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Abstract

We concern ourselves with the question which visibly pushdown languages are in the com-
plexity class AC’. We provide a conjectural characterization that isolates a stubborn subclass
of particular one-turn visibly pushdown languages (that we call intermediate VPLs) all of which
our community seems to lack tools for determining containment in AC®. Our main result states
that there is an algorithm that, given a visibly pushdown automaton, correctly outputs if its lan-
guage is in AC’, some m > 2 such that MOD,,, <.q L (implying that L is not in AC°), or a finite
disjoint union of intermediate languages L is constant-depth equivalent to. In the latter case one
can moreover effectively compute k,l € N with k # [ such that the visibly pushdown language
is hard for the more concrete intermediate language L(S — ¢ | ac*~1Sb; | ac!=1Sby). For our
proofs we revisit so-called Ext-algebras, introduced by Czarnetzki, Krebs and Lange [11], which
in turn are closely related to forest algebras introduced by Bojariczyk and Walukiewicz [7], and
Green'’s relations.
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1 Introduction

It is well-known that the regular word languages are characterized by the languages recognizable
by finite monoids. When restricting the finite monoids to be aperiodic Schiitzenberger proved that
one obtains precisely the star-free regular languages [29]. In terms of logic, these correspond to the
languages definable in first-order logic FO[<] by a result of McNaughton and Papert [30]. The more
general class of regular languages expressible in FO[arb], i.e. first-order logic with arbitrary numerical
predicates, coincides with the regular languages in ACY [17, 20]. The algebraic counterpart of these
are the languages whose syntactic morphism is quasi-aperiodic [5]. The regular languages are known
to be in NC!, hence the previous algebraic characterization of ACY yields that it is decidable if a
regular language is in ACY.

Generalizing regular languages, input-driven languages were introduced by Mehlhorn [26]. They
are described by pushdown automata whose input alphabet is partitioned into letters that are either
of type call, internal, or return. Rediscovered by Alur and Madhusudan in 2004 [2] under the name
of wisibly pushdown languages (VPL), it was shown that they enjoy many of the desirable effective
closure properties of the regular languages. For instance, the visibly pushdown languages form an
effective Boolean algebra. Algebraically VPLs were characterized by Alur et al. [I] by finite congru-
ences on monoids. Extending upon these, Czarnetzki et al. introduced so-called Ext-algebras [11];
these involve pairs of monoids (R,0) where O is a submonoid of R?. Being tailored towards
recognizing word languages, Ext-algebras are closely connected to forest algebras, introduced by
Bojanczyk and Walukiewicz [7]. While context-free languages are generally in LOGCFL = SAC!,
the visibly pushdown languages, as the regular languages, are known to be in NC! [12]. By a famous
result of Barrington [4] there already exist regular languages that are NC!'-hard. In this paper we



concern ourselves with the question which visibly pushdown languages are in AC® and how one can
effectively decide this question.

Related work. Visibly pushdown languages (VPLs) were introduced by Alur and Madhusudan [2]
via deterministic visibly pushdown automata (DVPA for short). Inspired by forest algebras [7] the
paper [1I] introduces Ext-algebras. Unfortunately, the definition of Ext-algebra morphism in [11]
is incorrect in that it provably does not lead to freeness.

The regular languages that are in AC? were effectively characterized by Barrington et al. [B]: a
regular language is in ACY if, and only if, its syntactic morphism is quasi-aperiodic. By an automata-
theoretic approach, Krebs et al. [23] effectively characterized the visibly counter languages that are
in AC’. These are particular VPLs that are accepted by visibly pushdown automata that use only
one stack symbol. In his PhD thesis [25] Ludwig already considers the question which VPLs are in
AC’. Yet, his conjectural characterization contains several serious flaws — a detailled discussion of
these shortcomings can be found in Section

Our contribution. We reintroduce Ext-algebras, fix the notion of Ext-algebra morphisms and
define the languages they recognize. We rigorously prove classical results like freeness and closure
under division. We prove that a language of well-matched words is a VPL if, and only if, it is
recognizable by a finite Ext-algebra; we also reintroduce the syntactic Ext-algebra of languages of
well-matched words. While these results improve upon the constructions of [I1], we use Ext-algebras
as a technical tool for studying the complexity of visibly pushdown languages.

Fix a visibly pushdown alphabet ¥, i.e. ¥ is partitioned into Y.,y (call letters), ¥y (internal
letters), and ¥,e (return letters). Denoting A(u) as the difference between call and return letters in
u, we introduce the central notions of length-synchronicity and weak length-synchronicity: a binary
relation R C ¥* x X* is length-synchronous if |u|/|v| = |u/|/|v'| for all (u,v), (u/,v") € R with
A(u), A(u') > 0 and weakly length-synchronous if v = u' implies |v| = |v/| and v = v’ implies
lu| = |[u/| for all (u,v),(v,v") € R with A(u),A(v') > 0. Every word w = (z1,y1) " (n,Yn)
over the synchronization alphabet Y, = (Xcan X Xret) U {(g,¢), (¢, €) | ¢ € Zint} naturally induces
the well-matched “one-turn” word w™ = x1 -+ TpYn - - - y1 over X and induces the underlying pair
R(w) = (1 Xn,Yn---y1) € L* x £*. We introduce the class of intermediate languages, which
are one-turn visibly pushdown languages of the form L™, where L C ¥f is a star-closed (i.e.
L = L*) regular language whose syntactic morphism contains no non-trivial group when applied to
words whose underlying pairs are in ©¥ x X! for all k,1 € N and moreover R(L) is weakly length-
synchronous but not length-synchronous. As far as we know our community is lacking tools to show
whether at all there is some intermediate language that is provably in AC? or provably not in AC®
— the somewhat simplest example of such an intermediate language is the language generated by
the grammar S — ¢ | aSby | acSby. Similar remarks apply to ACCP.

Our main result states that there is an algorithm that, given a DVPA A correctly outputs
L(A) € AC°, some m > 2 such that MOD,,, is constant-depth reducible to L, or a non-empty disjoint
finite union of intermediate languages that L(A) is constant-depth equivalent to and moreover
outputs k,l € Nyo with £ # [ such that L;; <cq L(A), where Ly, is a concrete intermediate
language that is generated by the context-free grammar S — ¢ | ac*~1Sb; | ac'=1Sbs.

For our main result we extensively study Ext-algebras and their syntactic morphism and make
use of Green’s relations.

Organization. Our paper is organized as follows. We introduce notation and give an overview of
our main result in Section 2] In Section [3] we first recall general algebraic concepts and then revisit
Ext-algebras and their correspondence to visibly pushdown languages. Section [4] introduces central
notions like length-synchronicity and weak length-synchronicity for Ext-algebra morphisms and
visibly pushdown languages. The notion of quasi-aperiodicity and the proof of our main result are



content of Section[5} In Section [6] we concern ourselves with the computability of the syntactic Ext-
algebra as well as decidability of quasi-aperiodicity and (weak) length-synchronicity. We conclude
in Section [7

2 Preliminaries

By N we denote the non-negative integers and by Ns¢ the positive integers. For integers ¢,j € Z
we denote by [i, 7] the set {,...,7}. For any function f: X — Y and any subset Z C X we denote
by f|, : Z — Y the restriction of f to domain Z, i.e. f|,(z) = f(z) for all z € Z.

For all words w = w;---wy, where w; € ¥ for all i« € [1,n], and for subsets I' C 3, let
|lwlp = [{i € [1,|w]|] | w; € T'}| denote the number of occurrences of letters in I'. For all a € I' we
write |w|, to denote [w]g,.

A deterministic finite automaton (DFA for short) is a tuple A = (Q, %, 0, qo, F'), where @ is a
finite set of states, X is a finite alphabet, § : Q x ¥ — @ is the transition function, qy € @ is the
initial state, and F' C @ is the set of final states. By L(A) C ¥* we denote the language of A.
The function § is naturally extended to a function §* from @ x ¥* to Q). A language L is regular
if L = L(A) for some DFA A. We refer to [I8] for further details on formal language theory. A
language L is star-closed if L = L*. We define the languages

EQUALITY ={w € {0,1}" | |lw|o = |w)1} and MOD,, ={w € {0,1}* | m divides |w|;}

for each m > 2.
A wisibly pushdown alphabet is a finite alphabet ¥ = Y .1 U Xjnt U Xper, where the alphabets
Ycall, Zint, and X, are pairwise disjoint.

Definition 2.1. The set of well-matched words over a visibly pushdown alphabet ¥, denoted by
Y2 is defined as follows:

e ccY? andce Xt for all ¢ € 3y,
o awbe X2 forallw e X2, a € Segy and b € Xy, and
o uwv € X2 for all u,v € 24\ {e}.

A well-matched word w € B2 is one-turn if w € (X \ Tiet)* (X \ Sean)*. A language L C ¥4
is one-turn if it contains only one-turn words. Let 3 be a visibly pushdown alphabet. We define
A: X" — Z to be the height monoid morphism such that A(w) = |wl|y,_ — [w]y, , for all w € ¥*.

In the following we introduce deterministic visibly pushdown automata, remarking that nonde-
terministic visibly pushdown automata are determinizable [2].

Definition 2.2. A deterministic visibly pushdown automaton (DVPA) is a tuple A = (Q,%,T,4,
qo0, F, L), where

e () is a finite set of states,

e 3 is a vistbly pushdown alphabet, the input alphabet,

T" is a finite alphabet, the stack alphabet,

qo € Q 1is the initial state,

F C Q s the set of final states,



e | €T is the bottom-of-stack symbol, and

¢ 0:QxYxT = Qx ({efUT U\ {L}T) is the transition function such that for all
qgEQ,aeX,ael:

— if a € Xequ, then 6(q,a,a) € Q x (I'\ {L})a,
— if a € Xpet, then 6(q,a,a) € Q X {e}, and
— if a € Ljpnt, then §(q,a,a) € Q x {a}.

We define the extended transition function 5 Q X X* xI'™ — @ x I'" inductively as

~

e 0(q,e,0) = (q,0) for all g € Q and o € T,

~

e (q,w,e) = (q,¢) forall g € Q and w € X7, and

-~ ~

e 0(q,aw, o) = §(p, w,y0o), where 6(q,a,a) = (p,7y) forall g € Q, a € X, w € ¥*, a € I and
oel™.

~

The language accepted by A is the language L(A) = {w € ¥* | d(qo,w, L) € F x {L}}. We call
such a language a visibly pushdown language (VPL). We remark that visibly pushdown languages
are always subsets of X2,

Semi-linear sets. Given d € Nxg, for @ = (21,...,24),7 = (Y1, ...,v4) € N? we define &+ § =
(r1 4+ y1,...,2q + yq). We define the norm of a vector ¥ € N¢ as ||Z|| = max{z; | i € [1,d]}. For
X, Y C N define X +Y ={Z+ 7| 7€ X,j€Y}. For = (r1,...,74) € N and n € N we define
nZ = (nx1,...,nrq) and NZ' = {nZ | n € N}. A set X C N%is linearif X = yW—Zle NZ; for k € N
and y,z1,...,z; € N® and it is semilinear if X is a finite union of linear sets.

2.1 Complexity and logic

We assume familiarity with standard circuit complexity, we refer to [32], 22] for an introduction to
the topic. Recall the following Boolean functions: the AND-function, the OR-function, the majority
function (that outputs 1 if the majority of its inputs are 1s), and the mod,, function (that outputs
1 if the number of its inputs that are 1s is divisible by m) for all m > 2.

A circuit family (Cp)nen decides a binary language L C {0,1}* if C), is an n-circuit such that
Ln{0,1}" ={z1...z, € {0,1}" | Cp(21,...,2,) = 1} for all n € N. In this paper, we will consider
circuits deciding languages over arbitrary finite alphabets: to do this, we just consider implicitly
that any language over an arbitrary finite alphabet comes with a fixed binary encoding that encodes
each letter as a block of bits of fixed size. By <.q we mean constant-depth truth table reducibility
(or just constant-depth reducibility) as introduced in [8]. Formally for two languages K C I'* and
L C ¥* for X, T finite alphabets, we write K <.q L in case there is a polynomial p, a constant d € N,
and circuit family (C),),en deciding L such that each circuit C), satisfies the following: it is of depth
at most d and size at most p(n) and its non-input gates are either AND-labeled, OR-labeled, or
so-called oracle gates, labeled by L, that are gates deciding LNYX™, where m < p(n), such that there
is no path from an oracle gate to an input of another oracle gate. We write K =¢q L if K <.q L
and L <. K; we also say that K and L are constant-depth equivalent. We say a language L is hard
for a complexity class C (or just C-hard) if L’ <.q L for all L' € C. We say L is C-complete if L is
C-hard and L € C. The following complexity classes are relevant in this paper:

o ACY is the class of all languages decided by circuit families with AND, OR gates of unbounded
fan-in, constant depth and polynomial size;



e ACCY is the class of all languages decided by circuit families with AND, OR and modular
gates (for some fixed m) of unbounded fan-in, constant depth and polynomial size;

o TCYis the class of all languages decided by circuit families with AND, OR and majority gates
of unbounded fan-in, constant depth and polynomial size;

e NC! is the class of all languages decided by circuit families with AND, OR gates of bounded
fan-in, logarithmic depth and polynomial size.

We also consider the framework of first order logic over finite words. (See 21, [30] for a proper
introduction to the topic.) A numerical predicate of arity r € N5 is a symbol of arity r associated
to a subset of N5 ¢". Given C a class of numerical predicates and ¥ a finite alphabet, we call FOx[C]-
formula a first order formula over finite words using the alphabet ¥ and numerical predicates from
the class C. On occasions, we might also consider FOs; ...[C]-formulas that in comparison to the
previous ones can use an additional binary predicate «~ and are interpreted on structures (w, M)
with w € ¥* and M C [1, |w|]?, where everything is interpreted as for FOx[C]-formulas on w excepted
for «~ that is interpreted by M. Given C a class of numerical predicates, by FO[C] we denote the
class of all languages over any finite alphabet ¥ defined by a FOyx[C]-sentence. A classical result
at the interplay of circuit complexity and logic is that AC® = FO [arb], where arb denotes the class
of all numerical predicates (see [30, Theorem IX.2.1] or [21, Corollary 5.32]). The other numerical
predicates that we will encounter in this paper are <, + and MOD,,, for all m € N5 (gathered
together in the set MOD = {MOD,,, | m > 0}).

2.2 Main result

The notion of length-synchronicity and weak length-synchronicity will be a central notion in our
main result. In the following we fix a visibly pushdown alphabet 3.

Definition 2.3 (Length-synchronicity/Weak length-synchronicity). Let R C ¥* x ¥* be a binary
relation.

e We call R length-synchronous if |ul/|v| = |u/|/|V'] for all (u,v),(u',v") € R satisfying uv,
u'v' € LA and A(u), Au') > 0.

e We call R weakly length-synchronous if v = ' implies [v| = |V| and that v = V' implies
lu| = || for all (u,v), (u/',v") € R satisfying uv,u'v' € L» and A(u), A(u') > 0.

We remark that that the conditions uv, u'v’ € £ and A(u), A(v') > 0 imply A(v) = —A(u) < 0
and A(v') = —A(u) < 0. For each visibly pushdown alphabet ¥ we define its synchronization
alphabet

Yg, = (Ecau X Eret) U {(6,6), (c,s) | (S Eint}'

For each word w = (x1,y1) - - (¥n,Yn) € X%, we define w™ = x1---2pyn---y1 € Y2 and the pair
of words R(w) = (21 Tn,yn---y1). Note that every synchronization language X C X% accepts
the relation (transduction) R(X) = {R(w) | w € X} C ¥* x ¥* and generates the language of
well-matched words X™ = {w™ | w € X}. The following remark is straightforward.

Remark 2.4. X™ is a one-turn VPL for every regular synchronization language X C X%, .

The following proposition, formally following from Proposition [£.9] states that if a one-turn VPL
is generated by a star-closed regular synchronization language whose relation is length-synchronous
(resp. weakly-length-synchronous), then so is any star-closed regular synchronization language
generating it.



Proposition 2.5. Let L = X™ for some star-closed reqular synchronization language X. If R(X) is
a length-synchronous (resp. weakly length-synchronous) relation, then so is R(Y') for all star-closed
reqular synchronization languages Y satisfying L = Y™.

Example 2.6. Consider the visibly pushdown alphabet ¥, where ¥ = Yo Wi W3et, Zeann = {a},
Yt = {c} and Xt = {b1,b2}. For all k,l € Ny satisfying k& # [, consider the language
Ly generated by the context-free grammar S — ac®1Sby | ac=1Sby | €. We claim that ev-
ery language Lj; satisfying k # [ can be generated by a star-closed regular synchronization lan-
guage accepting a weakly length-synchronous relation. Indeed, we have that £;; = X}:‘l, where
Xy = ((a,b1)(c,e)* 1 + (a,b2)(c,e)'"1)". Note that R(X},) is weakly length-synchronous since
both R(Xj,) and R(Xj,;)~! are partial functions.

On the other hand, we claim that any star-closed regular synchronization language generating
L}, cannot be length-synchronous for all k,l € Nsg satisfying £ # [. To see this, assume some
DFA A such that L(A) is star-closed and L(A)™ = L. Since ac=1by, ac b, € Ly, there must
exist words u,v € L(A) such that v* = ac*~'b; and v™ = ac'~1hy. Moreover, it must necessarily
hold that R(u) = (ack~!,b;) and R(v) = (act,by). As 951 = k # 1 = 1%L it follows that
R(L(A)) is not length-synchronous.

We refer to Section for algebraic foundations; there the syntactic morphism of a language is
also formally introduced.

Definition 2.7 (Intermediate language). A VPL L C ¥ is intermediate if it is a one-turn VPL
such that L = X™ for a star-closed regular synchronization language X C X% whose syntactic
morphism ¢ : 3% — M satisfies that the set ¢ ({w € %, | R(w) = (u,v), [u| =k, [v| =1}) does
not contain any non-trivial group for all k,l € N and moreover R(X) is weakly length-synchronous
but not length-synchronous.

We remark that the languages Ly ; from Example are all intermediate languages. We have
the following conjecture that can equivalently be formulated in terms of non-empty finite disjoint
unions of intermediate languages.

Conjecture 2.8. There is no intermediate language that is in ACC® or TCY-hard under constant-
depth reductions.

In fact, the authors are not even aware of any intermediate language that is provably not in
AC. An indication for this is that the robustness [22] of intermediate languages can be proven to be
constant. Further techniques, as for instance the switching lemma [19] or the polynomial method [6]
also do not seem to be applicable.

Our main result is the following theorem.

Theorem 2.9. There is an algorithm that, given a DVPA A, correctly outputs either
o L(A) € AC?,
e m > 2 such that MOD,,, <.y L(A) (hence implying L(A) & AC°),

o reqular synchronization languages X1, ..., Xy, witnessing that X%, ..., X)) are intermediate

and moreover L =4 ;" | X[, In this case one can moreover effectively compute k,1 € N with

k # 1 such that Ly <.q L(A).



2.3 Corollary for visibly counter languages

A wisibly counter automaton with threshold m (m-VCA) over a visibly pushdown alphabet ¥ is a
tuple A = (@, %, qo, F, 0o, - .., 0m), where @ is a finite set of states, qo is the initial state, F C Q
is a set of final states, m > 0 is a threshold, and §; : Q@ x X — @ is a transition function for each
i€ [0,m].

A configuration of A is an element of @ x N. For any two configurations (¢,n), (¢’,n’) and any
z € ¥ we define (¢,n) = (¢/,n') if ¢ = Omin(n,m)(¢, ) and n’ = n + A(z). The relation 5 is
naturally extended to — for w € ¥*. By L(A) = {w € 2 | 3¢ € F : (g0,0) = (g,0)} we denote
the language (of well-matched words) of A. We remark that the language of any m-VCA is a visibly
pushdown language. We also remark the language of m-VCA are defined to be sets of well-matched
words as in [3], whereas in [24] the well-matched requirement is not present.

When restricted to well-matched words, the following corollary implies the main result of [24].

Corollary 2.10. There is an algorithm that, given an m-VCA A, correctly outputs that L(A) is in
AC? or some m > 2 such that MOD,,, <.q L(A) (hence implying L(A) ¢ AC°).

For the proof of Corollary we refer to Section

3 Language-theoretic and algebraic foundations and Ext-Algebras

3.1 Basic algebraic automata theory

For a thorough introduction to algebraic automata theory, we refer the reader to the two classical
references of the domain by Eilenberg [13] 14] and Pin [27], but also to the following central reference
in automata theory [28, Chapter 1.

A semigroup is a pair (M, ), where M is a non-empty set and - is a binary operation on M that
is associative, i.e. - (y-z) = (x-y) - 2z for all z,y,z € M. Usually, when the operation is clear from
the context, we write it multiplicatively and write just M instead of (M, -). The semigroup M is
trivial if |M| = 1, and non-trivial otherwise. A subsemigroup of M is a semigroup N such that N is
a subset of M and the operation of IV is the restriction of the operation of M to N We often just
write xyto denote x - y. An idempotent of a semigroup M is an element x € M satisfying x = zx.
The idempotent power of a finite semigroup M is the smallest positive integer w such that x* is an
idempotent for all x € M. The zero of a semigroup M is the unique element x € M (if it exists)
satisfying xy = yx = x for all y € M. A monoid is a semigroup M with a neutral element, that is,
an element e € M such that x-e =e-x = x for all x € M. We usually denote the neutral element
of a monoid M by 15;. A submonoid of M is a monoid N that is a subsemigroup of M containing
1ps (which is thus also the neutral element of N). Consider some monoid M. A congruence on M
is an equivalence relation ~ on M that satisfies vxz ~ vyz for all v,z € M and all z,y € M with
x ~ y. We denote by [z]~. the equivalence class of x € M. The quotient of M with respect to a
congruence = is the monoid M /= with base set M /== {[m]= | m € M} and operation given by
[z]= - [y]= = [zyl= for all 2,y € M.

A group is a monoid M in which for all x € M there exists an inverse, that is, an element
x' € M such that z2’ = 2’z = 1);. Each element in a group M has a unique inverse, so we denote
by 2~! the unique inverse of an & € M. A subgroup of a group M is a submonoid of M that is a
group. Given a semigroup M, a set S and a subsemigroup N of M, whenever N C S, N is said to
be contained in S. A semigroup M is aperiodic if it does not contain any non-trivial group. It is
well-known that a finite semigroup M is aperiodic if, and only if, given w the idempotent power of



M, it holds that z¥ = z**! for all z € M if, and only if, there exists k € N such that z* = zF*+!
for all x € M.

A morphism from a monoid M to a monoid N is a mapping ¢: M — N such that p(157) = 1n
and p(zy) = p(z)p(y) forall z,y € M. If M = ¥* and N =I'* where ¥ and I" are finite alphabets,
we call ¢ length-multiplying whenever there exists k € N such that p(X) C T, Let ¢: ¥* — M
be a morphism, where X is a finite alphabet and M is finite. Then there exists [ € N+ such that
©(2) = p(X?): this implies that ¢(X!) is a semigroup. The smallest such [ is called the stability
index of the morphism . (Defined in [9] for surjective morphisms.) It is easily shown that if ¢(X")
contains a non-trivial group for some n € N, then so does ¢(X!). We say that h is quasi-aperiodic
if (X™) does not contain any non-trivial group for all n € N, which is equivalent to the fact that
(X! is aperiodic. (See [5],30] for the original definition and [31] for the definition using the stability
index, though it has been only formulated for surjective morphisms.)

A language L over a finite alphabet ¥ is recognized by a monoid M if there is a morphism
©: ¥* — M and F C M such that L = ¢~ !(F). The syntactic monoid of a language L C ¥* is the
quotient of X* by the congruence ~ (called the syntactic congruence of L) defined by x ~p, y for
x,y € X% whenever for all u,v € ¥*, uzv € L < uyv € L. The syntactic monoid of L recognizes L
via the syntactic morphism of L sending any word w € ¥* to [w]~,. A fundamental and well-known
result is that a language L is regular if, and only if, it is recognized by a finite monoid if, and only
if, its syntactic monoid is finite.

3.2 Ext-algebras

This section builds on [II], but identifies an inaccuracy in the definition of Ext-algebra morphisms
to establish freeness.

Let (M,-,157) be a monoid. For each m € M, we shall respectively denote by left,, and right,,
the left-multiplication map x — m - x and the right-multiplication map x — x - m.

Definition 3.1. An Ext-algebra (R, O,-,0) consists of a monoid (R,-,1r) and a monoid (O, 0,10)
that is a submonoid of (RE, o) containing the maps left, and right,. for each r € R.

Definition 3.2. Let (R,0) and (S, P) be Ext-algebras. An Ext-algebra morphism from (R, O) to
(S, P) is a pair (¢,v) of monoid morphisms ¢: R — S and ¢¥: O — P such that:

e for alle € O and r € R we have ¥(e)(¢(r)) = p(e(r));

e for all v € R we have ¢(left,) = left, ) and ¥ (right,) = right).

We write (p,9): (R,0) — (S, P). The morphism (¢,1) is called surjective (respectively bijective)
if both @ and 1 are surjective (respectively bijective).

When it is clear from the context, we shall write morphism to mean Ext-algebra morphism.

Remark 3.3. In the above definition, ¢ is totally determined by 1, because for each r € R, we have
o(r) = p(left, (1)) = ¥ (left,)(¢(1r)) = ¥ (left,)(1s).
Definition 3.4. Let (R,0) and (S, P) be Ext-algebras. Then

e (R,0) is a sub-Ext-algebra of (S, P) whenever R is a submonoid of S and there exists a
submonoid O" of P such that O = {e|p | e € O'}, so that we may denote O by O'| 5.

e (R,0) is a quotient of (S, P) whenever there exists a surjective morphism from (S, P) to
(R,0).

e (R,0) divides (S, P) whenever (R,O) is a quotient of a sub-Ext-algebra of (S, P).
For the rest of this section, let us fix some visibly pushdown alphabet X.



Definition 3.5. For all (u,v) € ¥* x ¥* with uv € 2, consider the function ext, ,: X2 — £*
such that exty ,(z) = uzv for all x € £, We call

extyy = Xty y 0 0eXty, 4,
a factorization of exty . That is, u=T1...Tm, V= Ym - Y1.

The following lemma states that each ext,, has a unique factorization when restricting the
(z, ;) to be from ¥4 x Y2 or from Eean X Sret and minimizing the number of (z5,:) € 22 x PO
we obtain its so-called stair factorization.

Lemma 3.6. For all ext,, there exists a unique factorization
extyy = Xty g 0Xbe by 0 e 0eXbyy O €Xtay, by 00Xty g,

satisfying h > 1, x;,y; € X2 for all i € [1,h] and a; € Xeay and b; € Syt for all i € [1,h —1]. In
particular, exty , is in fact a function from YA o T8,

Proof. We show additionally that the required factorization must satisfy h = A(u) + 1. We prove
the statement by induction on |uv|. In case |uv| < 1, then either ext, , = ext. ., or there is some
¢ € Yint such that ext,, = extc. or ext,, = ext... In any of these cases, we uniquely factorize
exty,, as exty, 4, with 1 = v and y; = v.

Let us consider the case when |uv| > 2 and let h = A(u) + 1. Note that since uv € ¥* we have
u € B2 if, and only if, v € 2. In case u,v € £ we have A(u) = 0, hence the only factorization
of the desired form is indeed ext, , = exts, y,, where 1 = u and y; = v. Let us finally treat the
case when u,v ¢ ¥, thus A(u) > 1 and hence h > 2. Let x be the maximal prefix of u satisfying
z € £ and let y be the maximal suffix of v satisfying y € £2. Due to maximality of z and y there
must exist ¢ € Yean, b € Sret, and v/, v € ¥* such that u = zaw’, v = v'by and w'v/ € L2 with
A(u') = A(u) —1 = h — 2. Let exty, y, 0exty, p, 0+ 0 Xty 4y »0€Xbg, b, ,0€Xby, |4 | be
the unique factorization of the desired form for ext, ,» by induction hypothesis. We claim that

exty y 0 exty p 0 exty, 4 0exty, p O+ 0ext oext oext

Th—2,Yh—2 ap_2,bp_2 Th—1:Yh—1

is the unique factorization of the desired form for ext,,. Indeed, since A(u) > 1 any potential
factorization of the desired form for ext,, must be of the form exty . oexty o, where 2’ is a
prefix of u satisfying 2/ € £, ¢/ is a suffix of v satisfying ¢/ € 22, @’ € Seanl, and ¥ € Y. In
particular 2’ is a prefix of x and ¢’ is suffix of y. In case 2’ = x and v’ = y it follows @’ = a and
b = b and uniqueness follows from induction hypothesis. It remains to consider the case when z’ is
a strict prefix of z or 3/ is a strict suffix of y. We only treat the former case. It must hold z = 2’d’s
for some s € £t such that a’s € ¥2. But then 7 is a factorization for extgy/ o, for some z € ¥*
which is a contradiction since A(s) = —1 due to a’s € 2. O

In the following we will denote the unique factorization provided by Lemma [3.6] as the stair
factorization of ext,, . Consider now the set O(X4) of all functions ext,,,, for (u,v) € ¥* x ¥* with
uv € X4: it is a subset of (Z‘A)EA closed under composition. Thus, (O(X%),0) is a submonoid
of ((ZA)ZA,O). Since for all w € ¥ we have left,, = exty . and right,, = ext.,, the set O(X%)
contains the functions left,, and right,, for all w € £%. Hence, (X2, O(X%),-,0) is an Ext-algebra.
The following important proposition establishes freeness of (£, O(X%)).
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Proposition 3.7. Let (R,0) be an Ext-algebra and consider two functions ¢: ¥y — R and

Y {extap | a € Xeau, b € Xypet} — O. Then there exists a unique Ext-algebra morphism (p,v) from
(X4,0(2%)) to (R,0) satisfying B(c) = p(c) for each ¢ € Ly and (ext, ) = (ext, ) for each
a € X, b€ Xet.

Proof. We define ® based on a refinement of the structural definition of well-matched words. For
each w € ¥ we inductively define:

1r if w=¢ (type 1)
o (c) if w=cée Xy (type 2)
Plw) = V(exty ) (@(z)) if w = axb for a € Xean, b € Lyrer and x € X2 (type 3)
?(x)p(y) if w=xy for z,y € £\ {e}, where |z| is minimal (type 4)

S

Observe that the four above types give unique decompositions. For proving that ¥ is indeed a
monoid morphism one proves that for all w,v € % we have B(wv) = B(w)@(v) by structural
induction on w given by the four types. The case v = ¢ is direct, we only treat the case v € ¥\ {e}
in the following. If w is of type 1 we have B(wv) = B(v) = 1g - p(v) = B(w)P(v). If w is of
type 2 or 3, then wv is of type 4 and w is the shortest prefix of wv with w € £ \ {€}, hence
B(wv) = B(w)B(v). If w is of type 4, then w = xy for some z,y € L2\ {e}, where z is of
minimal length. Then wv is of type 4, where wv = z(yv) and x is the shortest prefix of wv with
€ 94\ {e}. Hence plwv) = pa)p(yn) = B)Pu)F() = Flay)(v) = P(w)p(v), where the
first equality follows by definition of @ and the second and third equality follow from the induction
hypothesis. Given any ext, , € O(Z?) let

extyy = exty g 0exte p 00 oo oexty, 4, 0exXty, b, , 0eXty, 4,

be the unique stair factorization given by Lemma We define

Y(extyy) = O?z_ll (leftE(wi) o righty,,) © w(ext%bi)) o leftg(y,) © righty,) -

For showing that 1) is indeed a monoid morphism, one proves ¥(extyys ) = 1h(exty,,) 0 P (extys )
for all exty v, exty v € O(X?) by observing simply that the unique stair factorization of extyu oo
is obtained by composing the unique stair factorizations of ext, , and ext,/ .

We now show that (@,) is in fact an Ext-algebra morphism. The discussion above first shows
that both @: ¥ — R and 1: O(X*) — O are monoid morphisms. Next, let us prove that for all
exty, € O(X4) and w € £ we have 1) (exty, ) (B(w)) = B(exty (w)). Let

extyy = exty g oextq p 0 oo oexty, 4, 0exty, 5, , 0€Xty, 4,

be the unique stair factorization of ext,, provided by Lemma If h =1, then

Plexty,) (P(w)) = leftga,) o righty,, ) (P(w)) = P(zrwyn) = Plexty,y(w)) -
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Otherwise, we have

@(extu v)(@(w))
= Q (left z;) © Tightssy,) 0 P(exty, b)) © o lefty(g,) o righty, ) (P(w))
= Q (left z;) © rightg,.) 0 U( exta“ )( o(zhwyp) )
= O (left 2;) © Tightos,. 0 ¥(exty, p,))o
leftf(xh ) orightge, yo Y(exta, 1., 1) (@(zrwyn))
= =7 (lefty(y,) o righty,,) © ¥(extq,p,))o
left (wh 1) orights, (gp(ah_lxhwyhbh_l))
= O} (leftsy(y,) o righty,. © Y(extq, 1)) (B(@h—1an-1TnWYRbA—1Yn—1))

:¢($1a1 TR Q1 TR WYRbR—1Yh—1 - - - b1Y1)
=p(extyy(w)) .

Let us prove that for all w € ¥ we have 1(left,,) = left(,). Noting that the unique stair
factorization of left,, is ext,, . we obtain

Y (lefty,) = th(exty,c) = left(,) o right; 5(e) = leftg o Tighty , = leftg ) 0 1o = lefty(y,) -

One proves 1(right,,) = righty ) for all w € »% analogously.

Therefore, (,%) is an Ext-algebra morphism and it is the unique one satisfying ®(c) = ¢(c)
for each ¢ € Y and @(extmb) = 1(extyp) for each a € o, b € Eper. Take indeed any such
Ext-algebra morphism (¢',¢’): using the properties of Ext-algebra morphisms, it is straightforward
to prove that then B(w) = ¢/(w) for all w € ¥* by structural induction on w and then to prove
that @(extuw) = 1)’ (exty,,) for all ext,, € O(X?) by using the unique stair factorization of exXty oy
provided by Lemma O

Remark 3.8. The second condition in Deﬁnition i.e. for all v € R we have (left,) = left )
and v (right,) = right,,, does not appear in the definition of Ext-algebra morphisms given in [11].
But this is actually problematic, because then Proposition would not hold in general.

Indeed, consider for instance the visibly pushdown alphabet T where T ooy = {a}, Tine = 0 and
[yer = {b}, where R is semi-lattice on two elements {0,1} such that1-1 =1 and 0-1 =1-0 = 0-0 = 0;
and moreover O is defined as {id,0,1} with 0(0) = 0(1) =0 and 1(0) = 1(1) = 1. Then (R,0) is
an Ext-algebra. Let us define the function ¢: T® — R by o(w) = 1 for all w € T'® and the function
Y: O(T2) = O by (extan o) = id for alln € N and h(exty, ) = 1 for all u,v € T'* with uv € T4
and (u € al*bT* or v € T*al*b). The pair (p,1) forms a morphism from (I'>, O(I'?)) to (R, O),
but it is not the only one sending extqy, to id, because we could also take 1) to send all elements of
O(T?) to id.

Definition 3.9. A language L C X2 is recognized by an Ext-algebra (R, O) whenever there exists
a morphism (¢,1): (£2,0(2%)) — (R, 0) such that L = ¢~ (F) for some F C R.

Example 3.10. Consider the language £12 = L(S — aSb; | acSby | €) from Example over
the visibly pushdown alphabet I', where Ty, = {c}, I'can = {a} and T'yet = {b1,b2}. Consider the
Ext-algebra (R, O) defined as follows We set R = {achy, €, ¢, caby, aby } with multiplication given by
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the following table:

acby € c caby | aby

acby | acby | acby | acby | acby | acby
€ acby € c caby | aby

c achby c acby | acby | caby
caby | acby | caby | acby | acby | acby
aby | acby | aby | acby | acby | acby

Thus, observe that € = 1 and acb; is the zero of R. Omitting its multiplication table, we set the
monoid O to be the following

O = {(acby,e),(g,¢),(c,e),(g,c), (abi,e), (g,aby), (caby,e)} U
{(a,b2), (ca,bs), (ca,abibs), (ca,b1), (a,abibs), (a,b1)},

where the elements in the first set comprise {left,, right, | » € R}, more precisely

o (acby,e) = leftyep, = right

( achy
o (g,¢) = left, = right, = 10,
o (c,e) = left,,
o (g,c) =right,,
o (aby,e) = leftyp,,
o (g,aby) = right,, ,

o (caby,e) = lefteqp, = right g, ,
and where the elements from the second set are the following functions from R to R, respectively:

o (a,by):
T achy € c ‘cabl‘ aby ‘

(a,b2)(r) || acby | acby abl‘ aby ‘acbl‘

o (ca,bo):
T acby € c ‘cabl‘ aby ‘
(ca,b2)(r) || acby | achy | caby ‘ caby ‘ ach; ‘
o (ca,abiby):
r Hacbl‘ 15 ‘ c ‘cabl‘abl‘
(ca,abibe)(r) H achy ‘ achy ‘ caby ‘ achy ‘ achy ‘
o (ca,by):
T Hacbl‘ € ‘ c ‘cabl‘abl‘
(ca,by)(r) H acby ‘ caby ‘ achy ‘ achy ‘ caby ‘
® (a,ablbg):

T Hacbl‘ € ‘c‘cabl‘abl‘
(a,abiba)(r) H achy ‘ achy ‘ aby ‘ achy ‘ achy ‘
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o (a,by):
T Hacbl‘e‘ c ‘cabl‘abl‘

(a,b1)(r) H achy ‘ aby ‘ achy ‘ achy ‘ aby ‘

Consider the unique morphism (p,): (I'*, O(I'”*)) — (R, O) that (thanks to Proposition [3.7)
satisfies p(c) = ¢, Y(extap,) = (a,b1) and ¥(extap,) = (a,b2). We have L = ¢~ 1({e, ab1 }).

Definition 3.11. Let (R, O) be an Ext-algebra. An equivalence relation on (R, O) is an equivalence
relation ~ on R. We say ~ is a congruence on (R, O) whenever for all e € O and for all z,y € R
we have that x ~ y implies e(x) ~ e(y). In case ~ is a congruence we denote by (R,O)/~ the pair
(R/~,0"), where

O ={e € (R/~)F/~|3eecOVreR:(z]) = [e(z))}.

The following lemma actually shows that (R,O)/~ is again an Ext-algebra, that we call the
quotient of (R,O) by ~.

Lemma 3.12. Let (R,0) be an Ext-algebra and ~ be a congruence on (R,0). Then (R/~,0’),
with

O ={e € (R/~)F/~|3eecOVreR:e(z]) = le(z)]-}
a submonoid of (R/~)%~, is an Ext-algebra and the pair (p,%) of functions ¢: R — R/~ and
v: O — O satisfying o(r) = [r]~ for all v € R and (e)([r]~) = [e(r)]~ for alle € O and r € R is
a surjective morphism from (R, O) to (R/~,0’).

Proof. Let u,v € R such that u ~ v. Take any x,y € R: we have that
ruy = right, o left, (u) ~ right, o left,(v) = zvy

by definition of congruence. Thus, ~ is a congruence on R. This implies that R/~ is a monoid.
Let €/, f' € O': this means there exist e, f € O such that ¢/([r]~) = [e(r)]~ and f/([r]~) = [f(r)]~
for all » € R. Given any r € R, we thus have

¢ o f/(Irlv) = €'([f(N)]~) = [e(f(r)]~ = [e o f(7)]~ |

so that ¢’ o f/ € O'. Therefore, O’ is a submonoid of (R/~)%/~ that contains the functions lefty,
and righty,  for all [r]. € R/~. Thus, (R/~,0’) is an Ext-algebra.

Now define the functions ¢: R — R/~ and ¢: O — O’ by respectively ¢(r) = [r]~ for all r € R
and v¢(e) = € with ¢’ € O such that ¢/([r]~) = [e(r)]~ for all » € R: this is well-defined because
~ is a congruence on (R,0). Since ~ is a congruence on R, ¢ is a surjective monoid morphism.
Further, let e, f € O. We have

for all 7 € R, so that ¥(e) o (f) = ¥(eo f). Therefore, as ¥(10)([r]~) = [lo(r)]~ = [r]~ for all
r € R, it follows that v is also a monoid morphism, that is obviously surjective. By construction,
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we do of course have that

for all e € O and r € R. Moreover, for all r € R, it holds that

P(left,)([2]~) = lleft, ()]~ = [rz]~ = [r]~fa]w = leftyq ([2]~)

for all z € R, so that ¢(left,) = left (). Similarly, we can prove that t(right,) = right,,, for all
r € R. Thus, (p,1) is a surjective morphism from (R, O) to (R/~,0’). O

The lemma also proves that the pair (¢, ) of functions p: R — R/~ and ¢: O — O’ satisfying
o(r) = [r]~ for all r € R and 9 (e)([r]~) = [e(r)]~ for all e € O and r € R is a surjective morphism
from (R, O) to (R,0)/~. We also call this pair (¢,) the morphism associated to the congruence

~,

Definition 3.13. The syntactic congruence of a language L C Y2 is the congruence ~y, on
(B2, 0(2%)) defined by u ~p v for u,v € 2 whenever e(u) € L < e(v) € L for all e € O(X4).
We define the syntactic Ext-algebra of L to be (Rp,0r) = (X2,0(%%))/~1 and the syntactic
morphism of L to be the morphism (¢r,vr) associated to ~p .

Note that the syntactic Ext-algebra (Rp,Or) of L recognizes L via the syntactic morphism
(or,%r). Indeed, for all u,v € ¥2, we have that if u ~f v, then u € L < v € L. This implies that
L= gozl(cp r(L)). For instance, it can be proven that the Ext-algebra recognizing the language L 2
in Example is in fact a certain presentation of the syntactic Ext-algebra of L o.

The next lemma states that all languages recognized by an Ext-algebra are also recognized by
the Ext-algebras it divides.

Lemma 3.14. Let (R, O) and (S, P) be two Ext-algebras such that (R, O) divides (S, P). Then any
language L C X* recognized by (R, O) is also recognized by (S, P).

Proof. Let L C £2 be a language recognized by (R,0). This means that there exists a morphism
(0, ): (Z2,0(%%)) = (R, 0) such that L = ¢~ '(F) for some F C R. We will prove the lemma
by combining the following two points:

(1) if (R,O) is a sub-Ext-algebra of (S, P), then so does (S, P) recognize L, and
(2) if (R,0) is a quotient of (S, P), then so does (9, P) recognize L.

For Point (1), assume that (R,O) is a sub-Ext-algebra of (S, P). This means that R is a
submonoid of S and that there exists a submonoid O’ of P satisfying O = O’|. Take an arbitrary
function o: O — P such that o(e)|p = e for all e € O. Let us consider the unique morphism
(¢, 9"): (22,0(22)) — (S, P) such that ¢/(c) = ¢(c) for all ¢ € Siy and ¥/ (ext,p) = o(1h(extap))
for all @ € Ycan, b € Yiet, given to us by Proposition We can prove by induction on w that
¢ (w) = p(w) for all w € B4

e w=¢c. Then ¢'(w) =1g = 1g = p(w).

o w = c for some ¢ € Tine. Then ¢'(w) = ¢'(c) = p(c) = p(w).
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e w = aw'b for some a € Tean, b € Tret and w’ € 2. Then

Thus, ¢'~}(F) = L, which implies that (S, P) recognizes L.

For Point (2), assume that (R, O) is a quotient of (S, P). This means that there exists a surjective
morphism (o, 3): (S, P) — (R,0). Let us define an arbitrary function p: i,y — S such that
p(c) € a™(p(c)) for all ¢ € Tiy as well as an arbitrary function o: {extqp | @ € Sean, b € Spet} — P
such that o(extap) € B7H(Y(extap)) for all a € Sean,b € Sret. Now, take the unique morphism
(¢, "): (22,0(2%)) — (S, P) given by Proposition [3.7] for p and ¢: we claim that it is such that
o' (w)) = (w) for all w € £, We can prove it by induction on w:

e w=c. Then a(¢'(w)) = a(ls) = 1r = p(w).

Therefore, ¢'~!(a~!(F)) = L, which implies that (S, P) recognizes L. O

Next, we show that any language recognized by an Ext-algebra is also recognized by one of its
sub-Ext-algebras via a surjective morphism.
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Lemma 3.15. Let (¢,9): (X2,0(2%)) — (R,0) be a morphism and let L C X% be a language
recognized by (R,O) via (p,v). Then (@(ZA),w((’)(EA))MEA)) is a sub-Ext-algebra of (R,O)
recognizing L via the surjective morphism (¢, ") where 1’ (exty, ) = w(extu,v)b(EA) for all ext,, €

o(x?).

Proof. Since (R, O) recognizes L via (i, ), this means that there exists F' C R such that ¢~} (F) =
L. We have that ¢(X%) is a submonoid of R and 1(O(X%)) is a submonoid of O. Observe that for
all e € (O(X?)) and r € (%), we have

e(r) = W (extu) (p(w)) = p(uwv) € p(E2)
because 9 (exty ) = e for ext,, € O(X%) and r = p(w) for w € 2. Moreover, for all e, f €
P(O(X4)), it holds that elymay © flomay = (€0 f)lymay. Therefore, 1/}(O(EA))|¢(ZA) is a sub-

monoid of @(ZA)W(ZA). In addition, for each r € p(X%), we have that r = p(w) for some w € L&
and thus that

left, = lefty () = Y(leftw )| may = P(extwe)| ma)
as well as right, = ¢(€th,w)’¢@a>~ Thus, (¢(Z2), /(/}(O(EA)>‘¢(EA)) is a sub-Ext-algebra of (R, O).

It is clear that ¢ is a surjective monoid morphism from ¥ to p(X%). Further,

Q!),(extu’v) o ’(Z},(eXtu/,,U/) = ¢(6Xtu7v) ‘W(EA) o ¢(6Xtu’7v’) |@(ZA)
= (w(eXtu,v) © 1/’<eXtU’,v’)) ‘cp(EA)
= ¢(6Xtu,v o eXtu’,v’) |¢(2A)
= 1 (exty,p 0 €xty 1)

for all exty, ,, ext, ,» € O(X?), hence since ¥/ (ext. o) = 1O|w(EA)’ it follows that 1)/ is a surjective

monoid morphism from O(X%) to ¢(O(ZA))|¢(ZA). Moreover, we have
0 (Xt (P() = D(extu)] e () = Blextua)(@(w)) = @(exty,(w)) for all ext,, €
O(¥%) and w € ¥4
o /(lefty) = 1(extu,e)| may = leftyy and ¢/ (right,,) = right,,) for all w € X2,
Therefore, (p,1') is a surjective morphism recognizing L. O]

The following lemma states that a language is recognized by an Ext-algebra via a surjective
morphism if and only if the syntactic morphism of the language factors through the former mor-
phism.

Lemma 3.16. Let (¢,1): (22,0(2%)) — (R,0) be a surjective morphism, let L C X° and let
(orn,%r): (22,0(24)) = (Ry,01) be the syntactic morphism of L. Then (R, O) recognizes L via
(¢, %) if and only if there is a surjective morphism («, 8): (R,0) — (Rp,Or) such that o, = acop
(we say that (pr,r) factors through (¢, )).

Proof. Assume first that there is a surjective morphism («, 3): (R,0) — (Rr,Opr) such that ¢ =
a o . Then

P (@M (@(L) = (a0 @) Her(L) = ¢ (pL(L)) = L |

hence (R, O) recognizes L via (¢, ).
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Assume now that (R, O) recognizes L via (¢, ). This means that there exists F' C R satisfying
@ 1 (F) = L. Take w,w’ € ¥* such that ¢(w) = p(w’). Then, given any e € O(X%), we have that

ple(w)) = (e)(p(w)) = v(e)(p(w')) = ple(w’)) .

Therefore, since ¢ ~!(F) = L, it holds that w ~p, w’, that is, ¢ (w) = ¢r(w').
Take exty, v, €xtys v € O(X%) such that (exty,p) = Y(exty o). Then, for each w € Y2, we have
that

pextuy(w)) = Plextun)(p(w)) = Plextu v ) (p(w)) = Plextu v (w))

that is, exty ,(w) ~1 exty (w). Hence, 1 (extyy) = ¥ (exty ).

We can now define the functions a: R — Ry, and 5: O — Op, such that a(p(w)) = ¢rn(w)
for all w € % and B((extyp)) = Y (exty,) for all ext,, € O(X4): those are well-defined by
surjectivity of (¢, 1) and what we have proven just above. Since (¢r,%) is a surjective morphism
from (£, O(X%)) to (Rr,Or), we can easily prove that (a, () is a surjective morphism from (R, O)
to (Rp,Op) that does of course satisfy ¢, = a0 p. O

The following proposition shows that the syntactic Ext-algebra of a given language of well-
matched words is the least Ext-algebra recognizing this language.

Proposition 3.17. An Ext-algebra (R, O) recognizes a language L C X* if, and only if, its syntactic
Ext-algebra (R, Or) divides (R, O).

Proof. Let (R,0) be an Ext-algebra and let L C £* be a language. Consider also its syntactic
Ext-algebra (Ry,Or) and its syntactic morphism (¢, ).

Implication from right to left. Assume that the syntactic Ext-algebra (Ry,Op) of L divides
(R,0). We have that (R, Op) recognizes L and we then use Lemma to conclude that (R, O)
does also recognize L.

Implication from left to right. Assume that (R,O) recognizes L through a morphism
(p,9): (22,0(5%)) — (R, 0). By Lemma, we have that (@(ZA),w(O(EA))‘¢(2A)) = (R,0)
is a sub-Ext-algebra of (R, O) recognizing L via the surjective morphism (¢, ') where ¢’ (ext, ) =
¢(extu7v)\(p(EA) for all ext,, € O(X%). Then, by Lemma there exists a surjective morphism
(o, 8): (R',0") — (Rr,Op) such that ¢, = ao¢. Thus, we have that (Ry,Op) divides (R,0). O

We say that an Ext-algebra (R, O) is finite whenever R is finite (which is the case if and only if
O is finite). The following theorem establishes the equivalence between visibly pushdown languages
and languages recognizable by finite Ext-algebras. Its proof provides effective translations from
DVPAs to Ext-algebras and vice versa.

Theorem 3.18. A language L C X° is a VPL if, and only if, it is recognized by a finite Ext-algebra.

Proof. Let L C ¥* be a language. Before we prove the theorem we have the following claim, which
can be easily proven by induction on |u| and structural induction on w, respectively.

Claim. Let A= (Q,%,T,6,q,F, L) be a DVPA. We denote by mg the projection of @ x I'*
on Q and by 7p« the projection of @ x T'™* on I'*. It holds that L(A) C £ and additionally we
have that

~ ~

g(q,uv,a) = (5(7TQ( (q,u,0)),v, T~ (g(q,u, U)))

18



and R R
5((],’(1),0[0') = (WQ((S((],'UJ,OZ)),O[O‘)
forallge Q, u,veX*, cel, weX?® and a €T

Implication from left to right. Assume that L is a VPL. This means there exists a DVPA

= (Q,%,T,6,q0, F, L) such that L(A) = L. Consider the operation * on R = Q%*T defined so
that for all f,g € R, we have f * g(q,a) = g(f(q,a),a) for all ¢ € @ and o € T'. Observe that for
all f,g,h € Q¥*T, we have

(fx9) xh(qg,) = h(f * g(q, ), ) = h(9(f(q, ), @), ) = g x h(f(q, ), ) = [ x (9 x h)(q, )

for all ¢ € @Q and a € T'. Thus * is associative and since it also has i € R with i(q,«) = ¢ for all
¢ € Q and a € T as an identity, we have that R = Q®*T with operation * forms a monoid. Take
O to be the monoid R (for composition). Since O clearly contains the functions left, and right,.
for all » € R, it follows that (R, O) is a finite Ext-algebra. We now prove that it recognizes L. For
each w € ¥4, define f,, € R by fu(q,a) = 7g(6(q,w,)) for all ¢ € Q and a € I'. Let us consider
the unique morphism (g, ): (52, 0(2%)) — (R, O), given by Proposition such that for each
¢ € Yint, we have ¢(c) = f. and for each a € Ycan, b € Ere, we have that 1)(extqp) sends any f € R
to g € R satisfying that g(q,a) = mg ((5(f(p, B),b,ﬁ)) with §(q,a,a) = (p,Ba) for all ¢ € Q and
o € I'. We claim that for all w € ¥*, we have that ¢(w) = f,,. We prove it by induction on w.

o w=c¢c. Then p(w) =i = fy,.
e w = ¢ for some ¢ € Yiyt. Then p(w) = fe = fu.

e w = aw'b for some a € Teap, b € Tret and w’ € X2, Then

p(w) = p(extyp(w')) = (extay) (') = (extap)(fur) -

So p(w) = g such that for all ¢ € Q and v € T, if we set 6(q, a, ) = (p, Ba), we have, recalling
that ¢ extends 4,

9(q, @) = 7 (0(fu (p, B), b, B))
=7TQ(5(7TQ( (p, ', ﬁ)),b, ))
:7TQ<8\(7TQ( (p,w’, B)),b, ))
:7TQ<(/5\(7TQ( (¢, aw', @), b, 7+ (8(q, aw', a))))
— no(3(g, aw'b, )
:faw’b(Q7a
:fw(Q7a)

Thus ¢(w) = fu.
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e w = uw for some u,v € £\ {e}. Then p(w) = p(u) * ¢(v) gt fu* fy. But

fu* folq, a) = fv(fU(Qa ), O‘)
fo (m@(q,u a)), )

= WQ( u, ), v,a))

= 70 (3(ra(3(g,w, @), v, 7+ (3(q,u, ) )
=76 (q,uv,a))

= fuv(q, @)

for all ¢ € @ and a € I'. Therefore p(w) = f.
Finally, set P = {f € R| f(qo,L) € F'}. It holds that
¢ '(P) = {w € ° | fulq, L) € F}
= {w e T° | mo(3(g0, w, 1)) € F}
={we x| d(q,w, L) € Fx{L}}

— L(A)
=1L.

Therefore, (R, O) recognizes L.

Implication from right to left. Assume there exists a finite Ext-algebra (R, O) that rec-
ognizes L. This means that there exists a morphism (p,): (32, 0(X%)) — (R, O) such that
L = ¢ Y(F) for some F C R. Let us now define the DVPA

A: (Q727F75717F7—L)7

where Q = R, 1 =1, ' =R X Y U {J_}7 and

(1, (r,a)x) if a € Xean

5(r. . 0) (s(extpq)(r),e) if a € Erer and oo = (5,0) € R X Bean
(r,e) ifa€ Y and a= L
(re(e), @) if a € Eint

forallr € R, a € ¥ and o € I". We prove that g(r,w,a) = (ro(w),o) for all r € R, w € ¥* and
o € I'" L by induction on w.

e w=c. Then d(r,w,0) = (r,0) = (ro(w), o).

o w = ¢ for some ¢ € Sy Then 0(r, w, o) = (ro(c), o) = (re(w), o).
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e w = aw'b for some a € Tean, b € Tret and w’ € 2. Then

4(1, ( )0)

= S(w ;a)o), b, - (1,0, (r, a)o))
8

90() ( a)o)
(Tw(e (p(w')),0)

~ ~

o(r,w,o) =

e w = uv for some u,v € 2\ {e}. Then

~ ~

S\(T,w,a) = g(wQ( (ryu,0)),v,mr«(0(r, u, U)))

Hence,

L(A) ={we$?|5(1,w,1) € Fx {L}}
_{’(UEEA’WQ( (1l,w, 1)) € F}
= {w e I* | p(w) € F}
=p Y F)=1L.

Therefore, L is a VPL. 0

4 (Weak) length-synchronicity and the nesting depth of VPLs

For the rest of this section let us fix a visibly pushdown alphabet ¥, a finite Ext-algebra (R, O) and
consider a morphism (p,v): (£2,0(X%)) — (R,0). Suitably adjusting the pumping lemma for
context-free language we introduce an a pumping lemma for Ext-algebra morphisms in Section
In Section we extend the notions of weak length-synchronicity and length-synchronicity to Ext-
algebras morphisms and to visibly pushdown languages. In Section we prove a connection
between the (weak) length-synchronicity of those one-turn VPLS generated by star-closed regular
synchronization languages and the (weak) length-synchronicity of the word relations they generate.
Finally, we concern ourselves with the nesting depth of visibly pushdown languages in Section [4.4]

4.1 A pumping lemma for Ext-algebra morphisms

The following is an adaption of the Pumping Lemma for context-free languages to Ext-algebra
morphisms. It states that if uv € X% and u (resp. v) contains a well-matched factor that is
sufficiently long, we can pump certain infixes of u (resp. v): thus, one can find longer and longer
words uy,ug, ... (resp. vy, vs,...) such that uiv,ugv,... € B (resp. uvi,uvy,... € ¥°) and the
morphism v sends ext,,,, to the same element in O as exty, , (resp. as exty y, ).
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Lemma 4.1 (Pumping Lemma). There exists n € Nsg such that for all ext, , € O(X?) we have:

o If there exists a factor w € £ of u satisfying |w| > n, then u = sxzyt with s,x,z,y,t € X*
such that |zy| > 1, |vzy| < n and for alli € N, sxizyitv € B2 and 1 (exty,,) = ¥ (ext

s;rizyit,v) .

o If there exists a factor w € ©° of v satisfying |w| > n, then v = sxzyt with s,z z,y,t € X*
such that |xy| > 1, |zzy| < n and for alli € N, usz'zy't € ¥ and (exty ) = P(exty, syizyit)-

Proof. For each r € R, let n, € N5 be the pumping constant for the context-free language ¢! (r):
it is a VPL and hence a context-free language by Theorem [3.I8] We set n = max,ecrn,. Let
exty, € O(X4) be such that there exists a factor w € X2 of u satisfying |w| > n. Let

extyy = exXty gy 0exte p 00 oo oexty, 4, 0exXty, b, 0eXty, 4,

be the stair factorization of ext,, , provided by Lemma Since no factor of u spanning one of the
a;’s in the factorization can be well-matched, there must exist some j € [1, h] satisfying |z;| > n,
so that if we set v/ = z1a1---zj_1a5-1, V' = bj_1yj—1---biy1, v = ajzjq1---ap_1xp and V7 =
Ynbn_1 - yj+1bjyj, we have u'v’, u"v” € B2 and ext, , = exty/ 0 exty, e 0 eXtyr . By the pump-
ing lemma for context-free languages we have z; = 2'zzyy’ with 2/, z, z, y, v/’ € ¥* such that |zy| > 1,
iy € % and p(z;) = p(2'z'zy'y’). This implies that if we set

|zzy| < n and for all i € N, z’'z%2y’
" then for all i € N, we have sa’zy"tv = ext, , o ext 0 extyr i (€) € rA

s=u'7"and t = y'u
and

' zizyty’ €

Ib(extuw) P extu/ﬂ,/) o leftg,(xj) o w(extuu’v//)

(
(extu/w/) o 1eft¢(m/mizyiy/) o ¢(6Xtu//ﬂ)//)
(
(

extu/’/l}/) O w(extx/xizyiy/7€> O w(eXtu”,v”)

ext

(G
(G
1/1 sxizyit,v) :

We handle the case where for ext,, € O(X%) there exists a factor w € Y2 of v such that
|w| > n symmetrically. O

4.2 Weak length-synchronicity and length-synchronicity

In this section we introduce the notions of weak length-synchronicity and length-synchronicity for
Ext-algebra morphisms and visibly pushdown languages. Before we do that, let us give some
motivation how TC’hardness can be proven if the syntactic morphism maps certain exXty,u, Xty o
with |u| # || to particular idempotents. For these we require the following notion of reachability.

For F C R we say that an element r € R is F-reachable if e(r) € F for some e € O. We
say e € O is F-reachable if e(r) is F-reachable for some r € R. Although we will mainly study
F-reachable elements over finite Ext-algebras we remark that the notion of F-reachability is defined
over any Ext-algebra, in particular over (X%, O(X%)). Fix any VPL L, its syntactic Ext-algebra
(Rr,Op) along with its syntactic morphism (¢r,%r). Assume some idempotent e € Oy, that is
(L)-reachable.

We claim that if ¢ (exty,) = ¥r(exty ,) = e and A(u), A(u') > 0 for some exty .y, exty , €
O(X%) with |u| # |u|, then L is TC%hard. We remark that we must have A(u) = A(u/). Ex-
ploiting the fact that |u| # |u/| we give a constant-depth reduction from the TC%-complete language
EQUALITY to L.

Since exty , is ¢(L)-reachable, we can fix some z,y,z € ¥* such that p(zuyvz) € L. Given a
word w € {0,1}* of length 2n (binary words of odd length can directly be rejected) we map it to
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xh(w)zo™ (YD gy where b : {0,1}* — B* is the length-multiplying morphism satisfiying h(0) =
ul*'l"and h(1) = w/"!: one can prove that w € EQUALITY if, and only if, h(w)v™ 14+ ¢ $2 if,
and only if, zh(w)zo™ (u+wDy € L,

Dually, one can show that L is TC%-hard in case ¥, (exty ) = ¥ (ext, ) = e and A(v), A(v') <
0 for some exty ,, ext, ,» € O(X2) with |v] # [v/].

The following definition of weak length-synchronicity captures the situation when such idem-
potents do not exist — it adapts the notion of weak length-synchronicity of binary word relations,
given in Definition to morphisms and VPLs, respectively. Recall that R C ¥* x ¥* is defined
to be weakly length-synchronous if v = v’ implies |v| = [v| and v = v/ implies |u| = |u/| for all
(u,v), (u',v") € R satisfying uv € 2, v/v' € ¥4, and A(u), A(v) > 0.

Definition 4.2 (Weak Length-Synchronicity). The morphism (p,1): (£2,0(2%)) — (R, 0) is
F-weakly-length-synchronous (where F C R) if for all F-reachable idempotents e € O the relation

Ue = {(u,v) € " x X* | uv € ZA, A(u) > 0,7 (extyy) = €}

is weakly length-synchronous. We call L C $* weakly length-synchronous if its syntactic morphism
(¢r,vr) is wr(L)-weakly-length-synchronous.

Instead of considering those pairs (u,v) such that ext, , is being mapped to an F-reachable
idempotent, the following characterization of weak length-synchronicity consider pairs (u,v) such
that ext, , is being mapped to an element that behaves neutrally with respect to right multiplication
to F-reachable elements that are not necessarily idempotent.

Proposition 4.3. For all F C R we have that (¢, ) is F-weakly-length-synchronous if, and only if,
for all F-reachable e € O the relation Re = {(u,v) € £* xT* | uv € L4, A(u) > 0, eoth(exty ) = e}
1s weakly length-synchrononous.

Proof. Let FF C R.

If R. is weakly length-synchronous for all F-reachable e € O, then in particular the relation
U, = {(u,v) € T* x T* | uv € 2, A(u) > 0,1)(ext, ) = e} is weakly length-synchronous for all
F-reachable idempotents e € O.

Conversely, assume that (¢,1) is F-weakly-length-synchronous. Fix any F-reachable e € O.
We need to prove that R, is weakly length-synchronous. For this we consider, without of generality,
some ext, ., ext, , € O(X2) satisfying e o 1h(ext, ) = e o Y(exty ) = €, A(v) < 0, and |u| # [u/|.
We remark that A(u) = A(u’) > 0. We need to prove |u] = |u'|. Let w € N5 be the idempotent
power of O and consider

extyy = ext(

w
w2 wo/w )w 7fU3<w2 - (eXtUQ‘w’U/“" ,1)3'“] )

and
w
exty 4 = ext(uwu,g,w)w’vmz = (extuwu@-wﬂ)&w) .

By definition there exists an idempotent €/ € O such that t(exty,) = ¥(exty ) = €. Using
our assumption that e is F-reachable we claim that €’ is F-reachable as well. Indeed, by iterated
application of e o i)(exty ) = e o (exty ,) = e, we get e o (extyy) = e o (exty ) = e. So as
(p, 1) is F-weakly-length-synchronous, it must be that U, is length-synchronous, thus |z| = |2/|.
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Hence, as required, we obtain

w 2w Juldw W) =w (W ul +2 w- W)

= 2 |ul+ || =Ju| +2- ||
= lul = || .

In the same way, one can prove that for all exty,,ext, ., € O(X?) satisfying e o P(extyy) =
eotp(exty ) =€, and A(u) > 0, we have |v] = |v/|.

Using Lemma [£.1] and Proposition [.3] and the following proposition follows immediately.

Proposition 4.4. Let n be the pumping constant from Lemma let F C R, let e € O be
F-reachable, and let ext, , be such that A(u) > 0 and e o P(exty ) = e. If (p,v) is F-weakly-
length-synchronous, then the stair factorization

extyy = eXty, 4y 0€Xtg, py O - 0 €ext oext oexty, u,

Th—1,Yh—1 ap—1,bh-1

satisfies |x;|, lys| < n for all i € [1,h],

As above, the following definition adapts the notion of length-synchronicity of word relations,
given in Definition to Ext-algebra morphisms and VPLs, respectively.

Definition 4.5 (Length-Synchronicity). The morphism (¢,): (X2, 0(3%)) — (R, O) is F-weakly-
length-synchronous (where F' C R) if for all F-reachable idempotents e € O the relation

Ue = {(u,v) € 5" x X" |uv € EA, A(u) > 0,1(exty ) = €}

is length-synchronous. We call a the VPL L C 2 length-synchronous if its syntactic morphism
(¢r,vr) is wr(L)-length-synchronous.

Example 4.6. Consider our running example L£19 = L(S — aSb; | acSby | €). Recall that
the monoid O, , of the syntactic Ext-algebra (R, ,,Or, ,) and syntactic morphism (¢z, ,,%r, ,)
of L1, given in Example has the idempotents (e,¢), (acby,e) and (a,b1). Also recall that
©0r,5(L12) = {e,ab1}. Since ¢2112((6, €)) = {ext. .} and (acby, €) is a zero we have that O, ,’s only
idempotent that is {e, ab; }—reacﬁable and whose pre-image under ¢, , contains at least one ext, ,
with A(u) > 0 is the idempotent (a,b1). However, both ext, p, and extqep,, where A(a) = A(ac) =
1 > 0, are sent to the idempotent (a,b;) = (a,b2) o (¢,€). Since |a|/|b1] = 1 # 2 = |ac|/|b2|, we
have that £ is not length-synchronous. On the other hand, note that if any ext,, and ext,/,
(resp. exty, and ext,,) are sent to (a,b1) then v = ' and thus |u| = [v/| (resp. v = v’ and thus
|v] = [v']). Hence, L2 is weakly length-synchronous.

The following proposition characterizes length-synchronicity of Ext-morphisms, which will be of
particular importance when approximating the matching relation of a length-synchronous VPL in
terms of FO[+]. This will be an important ingredient to proving that VPLs that are both length-
synchronous and quasi-aperiodic (a notion to be defined in the next Section are in FO[+] and
thus in AC°.

Proposition 4.7. The morphism (p,1)) is F-length-synchronous if, and only if, for all F-reachable
e € O the relation R. = {(u,v) | uv € B2, A(u) > 0,e 0 h(exty,) = e} is length-synchronous.
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Proof. Assume that for all F-reachable e € O the relation R. is length-synchronous. Then in
particular R, is length-synchronous for all F-reachable idempotents e € O. Hence (¢, 1)) is length-
synchronous.

Conversely, assume (p, 1)) is F-length-synchronous. Then the relation U, = {(u,v) € ¥* x ¥* |
uv € 2, A(u) > 0,9(exty,, ) = e} is length-synchronous for all F-reachable idempotents e € O.
We need to prove that R, is length-synchronous for all F-reachable e € O.

Fix any F-reachable e € O. Moreover, fix any (u,v), (u/,v') € Re, i.e. extyy,ext, , € O(24),
e o th(extyy) = e oh(exty ) = e, and A(u), A(u’) > 0. We have to prove ||Z|| = ||Z/|| In analogy to
the proof of Lemma consider

eXt%y == eXt(uZwu/w)w’(v/waQ»w)w == eXtuZwu/w’v/va-ww

and
eth/7y/ — eXt(uwullw)w,(vllwvw)w — eXtuwu/Zw’lewvww

We have v(ext, ) = ¥(exty ) = € for some F-reachable idempotent e’ € O. Since U is length-

synchronous we have @ = 21 Hence (using that for a,b,c,d > 0 we have that ¢ = < implies
[yl 'l b d
1=c= gifl and, if additionally a > ¢, it implies § = § = §=5) we obtain
|z _ 2] O R o I (Ll (4,
yl 1yl yl 1y Ty @2 (ol + )
2] = w? - (Jul + []) _ J2!| = w? - (Ju] + |u'])
- 2 ny ! 2 / (1)
lyl —w? - (Jol +[v]) |y —w?- (Jo] +[v])
[l _ o Jul @ w? ] _ ]
ol w? ol W
as required. O

Proposition 4.8. Let F' C R and assume (p,) is F-weakly-length-synchronous. Then for all
F-reachable e € O the following two statements are equivalent.

1. The relation R = {(u,v) € * x ¥* | wv € B2, A(u) > 0,e 0 th(ext,,) = e} is length-
synchronous.

2. There exist « € Qsg, S € N, v € Nug such that for all (u,v) € Re we have:

o =

(b) For allu',v' € % with v’ prefiz of u and v' suffix of v such that \Z:; = «, we have that
CAW) - B < AW) < —AW) + 8.

(¢) For all factors u' € ¥* of u such that |u'| = v, we have A(u') > 1.

(d) For all factors v' € ¥* of v such that |v'| = v, we have A(v') < —1.

Proof. The implication from Point 2 to Point 1 is trivial since Point 2 (a) implies Point 1.

Let us now prove that Point 1 implies Point 2. Fix any e € O that is F-reachable and assume
that R, is length-synchronous. Point 2 (a) follows immediately from length-synchronicity of R..
We can hence write a = % for some A, B € Ny.
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For proving Point 2 (b), we define 5 = (n+ 1) - (|O| + max(A, B) + 1), where n is the constant
taken from Lemma [4.1] Let (u,v) € R, and let

exXty,p = eXty, gy 0Xtg, by O -0 Xty 4 Oext 0 eXtyy, .y,

ap—1,bh-1

be the stair factorization of ext,, , according to Lemma Since our morphism (¢, ) is F-weakly-
length-synchronous by assumption, we have |z;|, |y;| < n by Lemma Let ' € ¥* be a prefix of u
and v’ be a suffix of v such that % = a. If (W/,v") = (u,v) we are done since then A(u') = —A(V).
Thus, it remains to consider the case when v’ is a strict prefix of w and v’ is a strict suffix of v:

indeed, due to lul _ 1wl _ o we have that u is a strict prefix of w if, and only if, v’ is a strict suffix

ol = T~
of v.

Let j € [1,h] be maximal such that z1...a;_1z; is a prefix of v’ and y;bj_1...y; is a suffix
of v/. Note that j < h since (v/,v') # (u,v). Hence there exist unique words s,t € X* such
that v = u”s and v' = tv”, where v = z1...a;_12; and v = y;b;_1...y;. By maximality of
J we have min{|s|, [t|} < n. Setting f = ¥(extyr o) and g = (exXta;u, 1. ap_12nynba_r...y;11b;) WE
have 1p(exty ) = f o g. We claim that there exist ext,, ,, € O(3%) such that 1(ext,, ) = g and
|zg|, lyg| < |O|-(n+1): indeed, by the pigeonhole principle and Lemmaany exty, € O(X4) such
that 9 (ext, ) = g and min(|z|, |y|) > |O|-(n+1) must satisfy A(z) > |O] and can thus be factorized

as extyy = Xty 0extyr v o extym ym such that (extyy) = h(exty ) o Y(extym ), where
moreover (z”,y") € X+ x . Thus, ¥ (extyra, y ) = (exty,) and therefore (u”zg,y40") € Re.
It follows o = ||Z:f/€ “ = ||Z!|:r‘flj|r|j’i§||, or equivalently, using “Z—j; =
sl = [/ +lzg| + allt] = lygl — [v']) = lzg] + a([t] — [ygl) (2)
e 3)

Finally, we obtain

[A(w) + A |A(u"s) + At")|

A(u)=—A")

— |A(s) + A(t)]
< |s| + [¢]
= min(|s|, |¢]) + max(|s|, |t])
< n + max(|s|, [t|)
2, (3)

n
B (el + oo = ). "+ )

n+1[0|-(n+1) +n-max(A4,B)
= (n+1)-(|O] + max(A, B) + 1)
g

This proves Point 2 (b).
For Point 2 (c) and Point 2 (d) we set v = ([5] + 1) - (n + 1) + n and remark that v does not
depend on w nor v. We only prove Point 2 (c), the proof of Point 2 (d) is analogous. As above, let

€xXtyy = €Xtyy 4y O Xty py O - 0 XL oext o exty, y

Th—1,Yh—1 ap—1,bh-1

be the stair factorization of ext,, according to Lemma Let v/ with |[v/| > ~ be a factor
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of u and hence of x1a122...xp_1ap_12,. By definition of stair factorization we have A(z;) = 0
for all ¢ € [1,h] and A(a;) = 1 for all i € [1,h — 1]. Let w be the longest prefix of u' such
that A(w) = min{A(z) | z is a prefix of u'}. Since |z1],|y1],...,|zal,|yn] < n, it immediately
follows A(w) > —% and |w| < n. By the same reason, every prefix of the form ws of u’ satisfies

A(ws) > A(w) + n‘ill Thus we have

, Wl—fol . n (214D (41 +n)—n
AW) Z Aw) + == > g > 1

4.3 (Weak) length-synchronicity for one-turn VPLs

In this section we relate (weak) length-synchronicity of relations generated by regular synchroniza-
tion languages with (weak) length-synchronicity of the one-turn visibly pushdown languages they
generate.

We recall that our running example language L2 is generated by a star-closed regular syn-
chronization language whose underlying relation is also weakly length-synchronous and not length-
synchronous. The latter is not a coincidence: the following proposition implies that a one-turn VPL
that is generated by a star-closed regular synchronization language is weakly length-synchronous
(resp. length-synchronous) if, and only if, the relation of any star-closed regular synchronization
language generating the language is weakly length-synchronous (resp. length-synchronous).

Proposition 4.9. Let L = X™ for some star-closed reqular synchronization language X. Then the
following two equivalences hold:

1. R(X) is a weakly length-synchronous relation if, and only if, L is weakly length-synchronous.

2. R(X) is a length-synchronous relation if, and only if, L is length-synchronous.

Proof. Let L = X™ for some star-closed regular synchronization language X. Hence, L is a one-turn
VPL. Let us fix some DFA A = (Q, Xg,, 9, qo, F') such that L(A) = X. Let us first prove Point 1.

“Only-if”: Assume by contradiction that R(X) is a weakly length-synchronous relation and that L =
X"™ is not weakly length-synchronous, i.e. (¢, 1) is not ¢r(L)-weakly-length synchronous. Then
there exist u,v,u’,v’ € % such that 9y (ext,,) = ¥r(exty ) is a ¢ (L)-reachable idempotent
and moreover either

1. v="2v"and A(u), A(v') > 0 and |u| # ||, or
2. u=u"and A(v),A(v") <0 and |v| # |v/|.

We only treat the first case, the second case can be shown analogously. Without loss of general-
ity assume |u| > |u/|. Fix some ext,, € O(X%) and some w € %% such that ¢ (extyy, vy (w)),
o1 (extyy vy(w)) € L. We remark that u,u’ € (X \ Zyet) ' and v € (X \ Zcan) ™ since L is one-turn.
Moreover, A(u) = A(u') > 0 and A(v) < 0 since v = v’ by our case. There are unique factorizations
v = ajaz and v = P21, where a E (E\Erpt)*zcalla p1 € Eret(E\anll)*y and ag, B2 € E;knt- Hence,
for all 4,7 > 1 one can factorize zu'(u')/wv'ty € L as

zu' (v ) wo' ™y = zu' (v ) T oy apw B frot Ty

For every i,j > 1 there exists some o; ;7;; € X such that R(0; ;) = (zu'(v') " Lay, fro" T 1y)
and 7'5‘}- = apwfBy € 2. There are only finitely many distinct words 7 € %, with 7% = aswf, say
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N € N many such words. Thus, by the pigeonhole principle there exist (i1, j1), (i2, j2) € Nsg x N5g
such that

1. Til,j1 = 7’1'27j2,
2. 5*(QO70i1,j1) = 5*(QO’0'Z'2J2)7 and
3. (i1,J1) # (i2,72) and i1 + j1 = d2 + jo = N - |Q| + 1.

Without loss of generality let us assume i1 > 42. Let 73, j, = 7y, 5, = (51,%1) -+ - (S8, k) € B, i.e.
81+ Sktk et = OéQw,@Q. By Point 2 we have 041,51 Ti1,515 Oio,jo Tia,jo € X and hence both

(zu't (u' ) Yoy sy - sp, by - - -t o T T y)

and . . . .
(zu® ()2 Loy sy - sp, by - - - 1 Bro2 T2y

are in R(L(A)) = R(X). We claim that the two pairs contradict our assumption that R(X) is
weakly length-synchronous. Indeed, the right entries are identical and the left entries have different
lengths: recalling |u| > |u/| and i1 + j1 = i2 + ja, we have

(i1 —i2)lul > (2 —g1)[]
= Cdarful 4+ (= D] > daful + (G2 — 1)
= |zu (W) agsy oo espl > ou2(u)2 oy sy - - sy

“If”: Assume by contradiction that L is weakly length-synchronous but R(X) is not. Then there
exist uv, u'v € 4 satisfying (u,v), (v/,v") € R(X), A(u) > 0, A(u’) > 0 such that either

1. u=u and |v| # |[V'| or
2. v="2"and |u| # |/

We only treat the first case, the second case can be proven analogously. Recall that (Rp,Or)
denotes syntactic Ext-algebra and (¢r,r) the syntactic morphism of L. Since X is star-closed
and L = X™ we have that wL(eXtui+j7vi(v/)j)k is ¢r(L)-reachable for all i,j,k € N. Let w be
the idempotent power of Op. Hence, there exists an ¢r(L)-reachable idempotent e € O such
that e = ¢L(extuw.w.(i+]-)’(Uw.i(v,)w.j)w) for all 7,7 > 1. Considering the two cases (i,j) = (1,2) and
(i,7) = (2,1) the entries of the left-hand sides are identical and the lengths of the right-hand sides
are distinct: indeed, due to |v| # |v| we have
(v (")) - w w? - (o] +2 - v])
w? (2 Jo] + [v'])
|(v2(0))] - w,

thus contradicting that L is weakly length-synchronous. This concludes the proof of Point 1 of the
Lemma. Let us now prove Point 2.

I N

“Only-if”: Assume by contradiction that R(X) is a length-synchronous relation and that L is not
length-synchronous. Then there exist exty ., ext, » € O(X?) such that 1y (exty,) = W, (exty o)

is a ¢ (L)-reachable idempotent, A(u) > 0, A(u’) > 0, and |u| # 1 o ‘ . Fix some ext,, € O(X) and
some w € X2 such that 1y (eXtyy,py(w)) = wL(extxuzyv/y(w)) G L. We have

@L(ethuimiy(w))v c)OL(e}(tx(u’)i,(v’)”“'y(w)) €L
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for all 4 > 1 since 9r(exty,y) = ¥ (exty o) is an idempotent. As above, there exist unique factor-
izations u = ayag, v = P21, where a1 € (X \ ret)* Eeall, S1 € Zret (X \ Bean)™ and ag, B2 € X7,

By the pigeonhole principle there exist 4, j, k > 1 and words o, 0,7 € ¥§, and wi,ws € X* such
that

1. avwpfy = wyws and
2. o071 € X and R(po7) = (xu! T TF L ajwy, wo Bt tIHE—1y),
3. R(oo) = (wuiﬂal,ﬁwiﬂy) and thus R(r) = (042uk71a1w1, w25luk7152),

4. R(0) = (zu'~Laq, B1v*"1y) and thus R(o) = (aeu’ Loy, B107715;), and

ot

: 5*((]07 Q) = 6*(q07 QU) and thus 5*((]07 Q) = 5*(q07 QUN) for all N € N.
It follows poN7 € X for all N € N. Moreover, setting M =i + k — 1 we have
(zuMF TN qwy, weBroM I Ny) € R(L(A) = R(X) foral NeN . (4)

Analogously one can show that there exists a factorization oywpsh = wjw), 7/ > 1 and M’ € N such
that

(z(u )M H"Noh ), wh B (0 YM " Ny) € R(L(A)) = R(X) foral NeN . (5)
Combining and and
M+j-N

onwn| _ful | ()M N o

] . — — :
Novoo [waBroMH Nyl = o 7 0| T Nose [wh B (o) M Ny|

it follows that R(X) is not length-synchronous, a contradiction.

“If”: Assume by contradiction that L is length-synchronous but R(X) is not. Then there exist
w,u'v' € L = X™ satisfying (u,v), (W, v') € R(X), A(u) >0, A(u') > 0 such that [ £ 121 Let

[l 77 o]
w be the idempotent power of Or. Thus, there exists a ¢ (L)-reachable idempotent e € Op, such
that e = 1y (ext,wiyw s i) for all 4, j > 1. However, fixing j = 1 and letting i grow to infinity

and conversely, fixing ¢ = 1 and letting j grow to infinity, yield different length ratios, namely

X 0 e P R Y 7 0 )
imoo | (V)0 )] ol ] e [((v) @ T0e) |
contradicting that L is length-synchronous. O

4.4 The nesting depth of visibly pushdown languages

Another central notion is the nesting depth of well-matched words, which is the Horton-Strahler
number [I6] of the underlying trees.

Definition 4.10. The nesting depth of well-matched words is given by the function nd: ¥& — N
defined inductively as follows:

e nd(e) =0;

e nd(c) =0 for all ¢ € Xjpy;
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e nd(uv) = max{nd(u),nd(v)} for all u € LegX"Lrer U Xiny and v € X2\ {e};

e nd(awb) = nd(w) +1 ifw= yv with u,v € Y& and nd(w) = nd(u) = nd(v)
nd(w) otherwise
anlb be Eret and w € EA.

for all a €

An important property of weakly length-synchronous VPLs is that their words have bounded
nesting depth.

Proposition 4.11. For each weakly length-synchronous VPL L C ¥ there exists a constant d € N
such that L C {w € ¥* | nd(w) < d}.

Proposition is proved in several steps. We first give an equivalent characterization of weak
length-synchronicity.

Next, we introduce a factorization that can be seen as a factorization that witnesses the nesting
depth of a word.

Definition 4.12. A nesting-maximal stair factorization of w € X% with nd(w) > 1 is a factorization
of w as
W = exty, 4, 0€Xtbg, py O+ 0 exXty, 4, O €xXta, p, (W)

such that k >0, z;,y; € 22, a; € Zean, and by € Zyey for all i € [1,1], and w' € X satisfying that
for alli € [1, k] we have
nd(exty, 4, (w;)) = nd(w;),

where w; = extq, p, 0 Xty | yiy, O 0 €Xtq, b, (W).
Lemma 4.13. All words w € X2 have a nesting-mazimal stair factorization.
Proof. The proof goes by structural induction on w.
e w = ¢. Then we are done because w contains only internal letters.
e w=cforacé€ X Then we are again done because w contains only internal letters.

e w=auwbfora € Xea, b € Xt and w' € rA, By using the inductive hypothesis, w’ has a
nesting-maximal stair factorization exty, ,, 0 €Xtq, p, 0+ 0 €Xtg, 4, 0€xtq, p, (w”). It directly
follows that extgpoexty, 4, 0extg, p, 0+ © €xty, 4, 0extq, p, (W) is a nesting-maximal stair
factorization of w.

o w = uv for u,v € L\ {e}. Then w can be decomposed as zj -- -z, with z1,...,2, €
Yeall X2 et U Xing and m € N,m > 2. In this case, either z; € Yy for all i € [1,m] and
thus we are done because w contains only internal letters, or there exists some i € [1,m]
such that z € ZcanX®%ret and has maximal nesting depth, i.e. nd(w) = nd(z). In this
second subcase, we have that z; = azib with a € Xca, b € Xyt and 2] € rA, By using
the inductive hypothesis, z; has a nesting-maximal stair factorization extg, 4, 0 extg, p, 0+ -+ ©
eXtyy 4, O €Xtg, p, (w”). Therefore,

iz
€Xbzyoizi g2z O €Xbgp 0Kty 4 0 Xty by O . eXty, 4, 0exty, p, (W)

is a nesting-maximal stair factorization of w. O
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The following lemma will be useful tool for induction proofs that on the nesting depth of well-
matched words.

Lemma 4.14. Let u = ajvb; € 2 for some a1 € Yq, b1 € e, and v € Y2 such that
nd(u) = d > 0. Moreover, let u = exty, 4, ©€Xtg, p, O - €Xty, 4, 0€Xtg, p, (u) be a nesting-mazimal
stair factorization of u (i.e. x1 = y1 = €). Then there exists h € [1,k| such that, setting u; =
exta, b 0 €Xba, 1 iy, O - 0 exty, p, (u) for alli € [1,k] and upy =/, we have

1. nd(u) = nd(up) = d,
2. nd(up1) =d—1, and
3. nd(z1),nd(y1),-..,nd(zy),nd(yy) < d.
Proof. Let uj = extq,p, 0exty, ,y. 00 exty p (u) for all j € [1,k]. Note that we have

nd(u) = nd(u;) = d > 0 by assumption. Moreover, nd(u;) > nd(u;j4+1) for all j € [1,k — 1] by
definition of nesting depth. Thus, since nd(ug) =1 > 0 = nd(ug41), it follows that

h =min{j € [L,k] | nd(u;) > nd(uj41)}
is well-defined and nd(u) = nd(u;) = nd(up) = d, thus showing Point 1. Since
d =nd(up) <nd(upe1) +1

and nd(upy1) < nd(up) = d it follows nd(up41) = d — 1, thus showing Point 2. To prove Point
3, assume by contradiction that nd(z;) > d or nd(y;) > d for some j € [1,h]. Without loss of
generality assume nd(z;) > d. Since 1 = y; = ¢ and d > 0 we must have j € [2, h]. It follows

nd(u) > nd(uj—1) = nd(a;—12;u;y;bj—1) > min(nd(z;),nd(u;)) +1 >d+1>d =nd(u) ,
which is a contradiction. O

We are now ready to prove Proposition [4.11]

Proof of Proposition[{.11l Let L C 2 be a weakly length-synchronous VPL. We claim that nd(L) <
n + 1, where n is the pumping constant from Lemma Assume by contradiction that nd(u) = d
for some v € L and some d > n+ 1. Let u = exty, 4, 0extg, p, 0« - 0 €Xty, 4, ©€xXtg, p, (u) be a
nesting-maximal stair factorization of u according to Lemma [£.13] According to Lemma [£.14] there
exists 4 € [1, k] such that, setting uj = extq;p; 0exty, 4 4,., 0+ 0 extg, p, (u') for all j € [1,k] and
ug+1 = u’, we have nd(u) = nd(u;) = d and nd(u;4+1) = d — 1. Since d —1 > n > 0, we must
have ¢ + 1 < k‘, so that U; = ail‘i+1ui+1yi+1bi with Ui+1 € anlleEret and nd(.%‘7;+1ui+1yi+1) =
nd(ui+1) = d — 1. Hence it follows that nd(x;4+1) = d — 1 or nd(y;+1) = d — 1. Without loss of gen-
erality let us assume nd(y;11) = d — 1 > n. A simple induction shows that |z| > 224 — 1 > nd(z)
for all z € ¥4, Thus, we have |y; 11| > nd(yi1+1) > n, contradicting Proposition O

5 Proof of the main theorem

Before giving an overview of the proof of Theorem we revisit the notion of quasi-aperiodicity (a
notion that has already been defined for visibly pushdown languages in [25]).

Let (¢,9): (22,0(2%)) = (R, O) for a visibly pushdown alphabet ¥ and a finite Ext-algebra
(R,0). Let us define O(X4)F! = {ext,, € O(X2) | |u| =k, |v| =1} for all k,l € N. We say (¢, )
is quasi-aperiodic if all semigroups contained in the set ¢¥(OQ(Z%)%!) are aperiodic for all k,1 € N.
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The following proposition implies that the syntactic Ext-algebra and the syntactic morphism of
a given visibly pushdown language L is computable and that it is decidable if L is quasi-aperiodic,
length-synchronous, and weakly length-synchronous, respectively. Its proof is subject of Section [6]

Proposition 5.1. The following computability and decidability results hold:

1. Given a DVPA A, one can effectively compute the syntactic Ext-algebra of L = L(A), its
syntactic morphism (pr, 1) and or(L).

2. Given a morphism (p,v): (£2,0(2%)) — (R,0) for a visibly pushdown alphabet ¥ and a
finite Ext-algebra (R, O), all of the following are decidable for (v,):

(a) Quasi-aperiodicity. In case (p,v) is not quasi-aperiodic, one can effectively compute
k,l € N such that »(O(X2)*1) is not aperiodic.

(b) F-length-synchronicity for a given F C R. In case (¢,v) is not F-length-synchronous,
one can effectively compute a quadruple (k,1,k',I') € Ni such that there exist uv,u'v' €
Y2 and some F-reachable idempotent e € O such that ¥(exty,) = Y(exty ) = e,
Alu) >0, A(') >0, k= |ul,l = |v|,k =[], I' = |v'|, and & # ’li,,

(c) F-weakly-length-synchronicity for a given F C R.

5.1 Proof outline for Theorem [2.9]

Towards proving our main result (Theorem [2.9)), given a DVPA A, where L = L(A) is a VPL over
a visibly pushdown alphabet X, we apply Proposition [5.I] and compute its syntactic Ext-algebra
(Rr,Op) along with its syntactic morphism (pr,% ) and the subset ¢r(L). Then we make the
following effective case distinction which immediately implies Theorem [2.9]

1. If L is not weakly length-synchronous, then L is TC%hard and hence not in ACY (Proposi-

tion in Section [5.2)).

2. If L is not quasi-aperiodic, then one can effectively compute some m > 2 such that MOD,,, <.q

L (Proposition in Section [5.2)).

3. If L is length-synchronous and (pr,%r) is quasi-aperiodic, then L € AC® (Theorem in
Section [5.3)).

4. If a VPL L that is weakly length-synchronous but not length-synchronous, and whose syntactic
morphism (¢r,r) is quasi-aperiodic, one can effectively compute regular synchronization
languages X7, ..., X,, witnessing that X79 ..., X7¥ are intermediate languages and moreover
L =4 W, X7 (Theorem in Section . Moreover, already if a VPL L is weakly
length-synchronous but not length-synchronous, one can effectively compute k,l € Nsg with

k # 1 such that Ly ; <cq L (Proposition in Section .

We refer to Section [5.5] for the proof of Corollary

5.2 Lower bounds

The following visibly pushdown languages are helpful for proving lower bounds.
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Definition 5.2. Let L C X* be a VPL. For each e € Or, and for # & % a fresh internal letter we
define
Le = {u#v | uv € 2 : pp(exty,) = €}

and
Ler = {udtv | uwv € B2 : A(u) > 0,9(exty,) = e} = Le N {u#tv | uv € 2 1 A(u) > 0}.

The next lemma shows that both gozl(r) and L. and are constant-depth reducible to L in case
r € Ry and e € Oy, are ¢ (L)-reachable, respectively.

Lemma 5.3. Let L C X2 a VPL. Then
o . (r) <eq L for all o, (L)-reachable r € Ry, and
o L. <. L for all pr(L)-reachable e € Of.

Proof. To show the first point, let us fix some ¢y, (L)-reachable r € Ry. Thus, there exist w, € X%
and (u,,v,) € ¥* x ¥* with u,v, € £ such that o (w,) = 7 and or(u,w,v,) € L. By definition
of the syntactic morphism (Definition for all 1,79 € Ry with r1 # 7o there exists some
eryry € Or such that e, »,(r1) € pr(L) < er ry(r2) & ¢r(L). For each such e, ,, € Op, fix a pair
of WOrds (U s Ury ) € X X B* with wp, ryp, 1y € 22 and VL(€Xbuyy 00y ry) = €rpra-

Hence, for all w € ¥* we have

—1
wep, (r) <= wwv, €L A /\ Upy o WOy g € L 4 Upy oy WpVpy iy € L,

r1,r2€R,
r1£7T2

thus showing gozl(r) <ed L.

For the second point, let us fix some ¢y (L)-reachable e € Op. Fix some (ue,ve) € X% X
¥* such that ueve € X2 and 9y (exty, ) = e. Again by definition of the syntactic morphism
(Deﬁnition, for all eq, ex € Of, with e; # e there exists some 7, ¢, € 34 such that e (re, ¢,) €
V(L) < e2(rey ep) € i (L). For each such 7., ¢, fix some word we, o, € 3° such that ¢, (we, ¢,) =
Ter,er- Hence, for all u#v € X*#X* we have

u#v e L, +— \/ uv € cpgl(r) A /\ UWe, eV € L 43 UeWe, e,V € L,
reRy e1,e2€07,
e17#e2
thus showing Le <.q L. O
The following lower bound has already been sketched in Section [4]
Proposition 5.4. If L is not weakly length-synchronous, then L is TC-hard.

Proof. Recall that (Ry,,Op) is the syntactic Ext-algebra of L and (¢, 171): (32, 0(2%)) = (Ry,0r)
is its syntactic morphism. By assumption we have that (yr,vr) is not ¢ (L)-weakly-length-
synchronous.

Assume first there exist ext,, ,, ext,, € O(X%) satisfying that 1y (ext, ) = Y1 (ext, ) that is
a o (L)-reachable idempotent such that A(u), A(u') > 0, but |u| # |u/|. We exploit the fact that
lu| # |u'| to reduce EQUALITY = {w € {0,1}* : |w|o = |[w|1} to Ly, (ext,.). The constant-depth
reduction works as follows on input w € {0, 1}*:
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1. Check if |w| = 2n for some n € N, reject if it is not the case.

2. Compute w’ = a(w), where a : {0,1}* — ¥* is the length-multiplying morphism satisfying
a(1) = ull and a(0) = w1

3. Accept whenever w/#o™(lul+v']) ¢ Lip(excty,v)-

Bearing in mind that 0 < A(u) = —A(v) = A(«), the latter forms a valid reduction, because given
a word w € {0,1}* of length 2n for an n € N that contains k € [0,2n] 1’s, for w/#v™4+1¥D to be
In Ly, (exty.), it Is in particular required that w'v™ (YD g well-matched, so it is necessary and
sufficient that

ke Au) - |+ @2n—k) - A) - Ju] = —n- Av) - (Jul +[u])
= (k—n)-A() ||+ n—Fk)-A@)-|lu] = 0
— (k=n)-Au) - (| = Ju) = 0
— k= n.

Additionally applying Lemma @ we obtain EQUALITY <cq Ly, (exty.,) <cd L, and thus that
EQUALITY <. L by transitivity of <.q.

Assume now there exist extyy, ext,,» € O(X2) satisfying that ¥ (ext, ) = ¥ (ext, ) is an
o1, (L)-reachable idempotent such that A(v), A(v") < 0 but |v| # |[v/]. Symmetrically, one can prove
that we also have EQUALITY <4 L in this case.

In conclusion, as EQUALITY is TC%-complete under constant-depth reductions, it follows that
L is TC%hard under constant-depth reductions. O

The following proposition has essentially already been shown in [25, Proposition 135|, yet with
some inaccuracies (we refer to Section [§]) that we fix here.

Proposition 5.5. If L is not quasi-aperiodic, then one can effectively compute some m > 2 such
that MOD,,, <. L.

Proof. Since L is not quasi-aperiodic, by Point 2 (a) Proposition one can effectively compute
k,1 € N such that ¢ (O(Z%)%!) is not aperiodic. Thus, one can compute m > 2 such that
P (O(B42)F) contains the additive group G' = ([0, m — 1], +,0) of Z/mZ for some prime number m.
Moreover, there exist exty g, €Xty, v, € O(X?)*! such that Y1 (extygvy) = 0g and Yy (exty, 4, ) =
lg. Since G is a group both vy (exty, ) and 9 (exty, ) are ¢r(L)-reachable. Moreover there
exist zy, z € ©2 such that zugzvey € L if, and only if, zuizv1y & L. Let us assume without loss of
generality that zugzvoy ¢ L and zujzviy € L (the case when zugzvgy € L and zujzvy € L can
be proven analogously). Let hqy,hy : {0,1}* — ¥* be the length-multiplying morphisms satisfying
ht(i) = u; and h (i) = v; for all ¢ € {0,1}. We claim that

m—1
w € MOD,,, < /\ :L“hT(w)imdziu(wR)im_Zy g L.
=1

m—

Let w; = $hT(w)iM72zh¢(wR)’ *y for all i € [1,m — 1]. Observe that w; € ©2 for all i € [1,m — 1]
directly by definition of the morphisms hy and hy.

To show the above equivalence, let us first assume that |wl|; is divisible by m. Then we have
YL(extyt ()t (wr)) = YL(eXtyg ) = O, and consequently wL(eXtm(w)imﬁ7h¢(w)im*2) = 0¢ for all
i€[l,m—1]. It follows w; ¢ L for all ¢ € [1,m — 1], as desired. Conversely, assume that |w|; is not
divisible by m, i.e. |w[1 = mod m for some i € [1,m — 1]. Hence ¥ (extyt () ntwr)) = ic # 0
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m—

and thus ¢L(8Xtm(w)im—2,m(wR)z'm—2) = (i
w; € L as required.
Altogether we obtain MOD,,, <.q L. O

'mod m)g = 1 by Fermat’s Little Theorem. Hence

5.2.1 The non-solvable case

In this additional section we prove a stronger lower bound, namely when the syntactic morphism not
only is not quasi-aperiodic but the syntactic Ext-algebra not solvable. For this we revisit solvable
groups and introduce solvable Ext-algebras.

Let G be a finite group. The word problem for GG is the question, given a word w;y - - - w, over
G, to decide if their product wy---w, in G evaluates to 1g. The commutator of g,h € G is
ghg~'h~' € G, denoted by [g, h]. The commutator subgroup [G,G] of G is the subgroup of G that
is generated by the commutators of G. We say that G is perfect if G = [G,G]. We say that G
is solvable if in the series of commutator subgroups (a.k.a. derived series) GO G|, .. a trivial
group is contained, where G(© = @ and GO+ = [G("),G(i)] for all # € N. Thus, note that any
non-solvable finite group contains a perfect subgroup.

We say the Ext-algebra (R, O) is solvable if all subsets of R or O that are groups (under the
multiplication of R, resp. of O) are solvable. It is worth mentioning that one can prove that if
(p,7) : (£2,0(2%)) = (R,0) is quasi-aperiodic, then (R, Q) is solvable. In fact, one can prove
that if (¢, %) is quasi-aperiodic, then (R, O) must contain only Abelian groups.

Our proof that L is NC!-hard (and thus TC%hard) when (Ry, Oy ) is not solvable can be reduced
to the case for words [4], by showing that already 17, (O(%%)*!) contains such a non-solvable group
for some fixed k,l > 0.

Proposition 5.6. If (R, Op) is not solvable, then L is NC'-hard and thus not in AC°.

Before we prove the proposition we remark that not every subset G C Ry, (resp. G C Op) that
is a group is necessarily a submonoid of Ry, (resp. Op); in particular the neutral element of G need
not necessarily be the neutral element of Oy. Indeed, for instance assume R; = {1,a,b} where
l-r=1-r=rforallr € Rand where a-b=>b-a =band a-a =b-b = a; the subset {a,b}
forms the additive group of Z/27 with neutral element a. It is also worth mentioning that since
R is (isomorphic to) a submonoid of O we could have equivalently defined an Ext-algebra to be
solvable if all subsets of O that are groups are solvable.

Proof of Proposition[5.6. Assume (Rp,Op) is not solvable. Then there exists a subset G C Oy,
where G is a non-trivial perfect group, i.e. G = [G,G]. Let w be the idempotent power of G. For
all g,h € G there exist exty, v, , €xty, v, € O(X?) such that

[g7 h] _ ghg—lh—l — ghgw—lhw—l =Yy, (ext w—1, w—1 w—1 w_lvhvg)

UgUpUg Uy U, Vg

and 1g = g“h¥ = wL(eXtu;’u‘;;,v}“L’vg)~ Therefore, for all g, h € G we have

[ga h’] =L eXtuguhu;’_lu‘z_l,v;_lv;’_lvhvg ° O eXtu;}/u}‘:/ 71):/77);/
(9',n)eG?
(g":h")#(g,h)
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Hence, {[g,h] | g,h € G} C O(Z2)F! for

k= 3 (ugl+lun)-w and I= 37 (junl +Jugl) - w

(9:h)€G? (9,:h)€G?

Since G = [G, G] every element of G can be written as the product of at most |G| elements in
{lg,h] | g,h € G} and, in fact, even as the product of exactly |G| elements in {[g,h] | g,h € G},
since it contains the identity 1g. Thus, we can conclude that G C 1 (O(X2)*ICHIG Since the
word problem of any non-solvable finite group is NC'-hard by [4] and G C v, (O(Z2)*FICHIGI it
follows that the word problem for G is constant-depth reducible to L. Hence L is NC!-hard and in
particular TC%-hard. O

5.3 In AC’: Length-synchronous and quasi-aperiodic

This section is devoted to the following theorem.

Theorem 5.7. If L is length-synchronous and (¢r,%r) is quasi-aperiodic, then L is in FO[+] and
thus in ACY.

For the rest of this section let us fix a VPL L, its syntactic Ext-algebra (Rp,Op), and its
syntactic morphism (¢, 1r) : (52, 0(2%)) — (Rg,Op).

Before we explain our proof strategy we introduce approximate matchings and horizontal and
vertical evaluation languages. Approximate matchings generalize the classical matching relation on
well-matched words with respect to our VPL L in the sense that they are subsets of the matching
relation but must equal the matching relation on all those words that are in L. Approximate
matchings in the context of visibly pushdown languages were introduced by Ludwig [25]. We
then introduce suitably padded word languages mimicking the evaluation problem of the horizontal
monoid Ry, and the vertical monoid Oy, respectively.

Approximate matchings. For any word w € ¥*, we say that two positions 4,j € [1, |w|] in w
are matched whenever 1 < j, w; € Ycall, Wj € Xret and wiqq---wj_1 € EA; we also say that ¢ is
matched to j in w. Observe that a word w over ¥ is well-matched if and only if for each position
i €1, Jwl],

e if i € ¥, then there exists a position j € [1,|w|] such that i is matched to j in w;
o if { € Yo, then there exists a position j € [1, |w|] such that j is matched to i in w.

Given a word w € Y%, we denote by M* (w) its matching relation (or matching), that is the
relation {(i,5) € [1,|w|]? | i is matched to j in w} . An approzimate matching relative to L C B°
is a function M: ¥* — Ny¢? such that M (w) = M* (w) for all w € L and M (w) € M* (w) for all
we X\ L.

Horizontal and vertical evaluation languages. For all k € N, we define
O(B2)E* = {exty, € O(X2) : Jul =k} and O(Z2)"F = {ext,, € O(X2) : |v| = k} .
We also define O(X%4); = {ext,, € O(X4) | A(u) > 0} and finally for all k € N, we define

O(EA)F* =04 NO(E2): and OE2);F = O(84)* N O(E?); .
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Consider the alphabets I'y, = (22 \ {e}) U {$} and I'y, = ¢ (O(54)1) U {$} for a letter
$ ¢ R, UOL. We also define

Vo, ={8s | keN,s€p (S} and vy, = {$"f | keN, f e ¢L(0(EA)’;+L*)}* .

Define the ¢ -evaluation morphism eval,, : I';, — Ry, by eval,, (s) = s forall s € or(22\{e}) and
evaly, ($) = 1g. Similarly, define the 1 -evaluation morphism evaly, : I, — Or by evaly, H=f
for all f € ¥y, (O(EA)T) and evaly, (3) = 1o, . Finally, for all r € Ry, we set

Eorr =V, N evalS;Ll (r)

and for all e € Op,, we set
Epre=Vy, N eval;Ll(e) .

5.3.1 Strategy for the proof of Theorem

We are now ready to give the proof strategy for Theorem [5.7] The proof consists of the following
steps.

1. Lemma V. and Vy, are regular languages whose syntactic morphisms are quasi-aperiodic.
2. Proposition Let L be a VPL whose syntactic morphism (¢r, %) is quasi-aperiodic.
e Then &, ; is a regular language whose syntactic morphism is quasi-aperiodic for all
r e Rp.
e If L is length-synchronous, then &y, . is a regular language whose syntactic morphism is

quasi-aperiodic for all e € Oy,.

3. Proposition If L C ¥* is length-synchronous, then there exists an FOx[+]-formula
p(z,y) such that M: ¥* — Nyo? defined by M(w) = {(i,5) € [1,|w]]? | w | u(i,5)} for all
w € ¥* is an approximate matching relative to L.

4. Proposition Assume a VPL L has bounded nesting depth and

o &, r is a regular language whose syntactic morphism is quasi-aperiodic for all r € Ry,
and

o &y, ¢ is a regular language whose syntactic morphism is quasi-aperiodic for all e € Op.

Then there exists an FOs; ....[+]-sentence 7 such that for any approximate matching M relative
to L, we have w € L if, and only if, (w, M (w)) = n for all w € ¥*.

Let us argue that Points 2, 3 and 4 indeed imply Theorem (Point 1 will be used in the
proof of Point 2). Points Point 2 and 3 together imply the precondition of Point 4: recalling that
length-synchronicity implies weak length-synchronicity Point 2 implies that £, , and &, . are
quasi-aperiodic for all » € Ry, and all e € Oy, respectively, whereas Point 3 provides a first-order
definable approximate matching relation relative to L, in turn being a predicate assumed by Point

4. Finally, Point 4 implies Theorem

37



5.3.2 V,, and V), are quasi-aperiodic (Proof of Point 1)

Before proving Point 1 in the proof strategy for Theorem [5.7] we require the following auxiliary
lemma. It provides an important periodicity property of Ext-algebra morphisms.

Lemma 5.8. The following periodicity holds:

1. There existt € N and p € Nug such that (X2 NYY) = o (S2NYI) for alli,j € N satisfying
i,j>tandi=j (mod p).

2. There exist t € N and p € Nsg such that wL(O(ZA)%*) = wL(O(EA)%’*) for all i,j € N
satisfying i,7 >t and i = j (mod p).

3. There exist t € N and p € Nsg such that 1y, (O(ZA)?) = L (O(ZA)?J) for all i,j7 € N
satisfying i,7 >t and i = j (mod p).

Proof. To prove Point 1 recall that Lpzl(r) is a VPL and hence a context-free language for all
r € Ry. By Parikh’s Theorem [I5, Section 3] it follows that S, = {|w|: w € %, ¢ (w) =r} C Nis
a semilinear set for all » € Ry. It follows that for all U C Ry, the set Sy = {|w| : ¢r(w) €e U} C N
is semilinear since semilinear sets are closed under union. Point 1 follows immediately from this
observation.

Next we prove Point 2, Point 3 can be proven analogously. According to Lemma[6.4]in Section [6]
for # ¢ % the language L. = {u#v | uv € 2 : ¢p(ext,,) = e} is a VPL for all e € Op. As the
language K = {u#v | u,v € ¥} is obviously a VPL, it follows that for all e € O, the language

Lo = Lo \ K = {u#tv [ wv € 5% : ¢p(extyy) = €, A(u) > 0} € Le
is a VPL as well. By Lemma [6.5]in Section [6] the set
Se={(k,]) eNxN|JuexFve:u#ve Ly}
is semilinear as well for all e € Op. As a consequence we obtain that for all Y C Oy, the set
Sy ={(k,)eNxN|JuexfvexecY u#v e L4} CNxN

is semilinear as well since semilinear sets are closed under union. Since for all Y C Op, the set
{k € N | wL(O(EA)]T“’* = Y} is nothing but the projection of Sy onto the first component and
semilinear sets are closed under projection, Point 2 follows. O

The following lemma holds irrespective of whether the syntactic morphism (¢r,vr) of L is
quasi-aperiodic or not.

Lemma 5.9. V,, , Vy, are regular languages whose syntactic morphisms are quasi-aperiodic.

Proof. Take t € N and p € Ny given by Lemma such that v, (O(EA);’*) = (O(ZA)%’*) for
all 4, j € N satisfying 4,5 > ¢t and ¢ = j (mod p). Define 6;,,: N — N as

01(n) n ifn<t
n)=
i min{n’ e N|n'>tAn’=n (mod p)} otherwise

for all n € N. Take M to be the syntactic monoid of Vy, and h: FZL — M to be its syntactic
morphism.
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If there exists f € 1. (O(X%)+) and k € N such that $*f ¢ V,,, let us fix some f, and
k, that satisfy this. Observe that for all k& € N, we have that h($*) = h($%»*)). Further, for
all n € Nuo, ki,....kny1 € Nand fi,..., fn € ¥ (O(22)1), we have h($F1f; - §kn f, §kni1) =
h($0r(F1) f10$0%» (Fnt1)) where

o= {E if $k2f2---$k"anV¢L

$¥L f|  otherwise .

Therefore, M is finite and thus Vy, is regular. Let | € N5 be the stability index of h and take
q € Ny such that ¢-1 >t and ¢-1 =0 (mod p). By definition, we have h(FiZ)L) = h(I‘fZi). Thus, to

show that h is quasi-aperiodic it is sufficient to prove that for all m € h(lﬂi), we have m? = m3.

Indeed, given m € h(Ffp'i), only the following three cases can occur.
1. m = h($7"). In this case, we have
m2 = h($2-q-l) — h($9t,p(2~q~l)) - h($9t,p(q~l)> - h(gq-l) =m,
where the third equality follows from 6; ,(2-q-1) = 0 ,(q - 1).

2. m = h($F1f$kL f18%2) for f € ¢ (O(X2)4) and ki, ke € N satisfying 60;,(k1) = ki and
0; p(k2) = ko. In this case, we have

m? = (8" f85 [0 TR f85L £ §8) = h(S™ 85 f18%) = m
where the second equality follows from $%+ f) $ki+k2 fgko ¢ ¢y,

3. m = h($" £$*2) for f € vy, (O(EA)T) and k1, ko € N satisfying 0; ,(k1) = k1 and 6, ,(k2) = k.
If f €y (O(B4)F 1) then

m? = h($¥ f§F1152 £§72) = n($81 f$72) = m
because $5152 f € V- Otherwise, f ¢ ¢ (O(22)7**2*1*) and then
m2 — h($k1 f$k1+k2 f$k2) — h($k1 f$lu fL$k2)
because $¥17F2 f ¢ V| so
m?® = h($%1 f5L f g f§he) = p($F1 gt £ 802) = m?
because $kL f §Fith2f ¢y,

Therefore, Vy, is a regular language whose syntactic morphism is quasi-aperiodic. O

5.3.3 Quasi-aperiodicity of evaluation languages &,, , and &, . (Proof of Point 2)

One important consequence of Lemmais that for all r € Ry, and e € Op, the languages &, , and
&y, e are in fact regular languages. The following proposition states that the respective evaluation
languages £,, , and &y, . are all quasi-aperiodic if the syntactic morphism (¢r,, %) of L is and the
latter is additionally length-synchronous.
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Proposition 5.10. Let L be a VPL whose syntactic morphism (or,%r) is quasi-aperiodic.
o Then &, , is a reqular language whose syntactic morphism is quasi-aperiodic for all v € Ryp,.

o If L is length-synchronous, then £y,  is a reqular language whose syntactic morphism is quasi-
aperiodic for all e € Or,.

Proof. We already know that for all r € Ry, and e € Op, the languages &,, » and &y, . are regular.
To prove the lemma, we then just have to prove that

e if there exists r € Ry, such that the syntactic morphism of £, , is not quasi-aperiodic, then
there exists k € N such that (p(EA N ¥*) contains a semigroup that is not aperiodic;

e if there exists e € Of, such that the syntactic morphism of £y, . is not quasi-aperiodic and L
is length-synchronous, then there exist k,! € N such that ¢, (O(3%)%!) contains a semigroup
that is not aperiodic.

Indeed, the first point allows to conclude that (¢, ) is not quasi-aperiodic, since if there exists
a non-aperiodic semigroup S contained in ¢z (X% N 2*), then {lefty | s € S} is a semigroup
contained in 97, (O(X2)%0) (because for each s € S, there exists w € Y2 satisfying ¢ (w) = s,
so that iy (exty ) = left,, () = lefts). But this semigroup is non-aperiodic as well, since as S is
non-aperiodic, it must be that for all & € Ny, there exists s € S such that s* # s*1 so that
left ® = left,F 1.

We only prove the second point, the first point can be proved in a similar way by leaving out
the last paragraph of the following proof, that is the sole place where we need length-synchronicity
of L.

Take t € N and p € N5g given by Lemma such that v, ((’)(EA)%*) =Y (O(EA)%’*) for all
i,7 € N satisfying 7,7 > ¢t and i = j (mod p).

Assume there exists e € Op, such that the syntactic morphism of &£, . is not quasi-aperiodic.
Take M to be the syntactic monoid of &y, ¢ and h: I, — M to be its syntactic morphism. Let
s € Ny g be the stability index of A and let w > 2 be a multiple both of the idempotent power of M
and the idempotent power of Op. Non-quasi-aperiodicity of h implies that there exists g € h(T’ wL)
satisfying g@ # g* T

By definition of the stability index, there exists w € F?ﬂi for ¢ € N-q such that ¢-s > tand ¢g-s =0
(mod p) satisfying h(w) = g. Sincet < ¢g-s<q¢-s-w<g-s-(w+1l)andg-s=q-sw=gq-s-(w+1)
(mod p), we cannot have w = $7°*, for otherwise we would have g% = h($75%) = h($4sWH1)) = gwtl
because ¥, ((’)(ZA)%S'WHCH’*) =y (O(EA)?S'(MHHHL*) for all k € N. Therefore, we have w =

k1 fy - §Fn f, 8R4t for n € Nog, ki, k1 € Nand fi, ..., fo € ¥ (O(22)4). Since g # gt
there exist x,y € F;’LL such that either zw®y € &y, o and zw*ly ¢ &y, ., or 2wy & Ey, . and

wtly € &, .. Assume the first case holds. Then we have r = 2/$% and y = $*y with
ks, ky € N and 2,y" € Ty satisfying R T L T Y T L VAN CHR VA
and evaly, (z/) o (fio---o f,)* oevaly, (y') = e. Therefore, we also have zw**!
zw Ty ¢ £, . we necessarily have

y € Vy, , hence since

e =evaly, (') o (fio---o fn) oevaly, (v)
# evaly, (zw*Tly) = evaly, (z/) o (fio---o fr)e o evaly, (v') .

Thus we have (f1o---0 f,)? # (fro--- 0 f,)“T! and $kn+1th1 fgk2 £ ... gkn £ €V, . This is also
true for the case when zw®y ¢ &, . and 2wy € &, ..
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Therefore, we have (fyo---0 f,)¥ # (fro---o f,)*T! with (fio---0 fu)’ € ¥ ((’)(ZA)%S'Z"*) =
U, (O(EA)%'S’*) for each i € Ny because kyy1+k1+ - +kp+n = qg-s > tand ky1+k1+ - -+kp+n =
q-s=0 (mod p). But given w’ the idempotent power of {(fi o---0 f,)" | i € Nso}, we have that
(frow o fa)® = (fio- o fu = (fio- o fu), s that (fio- 0 fu) £ (fro- o fu)'*],
hence {(fio---o fn)" | i € Nsg} is not aperiodic.

Assume L is length-synchronous. For each i € Ny, let exty, ,, € ¥, (O(EA)?S’*) such that
Yr(exty, v,) = (fio---o fp)'. If (fio---o fr)“ were not ¢ (L)-reachable, then it would imply that
exty,, v, is not L-reachable. This would in turn entail that for all w € ¥ and ext,, € O(X*) we
have

exty y(exty, v, (W) & L A exty y(exty,uy v (W) = €Xtouy vy (€Xty, o, (W) € L,

so that it would follow that (fi oo f,) = YL (extu, v,) = VL (€Xtuyuy vuvy) = (fro -0 fr)“Th
a contradiction. Hence, since (f; o --- o f,)¥ is a @ (L)-reachable idempotent and (¢r,%r) is
¢r(L)-length-synchronous, it follows that for all i € N,i > 2, since ¢, (extuy vv) = ¥ (extye 1) =
(fio---o fn)¥ with A(uy) > 0 and A(uy) > 0, since |u1| = |u;|, we have

ut] _ ] Jual ]

E N R R

= |v1] = |vi] .

To conclude, we obtain that the non-aperiodic semigroup {(fi o---o f,)? | i € Nsg} is contained in

wL(O(EA)Q'SJvl‘). O

The following remark states that the length-synchronicity precondition in the second point of
Proposition is important. In fact it shows that weak length-synchronicity is not sufficient.

Remark 5.11. For the second Point of Proposition[5.10 it is generally not sufficient to assume that
L is weakly length-synchronous. Indeed, the VPL K generated by the grammar with rules

S — aShy | acThy |
T — aTb; | acSby .

using S as start symbol is not length-synchronous (but weakly length-synchronous) and has a quasi-
aperiodic syntactic morphism. However, for the syntactic Ext-algebra (Ry,Ok) and the syntactic
morphism (¢, Vi) of K, we claim that there exists e € O such that Ey, . is a regular language
whose syntactic morphism is not quasi-aperiodic.

Let I' the visibly pushdown alphabet of K. Note that we have we have K C L2, where L1 =
L(S — aSbilacSbsle) is the VPL initially introduced in Example . For all wv,u'v' € L9 with
u, v’ € {a,c}t, v,0" € {b1,b2} ", |ul, = |[v/|. (mod 2) we have zuzvy € K < au'z2v'y € K for all
zy,z € T2 This implies that if we set eg = Y (extep,) and er =Yg (extqep,), we have that for all
uv € L1 with u € {a,c}™, v € {b1,b2} T, it holds that Yk (exty ) = €lu|, mod 2- Lherefore, while
eg # e1, we have egoe; =ejoeg=-e1 and egoeg =e1 0e; = eg.

Consider the length-multiplying monoid morphism (: {0,1}* — I, such that B(0) = epeq
and B(1) = $e1. Then MODy = B (Eypreo)s 50 Epgcey cannot have a quasi-aperiodic syntactic
morphism, for otherwise, by closure of the class of regular languages whose syntactic morphism
is quasi-aperiodic under inverses of length-multiplying morphisms (see [31]), we would have that
MODs has a quasi-aperiodic syntactic morphism.
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5.3.4 Approximate matching relation in FO[+] (Proof of Point 3)

The following proposition states that there is a FOx[+]-definable approximate matching relative to
any length-synchronous visibly pushdown language.

Proposition 5.12. If L C ©* is length-synchronous, then there exists an FOx[+]-formula n(z,vy)
such that M : ¥* — Nxo? defined by M(w) = {(i,5) € [1, |w]]?> | w = n(i,§)} for allw € ¥* is an
approximate matching relative to L.

The technical heart for the the following lemma whose proof is postponed and will most part
of this section. The following lemma realizes the characterization of length-synchronicity given by
Proposition [4.§| via an FOx[+]-formula.

Lemma 5.13. Assume that (pr,vr) is weakly length-synchronous. Let e € Op, be pr(L)-reachable
and let Re = {(u,v) | uv € ¥, A(u) > 0,e 0 ¢ (exty,) = e} be length-synchronous. Then there
exists an FOg[+]-formula w.(x, 2,y ,y) such that for all w € X and i,7,j',5 € [1,|w|],i < i <
7' < j the following holds,

o ifw = me(i,i', 5, 7), then w; - wpwj - w; € 2 and

o ifw; - wywj - w; € Y2 and (Wi ... wyr,wjr ... wj) € Re, then w =7 (3,7, 7', 7).

Building an approximate matching assuming predicates 7.. Let us prove Proposition |5.12
by making use of Lemma [5.1

Proof of Proposition[5.13. By assumption (pr, 1) is ¢r(L)-length-synchronous. Thus, the relation
Re = {(u,v) € ¥ xT* | uv € 22, A(u) > 0,e01)y (exty ) = e} is length-synchronous for all ¢y (L)-
reachable e € Op, by Proposition Moreover, there exists d;, € N bounding the nesting depth
of the words in L Proposition For defining our desired formula p, we will construct FOx[+]
formulas pg and ,ug for all 0 < d < dj, with the following properties: for all w € X1 and for all
i,7 € [1, |wl|], we have

o ifwkE ,uzl(z',j) or w = p14(i, §), then w; - --w; € B4,
o ifwe L, w;...w; € X%, nd(w; ... w;) < dand i is matched to j in w, then w = ug(z’,j), and
o ifwe L, nd(w;...wj) <dand w;...w; € X4, then w = pq(i, j).
We therefore define j1 = j14, . The construction of ujl and pg is by induction on d. We set
po(i, j) = L and po(i, ) = Vz(z < 2 < y — Sine(2)).

Let us assume d > 0. The formula g4 is easily defined assuming MII. We define
ua(z,y) = Vz [az <z<y—
(zim(z) v 3 <(Ecau(z) A Sret(2) A b2, 2) V (Sean(2) A Soet (2) A (2 z))) } .

It remains to define MZ- Let us assume u = w;...w; € %, that i is matched to j in w and
that nd(u) = d > 0. Hence, u = ajvb; € L2 for some a1 € ean, b1 € Zpet, and v €

42



¥2. We then apply Lemma which states that u has a nesting-maximal stair factoriza-
tion u = exty, 4, 0€Xtg, p, O...€Xty, 4 O€xXty, p, (u') such that for some h € [1,k], setting uy =

Xty b, © €Xtay, | ypy O 0 0 extg, p, (u') for all £ € [1, k] and ugy1 = ', we have

1. nd(u) = nd(up) = d,
2. nd(up41) =d —1, and
3. nd(z1),nd(y1),...,nd(zp), nd(y,) < d.

We remark that x1 = y; = e. Let ¢ =41 < -+ < 1y and jp < -+ < j1 = j be the positions
that correspond to the positions of the letters aq,...,ap € Ycan and by,...,bp € Yt of u in w,
respectively: more precisely iy = i + |21 - - - ap_12¢| and j; = |x1a71 - - - Tpapw' bryy - - - bey1yer1| + 1 for
all £ € [1, h]. The formula 772 could guess the positions ¢ =¢; < --- <4 and j, < --- < j; = 7 and
verify the following (recalling that z1 = y; = ¢):

(a) the infix wy, 41---wj, -1 = exty, |y, (Upg1) is well-matched, and
(b) the word wj, - - - w;, wj, - - - wj, is well-matched.

Point (a) can be realized via the formula pg—1 by making use of Point 2 from above, whereas Point
(b) can be realized by the following ad-hoc formula, this time making use of Point 3 and from above:

kp(z 2, y'y) = Fwr-xpIyr -y (xzzlex’:whAy’:yh/\y:yh A

h h—1
/\ Teal(ze) A et (yr) A /\ pa—1(ze + 1 xeper — 1) A prg—1 (e + 1,90 — 1))
t=1 t=1

The problem with this approach is that the size of the formula depends on the size of w. For
instance, for a € Xcay, b € Xret, ¢ € Ling, and u = a"cb™ we have nd(u) = nd(acb) =1 for all n > 1.
Hence we would have h = n — 1, so A would depend on u which is problematic. Therefore, towards
expressing Point (b) by a formula whose size only depends on |Oy|, let us define, for all ¢,¢ € [1, ],
the product

oo = Pr(exty, y, 0exXty, b, - - €xty, 4, 0exty, p,) and e = ejy.

We remark that all ey are ¢, (L)-reachable since w is assumed to be in L. For e € Op, we say an
interval I = [s,t] C [1, h] is e-repetitive if s < t and es = e;. We say [s,t] C [1, h| is repetitive if it is
e-repetitive for some e € Oy,.

Claim 5.14. There exist indices 1 =tg < 51 <t1 < 852 <ty <--- < 8q <ty < 5g41 = h such that
[s1,t1], ..., [sq. tq] are all repetitive and for Dy = [to, s1], D1 = [t1,s2],...,Dg = [tg, Sq+1] we have
q+ > 50 Dyl < 3[OL].

Proof of the Claim. For all z € [1,h] let A\(z) = max{¢ € [1,h] | e, = e,}. Observe A(z) > z
for all z € [1,h] and that |A([1,h])] < |Or]. We define tg = 1. Let p > 0 and assume that
we have already defined ¢,_1. In case t,_1 = h we are done and define ¢ = p — 1 and s¢41 =
h. So let us assume t,_1 < h. In case there exists z € [t,—1,h] such that z < A(z) we define
sp = min{z € [t,—1,h] | 2 < A(2)} and t, = A(sp), otherwise (i.e. in case z = A(z) for all
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z € [tp—1,h]) we are done and define ¢ = p — 1 and sg41 = h. Immediately by definition we have
1=ty <s1<t;] <s3<ty<--<58g<ty<sgy1 =h (because if we had t,_; = s, for a p € [2,¢],
we would have e, , = e, ; = €s,, 50 A(sp) = A(sp—1) = tp—1 = 5, < A(sp), a contradiction) and
es, = e, for all p € [1,q]. Moreover, the intervals [s1,%1], ..., [sq, t4] are indeed all repetitive. Since
moreover t, € A([1,h]) for all p € [1,q] and |A([1,h])] < |Or| we must have ¢ < |Or|. Now let
Dy = [to, s1], D1 = [t1,82],...,Dq = [tg, Sq+1]. Clearly, these sets are pairwise disjoint. Moreover,
by construction, the only elements z € |Jj_q D) such that z < A(2) are those in X = {s1,...,54},
so that all elements z € (Uj_o Dp) \ X satisfy z = \(2), i.e. are elements from A([1, h]). Thus, we

obtain g+ 34 |Dyl = a+ [Ufo Dp| < 104] + 1X| + (1 h])| = 3|04, 0

Let 1 =tp <51 <11 <83 <ty <--- <8y <ty < 541 = h be the indices satisfying Claim
along with Dy = [to, s1], D1 = [t1, 82, ..., Dg = [tq, Sq+1]. Let d, = |D,| for all p € [0, ¢]. Since, for
all p € [1,¢], the non-empty interval [s,,t,] is repetitive, we have es, = e;, and thus obtain

esp = etp = eSp © wL(eXt$5p+1'“atp,btp"‘y5p+1)'

Hence, we have have w |= Tes, (is, + 1,4, Jt,, Js, — 1) where 7 is the formula given by Lemma
(recall that Re,, is length-synchronous). We can therefore use the formula Te,, to witness that
Wiy, 41 Wiy Wi, -+ wj, —1 i indeed a well-matched word. It will thus remain to verify that
‘wj,, is well-matched for all p € [0,q]: this can be guaranteed by evaluat-

witp e wisp+1 szp+1 .

ing kg, (it,,@s,415 Jspers0t,)- We can now define our final formula ,ugz

ug(x, y) = \/ I S [ R TP TN =T/ R 11

q€(0,|0p,[]
dgy-erdg>1:

[m0§x1<x’1<x2<-~-<x;<y;<yq<-~-<y{<y1§y6/\

2o =2 ANYy =Y A pa-1(Tgr1+ 1, ygs1 — 1) A

q q

/\ \/ ﬂ_e(xp—i_ 1737;;73/3/97%_ 1) A /\ ﬁdp(a:;vxp-‘rlayp-l-l’y;))
p=1 \e€Oy, p=0

O
The following remark is obvious but will be important in Section [5.4]

Remark 5.15. When constructing our predicate ,ug, we could have replaced any subset of the pred-

icates m., where e is pr(L)-reachable from above, by the predicate w&3 expressing that for all

weXT and i, i, 5,5 €1, |w|],i <i' <j <jit holds:

wETEd, 55 = wi.. . wpwy . wj € ¥4 eo VL (exXbu, oy wyw;) = €, and
A(’LUZ .- -wi/) >0

It remains to prove Lemma [5.13

Proof of Lemma [5.13

In essence, our proof is inspired by the approach taken in [25] Proof of Proposition 126|, which is
itself a flawed adaptation (we refer to Section [§|for more details) of the approach taken in [24, Proof
of Lemma 15].
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Let ae € Qs0, Be € N and 7. € Ny given by Proposition [£.8] for e. There exist unique
ne,de € Nyg that are relatively prime such that o, = Z—z. We are going to build an FO[+]-formula
me(z, 7',y ,y) such that for all w € ¥T and 4,4,5",7 € [1,|w|],i < ¢ < j' < j, we have that
w = me(i,7', 5, 7) if, and only if, all of the following conditions are satisfied:

1 A,_“‘Fl — Ne.
W) Fr =@
(ii) —ﬁe < A(wl o Widkne—1Wj—k-de+1 -wj) < ﬁe for all k € N>0 such that k < (j — j/ + 1)/de

(iil) A(Wit(g—1)mye = Witgre—1) = 1 for all ¢ € Nsg with g-ve <" —i4+1 and A(w; - - - witp-1) > 0
for all p € [1,4" — i+ 1];

(iv) A(Wj—gryet1 - Wj—(g—1)-r.) < —1forall ¢ € Nog with g-ve < j—j'+1 and A(wj_py1---wj) <
0forallpe[l,j—j +1].

Let us first prove that these four conditions whose conjunction the FO[+]-formula 7 (x, 2’ ¢, y)
will express, indeed imply the two conditions of the lemma.

If conditions (i) to are satisfied for a w € X and 4,7, 5,7 € [1, |w|],i < i’ < j' < j, we actu-
ally have that w; - - - wywj - - w; € 2. Indeed, condition ensures that A(w; - - - wywjy - - wj) =
0. Conditions and then additionally imply that A(w; - - w;jyp—1) > 0forall p € [1,¢ —i+1]
and A(w; - - wywjr -+ wjyp—1) > 0 for all p € [1,j — j" 4+ 1]. This is because if there were a
p € [1,j—j+1] such that A(w; - - - wywj - - - wjr4p—1) < 0, then it should be that A(wjryp---wj) >0
with p < j — j' as we already know that A(w; - --wyw;s ---wj) = 0: this would be a contradiction
to condition .

Conversely, let us fix some w € ¥ and indices 4,7, 5,7 € [1, |w]|] such that i <i" < j < j,
Wi+ WpwWyr Wi € »2, A(w;---wy) > 0 and e o ¢L(6thi~~-wi,,wj,--‘wj) = e. In the terminology
of Proposition for ' = ¢r(L), we have (w; - --wy,wj ---wj) € Re. We claim that Points (i)
to are actually satisfied. Indeed, recalling that L is length-synchronous by assumption, 2(a)
of Proposition for e in fact states that that Point is satisfied. Next, since for all k£ €

- Lo '
N.g such that & < Z ng =t n”l, the word wj -+ Wit gpn.—1 is a prefix of w;---wy and the
e e
s . |wiwitkme—1|l _ kne _ .
word wj_g.q,4+1 - w; is a suffix of wj ---w; such that m = %d- = Qe 1t must hold
hde

that —f. < A(w; -+ Witkone—1Wj—k-dot1 - w;j) < Be by Point 2(b) of Proposition . We have
that A(w; - - wywj ---w;) = 0 immediately follows from our assumption w; - - - wywj - - - w; € rAa,
thus Point holds. Another consequence of our assumption w;---wywj ---w; € Y2 is that
A(w; -+ wigp—1) > 0 for all p € [1,i — i+ 1] and A(w; - - wypwjr - wjrgp—1) > 0 for all p €
[1,7 — j' + 1]. This implies that A(wj_py1---wj) <0 for all p € [1,j — j' + 1], as already argued
above. Since Wy (1), """ Witgr.—1 18 a factor of w; - --w; of length 7, for all ¢ € N>¢ such that
q-ve <i—i+1and wj_gy.41- - Wj_(g—1)-. 18 & factor of wj - - - wj; of length ~, for all ¢ € N> such
that ¢-v. < j—j'+1, by Points 2(c) and 2(d) of Proposition we finally have that conditions
and are also satisfied.
It now remains to construct the formula 7. (x,2’, vy, y). We set

7'['6(:1:,1’/, yla y) :(:1:/ —x+ 1) ' de = (y - yl + 1) ’ neA
,Ufne,de,ﬁg(xax/vy/?y)/\
vy (2, 2") Avy (Y y),

where the first line checks condition (), the FO[+]-formula i, 4, s, (z,2',y',y) will check con-

dition under the assumption condition is satisfied and the FO[+]-formulas v (z,2') and
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v, (y',y) respectively will check conditions and . We now explain how to build those for-
mulas.

Helper formulas. For all £ € Ny and h € Z such that —k < h < k, we let

H,’j(x): \/ (/\anu(a}—i—p—l)/\/\Eret(ac—i—p—l)/\ /\ th(as—l—p—l)>

I,JC[1,k] pel peJ p€E[LE\(JUJ)

such that for all w € ¥+ and i € [1, |w|] such that i < |w| — k + 1, we have w |= H}'(i) if, and only
if, A(w; - - - wiyp—1) = h.
For all n,d € Ny relatively prime and h € Z, —n —d < h < n + d, we define

Dhawy )=\ (HE (=1 n) AHE(y—2-d+1))
—n<hi<n
—d<hs<d
hi+ho=h

such that for all w € X" and 4, j,k € [1,|w|] withi+k-n—1<|w|and j —k-d+ 1> 1, we have
w = Dzd(i,j, k) if, and only if,

A(wi-l-(k—l)-n o Widken—1Wj—k-d+1 " ° wj—(k—l)d) =h.

Formula i, q44(x,2',y',y). For each p € Nlet 'y = {a_p,...,a-1,a0,0a1,...,ap} and define
Ap: T’y — Z to be the p-height monoid morphism satisfying Ay(ap) = h for all a, € T'). Consider
the language

Lpg={we FZ | Ap(w) =0AVi € [1,|w]], —q < Ap(wy---w;) < q} .

We claim that this language is recognized by a finite aperiodic monoid. This implies, by a theorem
by McNaughton and Papert (see [30, Theorem VI.1.1]), that there exists an FOr, . ,[<]-sentence
fip,q defining Ly, .

Let now n,d € Ny relatively prime and ¢ € N. Consider w € X" and 4,4, 5',j € [1,|w|] such

that i <14’ < j' < j and j’l__j,ill = 4. We want to check whether we have

—q < A(Wi Wit hn—1Wj—kd41 - W5) < g

for all & € N5g such that k¥ < (j — 7'+ 1)/d and moreover A(w;---wyw; ---w;) = 0. Since n
and d are relatively prime, this means that there exists [ € [1,|w]|] such that i/ —i+1 =1-n
and j —j'+1 =1-d. We can hence decompose w;---wy as up---u; with uy,...,u; € X" and
wjr -+ w; as vy -+ -vp with vy,..., v € X% Observe that A(u;v;) € [-n —d,n +d] for all i € [1,1].
Using this decomposition, we now need to check whether —g < A(ujvy) + -+ + A(ugvg) < ¢ for
all k£ € [1,1] and A(uyv1) + -+ + A(wy;) = 0. This is equivalent to checking whether the word
W= AA(uyvy) " CA(ue) 11 1 g belongs to Ly 4.

We thus transform the FOr,  ,[<]-sentence fi 44 into an FOx[+]-formula p, q4(x,2',y',y) by

e replacing any quantification 3zp(z) by 3z(z < (y — y' +1)/d A p(2));

e replacing any quantification Vzp(z) by Vz(z < (y —y' +1)/d — p(z));
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e replacing any atomic formula of the form ay(2) for ap € I'yiq by DI (2,9, 2).

By this translation for all w € X1 and ¢,7,5',7 € [1,|w|] with i < ¢ < 5/ < j and ]Z/__j’,'_’;_ll =154
we have w = pun,q4(i,7, 5, 7) if, and only if, —¢ < A(w; -+ Withn—1Wj—k-d1 - - w;) < g for all
ke N>0,k < (j—jl+1)/d and A(wi-.-wi/wj/-‘-wj) =0.

It remains to show that L, , is recognized by a finite aperiodic monoid for all p,q € N. Set
Qq ={—¢,...,—1,0,1,...,¢, 1L} and consider the monoid Qqu with function composition from

left to right. For each aj;, € I'), we define the function f,, : Q4 — @4 to be such that

W +h ifh#1Land —gq<h'+h<gq

1 otherwise

fah(h/) = {

for all B’ € Q,. We take M, , to be the submonoid of Qqu generated by {fa, | an € 'y} and define
©pq: Iy — My 4 as the unique monoid morphism such that ¢, (an) = fa, for all aj € T'p.

It is straightforward to show, by induction on the length of w, that for all w € I'; and all h € @y,
we have

h+ Ap(w) ifh# L and —g < h+ Ap(wy---w;) < g forallie[l,|wl]

1 otherwise.

pg(w)(h) = {

Thus Lyg = ¢, a({f € Mpq | f(0) = 0}). We claim that the monoid M, q is aperiodic. Indeed, take
f € M,,; we claim that 21 = f2972 Since M, , is generated by {fs, | an € I'p}, there exists
w € I satisfying ¢pq(w) = f. There are three subcases to consider.

o If Ay(w) = 0, then since h+ A, (w" 1wy -+ w;) = h+ Ap(wy -+ w;) forall h € Z, —qg < h < g,
for all n € N5g and ¢ € [1, |w|], we have that f™ = f for all n € N-.

e If A,(w) > 0, then since ¢ < h + Ap(w? ) < h+ A, (w??+2) for all h € Z, —q < h < ¢, both
24 and £2972 must be equal to the function sending every element to L.

o If Ap(w) < 0, then since h + Ap(w?@t2) < h+ Ap(w? ) < —g for all h € Z,—q < h < ¢,
both f2¢t1 and £2¢*2 must be equal to the function sending every element to L.

Formula yf'(x,:r’). For all [ € N5, we let

12

P k
V;r(x,x'):/\(x'f:qul >p— /\ \/H,?(x)) A

p=1 k=1h=0

l
Vz(z-lgx'f:qulﬁ \/th(l’+(2*1)'l)>.
h=1

Fix any w € ¥7 and 4,7 € [1, |w|] such that i < ¢'. We have w |= v;"(i,i’) if, and only if,
A(w; -+ wiyp-1) > 0 forall p € [1, min{I?,i'—i+1}] and A(w;s(g—1)¢ - - - Wirqi—1) > 1forall g € Nug
such that ¢ -1 <1 — i+ 1. The latter is clearly equivalent to having A(Wig(g—1)1" " Witgi-1) = 1
for all ¢ € Nsg,q-1 <7 —i+1and A(w;---wiyp—1) >0 for all p € [1,7 — i+ 1], as required.
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Formula v; (y/,y). For all [ € Nyq, we let

12 p k
Vz_(y',y):/\(y—y’+12p—> A \/Hk_h<y_k+1)) A
p=1 k=1h=0

l
Vz(z-lgy—y’—i—l—) \/Hl_h(y—z-l+1)>.
h=1

Therefore, analogously as for v;" (z,2'), for all w € X+ and j/,j € [1, |w]] such that j' < j, we have
w = vy (5, ) if, and only if, A(wj—giy1 - wj_(g—1)1) < —1forall ¢ € Nsg such that ¢-1 < j—j'+1
and A(wj_py1---wj) <0forallpe(l,j—5 +1].

5.3.5 Evaluation in FO[+] via approximate matching and quasi-aperiodic evaluation
languages (Proof of Point 4)

The following proposition states that every VPL L that has bounded nesting depth and for which
the horizontal and vertical evaluation languages &,, , and &y, . are all quasi-aperiodic, is definable
by FOs; ...[+] sentences in case an approximate matching is present as built-in predicate.

Proposition 5.16. Assume a VPL L has bounded nesting depth and
o &, r 15 a reqular language whose syntactic morphism is quasi-aperiodic for all v € Ry, and
o &y, e 15 a reqular language whose syntactic morphism is quasi-aperiodic for all e € Op,.

Then there exists an FOx ...[+]-sentence n such that for any approzimate matching M relative to
L, we have w € L if, and only if, (w, M(w)) =n for all w € *.

Proof. By hypothesis, there exists d;, € N bounding the nesting depth of the words in L.

By hypothesis also, for each r € Ry, the language &, , is regular and its syntactic morphism
is quasi-aperiodic. This implies, by [30, Theorem VI.4.1], that for each r € Ry, there exists an
FOr,, [<,MOD]J-sentence vy, , defining &, ;.

Finally, by hypothesis, for each e € Op,, the language &y, . is regular and its syntactic morphism
is quasi-aperiodic. Again, by [30, Theorem VI.4.1], for each e € Oy, there exists an FOFW [<,MOD]J-
sentence vy, . defining &y, ..

Auxiliary formulas. We introduce a few auxiliary formulas that all assume access to the full
matching relation M A(w), represented by the relational symbol «~s. The first ones are Ny which
express that the infix w; ... w; € Y2 of w € ¥ has nesting depth at least d > 0. More precisely, for
all d € N, we introduce auxiliary formulas Ny such that for all w € ¥ and i, j € [1, |w|] satisfying
w;---wj € B2, we have that (w, M* (w)) = Ng(4,7) if, and only if, nd(w; - --w;) > d. The case
d = 0 is trivial since we can set

NO (iv ]) =T.

Note that if nd(w) = d > 1, then w can be factorized as w = wyuwsy such that u € LB et
and nd(w) = nd(u) > d. This means that u = ajvb; € for some a; € ea, b1 € Yyt and
v € . We then apply Lemma and Lemma implying that u has a nesting-maximal stair

factorization
!
U = exty, y; 0€Xtgy b O Xty y, 0exty, b, (U)
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for which there exists h € [1, k] such that, setting u; = extq, p, 0 Xty | 4\, 0 -0 €xtq, p, (u') for all
i €[1,k] and up1 = ', we have nd(u) = nd(up) > d and nd(upy1) > d — 1. Thus, up = apz122bp
for some z1, zp € 2 satisfying nd(z1),nd(z2) > d— 1.

Hence for d > 1 we set

Na(z,y) = 32’3y 3" Fy"Is(z < 2’ <a” <y’ <y <yna’ ey A" e yf'A
Na-1(a" +1,8) A Ng_1(s,y" = 1)) .

Next let us define a formula A such that for all w € ¥* and 4, j, k € [1, |w|] satisfying w; - - - w; €
¥4, we have that (w, M® (w)) = A(4, 7, k) if, and only if, i < k < j and A(w; ---wg) > 0. We let

Alx,y,2) =T/ (e <2’ <2<y <ynz' «y).

Finally, we define a formula U such that for allw € % and 4,4, k € [1, |w|] we have (w, M* (w)) =
U(i, i, k) if, and only if, i < k <4’ and k is matched with some position larger than /. We let

Uz, 2, 2) =2 <2< A3tz ew t A2 < 1).

Main construction. To build the FOy ....[+]-sentence 7, we build FOy; ....[+]-formulas
o 1) (z,y) for all d € N and all 7 € Ry, and
® Nir(z,y) for all d € Nand all r € Ry,

that also assume access to the full matching relation M A(w). They will have the following properties
for all w € £ and all 4,j € [1, |w|]:

e if i is matched to j in w, then (w, M* (w)) | ngr(i,j) if, and only if, nd(w; - - - w;) < d and
or(w; - --wj;) =r and

o if w;---w; € X2, then (w, M* (w)) E n4,(i,7) if, and only if, nd(w;---w;) < d and
pr(w;---wj) =r.

Let the formula E be defined as Vz(x # x) if e € L and L = Jx(z # z) otherwise. Our final formula
n will then be defined as

N =Vz3t((Scan(z) = 2z o t) A (Sret(2) = £ ov 2))A

(E\/ FoTy (-3 (2 < 2) ATy (y < o) \/ Ny (T, Y) )
repr(L)

It now remains to build ngT(x, y) and ng,(x,y) for all d € N and € Ry. The construction is
by induction on d. Let r € Ry. We define Ug,r(% y) = L. We define 79, as

nO,T(x) y) = ﬁ]Vl (CC, y) A TO(VQDL,T)v
where the translation 7y is inductively defined as follows:
e o(z<)=2<7

o 79(s(2)) = Vcewzl(S)ﬂEim c(2) for all s € (24 \ {e})
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e 79(MOD,,,(2)) =3t(z —x+1=1t-m) for all m € N5g

(
(8(2)) =
o 70(p1(21) A p2(22)) = T0(p1(21)) AT0(p1(22))
(
(

°
3

°
=

—p(2)) = —70(p(2))
o 0(3zp(z,2)) = 3z(z < 2 <y A7o(p(2, 2)))

Now let d > 0. Let us first define 14, when assuming that we have already define ngT. Note

that in case nd(u) < d, then one can factorize u as u = uj ... u,, such that u; € th U Bean 22 S et
and nd(u;) < d for all i € [1,m]. Using this observation we define

nd,T(xay) = _'Nd+1($a y) A Tl(VgoL,r)a

where the translation 71 agrees with the above translation 7y (where, as expected, occurrences of 7
are replaced by 71) except for the following kinds of subformulas:

o 11(3(2)) = Az, 9, 2)
o 11(s(z)) = "A(z,y,2) A (vCGS&’Zl(S)mZint c()VIt(z <t <yAtew zA ng’s(t, z)))

It remains to define ng’r.

First observe that any infix v = w;---w; of w where i is matched to j in w is of the form
u = ajvb; € ¥2 for some a; € Yeall, b1 € Xret, and v € YA As above, we can directly ex-
press nd(u) < d via the formula ~Ngi;. Towards expressing that ¢r(w;---w;) = ¢r(u) = r,
we make use of Lemma [{.14} for the infix u there is a nesting-maximal stair factorization u =
Xty y, 0€Xta, b, O - €Xtyy 4, OexXty, 5, (u') and some h € [1, k] such that, setting up = extq, b, 0 €Xte,, | .y, ©
extg, b, (u') for all £ € [1,k] and w41 = o/, we have

1. nd(u) = nd(up) = d,
2. nd(up41) =d —1, and
3. nd(z1),nd(y1),-..,nd(zy),nd(y) < d.

We first construct for all ¢, (L)-reachable e € Op, a formula x4.(¢,7', 5, j) that verifies whether for

ethi...wi/ wirw; = €Xtyy gy 0€Xtbgy by - - €XE

W 0 eXtqy, by,

Th—1,Yh—1

we have ¢, (extwimwi,yw],,mwj) = e. Exploiting Point 3 from above we can inductively make use of
the formulas {ng_1,+ | ¥ € R} in order to evaluate z1,y1,...,Yn, yn. The formula x4, will verify
if oj...00 € Eyy e, Where o, = lefty,, () oright, (. )0 Yr(exty,, p,) for all m € [i,4].

Hence we set xqe(z, 2",y ,y) = T2(vy, ), where the translation 7o agrees with translation o

(where, as expected, occurrences of 7y are replaced by 7o) with the following exceptions:
o (F2p(z,2)) = Fz(z < 2z < 2’ Aa(p(z,2)))

° T2<$(Z)) = —U(x,x’,z)
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o o(f(2)) = taf(@, 2,y y,2) V Cag(x, 2,y y, 2) for all f € ¢ (O(E4)4), where (using that
T =y =¢€)

a2y y2) = le=2n \/  (alz) AD(y))
a€¥can,bEXret
wL(eXta,b):f

and

Car(z 2’y y,2) = EitEIz’EIt'(U(:I:,x’, 2) N\ z e~ A
Uz, o', 2" ) N2 <2 AN=32" (2 < 2" <2 AU(z,2,2")) N2 e T'A

\/ (a(z) Ab(E)A
aezcallabezrchr,:r”ERL
f=left,soright, ;o) (extq p) ndfl,r’(z/ + 1, z — 1) A Nd—1,7" (t -+ 1, t, — 1)))

Making use of Point 2 above, we can evaluate remaining part ¢ (extz, .y, (un+1)) via the formulas

{na—1, | 7" € Rr}. We are now ready to give the formula n;T. We set

Ny (2,y) = ~Nag1 (2,9) Az e y A2/ (ar <l <y <yna e y'A
d
/\ (Nd’(l‘)y) Ans -Z\]d’(‘/l“/uy/))A
d'=0
\/ (Xd,e(xv ‘/L'lv y,7 y) A Nd—1,r" (:L‘/ + 1a y/ - 1)))

T‘IERL,BEOL
e(r')=r

5.4 The intermediate case

The following theorem effectively characterizes the remaining case, namely those VPLs that are
weakly length-synchronous but not length-synchronous and whose syntactic morphism is quasi-
aperiodic: such VPLs are shown to be constant-depth equivalent to a non-empty disjoint union of
intermediate languages. The computability of k,I € N with k # [ such that £;; <.q L are subject
of Section

Theorem 5.17. If a VPL L that is weakly length-synchronous but not length-synchronous, and
whose syntactic morphism (¢r,vr) is quasi-aperiodic, one can effectively compute regular synchro-
nization languages X1, ..., Xy witnessing that X7%, ..., X}3 are intermediate languages and more-
over L =4 %, X7

Before we give the proof of the theorem we need a bit of notation. Let L C £ be a VPL that
is weakly length-synchronous, not length-synchronous, and whose syntactic morphism (¢r,%r) is
quasi-aperiodic. By Proposition one can effectively compute its syntactic Ext-algebra (Rp,Op),
(pr,vr) and (L) from (a given DVPA for) L.

For all ¢, (L)-reachable e € O, and some fresh internal letter # ¢ 3 let

M, = {u#v | uww € 2, A(u) > 0,e 09y (exty,) = e} and Re = {(u,v) € X% x B | u#v € M.} .
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Note that since L is assumed to be weakly length-synchronous, by Proposition [.3] R. is weakly
length-synchronous for all ¢y (L)-reachable e € Op,.

Also note that since Me = U;co, . eopme L NM{u#tv | uv € Y2, A(u) > 0}, since all languages L
are effectively computable VPLs by Lemma , and since the language {u#v | wv € ro, Au) >
0} is obviously an effectively computable VPL, we obtain that M, C YX*#X* is an effectively
computable VPL. The set S = {(k,l) | 3(u,v) € TF x T : u#tv € M.} C N2 is hence effectively
semilinear by Lemma [6.5] Note that the word relation R. is length-synchronous if, and only if,
there exists some a € Q¢ such that % = « for all (k,1) € S.. Lemma implies that the latter
condition is decidable when S, is non-empty, and that condition is trivially true when S, is empty.
As a consequence one can effectively compute the set

Z ={e€ O |eis ¢r(L)reachable and R, is not length-synchronous}.

Observe that since L is not length-synchronous by assumption, we have Z # () (Proposition .

Let us introduce two fresh copies ¥ = {5 | 0 € £} and & = {7 | 0 € X} of our alphabet . Let
J:(SUS)* - S and J: (TUX)* — X be the (letter-to-letter and hence length-multiplying)
morphisms satisfying (o) = 9(5) = & and 9(c) = 9(7) = o for all ¢ € ¥. Conversely, let
971 (SUD)* — T* and A (S UX)* — T* be the morphisms satisfying 9~(5) = 9 (o) = o
and @71(5) =9 (o) =0 forallo €.

We~deﬁne a new visibly pushdown alphabet T = Yo U Tint U Tiet where Tean = Yecan, Ying =
Yint U U X U{#}, and Yyt = et

For every word u#v € M, consider the unique factorization

UFV = eXby, gy, 0 €Xtbg, b 0 €Xbygy y, ©€Xbay by © eXtay 1y (#)

where k > 1, 21,...,Tkt1,Y1, -+, Ykt1 € Y2 a, ... a5 € Sean, and by, ..., by € Yyet. For these we
define

o ext - Coexts, = o A
(utv)" = exXtyig,) Fn) © Xtarbr @ X0, 5y © Xlanby © X, ) Gy, (E) €1

Finally, for all e € Z we define the language
N, = {(U#U)i €Y |u#ve M.} U{e} C TA.

Remark 5.18. Let be n € N be the constant from Lemma[4.4 for L and let e € Z. When setting
F = (L) and (¢,¢) = (¢r,%r), Lemmal4.4) states that the factorization

UFV = €Xtby, gy, 0 €Xtlg, py 0 €Xbyy y, ©€Xbay by © exXtay 1y (#)

of every word u#v € M, satisfies |x1], ..., |xk|, |y1],- -, |yx| < n. As a consequence, for the corre-
sponding factorization

I N e N __
(u#v)* = extzy g7 © exty, b o extzy g 0 extg, b, © eXta:k+1,yk+1 ()

of every word (u#v)* € N\ {e} we have |21], ..., |[z%|, |71l - -, [TK] < n.

5.4.1 Proof strategy

We are now ready to give the proof strategy for Theorem [5.17} The proof consists of the following
steps.
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1. N, is an intermediate language for all e € Z. Moreover, one can effectively compute a regular
synchronization language X, witnessing that N, = X°7 is indeed intermediate (Lemma |5.19)).

2. N, <cq M, for all e € Z (Lemma [5.20)).

3. M, <cq Ne for all e € Z (Lemma |5.21)).

4. Me <calWsco, is o1 (L)-reachable L for all e € Z (Lemma 5.22).
5. L <cq H.cz Me (Lemma [5.23)).

Let us argue that Theorem [5.17] follows from the above steps. By Point 1 for all e € Z we
have that N, is an intermediate language, for which moreover one can effectively compute a regular
synchronization language X, witnessing that N, = X2 is indeed intermediate. Recalling that Z # 0),
it remains to argue that L =¢q J{Ne | e € Z}. We remark that if a language is constant-depth
reducible to at least of the languages L1, ..., L,, then so is the language constant-depth reducible
to the disjoint union (¢ ; L;. Conversely, if all languages L1, ..., L, are constant-depth reducible
to a language, then so is [#;_; L; constant-depth reducible to the language.

Point 5

L <cd L"j Me
ecZ
Point 3
Scd Lﬂ Ne
ecZ
Point 2
Scd L"j Me
ecZ
Point 4
Scd H‘J Lf
f € Og is ¢ (L)-reachable
Lemma [5.3]
Scd L.

Lemma 5.19. N, is an intermediate language for all e € Z. Moreover, one can effectively compute
a regular synchronization language X, witnessing that N = X2 is indeed intermediate.

Proof. Let e € Z. Recall that YUY C Tint. Our synchronization language X, will be defined over
the alphabet
Yo, ={(a,b) | a € Ycan,b € YTret} U{(g,0),(c,e) | ¢ € Ting}-

For every w = wy - - wy, € X2 N X" with w; € ¥ for all 4 € [1, k] let

(€)= € fw=e d (em) = € fw=e¢
ST @) (e fwAte 0 O TN ew).  (ewmn) ifw e

Let S = ({(W,e) |w € T2 NI U {(e, W) | w € B4 N ES"})* and H = Ycan X Yyet. Observe
that for all w € (SH)*S, setting R(w) = (u,v) we have that v € (X UX)*, v € (X UX)* and
ﬁfl(u)gfl(v) € 2. We define

Xe={we (SH)"Su{e} | R(w) = (u,v) ANeo wL(ethq(u)’g*l(v)) =e}.
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The equality X¥ = N, is immediate from definition. Moreover is X, star-closed by definition.
It is also clear that X, is regular: one can construct a finite automaton whose states involve the
monoid Op, whose initial and only final state is e and which simulates multiplication in Op, by
guessing factors of the form (w,¢) or (g,w) for w € £ N X", or reading letters (a,b) € H. By
construction we have

-1

Re={(0"" (), 9" (v)) | (u,v) € R(Xe) \ {(z,€)}} -

We claim that R(X,) is not length-synchronous: indeed, if R(X,) were length-synchronous, then by

the previous equivalence R, would also be length-synchronous since 91 and 9 preserve lengths
and AW~ (u)) = A(u) > 0 for all (u,v) € R(Xe) \ {(5,€)}. We claim that R(X,) is weakly
length-synchronous. Assume by contradiction that R(X.) were not weakly length-synchronous.
Then, without loss of generality, there would exist (u,v), (u,v) € R(X,) such that |u| # |v/| and
A(u), A(u/) > 0. Then (9~ (u),@_l(v))(ﬁ_l(u’),gzl( )) € Re. Again, since 9! and o preserve
lengths and A(J~(u)) = A(u) > 0 as well as A(9L(«)) = A(w) > 0, it follows that R, is not
weakly length-synchronous as well, a contradiction.

Finally, let p: T¢, — M denote the syntactic morphism of X.. Assume by contradiction that
there exist k,1 € N such that o({w € Y%, | R(w) € T* x T'}) contains a non-trivial group G: we
will derive a contradiction by proving that (¢r,%r) is not quasi-aperiodic.

We make a first observation. Let w € ¢71(G) and assume that for all z,y € Y% G2 we had
zwy ¢ Xe: then, for all w’ € ¢~ 1(G) and z,y € T%,, we would have zw'wy ¢ X, and zww'y ¢ X.
This would imply that ¢(w')p(w) = p(w)e(w') = p(w) for all w’ € ¢~ (G), that is, as G C Y%,
we would have that ¢(w) is a zero in G, a contradiction to the folklore fact that non-trivial groups
have no zero. Hence, for all w € ¢~ (G) there exist x,y € 15, satisfying zwy € Xe.

Let go be the identity of G and g; any other element. By assumption, there exist wo,w; € T5,
such that p(wp) = go and p(w1) = g1. We claim that wo belongs to Y%, HYE,. Assume it were
not the case. Then, given any x,y € T, since |wg| > 1 (because R (wo) and R(wl) both belong to
T* x Y! while not being equal), then either zwi" "'y ¢ (SH)*S or zwi" ™y € (SH)*S and then
setting R(zwg"ty) = (u,v), at least one of u or v must contain z € TA of length at least n + 1,
showing uv ¢ N, by Remark in any case, we would have xw2"+1y ¢ X for any z,y € Tg,, a
contradiction to what we have proven in the last paragraph.

Now let 7 be the shortest prefix of wg such that » € Y% H (which exists because wg € T, HY))
and t be the longest suffix of wg such that t € (Tg, \ H)*; we then write wg = rst with s € (Tg, H)*.
Because there exists z,y € T, satisfying zwowoy € Xe C (SH)"S and wowo = rstrst, we must
have that tr € SH and s € (SH)*. As there exist z,y € T, such that xrs(twors)ty = swowowoy €
X, C (SH)*S, since xrs and twgrs both end with a letter in H, it follows that twors € (SH)™.
Similarly, we have twirs € (SH)". Set R(twors) = (ug,vo) and R(twirs) = (uy,v1). Since
R(wo), R(w1) € TF x T!, we must have |ugp| = |u1| and |vo| = |v1| and we will denote those lengths
by k' and I’, respectively. Let ufy = 0~ (ug), v} = 571(1}0)7 W) =9 (uy) and v} = 571(1}1): because
twors, twirs € (SH)™, it holds that ujv), ujv} € £

Since B(Oy,) forms a monoid there exists p € N5 such that

wL({eXtu(’),vo eXtu’l,v’l})p - wL({eXtu{),vo eXtu’l,vl})zp :

This implies that for all 7 € N5, we have

Ur, (eXtug’*lu’l,v’lvép*l)i € wL({extu/ A eXtu/1 vi})ip = wL({eXtuE),v{)?eXtu’l,vi})p
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Hence, as |ug| = [u}| = k" and |vj| = [v]]| = I, the semigroup {¢r(ext w1, . .m-1)" | i € Nso} is
0 1°7170

contained in 97, (O(Z4)FPI'P),
Let ¢ € Nyg. We have that

(Wi wi)'wo) = (wr)’ # (wr)™ = ((wg? ™ wy) )

because gi # g’i“, otherwise we would have go = g1 by the existence of an inverse of g¢ in G. This
means that there exist z,y € T, satisfying either x(wgp_lwl)iwoy € X, and x(wgp_lwl)i“woy ¢
X,, or x(wgp_lwl)zwoy ¢ X, and x(wgp_lwl)”lwoy € X.. Assume the first case holds, the second
case is handled symmetrically. Observe that

x(wgp_lwl)iwoy = x(rstwgp_2w1)irsty

= zrs(twi?2wyrs)ity
=xrs (t(worst)p_lwlrs)ity

= ars((twors)P ! (twlrs))ity

and, analogously, -
1+

ap—1 woy = xrs((twors)p_l(twlrs)) ty .

x(wo wl)i+1

So as in particular :m“s((twgrs)pfl(twlrs))ity € (SH)*S, since zrs ends with a letter in H, it follows
that zrs € (SH)" and since twirs € (SH)", it follows that ty € (SH)*S. Therefore, because

twors, twirs € (SH)T, we also have :Urs((twors)p_l(twlrs))ZJrlty € (SH)*S. Take ug, vy, uy, vy €
T* such that R(zrs) = (us,vs) and R(ty) = (uy, vy). Since

R (:m’s ((twors)P~! (twlrs))ity) = (ue (™ )y, vy (0105 )0y

and
R(mrs((twgrs)pfl(twlrs))zﬂty) = (ux(ug_lul)iﬂuy,vy(vlvg_l)Hlvx) )

we must have

e=eoyr (ethl (um(ug_lul)iuy)ﬂ_l (vy(vlvg_l)ivz)>

i
=eoyr (extafl(uz),a”(vg) oYL (extug”*uawav&“) oYL (eth?*(uy)ﬁ”(vy))

and

€ 7& eor (eXt5_1 (Uz(ugilul)i-'—luy),@il (vy(vwgl)“'lvz))

i+1
=eoy (eXtﬁfl(uz),E_l(qu oYy, (eXtugp—lu&,Uivgp—1> oYy, (extg,l(uy)ﬁ—l(vy)) .

Thus, it must be that 'l/]L(eXtulopflu,lﬂjivép,l)i £ ¢L(extugp71u,wiv,0p,l)z‘+1.

As this is true for each i € Ny, the semigroup {wL(eXtugpfl ,

1)’ |1 € Noo} that is
contained in wL(O(ZA)k/p,l’p) is not aperiodic, contradicting the quasi-aperiodicity of (¢, ).
Therefore, there does not exist k,I € N such that ({w € Y5, | R(w) € T* x T'}) contains a

non-trivial group G.
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As a consequence we obtain that N, = X' is an intermediate language and that the synchro-
nization language X, witnesses this. O

Lemma 5.20. N, <. M, for alle € Z.

Proof. Assume we are given w € T*. To decide if w € N, using an oracle to M, we do the following
constant-depth computation:

1.

2.

Accept if w = ¢, otherwise continue.

Check if w = uwv for some u € (X U Xcan)* and some v € (X U et )*, reject if this is not the
case.

. Check whether u can be factorized as u = xjay - - xpaprgy1, where k > 1, x1,..., 2541 €

{z e ||z <nAd Y (x) € B2} and ai,...,ar € Sean and whether v can be factorized
as v = yipibyr - - aqyr, where 1 > 1y, ..,y € {y € X | |y < n/\ﬁ_l(y) € Y2} and
bi,...,b; € Yret. Reject if it is not possible. (Observe that this is doable by a constant depth
and polynomial size circuit family since we test membership in finite sets that do not depend
on the input.)

. Finally accept if, and only if, the word

~ ~ —1

I w)ar - 0 N )akd (o) #0 (ye)bi0 (i) - 019 (1)

is in M.,. O

Lemma 5.21. M, < N, for alle € Z.

Proof. Assume we are given w € (X U {#})*, where w = w; -+ wy, and where w; € X U {#} for
all i € [1,m]. To decide if w € M, using an oracle to N, we do the following constant-depth
computation:

1.

2.

Check if w = u#v for some u € X7 and some v € X, reject otherwise.

For all return letters b € 3¢ and all positions j within u at which b appears, check whether
there exists a position ¢ within « such that 1 < j —¢ < n — 1 and the infix w;---wj; is in
Y2, (As above, this is doable by a constant depth and polynomial size circuit family since
we check well-matchedness of at most a fixed number of words that does not depend on the
input.) Reject if it is not the case.

. For all call letters a € Y.u1 and all positions ¢ within v at which a appears, check whether

there exists a position j within v such that 1 < j —i <n — 1 and the infix w; - - - w; is in rAo,
Reject if it is not the case.

. For each position i within u, compute P,y (i) where P,y is the unary predicate defined by

w = Pean(?) if, and only if, 4 is a position within u, w; € Y.y, and there does not exist any
position j within u such that 1 < j —4 <n — 1 and the infix w; - - - wj is in >o,

. For each position j within v, compute Pet(j) where Pyt is the unary predicate defined by

w = Peet(7) if, and only if, j is a position within v, w; € ¥,e, and there does not exist any
position 7 within v such that 1 < j —¢ <n — 1 and the infix w; - - - wj; is in DI
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6. Let 1 < iy < ig-+- < ix < |u| be an enumeration of {i € [1,|u]] | w & Pen(i)} and let
lu| +2 < j; < ji—1--- < j1 <m be an enumeration of {j € [|u| + 2,m] | w = Pret(j)}. Build

~

and
V' = Wiy Wy )Wy, I (wyy + 1wy ) wy M wg 1 we).

7. Accept if, and only if, the word «/v’ is in Ne. O

Lemma 5.22. M, <. L—ijf €0y is pr(L) Ly forallec Z.

-reachable

Proof. Note that the following equivalence holds:
u#v e M, <= 3If € Or that is pr(L)-reachable:eo f =eAu#v e Ly NA(u) >0 .

This holds because for ext,, € O(X%) satisfying e o ¥y (ext,,) = e, as e is ¢ (L)-reachable,
1, (exty, ) must also be ¢, (L)-reachable. Assume we are given w € (SU{#})*. To decide if w € M,

we do the following constant-depth computation using oracles to (4 €0y is o (L)-reachable Ly:

1. Check if w = u#v for some u,v € ¥*, reject otherwise.
2. Check if u#v € Ly for some ¢r(L)-reachable f € Op, satisfying e o f = e, reject otherwise.
3. Finally, accept if, and only if for all ¢y, (L)-reachable f € O we have u# ¢ Ly.

If the second check is successful, then ) (ext,, ) is necessarily ¢ (L)-reachable, so in that case
when A(u) = 0 it holds that u € %% and v (exty.) is ¢r(L)-reachable. Hence, in combination
with the second check, the third check is successful if, and only if A(u) > 0. O

Lemma 5.23. L < ..z M.

Proof. By assumption L is weakly length-synchronous but not length-synchronous, and its syntactic
morphism (¢r, %) is quasi-aperiodic. There is a constant dy, such that all words in L have nesting
depth at most d;, by Proposition 4.11

By the first point of Proposition we may assume that the evaluation language &, ; is
quasi-aperiodic for all » € Ry. This implies, by [30, Theorem VI.4.1], that for each r € Ry, there
exists an FOr, [<,MOD]-sentence v,,, , defining &, ,.

As L is not length-synchronous we cannot assume analogous formulas for the evaluation lan-
guages &, . for all ¢ (L)-reachable e € Oy,. Indeed, Remark provides an example of a weakly
length-synchronous but non-length-synchronous VPL whose syntactic morphism is quasi-aperiodic
but for which some evaluation language &y, . is not quasi-aperiodic.

For proving L <.q4 )¢z Me we must rather make use of the oracles from ),z M. All of the
following predicates can be computed by a circuit family of constant depth and polynomial size with
access to these oracles. More concretely, by accessing oracles to M, for all e € Z we may assume
that we have a predicate 72t such that for all w € XT and 4,7, 5,7 € [1,|wl|],i <7 < j < j the
following holds:

w w4 5 5) = wiwpwyw; € 85 eo Y (€Xtup; s wyw;) = € and  (6)
A(wl .- -U}i/) >0
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For all ¢ (L)-reachable e € Oy, that are not in Z we may assume, by Lemma that we
have the FO[+]-definable (and hence constant-depth computable) predicate 7. at hand. It has the
following properties for all w € ¥% and 4,4, 7', j € [1,|wl|],i <i' < j' < j:

o if w= (4,4, 5, 5), then w; - - - wywy - - -w; € L4 and

o if w;---wywj ---w; € YA Aw;---wy) > 0 and e o ¢L(8thi~-~wi,,wj,-~-wj) = e, then w
7I-e(i’ ilvjla .7)

We can first build an approximate matching p relative to L. This is done totally analogously

as done in Section by replacing the there appearing 7. for each e € Z by our predicate &t

indeed, Remark [5.15] states that the predicates 7. from of Lemma [5.13] could have be replaced by

the predicate w&ct,

Thus, as in the proof of Proposition [5.16] we may assume that we have full access to the matching
relation M2 (w) of our input word w.

For verifying if a given word w € X is in L we follow the same approach as the main construction
in Section[5.3.5 It is however important to stress that this time we cannot assume quasi-aperiodicity
of the syntactic morphisms of the evaluation languages &y, .. Still, we build predicates

o 7, (v,y) for all d € [0,dr] and all r € Ry, and
® Ny, (w,y) forall d € [0,dr] and all r € Ry,
that will have the properties (as 7g, and 772’7,) for all w € ¥4 and all 4,5 € [1, |w|]:
e if i is matched to j in w, then (w, M* (w)) = ﬁgm(i,j) if, and only if, nd(w; - - - w;) < d and
pr(w; - wj) =r;

o if w;---w; € X, then (w, M* (w)) Nar(1,4) if, and only if, nd(w;---w;) < d and

It remains to define the predicates 7j,, and ﬁgr for all d € [0,dr] and all » € Ry. For the

definition of the ﬁg,r and the 7, . we can simply reuse 79 and ngjr as in the proof of Propositionm
respectively (7o, will make use of our sentence v, ). So let us assume d > 0.

Towards expressing the predicate ﬁgr we make use of Lemma [4.14; for any infix v = w; - - - w;
of w of nesting depth d, where 7 is matched to j, there is a nesting-maximal stair factorization

/
U = €Xtbyy gy OXtbgy by O - - €Xty,y 4y OXbg, b, (u')

and some h € [1, k] such that, setting uy = extq,p, 0 €Xty,, |y, 0 -0 €xtg, p, (u) for all £ € [1, ]
and ug,1 = u/, we have

1. nd(u) = nd(up) = d,
2. nd(up41) =d—1, and
3. nd(z1),nd(y1),...,nd(zy),nd(yp) < d.

For all ¢ (L)-reachable e € Or, we build a predicate X, (', j', j) that verifies whether for

Xy wyy wyrw; = €Xbyy gy O €Xbgy by <+ €Xbyy, gy 0 €Xlgy by,
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we have ¢L(6thi~~~wi,7wj/~~~wj) = e. By Points 2 and 3 from above we can inductively make use of
Y, - - Yn, Yn and

the formulas {7,_; ,»

!/

w o TR Y ifh+1<k
i/ 4+1 -1 — . .
v J U otherwise

As expected, the problems are, firstly, that we cannot access our evaluation languages &, . and,
secondly, that we have to build a formula that may not depend on h. As in Section we define
the product

e = P(exty, y, 0exty, p, - -exty, 4, 0exty, p,) and ep=eyy

for all £,¢ € [1,h]. For e € Op, we say an interval I = [s,t] C [1,h] is e-repetitive if s < ¢ and
es = ;. We say [s,t] C [1,h] is repetitive if it is e-repetitive for some e € Or..
By Claim there exist indices 1 = tg < 51 < 11 < 852 <t < - < 859 <ty < Sg41 = h

such that [s1,1],...,[sq, tq] are all repetitive and for Dy = [to, s1], D1 = [t1, 82, ..., Dg = [tg, Sq+1]
we have ¢ + 377 _o|Dp| < 3|0r|. Let i =iy < --- <ip and j, < --- < j1 = j be the positions
that correspond to the positions of the letters ay,...,ap € Ycan and by, ...,b1 € Yt of u in w,

respectively: more precisely iy = i + |21 - - - ap_12¢| and j; = |x1a1 - - - Tpapw' bryy - - - bey1yer1| + 1 for
all £ € [1,h]. Since the non-empty interval [sp,t,] is repetitive for all p € [1,q], we have es, = e,
and thus obtain

esp = etp = esp © ¢(eXt15p+1"'atp’btpmyserl)'

Hence, w = Wexa‘:t(zsp +1,it,, Jt,, Js, — 1) or w = Te,, (is, +1,1t,, jt,s Js, — 1), depending on whether

, € Z or not. We can therefore use the predicate ﬂexaCt or me,  to witness the above equalities,

dependlng on whether es, € Z or not. Next, for all m > 0 and all wr(L)-reachable f € Op we will
construct a predicate oy, ¢(x, 2’9, y) such that the following holds:

W am (i1, 5,7) = wi.owpwp.ow; € X5 AA(w; . wp) = —Awj - -wj) =m — 1
¢L(ethi~~~wi/,wj/~--wj) =f

For 0 = (01,...,0p) € X, & = (&...,&,) € S%, 7 = (r1,...,7p) € R™, and vl =
(rI,...,r,Tn)ERm we define

H(U,E, T, rT) = O;”leeftrg o rightr; o wL(extagygg).

The predicate o, s can be expressed as follows:
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am,f(xvxl)y/’y) = \/ Elxlu"'vxmzlyla"wym

m—1 m—1
Uezcall 562rct

rrierRmM—
f:l_[(dyﬁy"’ﬂ‘f)

<:1::x1/\3:':xm/\y':ym/\y:y1/\
1< T2 < < Ty < Y < < YL A
m
N\ og-1(2g) AEg-1(yg) N g e yg A

g=2

m—1
/\ Nd—1,r, (Tg +1,2g41) /\ yg+1’ Yg +1)
g=1 g=1

We are now ready to define the predicate X, ., where we set 6, = 78" if e € Z and 6, = = if
e Z:

Yd,e(%x,’y/vx) = \/ \/

g€lo, |O>H ep,fo.€1- fq 1.eq,fq€0
dg,.--,dg>1: eg=10AVj e[1 le;= of;
0=10"VJ q =€j—109Jj-1
g+dg+---+dg<3|0] e— eqofq

EI:El...xq_,_lEIazo...x;Elyl...yq+15|yi...y6
2y <oy <) <Tp < < wp <Yy <Yg <o <Yy <y1 <y A
cAyy=y ANz, =2 Ny, =y A

/

Ty =

q

/\ ep :L‘p +1 l‘p, ypa Yp — )) A /\ adp7fp(x;) + 17 Tp4+1,5Yp+1, y;) - 1)
p=1 p=0

The inductive definition of ﬁzm is completely analogous to the definition of 74, in Section
we simply replace every occurrence of 74-1, by 741, and every occurrence of xg. by Xg.

The inductive definition of 7, is completely analogous to the definition of 74, in Section
we access the horizontal evaluation languages &, , for all r € Ry by making use of the sentence
Ve and the already defined ﬁ;,r O

5.4.2 Computation of kI

The following proposition implies the computability of k,l € N such that £;; <.q L already when
VPL L is weakly length-synchronous but not length-synchronous.

Proposition 5.24. If o« VPL L is weakly length-synchronous but not length-synchronous, one can
effectively compute k,l € Nso with k # 1 such that L; <. L .

Proof. Let L C ¥ be a weakly length-synchronous VPL that is not length-synchronous. According
to Point 2 (b) of Proposition one can effectively compute a quadruple (ko, lo, k), ) € N2, for
which there exist exty ,, ext, » € O(X%) such that

b |U’ = kOa |U| = lOa |U,’ = kév |U/| = 6
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o 1 (extyy) = YPr(exty ) is a ¢ (L)-reachable idempotent,
e A(u),A(u') >0, and

o B=R A=
We can explicitely compute such ext, , and ext,s ,» by just doing an exhaustive search. This enables
us to assume without loss of generality while maintaining effective computability that A(u) =
A(u): indeed, in case A(u) # A(u’), we can consider exty, ,, = ext,aqu) yaw) and exty, y, =
ext(,)aw), (y)Aw) satisfying the desired properties.

Let us now define Green’s relations on Oy, (see [27, Chapter 3, Section 1]). Let us consider two
elements x,y of Oy,

o We write x <3 y whenever there are elements e, f of O, such that x = eoyo f. We write
xJyifz <yyandy <y x. We finally write x <3 y if z <3y and z J y.

e We write z <g; y whenever there is an element e of O such that x = yoe. We write x R y
if £ <,y y and y <gy x.

o We write x <g y whenever there is an element e of Of, such that © = eoy. We write x £ y if
r<gyandy<gz.

e Wewritex HyifzRyand z L£y.

Observe that because A(u) = A(u'), we have that uv’ € £ and v/v € £, so that we can
consider the elements extyyy vy = €Xty,p 0 €Xty o 0exty, and extyy/y ppy = €Xtyp 0 €xXtyr 4 0 exty
in O(X%). These elements satisfy Y1 (exbyum,vvrv) <3 YL(extyw) and Y (extyyy vor) <3 VL(eXtyw).
We claim that we actually have ¥ (extyyy vorv) <3 Vr(extyy) and ¥ (extyy/uvow) <5 VL(€Xtyp).
Indeed, assume we would have 11, (€xXtyy/y vov) J YL (extyw). Set @ = P (exty ) and y = ¢ (exty ).
By a classical property of Green’s relations (see |27, Chapter 3, Proposition 1.4]), since it would
hold that zoyox <y x and royox J x, we would have z o y o z R = and dually, since it
would hold that royox <g¢ x and xoyox J x, we would have z oy o x £ x. Therefore,
we would have z oy ox $ z. By another classical result on Green’s relations [27, Chapter 3,
Corollary 1.7], as x is an idempotent, its $-class is a group, hence for w € N5 the idempotent
power of O, we would have (z oy ox)¥ = 2¥ = z (as the only idempotent element in a group is
the identity). This would finally entail that 1 (ext(yu/u)e,(vov)) = VL(€Xb (), (vov)e) 18 @ @L(L)-
reachable idempotent and A((uu/u)?) = A((uuw)¥) > 0 but |(uv'u)¥| # |(uuw)®|, a contradiction
to the fact that (¢r,vr) is ¢ (L)-weakly-length-synchronous. Symmetrically, we can prove that if
we had 1, (extyyy o) J Y1 (exty,y), this would contradict the fact that (¢, %) is ¢r(L)-weakly-
length-synchronous.

We distinguish three cases. In each of these we prove that there exist k,l € N<g, k % [ such that
Li <cd Ly, (exty.)> SO that since Ly, (ext, ) Secd L (by Lemma and by transitivity of <. we
have Ek,l Scd L.
Case |v| = |¢/|. In that case, we necessarily have |u| # |u’|. Then, we can exploit the fact that
matching u3 with vv’v or vu'u with v makes us fall down to a smaller J-class to reduce L31u] 2ful+]u|
t0 Ly, (exty.)- Lhe constant-depth reduction works as follows on input w € ¥*:

1. check if w = zy with z € (ac®™=1 4 ac2MHWI=1)* and y € (by + by)*, reject if it’s not the
case;
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2. build 2/ by sending ac3*=1 to u?, a1 I=1 to wu'u and 3/ by sending by to v3 and by to
/
vv'v;

3. accept whenever z'#y" € Ly, (ext,.,)-

This forms a valid reduction. Indeed, take a word w = zy with z € (ac®*I=1 a2+ I=1)n for n €
Nand y € (by+b2)™ for m € N and consider z'#7’ produced by the reduction with 2’ € (u3+uu'u)"
and i’ € (V3 4vv'v)™. Ifw € L3)u) 2ful+]w'|» then it easily follows that '#y" € Ly, (ext,, ,)- Otherwise,
if w & L3)y] 2ju|+|w|, then either n # m and thus 2y’ is not well-matched because A(2") = n-3-A(u)
and A(y') =m-3-A(v), or n = m and thus 2’y is well-matched, so ext, , = ext,s 41 0+ oexty i
with 2,..., 2, € {v,uv/u} and #|,...,t,, € {v3,vv'v} such that there exists i € [1,n] satisfying
exts € {€xtys yury, Xty }, thereby implying

wL(eth’,y’) <3 TﬁL(Gth;,t;) <3 wL(eXtu,v) .
Our algorithm therefore outputs the pair (k,1) = (3ko, 2ko + k().

Case |u| = |u/|. This case is symmetric to the previous case. Our algorithm outputs the pair

(k, 1) = (2o + 1§, 3lo).

Case |u| # |[v/| and |v] # |¢/|. Then, we can again exploit the fact that matching v with vv'v or
wu/v with v® makes us fall down to a smaller J-class to reduce La.p a.p where A = 3|u| = 3ko,
A" = 2u| + [u'| = 2ko + kg, B = 3|v| = 3lp and B" = 2|v| + [v'| = 2lp + 1§ to Ly, (ext,.,)- ndeed,
we have A - B’ # A’ - B because otherwise we would have

3lul - (2fo] + |V']) = (2]u| + [u]) - 3]

6 |ul [v] + 3 [ul [v'| = 6 |ul |v] + 3 || |v]

lul [v'] = || |v] -

The constant-depth reduction works as follows on input w € ¥*:

1. check if w = zy with z € (acA P~ +acA" B~1)* and y € (by + bo)*, reject if it is not the case;

2. build 2’ by sending acA B’ =1 to (u?)F, acA B~ to (uw/u)? and ¢ by sending by to (v3)5" and
by to (vu'v)?;

3. accept whenever o'#y" € Ly, (ext..,)-

This forms a valid reduction. Indeed, take a word w = xy with x = 21 -2, where n € N and

21y 2n € {acA'B/_l,acA"B_l} and y =t;---t,, where m € N and t1,...,t, € {b1,b2}. Consider
2'#y’ produced by the reduction with o/ = 2} ---z, where 2,,...,2, € {(v*)?, (uv/u)P} and
y =t where t),...,t € {(v})F, (v'v)P}. If w € Lap a.p, then it easily follows that

T'#y € Ly, (exta,,)- Otherwise, if w ¢ La.p', 4.5, three situations can occur.

e There exists i € [1,min{n,m}] such that zy---z,_1t;_1---t1 € La.pr a.p but it holds that
(zi,t;) € {(achB' =1 by), (ac? B~1 b1)}. Assume first (z;,¢;) = (ac B~1,by). In this case, let
= (w/u)P12 2, and § =t - t§+1(v3)B'_1. If A(Z'y") # 0, then

A(_’E/y,) = A(Zi o e Z{

)

(o 1)+ @) = A@F) £0
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thus 2’y is not well-matched. Otherwise, if A(Z'y’") = 0, we can show that 2’y is well-matched.
Indeed, since uv € %4, for all j € [1, |u|], we have A(uy ---wu;) > 0 and for all j € [1,|v]], we
have A(vj -+ v)y) = —A(uvy - --vj_1) < 0. Similarly, since w/v' € £%, for all j € [1, [u/[], we
have A(uj -~ u}) > 0 and for all j € [1, [v/[], we have A(v] - -v|’v,‘) = -A('vy--vj_4) <0.
This implies that for all j € [1,[7'[], we have A(Z] ---&}) > 0 and for all j € [L,[§[], we have
A@' - Pig) = A gl’m) > 0. Therefore, &3 € ¥*. Hence 2’y is well-matched and

extys 0 = eXtZ{-"Z;,l,t/

i—

Lt © extzg’t; oextg g

so that
Yr(exty ) <3 Yrlext. ) <gvr(extuw) -

If we assume that (z;,t;) = (ac*P' =1, by), then we prove in the same way that either 2y’ is
not well-matched or it is well-matched and v (ext, ) <3 ¥r(extyy).

e It holds that n < m and z1---2zpty---t1 € Lap a.p. This entails that A(z't] ---t]) =
A2y 20t -+ th) =0, so that
Az'y') = Aty - t]) + A, - t1) = At -+ th1q) <0

because m > n and A(v) < 0 as well as A(v') < 0. Therefore, 'y’ is not well-matched.

e It holds that n > m and 21 --- 2ptp, - - -1 € L4.pr a4.p. Symmetrically to the previous case,
we can also show that then, 2’y is not well-matched.

Hence, our algorithm outputs the pair (k,1) = (A B', A" B) = (3ko(2lo + 1)), (2ko + k{)3lp) in this
last case. O

5.5 Proof of Corollary

Let A = (Q,%,q0,00,---,0m) be a m-VCA and let L = L(A). One easily computes from A’ a
DVPA such that L(A’) = L. Details of this standard translation are omitted. It will be sufficient
to prove that L is weakly length-synchronous if, and only if, L is length-synchronous. Indeed, one
can simply perform the case distinction of Section [5.1] and observe that, under the assumption that
weak length-synchronicity and length synchronicity coincide, the algorithm for Theorem will
either output that L is in AC? or some m > 2 such that MOD,,, <.q L.

It thus suffices to prove that if L is not length-synchronous, then L is not weakly length-
synchronous. Let (R, Or) be the syntactic Ext-algebra of L along with with its syntactic morphism
(1. 61)  (52,0(S5)) > (Ry,,Op).

The behavior of the m-VCA can be described as follows. To each ext,, € O(X%) one assigns
an (m + 1)-tuple (fi, gi)ic[o,m) of pairs of functions from @ to Q.

Consider the monoid M = (Q9xQ%, ®, 1,s), where ® is reverse function composition on the first
component and function composition on the second component, i.e. for all (£, g), (f',¢") € Q¥ x Q%
we have (f,9) © (f',¢") = (f' o f,gog’). Recall that A is an m-VCA. Consider the monoid
M = (M™ Opmy1, 1a), where ®p,y1 is given by componentwise multiplication in M.

Consider the function ¢ : O(X%) — M, where for all ext,, € O(X%) with A(u) = j (and thus
A(v) = —j) we set C(extuw) = (fi; gi)icjo,m)] € M™ ! such that for all i € [0,m] and all ¢ € Q we
have fi(q) = ¢ for the unique ¢’ € Q satisfying (¢,i) = (¢/,i + j) and g;(¢) = ¢” for the unique
¢" € Q satisfying (¢,7 + j) = (¢",i). The following points follow from definition.
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1. The function ¢ : O(X*) — M is a monoid morphism.

2. For all ext,, ,, ext, » € O(34) with A(u) = A(u') we have
((extup) = Clexty ) = ((extup) = ((exty ) = ((extyw) = ((exty ).
3. For all exty ,, extys v € O(2?) we have
Clexty,y) = Clexty ) = Prlextyy) = Yrlexty ).

Now assume that L is not length-synchronous. Then there exist a ¢y, (L)-reachable idempotent
e € Op and extyq,ext, » € O(X%) such that A(u), A(u') > [l |“|, and ¥y (exty,) =

0, 1
Y (exty ) = e. Without loss of generality we may assume A(u) = A(u’ ) Let w denote the
idempotent power of M. Consider the elements

_ 2w w w _ w 2w \w
extyy = (exty5, oexty ) and exty , = (exty, oext,”,)*.

By definition we have ((ext,,) = ((exty ), and since A(x) = A(z') we obtain ((exts,) =
C(exty ) = C(exty ) = ((exty ) by Point 2. Hence,

Y (extyy) = Yr(exty y) = Yr(extyy) = Yrexty ) =e

by Point 3.

We finally make a case distinction on whether |u| = || or not.

First, assume |u| # |u/|. Then |z| # |2/| by construction. Since ¥ (exty ) = ¥r(exty ) = e,
which is an idempotent of Op,, we obtain that L is not weakly length-synchronous.

Now assume |u| = |u/|. Since = 7$ ‘u| by assumption, we conclude that |v| # [v'|. By

construction, the latter implies |y| # \y |. Slnce Yr(extyy) = Yr(exty ) = e, again we obtain that
L is not weakly length-synchronous.

6 Computability and decidability: Proof of Proposition

We will prove the different statements appearing in Proposition in the following subsections.
Computability of the syntactic Ext-algebra. This paragraph will be devoted to proving
Point 1 of Proposition 5.1} rephrased in the following proposition.

Proposition 6.1. Given a DVPA A with L = L(A), one can compute the syntactic Ext-algebra
(Rr,0r) of L, its syntactic morphism (vr,%r) and pr(L).

We require a bit of notation. For each visibly pushdown alphabet 3 and each finite Ext-algebra
(R,0) it follows from Proposition that each morphism (¢,v): (£2,0(2%)) — (R,O) has a
unique finite presentation: it is given by the tuples

(p(c))cesy, and  (Y(extqp)) (a,b) € call X Sret

The syntactic Ext-algebra (R, Op) of a VPL L over a visibly pushdown alphabet ¥ can be repre-
sented by any Ext-algebra (R, O) such that R has [1,|Rz|] as base set and such that there exists a
bijective morphism (a, 8): (R,O) = (Rpr,Op). Indeed, in that case we have
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1. 2y = z & a(x)a(y) = a(z) for all z,y,z € R;

2. 2y =2 & a Y 2)a T (y) =a1(¥) forall o', y/, 2’ € Ry;

3. f(z) =y < B(f)(a(x)) = a(y) for all f € O and all z,y € R; and

4. fl(2") =9y < B (a Hz") = a 1(y) for all f/ € Op and all 2’,y' € Ry,

For the following claim we avoid the tedious standard algebraic constructions on Ext-algebras
to show decidability of the equivalence problem, since the latter decidability has already been
established in [2].

Claim 6.2. There is an algorithm that decides, given two morphisms into finite Ext-algebras
(pr.91): (E2,0(22)) — (B, 01) and (3,42): (32,0(3%)) = (B1,01) for T a visibly push-
down alphabet and subsets F1 C Ry and Fo C Ry, whether (pl_l(Fl) = cp;l(Fg).

Proof of the Claim. The proof of Theorem [3.18| shows that one can effectively compute DVPAs A
and Ay such that L(A;) = ] (F1) and L(A2) = @5 (F2). By [2] one can effectively decide if
L(A;1) = L(As) by deciding L(A;) C L(As) and L(A3) C L(Ay). O

Proof of Proposition[6.1. By Theorem we first compute from our DVPA A on the visibly push-
down alphabet ¥ an Ext-algebra (R4, 04), a morphism (¢4,%4): (22, 0(2%)) = (Ra,04), and a
subset Fiy C R4 such that L(A) = ¢'(F4). For an Ext-algebra (R, O) define #(R, 0) = (|R|,|0|).
Let <C (N x N)? be the lexicographic order on N x N, i.e. (i,5) < (k, 1) if, and only if either i < k,
ori==kandj<I.

Observe that since (R4, O 4) recognizes L, we have that the syntactic Ext-algebra (R, Or) of L
divides (R4,04) by Proposition so that #(Ryp,0r) < #(R4,04). In fact, we have that any
Ext-algebra (R, O) having [1,4] for i € [1,|Ry|] as base set, satisfying #(R,0) < #(Rr,Or) and
recognizing L via a morphism (¢,v): (£2,0(2%)) — (R,0) is a presentation of (Rp,Opr) with
(¢,1) and F presentations of, respectively, (¢r,%r) and ¢ (L). Indeed, since such an Ext-algebra
recognizes L, by Proposition [3.17)it is divided by (R, Op): this implies that #(Ry,0r) < #(R, 0),
but as also #(R,0) < #(Rp,0L), we have #(R,0) = #(Rr,0r). The morphism (¢,) must
be surjective, otherwise, by Lemma (@(ZA),w((’)(EA))\W(EA)) would be a sub-Ext-algebra
of (R,O) recognizing L such that #(@(EA),#J(O(EA))MEA)) < #(R,0) = #(Rr,0r) while
(Rr,Op) divides ((p(EA),ﬂ}(O(EA))’SO(EA)), which is contradictory. Therefore, by Lemma
there is a surjective morphism («, 3): (R,0) — (Rr,Or), that must be bijective, such that ¢, =
a o, so that (R, O) is a presentation of (R, Or) with (¢,%) and F' presentations of, respectively,
(¢r, 1) and r(L).

Under the assumption that such an Ext-algebra exists, we compute (Rr,O0r), (¢r,%r) and
o1 (L) by enumerating all the finitely many triples made of a finite Ext-algebra (R, O), a morphism
(0, 0): (22,0(£4)) — (R,0) and a subset F' C R such that R has [1,i] for i € [1,|R4]] as base
set and #(R,0) < #(Ra,04). For each of these we test whether ¢~!(F) = ¢ (F4), which is
possible by the above claim and take (R, O), (p,v) and F' from a triple validating this test with
#(R, O) minimal with respect to <.

It remains to prove that an Ext-algebra (R, O) having [1,14] for i € [1,|R|] as base set, satisfying
#(R,0) < #(Rr,0r) and recognizing L exists. Take any bijection a: Ry, — [1,|Rg|]. We define
R to be the monoid with base set [1,|Ry|] and operation defined by z -y = a(a™*(z)a!(y)) for all
x,y € [1,|Rr|]. This is a monoid because

e z-a(lg) = a(a (z)a (a(1Rr))) = a(a™(z)) = a(a ™ (a(1lr))a(z)) = a(lg) - z for all
r € R; and
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o for all z,y,z € R, we have

z-(y-z)= a(a‘l(:n)a_l (a(ofl(y)oz_l(z)))>
= a(a " (z)a " (y)a  (2))
—a <a1 (a(al(x)al(y)))al(z)>
=(z-y)-z.
Define the function 3: O, — R by B(f')(z) = a(f'(a!(z))) for all f' € Or and z € R. Set O to
be the monoid with base set 5(Or) and with composition as operation. This is a monoid because
e B(10)(z) = a(lo(a!(z))) =z = idgr(z) for all z € R; and
e forall f',¢' € Op,

B(f") 0 B(¢)(x) = (f’ (al (a(g'<a1<x>>)))) = a(f o g (@™ @) = B 0 ) ()

for all z € R, so that 3(f") o 8(¢") € O.
Then (R, O) is an Ext-algebra, because for all v’ € Ry, we have

B(left,s)(x) = a(leftr/(ofl(a:))) = a(a_l(oz(r’))a_l(:z:)) = a(r') - x = lefty ) (2)

for all z € R and B(right,.)(z) = right,((z) for all z € R, so that left,, right, € O for all r € R
by surjectivity of a.

We now define (p,1): (£2,0(X%)) — (R,0) as the unique morphism satisfying p(c) =
a(pr(c)) for all ¢ € Eiye and ¢(extyp) = B(¥r(extqp)) for all a € Eean, b € Eret given by Proposi-
tion . It is easy to show that then, p(w) = a(pr(w)) for all w € X% by structural induction on
w. Hence, by injectivity of «, we have

o~ alpr(L))) = {w € 2% | alpr(w)) € alpr(L)}
={wex® |pr(w) € pr(L)} = ¢ (pr(L) = L,

thus (R, O) recognizes L. O

Decidability of quasi-aperiodicity. This paragraph is devoted to proving Point 2 (a) of
Proposition [5.1] rephrased in the following proposition.

Proposition 6.3. Given a morphism (p,7): (32,0(2%)) = (R,0) for ¥ a visibly pushdown
alphabet and (R, O) a finite Ext-algebra, it is decidable if (p,1) is quasi-aperiodic. If (p,v) is not
quasi-aperiodic, one can effectively compute k,1 € N such that »(O(X2)%) is not aperiodic.

For the rest of this paragraph, let us fix a morphism (g, 1): (22, O(2%)) — (R, O), where ¥ is
a visibly pushdown alphabet and (R, O) is some finite Ext-algebra that is the input to our problem.
We first have the following lemma.

Lemma 6.4. For all e € O one can effectively compute a finite Ext-algebra recognizing L, = {u#v |
w € 2 s.t. (exty,,) = e}, where # is a fresh internal letter that does not appear in ¥, along with
an associated morphism and subset.
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Proof. Let ¥/ be the alphabet that emerges from ¥ by additionally declaring # as an internal letter.
We will construct an Ext-algebra (R’, 0’) and a morphism (¢',): (X', O(X)%) — (R',0’) such
that for some element 7’ € R’ we have L. = ¢'~1(1).

We define R = RUOU{_L}, for some fresh zero L, where multiplication between two elements
in R is defined as follows:

e multiplication between two elements in R is inherited from the monoid R;
o r- f=left,ofand f-r =right, o f for all r € R and all f € O;

e | actsasazero,ie. L-r"=7"-1L =1 forallr € R;

o f-g=_1forall f,g € O.

Clearly the identity of R is the identity of R'. Associativity is immediate except for products of the
formry - f-ro,ry 7o f,and f -7y 1o, where f € O and rq1,79 € R. In the first case we have

(r1- f)-ra = (left,, o f) - ro = right,., o (left,, o f) = (right,., o left, ) o f
(left,, oright, ) o f =1 - (right,, o f) =71 - (f-72) .

In the second case we have

(r1-re) - f =lefty ,, o f = (left,, oleft,,) o f =left,, o (left,, o f) =71 (r2- f)

and in the third case we have
f - (r1 - r2) = right,,, o f = (right,, oright,,) o f = right,, o (xight,, o f) = (f -11) - 72 .

We define O’ = (R')® which is clearly a monoid for composition and thus directly get that (R’,0’)
is an Ext-algebra. Applying Proposition we define the morphism (¢’,7/): (¥'2,0(2)%) —
(R',0') as the unique one satisfying ¢'(c) = ¢(c) for all ¢ € Xy, ¢'(#) = idp and where for all
a € Yeall, b € Yiet, we have

Y(extep)(xz) fzeR
V' (extap) (@) =  lextgp) oz ifx €O
1 otherwise (i.e.if z = 1)

for all z € R'. Tt suffices to prove the following claim, which directly implies the desired equality
©'He) = {uftv | uv € 2 s.t. (exty ) = e}. For all w € ¥ we have

o(w) if we x4
¢ (w) = § plexty,) if w = uftv for some uv € P
L otherwise.

We prove it by structural induction on w. The cases when w = € or w = ¢ € Yy follow immediately
from the definition of ¢’. In case w = # = e#e, we have ¢'(w) = idp = P (ext.¢).

For the inductive step first assume w = aw’b for some w’ € ¥'?. If w' is neither in % nor
of the form u#v with uv € 2, then ¢/(w’) = L by induction hypothesis and thus ¢'(w) =
V' (exta ) (0 (W) = 9 (extap)(L) = L as required. If w' € %%, then ¢'(w') = p(w') € R by in-
duction hypothesis, and hence ¢'(w) = ¥’ (extqp) (¢’ (W) = ¢ (extqp) (p(w')) = Y(extqp)(p(w')) =
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o(w) as required. If w' = uftv with uv € B2, i.e. w = auftvb, then ¢'(w') = P(exty,) € O
by induction hypothesis. Hence, we have ¢'(w) = ¢/(extqp) (¢’ (w')) = ¢ (extep)(Y(extyy)) =
w(eXta,b) o w(eXtu,v) = w(eXtau,vb)-

Finally assume w = xy for some x,y € X'\ {¢}. The case when z or y is neither in £ nor of
the form u#v with uv € X2 is easily handled by applying the induction hypothesis and observing
that L is a zero in R’. Two other immediate cases are when both z and y are in ©2 and when
both = and y are of the form u#v with uv € . Consider the case when x € ¥ \ {¢} and
y = u#v with uv € ¥2, hence w = ru#v. The induction hypothesis yields ¢'(z) = () € R and
' (y) = Y(exty,) € O. We obtain

¢ (zy) = ¢'(x) - @' (y) = p(x) - Plextyy) = left(4) © P(exty,y) = Y(extyyp)

as required. Finally, let us treat the case when z = u#v with uv € £ and y € 2\ {¢}, i.e.
w = u#vy. The induction hypothesis yields ¢'(z) = t(ext,,) € O and ¢'(y) = ¢(y) € R. We
obtain

P () = ¢/ (2) - () = Blextuy) - 9ly) = right () 0 Y(extuy) = P(exty)

as required. O

The next goal will be to prove that the set of pairs of word lengths (|u|, |v|) of words u#v € L,
is effectively semilinear for each e € O.

A (realtime) pushdown automaton (PDA for short)is a tuple A = (Q,%,T,Q, qo, F, L), where Q
is a finite set of states, X is a finite input alphabet, I is a finite stack alphabet, gy € Q is an initial state,
F C @ is the set of final states, L € I'\ X is the bottom-of-stack symbol, and Q C Q@ x X xI'x Q x I'*
is a finite transition relation such that for all (p,a, X,q,a) € Q we have « € T* L if X = 1 and
a € (T'\{L})* otherwise. The relation € is naturally extended to the relation Q* C @ x X* x I'* L x
Q@ x I'" L, namely as the smallest relation containing the set {(p,e,a,p,a) | p € Q,a € "L} and
such that moreover, if (p,a, X, q,a) € Q and (q,w, aB,r,7v) € Q, then (p,aw, X3,r,v) € Q*. The
language of A'is L(A) ={w € ¥* | Ja € T*L,3q € F : (qo,w, L,q,a) € Q*}. Hence it is clear that
one can compute a PDA A’ such that L(A") = L(A).

Lemma 6.5. Let A be a DVPA that accepts a language over a visibly pushdown alphabet ¥ such
that L(A) C {u#tv | uwv € S8\ X*#5*} and # € X', .. Then the set

P(L(A)) = {(k,)) e Nx N | Ju e (Z\ {#})" v e (E\{#}): u#tv € L(A)}
1s effectively semilinear.

Proof. We first compute a PDA A’ accepting the same language as A, i.e. L(A") = L(A). Let us
assume without loss of generality that 0,1 ¢ ¥'. We claim that from A’ = (Q, ¥/, T',Q, qo, F, L) one
can compute a PDA A” such that

L(A") = {011 | ugto € L(A")} .
Indeed, the PDA A” can simply be computed as follows: we set
= (Q X {07 1}7 {07 17 #}7F7 Ql? <q07 0>7F X {1}7 J‘) ?

where € is the wnion of {((p,),4, X, {g,),a) | i € {0,1},3c € &'\ {#} : (h,c, X,q,0) € O}
and {((p,0),#, X, (¢, 1), ) | (p,#,X,q,«) € Q}. Finally, we apply Parikh’s Theorem, cf. [I5]
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Section 3|, which implies that the set {(m,n) € N x N | 0m#1" € L(A”)} = P(L(A)) is effectively

semilinear. O
We are now ready to prove Proposition [6.3

Proof of Proposition[6.3 Let e € O. By Lemmal6.4 we first compute a finite Ext-algebra recoginiz-
ing L., along with an associated morphism and subset. From the latter we can compute (by
Theorem [3.18) a DVPA A, accepting L.. We then use Lemma [6.5 to conclude that the set

P(Lo) = {(k,1) e NxN|Juec ¥ ve s uwe D2 exty,) = e}

is effectively semilinear, and this holds for all e € O.

We make use of the folklore fact that semilinear sets are effectively closed under Boolean oper-
ations, cf. [10] for a recent study. To decide whether (¢, ) is quasi-aperiodic, we go through all
possible subsets U C O: if it is a subsemigroup of O that is a non-trivial group, we compute the set
Necrr P(Le) and reject if it is non-empty (which is easy to check given a semilinear presentation of
the set), otherwise we continue. If we were able to go through all those subsets without rejecting,
we accept.

Thus, if (¢,) is not quasi-aperiodic we can find a subset U C O that contains a non-trivial
group and output a pair (k,1) € .oy P(Le); it witnesses that ¢(O(24)*!) is not aperiodic. O

Decidability of length-synchronicity. This paragraph is devoted to proving Point 2 (b) of
Proposition [5.1] rephrased in the following proposition.

Proposition 6.6. Given a morphism (p,): (X2,0(3%)) — (R,0), for ¥ a visibly pushdown
alphabet and (R,0) a finite Ext-algebra, and some F C R, it is decidable if (p,1)) is F-length-
synchronous. If (p,1) is not length-synchronous, one can effectively compute a tuple (k,1, k' ,l") €
NA;O such that that there exist uwv,u'v' € £2 and some F-reachable idempotent e € O such that

_ _ _ _ _ _ k k'
Ylextyy) = Y(exty ) =€, k= |ul, | = |v|, &' = ||, I' = || and § # F.

Before proving the proposition we need a technical lemma characterizing when a two-dimensional
semilinear set contains only vectors with the same slope. We say two vectors &, i € N? are collinear
if ¥ = a - Z for some a € Qsq

Lemma 6.7. Let S = [J;¢; <a‘:},0+2§-":1 Na‘:’i,j> - N2>0 be a non-empty semilinear set, where
Zi; # (0,0) for alli € I and all j € [0,t;]. Then,

k
'{l’(k,l) € SH =1 <« Vi,i'eIVjel0,t;]Vj €l0,ty]:T; and Ty j are collinear.

Proof. First assume that &; ; and &y j are collinear for all 4,7 € I, j € [0,¢;], and j' € [0,%y]. Let
(k, 1), (k/, ll) € S. Thatis, (k1) = i“i’(ﬁ-nlfi,l-i-' : -+ntifi¢i and (k’, l/) = fz",O"‘n,lfi’,l'i" : '+n2.,fi’,ti/
for some 4,47’ € I and some nq,...,ng,nl,..., ngi, € N. But due to pairwise collinearity there exist
a,a’ € Qs such that (k,1) = aZ;o and (K',l') = &'%; o, thus implying % = ]li,/

Conversely assume that there exist two vectors (k,l) = &;; and (K',l') = &y j that are not
collinear. In case this is possible when i # ¢’ and j = j' = 0 we are done, since then (k,1), (k',I') € S
and thus % ]lf—,/ Otherwise Z; o and @ ( are collinear for all ¢,7" € I, so there must exist ¢ € I and
j € [0,t;] such that #; o and Z; ; are not collinear. Then &; o and & + &;; are in S but also not
collinear: indeed, if oo = @0 + @ ; for some a € Qs, then 7 ; = (a — 1)Zp with a —1 > 0
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due to F 0,7 ; € N2\ {(0,0)}, a contradiction. Hence there exist (k,l),(k’,!') € S that are not
collinear, and therefore % # ’;—,, O

Proof of Proposition[6.6 Let us fix the Ext-algebra morphism (¢,1): (B2,0(22)) — (R,0),
where (R, O) is a finite Ext-algebra and where F' C R.

Recall that over the alphabet Y/, obtained from X by declaring a fresh letter # as internal, the
language

Loy = {u#v | uv € DI A(u) > 0,1(extyy) = e} = Le N {uFv | uv € DI A(u) > 0}

is given for all e € O. The language {u#v | uv € ¥ : A(u) > 0} is a clearly a VPL. Thus, for all
e € O, we have that the set

P(Let) = {(k,l) ENxN|JueTFves:uwe D2 Alu) > 0, v(exty,) = e}

is effectively semilinear: indeed, given e € O, using Lemma and Theorem [3.18] we can as in
the proof of Point 2 (a) of Proposition compute a DVPA A, accepting L.; we then compute a
DVPA A4 accepting Ler = L(Ae) N L(A) by using the effective construction given in [2] and finally
use Lemma [6.5] to conclude.

Observe that (p,1) is F-length-synchronous if, and only if, for each F-reachable idempotent
e € O for which P(L.t) is non-empty we have [{¥ | (k,1) € P(Let)}| = 1. The latter condition is
easily seen to be decidable by the characterization provided in Lemma [6.7 Hence, for deciding if
(p,) is length-synchronous our algorithm verifies if for all F-reachable e € O for which P(L.y) is
non-empty we have |{% | (k,1) € P(Ler)}| = 1. On the other hand, if this verification fails, i.e. in
case (p, ) is not F-length-synchronous, our algorithm outputs, again using the characterization of
Lemma , a quadruple (k,1,k',l') € Nio such that for some F-reachable idempotent e € O we
have (k,1), (K',1') € P(Let) and & # & O

Decidability of weak length-synchronicity. This paragraph is devoted to proving Point 2
(c) of Proposition rephrased in the following proposition.

Proposition 6.8. Given a morphism (p,%): (X2,0(3%)) = (R,0), for ¥ a visibly pushdown
alphabet and (R,O) a finite Ext-algebra, and some F C R, it is decidable if (p,1) is F-weakly-
length-synchronous.

Let us fix the morphism (g, 1) : (22, 0(3%)) — (R, O), for ¥ a visibly pushdown alphabet and
(R,0) a finite Ext-algebra, and some F' C R.

Define the new visibly pushdown alphabet ¥ by Scan = {b | b € Sret }, Zing = {€ | ¢ € Sing} and
Siet = {@ | a € Zean}. For all w € ¥*, we define

_ € ifw=e¢
w =
Wy ---wy if w=wp- - wy, for n € Nyg and wy,...w, € X .
We have the following lemma, that we prove later on.

Lemma 6.9. For all e € O one can effectively compute a finite Ext-algebra recognizing the language
of well-matched words K, = {u#v' | u,v/ € ¥*,Fv € ¥* : wv € 2, v/v € ZA,w(extu,v) =
(exty ) = e}, where # is a fresh internal letter that does not appear in ¥ U 3, along with an
associated morphism and subset.
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Over the alphabet ¥/ obtained from ¥ U by declaring the fresh letter # as internal, we define
w,u’ € X%, Jv e B }

ww € B2, u'v € 2, Au) > 0,9)(exty,) = Ylexty ) =€

= K.N{u#u |ud' € (SUD)D : Alu) > 0}

KeT = {u#u’

for all e € O. As in the proof of Point (2) of the second statement of Proposition we can prove
that the language {u#u' | uv’ € (X UX)? : A(u) > 0} is a VPL and thus conclude that for all
e € O, the set

Jue Sk u el vent: }

P(Ke) =4 (k1) e NxN
(Ker) {( ) wv € 28 u'v € B2, A(u) > 0,1(exty,) = P(exty ) = e

is effectively semilinear.

It is clear that (p,%) is F-weakly-length-synchronous if and only if for each idempotent e € O
that is F-reachable, there does not exist any (z1,z2) € P(K¢t) such that z1 # x2. Therefore, to
decide whether (p, 1) is F-weakly-length-synchronous, we go through all e € O: if e is an idempotent
that is F-reachable, we compute the set P(K,q) and reject if it contains a vector (z1,z2) such that
x1 # w9 (which is easy to check given a semilinear presentation of the set), otherwise we continue.
Finally, if we were able to go through all those elements without rejecting, we accept.

Proof of Lemma[6.9 Let X' be the alphabet that emerges from ¥ U Y by additionally declaring
# as an internal letter. We will construct an Ext-algebra (R, 0’) and a morphism (¢’,v’) from
(X2, 0(21)%) to (R, 0) such that for some subset F C R’ we have K, = ¢'~1(F).

Let R = {F | r € R}. We define R = RURUP(0?)\ DU {L,1}, for some fresh zero 1 and

identity 1, where multiplication between two elements in R’ is defined as follows:

e for all 1,79 € R,

r1T9 =TT Ty = 1

172 = TarT r T =L

e forall7 € Rand E € B(0?)\ 0,

r- E = {(left, oey,es) | (e1,e2) € E} E
E -7 ={(ey,left, oes) | (e1,e2) € E}

i
eSS
Il
-

e for all By, By € P(0%)\ 0, we have By - By = 1;
e | actsas azero,ie. L-7"=7"-1 =1 forall € R/;
e 1 acts as an identity, i.e. 1-7/ =7 -1 =17 for all ¥’ € R'.

Associativity is immediate except for products of the form 71 - 75 - 73, r1 - E - 73, 11 - 2 - E and
E 77 73, where E € B(0?) \ § and 71, 79,73 € R. In the first case we have

(T1-T2) T3 =Tary - T3 =T3rar] =71 -T3ry =71 - (T2 - T3) .
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In the second case we have

(r1- E) -3 = {(left,, oeq,e2) | (e1,e2) € E} - T3
= {(left,, o ey, left,, oes) | (e1,e2) € E}
=71 -{(e1,left,, oes) | (e1,e2) € E} =11 - (E-T2) .

In the third case we have

(r1-r9) - E = {(left,,,, o e1,e2) | (e1,e2) € E}
= {(left,, oleft,, oej,e2) | (e1,e2) € E}
=7y {(leftm o 61,62) | (61,62) € E} =7y (7”2 . E)

and in the fourth case we have

E - (1 -73) = {(e1, left,,, 0e2) | (e1,e2) € E}
{(eq,left,, oleft,, oes) | (e1,e2) € E}
{(eq,right, oe2) | (e1,e2) € B} -To = (£ -71) -T2 .

We define O = (R')® which is clearly a monoid for composition and thus directly get that (R/,0’) is
a finite Ext-algebra. Applying Proposition we define the morphism (¢',): (X2, 0(%)%) —
(R',0’) as the unique one satisfying ¢'(¢) = ¢(c) and ¢'(¢) = @(c) for all ¢ € iy, @' (#) =
{((extep), ¥(exte,)) | v € B4} and where for all a,a’ € Sean, b, b’ € Yrer, we have

w(extmb)(lR) ifx=1

V' (extap) (@) =  plextep) (@)  ifz€R

1 otherwise
Plextyy)(1g) if 2 =1
@D'(exty’?)(:c) = ¢ p(exty y)(2') ifz=2a"fora’ €R

1 otherwise
[U bEEth {(¢(eXta,bz) o ey, ¢(eXta’,bz) o 62)} ifre ‘3(02) \ @
W(eXta ?) (;U) = (ezl,eeg)EJ:
1 otherwise

W(exty’b)(:c) =1
for all z € R'. Note that (¢’,%’) is computable because

{(W(exten), lextep)) | v € 2} = {(right,, (), right,,)) | v € B2}
= {(right,, right,) | r € R}
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and

U {(h(extap.) o e1,9(exty ps) 0 €2)}

bEX et
zent
(e1,e2)€x

U {(righty,(.) 0 ¥(extap) o 1, right (1) 0 Y(exta p) 0 €2)}
bEXret

zexs
(e1,e2)€x

U {(right, o 9(extqp) o e1,right, o ¥ (exty p) 0 €2)}
bEX et
reER
(e1,e2)€x
for all 2 € P(O?)\ 0 and a,a’ € Xean.
Now define the set of pairs P = {(u,u') € ¥* x Z* | Jv € ©* : wv € B2, u/v € B2}, it is not

difficult to check that for all w € £*, w € 2 N L*#%" if and only if w = u#u’ for (u,u') € P. It
suffices to prove the following claim, which directly implies the desired equality

P TH{E e BO*)\ 0| (e.e) € E})
={u# | (u,u) € P,Fv € * s uw € B2, u'v € B2, h(exty ) = (exty ) = €}
—{u#u | u,u’ € $%, 30 € B 1 uv € T8, u'v € B8, (exty,,) = P(exty ) = e} .

For all w € ¥4 we have

1 itw=e
o(w) if we X2\ {e}

¢ (w) = { p(w) if w=w forw € £4\ {e}
{((extyp), ¥(exty ) | v € 25 uv,u'v € B4} if w = uftd for (u,u’) € P
L otherwise.

We prove it by structural induction on w. The cases when w = ¢ or w = ¢ € Ljy¢ Or W = € € Dint
follow immediately from the definition of ¢'. In case w = # = e#te, we have

¢ (w) = {(W(extep), vlexteo)) [ v € B2} = {((exten), (exte,)) | v € T v € B2}

as required.

For the inductive step first assume w = aw’f for w' € L2, a € Tean U Bean and B € Tret U Sret.
If w' is neither in 24 US" nor of the form u#u’ with (u,u') € P, then ¢/(w') = L by induction
hypothesis and thus ¢'(w) = ¥/(extq,g)(¢'(w')) = ¥/ (extq,p)(L) = L as required, since w is also
neither in £2 U™ nor of the form u#tu/ with (u,u’) € P. If w' = ¢, then ¢'(w’) = 1 and hence

¢’ (w) = ¢ (extap) (¢ (W)
= ¢/(eXta,ﬁ)<1)
YP(extap)(1r) = p(w) if a € Eean and f € et
= ¥(extap)(1r) = p(ab) if @ =b € Teay and =@ € Syey
il otherwise
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as required, because w = ba@ = ab in the second case. If w’ € ¥\ {e}, then ¢'(w') = p(w') € R by
induction hypothesis, and hence

¢ (w) = ¢/ (exta,p)(¢' (W) = ¢/ (exta,p)(p(w'))

_ Jblextap)(p(w')) = p(w) if a € Bean and 8 € Ype
uE otherwise

as required. If w’ € 72 \ {e}, then w’ = w” for w” € 2\ {e}, so ¢'(w') = p(w") € R by induction
hypothesis, and hence

¢'(w) = (exta 8) (@' (w'))

P (exta,p) (p(w"))

) Y(extap)(p(w”)) = plaw”b) if a = beXenand B =7 € Sret
L otherwise

as required, because w = bw”a@ = aw’b in the first case. If w' = u#u’ with (u,u') € P, i.e.
w = au#u' 3, then

@' (') = {(¢(exty ), Y(exty o)) | v/ € T*, uwv’, /v € EA} € ‘B(OQ) \ 0

by induction hypothesis. Hence, we have

#'(w) = ' (exta,p) (¢ (w'))
= Q;Z),(eXtaﬁ)({(d}(eXtum’)a ¢(6Xtu’,v’)) | v ex” ’U/U u EA})

U {(w(eXtau,v’bz)>w(eXta’u’,v’bz)) | v e Xt ,UU 7u v e EA}

bGZret
zexs

= {(Y(extauw), Y(extony p)) | v € EF, auv,d'u'v € ZA}

ifa=a€ T and B =ad € Xet (where the last inclusion from right to left follows by considering
the unique stair factorizations given by Lemma for the elements of each pair) and ¢'(w) = L
otherwise, as required.

Finally assume w = 2y for some z,y € X'\ {€}. The case when z or ¥ is neither in 22 UX
nor of the form u#u’ with (u,u’) € P is easily handled by applying the induction hypothesis and
observing that L is a zero in R’. Four other immediate cases are when both 2 and y are in £,
when z is in ¥2 and y in EA, when z is in &° and y in ¥ and when both z and y are of the form
u#u’ with (u,u’) € P. For the case when both = and y are in EA, we have that z = 2/ and y = 7/
for 2/, y' € 2, so that ¢/(z) = ¢(2) € R and ¢'(y) = ¢(3') € R by induction hypothesis, hence

¢ (zy) = ¢'(x) - &' (y) = 0(@') - o(y) = oW )p(z') = p(y'x’)

as required, because zy = 2’y = y'2’. Consider the case when z € (X2 U EA) \ {e} and y = u#u’/
with (u,u) € P, hence w = zu#u’. The induction hypothesis yields

() {go(ac) €ER ifzex®\{c

o(a') € R ifx =2 for 2’ € L2\ {e}
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and ¢ (y) = {(P(extyp), (exty o)) | v € %, uv,u'v € X2} € P(O?) \ 0. We obtain

' (w) = ¢'(z) - ¢'(y)

() - {((exty), Y(exty ) | v € X uv,v'v € B4}
(lefty(z) 0 Y(exXtunw), Y(exty o)) | v € B uv,u'v € »2
(h(extrun), V(exty o)) | v € X%, zuv, u'v € B4}

¥
Pr

{
{(y
if € 4\ {e} and ¢’ (w) = p(2') - {(V(extyp), Y (exty ) | v € B uv,u'v € £4} = L if & = 2/ for
z' € ©2\ {e}, as required. Eventually, let us treat the case when = u#u’ with (u,u’) € P and y €
(EAUEA)\{E}, hence w = u#u'y. The induction hypothesis yields ¢'(z) = {(1(extyp), ¥(exty 1)) |

p(y) e R ify e x4\ {e}

I _ . We obtain
oY) €R ify=1y fory € 22\ {e}

ve Y uw, v € B2} € P(OH)\ P and ¢'(y) = {

{(Y(extyp), Y(exty ) | v € T uv,u'v € EA} oy
= {(th(exty), left o 0 lexty ) | v e ¥ uv,u'v € »4)
{(u( )

(1 (exty,p (exty ww)) | v € B un, y'u'v € B4}

if y =19 fory € B4\ {e} and ¢'(w) = {(v )(exty,y), Y(exty ,)) | v € X, uv, u'v € YA p(y) = L if
z € X2\ {e}, as required, because y'u’ = u/y/' in the first case. O

7 Conclusion

In this paper we have studied the question which visibly pushdown languages lie in the complexity
class ACY.

We have introduced the notions of length-synchronicity and weak length-synchronicity. We
have introduced intermediate languages: these are particular one-turn visibly pushdown languages
generated by star-closed regular synchronization languages describing weakly length-synchronous
but not length synchronous word relations and whose syntactic morphism does not contain any
group when applied (convolutions of) words from any set of the form X¥ x %!, To the best of our
knowledge our community is lacking tools to determine if there is at all any intermediate language
that is in AC (even in ACCY) or provably not in AC®. We conjecture that none of the intermediate
languages are in ACC® nor TC-hard.

Our main result states that there is an algorithm that, given a visibly pushdown language L,
outputs if L surely lies in AC?, surely does not lie in AC®, or outputs a disjoint finite union of
intermediate languages that L is constant-depth equivalant to and moreover distinct k,l € Nsg
such that L is hard for a concrete intermediate language of the form Ly; = L(S — € | ac*~15b; |
act=1Sby).

As main tools we carefully revisited Ext-algebras, introduced by Czarnetzki, Lange and Krebs [11],
being closely related to forest algebras, introduced by Bojanczyk and Walukiewicz [7]. For the re-
duction from £j; we made use of Green’s relations.

Natural questions arise. Is there any concrete intermediate language that is provably in ACCY,
provably not in ACY, or hard for TC®? Another exciting question is whether one can effectively com-
pute those visibly pushdown languages that lie in the complexity class TCC. Is there is a TC? / NC!
complexity dichotomy? For these questions new techniques seem to be necessary. In this context it
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is already interesting to mention there is an NC!-complete visibly pushdown language whose syn-
tactic Ext-algebra is aperiodic. Another exciting question is to give an algebraic characterization
of the visibly counter languages.
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8 Some errata in previous work

The following section summarizes some crucial errata in [25].

1.

10.
11.

12.

On page 176 line 8 it is written

if a VPL has SHB there exist unique rationals Al, and A}, such that for (u,v) €
n;l(m) we unambiguously have Aﬁ) = A}, and 2 = A},

[v]

The following language is a counter-example to this claim: consider the VPL generated by the
context-free grammar S — aSb | a’cSY | €, where a,a’ are call letters, b, b’ are return letters
and c is an internal letter. This rest of the section makes use of the above.

. The previous point leads to problems, for instance the last two sentences on page 176 are

problematic. By definition, it does not follow that for each m there is a unique slope v such
that for all (u,v) € n~!(m) we have v = A(u)

ul

. The reduction in Proposition 135 has some problems. Firstly, one cannot assume that auSv~y

is necessarily in L. It can be assumed without loss of generality though. Secondly, if p > 2,
then w — ad(w)By(w!t)y could possibly be mapped to an element i € Z,, where i ¢ {0, 1}:
in this case it is not clear if ag(w)By(w!)y is in L or not.

. Top of page 182: The quotient n / dl € @Q. As mentioned in Point 1 its existence does not

follow from the definition of bounded corridor. The construction of the approximate matching
(proof of Proposition 126 relies on this).

. Page 184: The relation ~~p, is not well-defined. Proposition 126 essentially states a property

that ~~ should satisfy, but the relation ~~, is defined by the formula appearing in Proposition
126. Yet, the formulas appearing already rely on the wrong observation that unique slopes
exist (Point 1 from above). This has consequences for Lemma 127, Conjecture 128, Corollary
129, Conjecture 130, Conjecture 132, and Proposition 137.

. Conjecture 128: If one were to interpret ~», it as “the matching relation”, then the Conjecture

128 is easily seen to be wrong. The VPL generated by the grammar S — acbe | aSb | € does
not satisfy SHB, but its matching relation is definable in FO[arb].

Page 177, line -6. It is written
If such an m exists, we also find such an element that is idempotent.

The language generated by the grammar S — aSbh | ajcb; | ageeby is a counter-example.

. The statement of Proposition 131 is wrong. The language {a™b" | n > 0}* a counter-example.

. Proposition 131: the proof has problems since the morphism is not length-multiplying.

Page 181: In the characterization the first bullet point is incorrect.

The statement of Lemma 125 is wrong. Counter-example: L = {a"b" | n > 0}*. Clearly,
cancel Prl(w) = *  for all w € L but L does not have the WSHB.

int

The statement of Proposition 144 is wrong. Consider the language generated by the grammar
S — aSb | ajchy | agecbe which is a visibly counter language that does not have the SHB
property. However, it is in AC.
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13.
14.

15.

16.

Corollary 145 is wrong due to the previous point.

In the proof on page 192 in line 3 one cannot assume that an idempotent m’ € V exists for
which n;!(m’) is also a witness.

Statement of Lemma 146 is unclear since ~-p, is not clearly defined.

Lemma 147 is unclear since ~~y, is not clearly defined. There is no proof given.
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