈U P (L e ); it witnesses that ψ(O(Σ △ ) k,l ) is not aperiodic.

Decidability of length-synchronicity. This paragraph is devoted to proving Point 2 (b) of Proposition 5.1, rephrased in the following proposition. Proposition 6.6. Given a morphism (φ, ψ) : (Σ △ , O(Σ △ )) → (R, O), for Σ a visibly pushdown alphabet and (R, O) a finite Ext-algebra, and some

>0 such that that there exist uv, u ′ v ′ ∈ Σ △ and some F -reachable idempotent e ∈ O such that

Before proving the proposition we need a technical lemma characterizing when a two-dimensional semilinear set contains only vectors with the same slope. We say two vectors ⃗ x, ⃗ y ∈ N 2 are collinear if ⃗ y = α • ⃗ x for some α ∈ Q >0 Lemma 6.7. Let S = i∈I ⃗ x i,0 + t i j=1 N⃗ x i,j ⊆ N 2 >0 be a non-empty semilinear set, where ⃗ x i,j ̸ = (0, 0) for all i ∈ I and all j ∈ [0,

Proof. First assume that ⃗ x i,j and ⃗ x i ′ ,j ′ are collinear for all i, i ′ ∈ I, j ∈ [0, t i ], and

,t i ′ for some i, i ′ ∈ I and some n 1 , . . . , n t i , n ′ 1 , . . . , n ′ t i ′ ∈ N. But due to pairwise collinearity there exist α, α ′ ∈ Q >0 such that (k, l) = α⃗ x i,0 and (k ′ , l ′ ) = α ′ ⃗ x i,0 , thus implying k l = k ′ l ′ . Conversely assume that there exist two vectors (k, l) = ⃗ x i,j and (k ′ , l ′ ) = ⃗ x i ′ ,j ′ that are not collinear. In case this is possible when i ̸ = i ′ and j = j ′ = 0 we are done, since then (k, l), (k ′ , l ′ ) ∈ S and thus k l ̸ = k ′ l ′ . Otherwise ⃗ x i,0 and ⃗ x i ′ ,0 are collinear for all i, i ′ ∈ I, so there must exist i ∈ I and j ∈ [0, t i ] such that ⃗ x i,0 and ⃗ x i,j are not collinear. Then ⃗ x i,0 and ⃗ x i,0 + ⃗ x i,j are in S but also not collinear: indeed, if α⃗ x i,0 = ⃗ x i,0 + ⃗ x i,j for some α ∈ Q >0 , then ⃗ x i,j = (α -1)⃗ x i,0 with α -1 > 0 due to ⃗ x i,0 , ⃗ x i,j ∈ N 2 \ {(0, 0)}, a contradiction. Hence there exist (k, l), (k ′ , l ′ ) ∈ S that are not collinear, and therefore

Proof of Proposition 6.6. Let us fix the Ext-algebra morphism (φ, ψ)

where (R, O) is a finite Ext-algebra and where F ⊆ R.

Recall that over the alphabet Σ ′ , obtained from Σ by declaring a fresh letter # as internal, the language

is given for all e ∈ O. The language {u#v | uv ∈ Σ △ : ∆(u) > 0} is a clearly a VPL. Thus, for all e ∈ O, we have that the set

is effectively semilinear: indeed, given e ∈ O, using Lemma 6.4 and Theorem 3.18, we can as in the proof of Point 2 (a) of Proposition 5.1 compute a DVPA A e accepting L e ; we then compute a DVPA A e↑ accepting L e↑ = L(A e ) ∩ L(A) by using the effective construction given in [START_REF] Alur | Visibly pushdown languages[END_REF] and finally use Lemma 6.5 to conclude.

Observe that (φ, ψ) is F -length-synchronous if, and only if, for each F -reachable idempotent e ∈ O for which P (L e↑ ) is non-empty we have |{ k l | (k, l) ∈ P (L e↑ )}| = 1. The latter condition is easily seen to be decidable by the characterization provided in Lemma 6.7. Hence, for deciding if (φ, ψ) is length-synchronous our algorithm verifies if for all F -reachable e ∈ O for which P (L e↑ ) is non-empty we have |{ k l | (k, l) ∈ P (L e↑ )}| = 1. On the other hand, if this verification fails, i.e. in case (φ, ψ) is not F -length-synchronous, our algorithm outputs, again using the characterization of Lemma 6.7, a quadruple

Decidability of weak length-synchronicity. This paragraph is devoted to proving Point 2 (c) of Proposition 5.1, rephrased in the following proposition. Define the new visibly pushdown alphabet Σ by

We have the following lemma, that we prove later on. Lemma 6.9. For all e ∈ O one can effectively compute a finite Ext-algebra recognizing the language of well-matched words

where # is a fresh internal letter that does not appear in Σ ∪ Σ, along with an associated morphism and subset.

Over the alphabet Σ ′ obtained from Σ ∪ Σ by declaring the fresh letter # as internal, we define

for all e ∈ O. As in the proof of Point (2) of the second statement of Proposition 5.1, we can prove that the language {u#u ′ | uu ′ ∈ (Σ ∪ Σ) △ : ∆(u) > 0} is a VPL and thus conclude that for all e ∈ O, the set

is effectively semilinear.

and in the fourth case we have

We define O ′ = (R ′ ) R ′ which is clearly a monoid for composition and thus directly get that (R ′ , O ′ ) is a finite Ext-algebra. Applying Proposition 3.7, we define the morphism For all w ∈ Σ ′△ we have

We prove it by structural induction on w. 

if α = a ∈ Σ call and β = a ′ ∈ Σ ret (where the last inclusion from right to left follows by considering the unique stair factorizations given by Lemma 3.6 for the elements of each pair) and φ ′ (w) = ⊥ otherwise, as required.

Finally assume w = xy for some x, y ∈ Σ ′△ \ {ε}. The case when x or y is neither in Σ △ ∪ Σ △ nor of the form u#u ′ with (u, u ′ ) ∈ P is easily handled by applying the induction hypothesis and observing that ⊥ is a zero in R ′ . Four other immediate cases are when both x and y are in Σ △ , when x is in Σ △ and y in Σ △ , when x is in Σ △ and y in Σ △ and when both x and y are of the form u#u ′ with (u, u ′ ) ∈ P . For the case when both x and y are in Σ △ , we have that x = x ′ and y = y ′ for x ′ , y ′ ∈ Σ △ , so that φ ′ (x) = φ(x ′ ) ∈ R and φ ′ (y) = φ(y ′ ) ∈ R by induction hypothesis, hence

as required, because xy = x ′ y ′ = y ′ x ′ . Consider the case when x ∈ (Σ △ ∪ Σ △ ) \ {ε} and y = u#u ′ with (u, u ′ ) ∈ P , hence w = xu#u ′ . The induction hypothesis yields