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Abstract

We study the question of which visibly pushdown languages (VPLs) are in the complexity
class ACY and how to effectively decide this question. Our contribution is to introduce a par-
ticular subclass of one-turn VPLs, called intermediate VPLs, for which the raised question is
entirely unclear: to the best of our knowledge our research community is unaware of containment
or non-containment in AC® for any intermediate VPL. Our main result states that there is an
algorithm that, given a visibly pushdown automaton, correctly outputs either that its language
is in ACY, outputs some m > 2 such that MOD,,, is constant-depth reducible to L (implying that
L is not in ACO), or outputs a finite disjoint union of intermediate VPLs that L is constant-depth
equivalent to. In the latter case one can moreover effectively compute k, ! € Ny with k& # [ such
that the concrete intermediate VPL L(S — ¢ | ac*~1Sb; | ac'=1Sby) is constant-depth reducible
to the language L. Due to their particular nature we conjecture that either all intermediate
VPLs are in AC? or all are not. As a corollary of our main result we obtain that in case the
input language is a visibly counter language our algorithm can effectively determine if it is in
AC® — hence our main result generalizes a result by Krebs et al. stating that it is decidable if
a given visibly counter language is in AC" (when restricted to well-matched words).

For our proofs we revisit so-called Ext-algebras (introduced by Czarnetzki et al.), which are
closely related to forest algebras (introduced by Bojanczyk and Walukiewicz), and use Green’s
relations.
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1 Introduction

This paper studies the circuit complexity of formal word languages. It is well-known that the regular
word languages are characterized as the languages recognizable by finite monoids. When restricting
the finite monoids to be aperiodic Schiitzenberger proved that one obtains precisely the star-free
regular languages [28]. In terms of logic, these correspond to the languages definable in first-order
logic FO[<] by a result of McNaughton and Papert [29]. The more general class of regular languages
expressible in FO[arb], i.e. first-order logic with arbitrary numerical predicates, coincides with the
regular languages in AC° [16, 19]. These can be characterized algebraically as the regular languages
whose syntactic morphism is quasi-aperiodic [5]. The latter algebraic characterization also shows
that it is decidable if a regular language is in ACY.

Generalizing regular languages, input-driven languages were introduced by Mehlhorn [25]. They
are described by pushdown automata whose input alphabet is partitioned into letters that are either
of type call, internal, or return. Rediscovered by Alur and Madhusudan in 2004 |2] under the name



of wisibly pushdown languages (VPLs), it was shown that they enjoy many of the desirable effective
closure properties of the regular languages. For instance, the visibly pushdown languages form an
effective Boolean algebra. Algebraically, VPLs were characterized by Alur et al. [I] by congruences
on well-matched words of finite index. Extending upon these, Czarnetzki et al. introduced so-
called Ext-algebras [I0]; these involve pairs of monoids (R,O) where O is a submonoid of RF.
Being tailored towards recognizing word languages, Ext-algebras are closely connected to forest
algebras, introduced by Bojariczyk and Walukiewicz [7]: in [10] it is shown that a language of
well-matched words is visibly pushdown if, and only if, its syntactic Ext-algebra is finite. While
context-free languages are generally in LOGCFL = SAC!, the visibly pushdown languages, as the
regular languages, are known to be in NC! [IT]. By a famous result of Barrington [4], there already
exist regular languages that are NC'-hard. In this paper we study the question of which visibly
pushdown languages are in ACY and how one can effectively decide this question.

Related work. Visibly pushdown languages (VPLs) were introduced [2] via deterministic visibly
pushdown automata (DVPA for short). Inspired by forest algebras [7] the paper [10] introduces
Ext-algebras. Unfortunately, the definition of Ext-algebra morphisms in [I0] is incorrect in that it
provably does not lead to freeness.

The regular languages that are in AC? were effectively characterized by Barrington et al. [5]: a
regular language is in AC if, and only if, its syntactic morphism is quasi-aperiodic. By an automata-
theoretic approach, Krebs et al. [22] effectively characterized the visibly counter languages that are
in AC%. These are particular VPLs that are essentially accepted by visibly pushdown automata that
use only one stack symbol. In his PhD thesis [24] Ludwig already considers the question of which
VPLs are in AC®. Yet, his conjectural characterization contains several serious flaws — a detailled
discussion of these shortcomings can be found in Section [§

Our contribution. We reintroduce Ext-algebras, fix the notion of Ext-algebra morphisms and
define the languages they recognize. We also reintroduce the syntactic Ext-algebra of languages of
well-matched words. We rigorously prove classical results like freeness and minimality of syntactic
Ext-algebras with respect to recognition. We prove that a language of well-matched words is a VPL
if, and only if, it is recognizable by a finite Ext-algebra. While these results essentially revisit the
constructions of [10], we use Ext-algebras as a technical tool for studying the complexity of visibly
pushdown languages.

Fix a visibly pushdown alphabet ¥, i.e. ¥ is partitioned into Y.,y (call letters), ¥y (internal
letters), and e (return letters). Denoting A(u) as the difference between the number of occur-
rences of call and return letters in u € £* a word w € ¥* is well-matched if A(w) = 0 and A(u) >0
for all prefixes u of w. A context is a pair (u,v) such that wv is well-matched — contexts have a
natural composition operation: (u,v) o (uv/,v") = (uu’,v'v).

We introduce the following notions: a set of contexts R is length-synchronous if |u|/|v| = |u|/|V/|
for all (u,v), (v/,v") € R with A(u),A(u') > 0 and weakly length-synchronous if uw = u' implies
|v| = |v'| and v = v implies |u| = |u/| for all (u,v), (v/,v") € R with A(u), A(v') > 0. Any language
L of well-matched words induces a congruence =y, on contexts: (u,v) =, (u/,v") if zuwvy € L &
xu'wv'y € L for all contexts (z,y) and all well-matched words w. We introduce the notion of quasi-
counterfreeness: a VPL is quasi-counterfree if for all contexts o € ¥ x 3! we have ¢” =1, o™ for
some n € N or all contexts in ©F x 3! are not =p-equivalent to ¢ o ¢. Finally, we introduce our
central class of intermediate VPLs: a VPL is intermediate if it is quasi-counterfree and generated by a
context-free grammar containing the production S —¢ €, where S is the start nonterminal and whose
other productions are of the form 7" —¢ uT"v such that uv is well-matched, u € (X ScanXi )™ and

int int

v € (B, Zret X, )T such that the set of contexts {(u,v) | S =§ uSv} is weakly length-synchronous

int int
but not length-synchronous. Note that intermediate VPLs are particular one-turn visibly pushdown



languages, that is, visibly pushdown languages that are subsets of (X \ Ypet)* (X \ Zcan)*. As an
example, for all k£,1 > 1 with k # [ a concrete intermediate VPL, denoted by Ly, ; is the one that is
generated by the context-free grammar S — € | ac*~1Sb; | ac'=1Sby: here a is a call letter, ¢ is an
internal letter and by and by are return letters.

As far as we know our community is unaware of whether at all there is some intermediate VPL
that is provably in AC® or provably not in AC® — analogous remarks apply to ACCC.

Our main result states that there is an algorithm that, given a DVPA A correctly outputs
either L(A) € AC®, outputs some m > 2 such that MOD,, is constant-depth reducible to L (thus
witnessing that L(A) ¢ ACY), or outputs a non-empty disjoint finite union of intermediate VPLs
that L(A) is constant-depth equivalent to. In the latter case one can moreover effectively compute
k,l € N5 with k # [ such that the above-mentioned Ly is constant-depth reducible to L(A). We
conjecture that either all intermediate VPLs are in ACY or all are not: note that together with
our main result this conjecture implies the existence of an algorithm that can determine if a given
visibly pushdown language is in AC%. As a corollary of our main result we obtain that in case the
input language is a visibly counter language our algorithm can determine if it is in AC?, hence our
main result generalizes a result by Krebs et al. stating that it is decidable if a given visibly counter
lanugage is in AC? (when restricted to well-matched words).

For our main result we extensively study Ext-algebras, the syntactic morphisms of VPLs, and
make use of Green’s relations.

Organization. Our paper is organized as follows. We introduce notation and give an overview
of our main result in Section In Section [3| we first recall general algebraic concepts and then
revisit Ext-algebras and their correspondence to visibly pushdown languages. Section [ introduces
central notions like length-synchronicity and weak length-synchronicity for Ext-algebra morphisms
and visibly pushdown languages. The proof of our main result is content of Section [5] In Section [0]
we concern ourselves with the computability of the syntactic Ext-algebra as well as decidability of
quasi-aperiodicity and (weak) length-synchronicity. We conclude in Section

2 Preliminaries

By N we denote the non-negative integers and by Ns¢ the positive integers. For integers ¢,5 € Z
we denote by [7, j| the set {i,...,j}. For any function f : X — Y and any subset Z C X we denote
by f|l, : Z — Y the restriction of f to domain Z, i.e. f|,(z) = f(z) for all z € Z.

For all words w = w;---wy,, where w; € ¥ for all i € [1,n], and for subsets I' C X, let
|lwlp = {7 € [1,|w|] | w; € T'}| denote the number of occurrences of letters in I'. For all @ € T" we
write [w|, to denote [w]y,.

We define the languages

EQUALITY = {w € {0,1}" : jw|p = |w|1} and MOD,, = {w € {0,1}* : m divides |w|;}

for each m > 2.
A wvisibly pushdown alphabet is a finite alphabet ¥ = 3.4 U 3 U 3y, where the alphabets
Ycalls 2int, and X, are pairwise disjoint.

Definition 2.1. The set of well-matched words over a visibly pushdown alphabet ¥, denoted by
Y2 is the smallest set satisfying the following:

e ccY? andce Xt for all ¢ € 3,

o awbe X2 forallw € 22, a € Sogy and b € Xy, and



o uv € X2 for all u,v € B\ {e}.

A well-matched word w € X2 is one-turn if w € (2\ Zret)*(2\ Zean)*. A language L C X2 is one-
turn if it contains only one-turn words. Let X be a visibly pushdown alphabet. We define A: ¥* — Z
to be the height monoid morphism such that A(w) = |wly,_ — [w[y, , for all w € ¥*. A context is
a pair (u,v) € ¥* x ¥* such that uv € £2. The composition of two contexts (u,v), (z,%) € Con(X)
is defined as (u,v) o (x,y) = (uz,yv). For o € Con(X) by o we denote the k-fold composition
oo---o0. For any context (u,v) € Con(¥) and well-matched word w € ¥ we define (u, v)w = uwwv.
An equivalence relation = on Con(X) is a congruence if for all x,x’,0,7 € Con(X) we have that
o = 7 implies y oo o X = x o7 o). Given a congruence = over Con(X) we denote by [o]= the
equivalence class of 0. Given a language of well-matched words L C ©2 we write o =, 7 if for all
x € Con(X) and all w € 2 we have (x o o)w € L if, and only if, (xy o 7)w € L. Clearly, = is a
congruence.

Let us briefly introduce context-free grammars. A contezt-free grammaris a tuple G = (V, X, P, S),
where V' is a finite set of nonterminals, ¥ is a non-empty finite alphabet, P C V x (VUX)* is a finite
set of productions, and S € V is the start nonterminal. We write T' —¢ y whenever (T,y) € P.
The binary relation =g over (V U X)* is defined as u =g v if there exists a production T' —¢ y
and z,z € (V UX)* such that u = 2Tz and v = zyz. By L(G) = {w € ¥* | S =, w} we denote
the language of G' where =7, is the reflexive transitive closure of =¢.

In the following we introduce deterministic visibly pushdown automata, remarking that nonde-
terministic visibly pushdown automata are determinizable [2].

Definition 2.2. A deterministic visibly pushdown automaton (DVPA) is a tuple A = (Q,%,T, 0,
qo, F, L), where

e () is a finite set of states,
e > is a vistbly pushdown alphabet, the input alphabet,

o I is a finite alphabet, the stack alphabet,

qo € Q s the initial state,

F C Q is the set of final states,

1 €T is the bottom-of-stack symbol, and

5:QxXxT = Qx ({efuT' U ('\ {L}I) is the transition function such that for all
gEQ,aceX,acl:

— if a € Yequ, then 6(q,a,a) € Q x (I'\ {L})a,

— if a € Xpet, then 6(q,a,a) € Q X {e}, and

— if a € Ly, then §(q,a,a) € Q x {a}.

We define the extended transition function 5 Q X X* xI' — @ x I'" inductively as

o 3(q,e,8) = (q,B) for all g € Q and § € I,

-~

e 6(q,w,e) = (q,¢) forall g € Q and w € X7, and

e 0(q,aw,ap) = g(p,w,vﬁ), where §(q,a,a) = (p,y) forall g € Q, a € ¥, w € ¥* o € T" and

~

The language accepted by A is the language L(A) = {w € ¥* | d(qo,w, L) € F x {L}}. We call



such a language a wvisibly pushdown language (VPL). We remark that visibly pushdown languages
are always subsets of L2,
We refer to [I7] for further details on formal language theory.

Semi-linear sets. Given d € Nwg, for ¥ = (21,...,24),7 = (y1,...,vq) € N? we define &+ § =
(x1 4+ Y1, ..., 24 + yq). We define the norm of a vector ¥ € N¢ as ||Z|| = max{z; | i € [1,d]}. For
X, Y CNedefine X +Y ={Z+7|Z€ X,y€Y}. For Z= (1,...,24) € N and n € N we define
nZ = (nx1,...,nzq) and NI = {nZ | n € N}. A set X C N%is linear if X = gj’—#—Zf:l Nz; for k e N
and y, x1,...,x; € N¢ and it is semilinear if X is a finite union of linear sets.

2.1 Complexity and logic

We assume familiarity with standard circuit complexity, we refer to [31], 21] for an introduction to
the topic. Recall the following Boolean functions: the AND-function, the OR-function, the majority
function (that outputs 1 if the majority of its inputs are 1s), and the mod,, function (that outputs
1 if the number of its inputs that are 1s is divisible by m) for all m > 2.

A circuit family (C),)nen decides a binary language L C {0,1}* if C,, is a circuit with n inputs
such that LN{0,1}" = {z1...2, € {0,1}" | Cy(2x1,...,z,) = 1} for all n € N. In this paper, we
will consider circuits deciding languages over arbitrary finite alphabets: to do this, we just consider
implicitly that any language over an arbitrary finite alphabet comes with a fixed binary encoding
that encodes each letter as a block of bits of fixed size. By <.q we mean constant-depth truth table
reducibility (or just constant-depth reducibility) as introduced in [§]. Formally for two languages
K C I and L C X* for finite alphabets X, I", we write K <.q4 L in case there is a polynomial
p, a constant d € N, and circuit family (C,)nen deciding L such that each circuit C), satisfies the
following: it is of depth at most d and size at most p(n) and its non-input gates are either AND-
labeled, OR-labeled, or so-called oracle gates, labeled by L, that are gates deciding L N X" where
m < p(n), such that there is no path from the output of an oracle gate to an input of another oracle
gate. We write K =.q L if K <.,q L and L <.q4 K; we also say that K and L are constant-depth
equivalent. We say a language L is hard for a complexity class C (or just C-hard) if L' <.q L for
all L' € C. We say L is C-complete if L is C-hard and L € C. The following complexity classes are
relevant in this paper:

o AC” is the class of all languages decided by circuit families with NOT gates, AND, OR gates
of unbounded fan-in, constant depth and polynomial size;

e ACCY is the class of all languages decided by circuit families with NOT gates, AND, OR and
modular gates (for some fixed m) of unbounded fan-in, constant depth and polynomial size;

e TC" is the class of all languages decided by circuit families with NOT gates, AND, OR and
majority gates of unbounded fan-in, constant depth and polynomial size;

e NC! is the class of all languages decided by circuit families with NOT gates, AND, OR gates
of bounded fan-in, logarithmic depth and polynomial size.

We also consider the framework of first order logic over finite words. (See |20, 29] for a proper
introduction to the topic.) A numerical predicate of arity r € N5 is a symbol of arity r associated
to a subset of N5g". Given a class C of numerical predicates and a finite alphabet 3, we call FOx|[C]-
formula a first order formula over finite words using the alphabet ¥ and numerical predicates from
the class C. On occasions, we might also consider FOsy; ....[C]-formulas that in comparison to the
previous ones can use an additional binary predicate «~ and are interpreted on structures (w, M)



with w € 2* and M C [1, |w|]2, where everything is interpreted as for FOx[C]-formulas on w excepted
for «~ that is interpreted by M. Given a class C of numerical predicates, by FO[C] we denote the
class of all languages over any finite alphabet ¥ defined by a FOx[C]-sentence. A classical result
at the interplay of circuit complexity and logic is that AC® = FO [arb], where arb denotes the class
of all numerical predicates (see [29, Theorem IX.2.1] or [20, Corollary 5.32]). The other numerical
predicates that we will encounter in this paper are <, + and MOD,,, for all m € Ny, (gathered
together in the set MOD = {MOD,,, | m > 0}).

2.2 Main result

The notion of length-synchronicity and weak length-synchronicity will be a central notion in our
main result. In the following X always denotes a visibly pushdown alphabet.

Definition 2.3 ((Weak) Length-Synchronicity). Let R C Con(X) be a set of contexts.
e R is length-synchronous if |u|/|v| = || /|V| for all (u,v), (u/,v") € R with A(u), A(u’) > 0.

e R is weakly length-synchronous if u = v’ implies [v| = V| and v = V" implies |u| = |u'| for
all (u,v), (u',v") € R with A(u), A(u") > 0.

Note that a set of contexts R is weakly length-synchronous if R is length-synchronous. Indeed,
if, say (u,v), (u,v") € R, where |v| # |v/| and A(u) > 0, then |ul, |v], [v'] > 0 and so the quotients
% and % are distinct, thus violating length-synchronicity of R.

Definition 2.4 (Quasi-Counterfree). A VPL L C X% is quasi-counterfree if for all o = (u,v) €
Con(X) we have o™ =, o™ for some n € N or for all 7 € X1 x $I*IN Con(X) we have T #1 0o 0.

We will later show that quasi-counterfreeness of a VPL L C 32 is equivalent to the condition
that there is no k,/ € N such that there is a subset of Con(X) N X* x ¥ that forms a non-trivial
group when considering the associated equivalence classes with respect to =5, (Proposition |4.18]).

Example 2.5. Consider the visibly pushdown alphabet ¥, where Y.,y = {a}, %iny = {c} and
Yret = {b1,b2}. For all k,1 € Ny satisfying k # [, consider the language Lj; generated by the
context-free grammar S — acf~1Sb; | ac'=1Sby | ¢ . We have that the set of contexts {(u,v) €
Con(¥) | S =¢ uSv} is weakly length-synchronous since both the relation and its reverse is a
partial function — however, it is not length-synchronous. It is also not hard to see that Lj; is
quasi-counterfree.

We say a context-free grammar G = (V, X, P, S) is vertically visibly pushdown if the underlying
alphabet 3 is a visibly pushdown alphabet, S —¢ €, and all other productions of G are of the form
T —¢ uT'v, where uv € %* is one-turn such that u € (3f, Sean¥i, )T and v € (8F, Sret D5 T

Note that each grammar generating £y, ; in Example is vertically visibly pushdown. The following
remark is obvious.

Remark 2.6. The languages generated by vertically visibly pushdown grammars are one-turn VPLs.

Definition 2.7 (Intermediate VPL). A VPL L is intermediate if it is quasi-counterfree and L =
L(G) for some vertically visibly pushdown grammar G for which R(G) = {(u,v) € Con(X) | § =
uSv} is weakly-length synchronous but not length synchronous.

Thus the languages Ly ; from Example @ are all intermediate VPLs. Loosely speaking, they
are the simplest intermediate VPLs. We have the following conjecture.



Conjecture 2.8. There is no intermediate VPL that is in ACCY or TC?-hard under constant-depth
reductions.

In fact, the authors are not even aware of any intermediate VPL that is provably not in ACY.
An indication for the inadequacies of known techniques to prove it is that the robustness [21] of
intermediate VPLs can be proven to be constant. Further techniques, based for instance on the
switching lemma [18] or on the polynomial method [6] also do not seem to be applicable.

Our main result is the following theorem.

Theorem 2.9. There is an algorithm that, given a DVPA A, correctly outputs either
o L(A) € AC?,
o m > 2 such that MOD,,, <. L(A) (hence implying L(A) & AC®),

o vertically visibly pushdown grammars Gi,...,Gn each generating intermediate VPLs such
that L =4 ;" L(G;). In this case one can moreover effectively compute k,l € N with k # 1
such that Ly <.q L(A).

Theorem and the following conjecture imply the existence of an algorithm that decides if a
given visibly pushdown language is in ACC.

Conjecture 2.10. FEither all intermediate VPLs are in AC® or all are not.

2.3 Corollary for visibly counter languages

A wvisibly counter automaton with threshold m (m-VCA) over a visibly pushdown alphabet ¥ is a
tuple A = (@, %, qo, F, 00, - -.,0m), where @ is a finite set of states, qo is the initial state, F C Q
is a set of final states, m > 0 is a threshold, and §; : @ X X — @ is a transition function for each
i€ [0,m].

A configuration of A is an element of @ x N. For any two configurations (¢,n), (¢/,n’) and any
r € ¥ we define (q,n) 54 (¢,n') if ¢ = Omin(n,m)(¢, ) and n’ = n 4+ A(x). The relation 54 is
naturally extended to 4 for w € ¥*. By L(A) = {w € £2 | 3¢ € F : (¢0,0) >4 (¢,0)} we
denote the language (of well-matched words) of A. We remark that the language of any m-VCA is
a visibly pushdown language. We also remark that the languages of m-VCAs are defined to be sets
of well-matched words as in [3], whereas in [23] the well-matched requirement is not present.

The following corollary implies the main result of [23] when restricted to well-matched words.

Corollary 2.11. There is an algorithm that, given an m-VCA A, correctly outputs either that L(A)
is in ACY or some m > 2 such that MOD,,, <.q L(A) (hence implying L(A) ¢ AC°).

For the proof of Corollary we refer to Section

3 Language-theoretic and algebraic foundations and Ext-Algebras

3.1 Basic algebraic automata theory

For a thorough introduction to algebraic automata theory, we refer the reader to the two classical
references of the domain by Eilenberg [12} 13] and Pin [26], but also to the following central reference
in automata theory [27, Chapter 1].

A semigroup is a pair (M, -), where M is a non-empty set and - is a binary operation on M that
is associative, i.e. - (y-z) = (z-y) - z for all z,y, z € M. Usually, when the operation is clear from



the context, we write it multiplicatively and write just M instead of (M,-). The semigroup M is
trivial if |M| = 1, and non-trivial otherwise. A subsemigroup of M is a semigroup N such that N is
a subset of M and the operation of N is the restriction of the operation of M to N. We often just
write xy to denote x - y. An idempotent of a semigroup M is an element x € M satisfying x = zx.
The idempotent power of a finite semigroup M is the smallest positive integer w such that x* is an
idempotent for all x € M. The zero of a semigroup M is the unique element x € M (if it exists)
satisfying xy = yx = x for all y € M. A monoid is a semigroup M with a neutral element, that is,
an element e € M such that x-e =e -z =z for all x € M. We usually denote the neutral element
of a monoid M by 1a;. A submonoid of M is a monoid N that is a subsemigroup of M containing
1ps (which is thus also the neutral element of N). Consider some monoid M. A congruence on M
is an equivalence relation ~ on M that satisfies voz ~ vyz for all v,z € M and all z,y € M with
x ~ y. We denote by [z]~. the equivalence class of € M. The quotient of M with respect to a
congruence = is the monoid M /= with base set M /== {[m]= | m € M} and operation given by
[z]= - [yl= = [vy]= for all z,y € M.

A group is a monoid M in which for all x € M there exists an inverse, that is, an element
2’ € M such that z2’ = 2’z = 1);. Each element in a group M has a unique inverse, so we denote
by 2~! the unique inverse of an x € M. A subgroup of a group M is a submonoid of M that is a
group. Given a semigroup M, a set S and a subsemigroup N of M, whenever N C S, N is said to
be contained in S. A semigroup M is aperiodic if it does not contain any non-trivial group. It is
well-known that a finite semigroup M is aperiodic if, and only if, given w the idempotent power of
M, it holds that z¥ = z**! for all z € M if, and only if, there exists k € N such that z* = zF*+!
for all x € M.

A morphism from a monoid M to a monoid N is a mapping ¢: M — N such that p(15) = 1n
and p(zy) = p(z)p(y) forall z,y € M. If M = ¥* and N =I'* where ¥ and I" are finite alphabets,
we call ¢ length-multiplying whenever there exists k € N such that p(X) C T, Let ¢: ¥* — M
be a morphism, where X is a finite alphabet and M is finite. Then there exists [ € Ny such that
o1 = (X?): this implies that o(¥') is a semigroup. The smallest such [ is called the stability
index of the morphism . It is easily shown that if ¢(X") contains a non-trivial group for some
n € N, then so does p(X!). We say that h is quasi-aperiodic if p(X") does not contain any non-
trivial group for all n € N, which is equivalent to the fact that ¢(X!) is aperiodic. (See [5] 29] for
the original definition and [30] for the definition using the stability index, though it has been only
formulated for surjective morphisms.)

A language L over a finite alphabet X is recognized by a monoid M if there is a morphism
©: ¥* — M and F C M such that L = ¢! (F). The syntactic monoid of a language L C ¥* is the
quotient of X* by the congruence ~ (called the syntactic congruence of L) defined by x ~, y for
x,y € ¥* whenever for all u,v € ¥*, uzv € L & uyv € L. The syntactic monoid of L recognizes L
via the syntactic morphism of L sending any word w € ¥* to [w]~,. A fundamental and well-known
result is that a language L is regular if, and only if, it is recognized by a finite monoid if, and only
if, its syntactic monoid is finite.

3.2 Ext-algebras

This section builds on [I0], but identifies an inaccuracy in the definition of Ext-algebra morphisms
to establish freeness.

Let (M,-,157) be a monoid. For each m € M, we shall respectively denote by left,, and right,,
the left-multiplication map x — m - x and the right-multiplication map x — x - m.

Definition 3.1. An Ext-algebra (R, O,-,0) consists of a monoid (R,-,1r) and a monoid (O, 0,10)
that is a submonoid of (RE, o) containing the maps left, and right,. for each r € R.



Definition 3.2. Let (R,0) and (S, P) be Ext-algebras. An Ext-algebra morphism from (R, O) to
(S, P) is a pair (p,v) of monoid morphisms ¢: R — S and ¢: O — P such that:

e for alle € O and r € R we have ¥(e)(¢(r)) = p(e(r));

e for all v € R we have (left,) = left .y and 9 (right,) = right

o(r o(r)

We write (p,¢): (R,0) — (S, P). The morphism (p, 1) is called surjective (respectively bijective)
if both @ and 1 are surjective (respectively bijective).

When it is clear from the context, we shall write morphism to mean Ext-algebra morphism.

Remark 3.3. In the above definition, ¢ is totally determined by 1, because for each r € R, we have
o(r) = p(leftr(1r)) = ¢ (left,)((1r)) = ¢ (left,)(1s).

Definition 3.4. Let (R,0) and (S, P) be Ext-algebras. Then

e (R,0) is a sub-Ext-algebra of (S, P) whenever R is a submonoid of S and there exists a
submonoid O" of P such that O = {e|y | e € O'}, so that we may denote O by O'| 5.

e (R,0) is a quotient of (S,P) whenever there exists a surjective morphism from (S, P) to
(R,0).

e (R,0) divides (S, P) whenever (R,O) is a quotient of a sub-Ext-algebra of (S, P).
For the rest of this section, let us fix some visibly pushdown alphabet X.

Definition 3.5. For all (u,v) € Con(X), consider the function ext,, YA s 3* such that exty () =
uzv for all x € . We call

extyy = eXby gy 00Xty

a factorization of exty . That is, u=T1...Tm, V= Ym - Y1.

The following lemma states that each ext,, has a unique factorization when restricting the
(x5, 1;) to be from L2 x 2 or from Yeay X Lrer and minimizing the number of (z;,;) € L2 x L2
we obtain its so-called stair factorization.

Lemma 3.6. For all ext, , there exists a unique factorization
extyy = Xty y 0€Xbg b, 0 rr 0eXbyy, g, O€Xte, b, OXlg, 4,

satisfying h > 1, x;,y; € £ for all i € [1,h] and a; € Xequ and b; € Byey for all i € [1,h —1]. In
particular, exty,, is in fact a function from YA to B4,

Proof. We show additionally that the required factorization must satisfy h = A(u) + 1. We prove
the statement by induction on |uv|. In case |uv| < 1, then either ext, , = ext.., or there is some
¢ € Yin such that ext,, = extc. or ext,, = ext... In any of these cases, we uniquely factorize
exty,, as exty, 4, with 1 = v and y; = v.

Let us consider the case when |uv| > 2 and let h = A(u) + 1. Note that since uv € £ we have
u € B2 if, and only if, v € 2. In case u,v € £ we have A(u) = 0, hence the only factorization
of the desired form is indeed ext, , = exts, y,, where 1 = u and y; = v. Let us finally treat the
case when u,v ¢ ¥, thus A(u) > 1 and hence h > 2. Let x be the maximal prefix of u satisfying
z € ¥ and let y be the maximal suffix of v satisfying y € £. Due to maximality of z and y there
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must exist ¢ € Yean, b € Sret, and v/, v € ¥* such that u = zaw’, v = v'by and W'v/ € L2 with
A(u/) =A(u) —1=h—2. Let Xty ) O€Xbaypy O 0 exXtbyy oy, o 0€Xtq, ,p, , 0€Xty, |4, , be
the unique factorization of the desired form for ext, , by induction hypothesis. We claim that

exty y 0 exty p 0 exty, 4 0eXty, p O+ 0 ext oext oext

Th—2,Yh—2 ap—2,bh_2 Th—1,Yh—1

is the unique factorization of the desired form for ext,,. Indeed, since A(u) > 1 any potential
factorization of the desired form for ext,, must be of the form exty , oexty o, where 2’ is a
prefix of u satisfying #’ € £2, ¢/ is a suffix of v satisfying ' € L2, a’ € Zean, and ¥ € Tpet. In
particular z’ is a prefix of x and ¢’ is suffix of y. In case 2/ = x and v’ = y it follows @’ = a and
b' = b and uniqueness follows from induction hypothesis. It remains to consider the case when 2’ is
a strict prefix of x or 3/ is a strict suffix of y. We only treat the former case. It must hold z = z’a’s
for some s € ¥ such that a’s € 2. But then 7 is a factorization for extg,/ . for some z € X*
which is a contradiction since A(s) = —1 due to a's € 2. O

In the following we will denote the unique factorization provided by Lemma as the stair
factorization of ext,,,,. Consider now the set O(X%) of all functions ext,,,, for (u,v) € Con(%): it
is a subset of (ZA)EA closed under composition. Thus, (O(X%),0) is a submonoid of ((ZA)ZA, o).
Since for all w € 2 we have left,, = exty . and right,, = ext.,, the set (’)(ZA) contains the
functions left,, and right,, for all w € 2. Hence, (2, O(X%), -, 0) is an Ext-algebra. The following
important proposition establishes freeness of (£, O(24)).

Proposition 3.7. Let (R,0) be an Ext-algebra and consider two functions ¢: ¥y — R and
V1 {extap | a € Zeaus b € Tpet} — O. Then there exists a unique Ext-algebra morphism (p,1) from
(22,0(22)) to (R,O) satisfying B(c) = ¢(c) for each ¢ € Lipy and P(ext, ) = (ext,p) for each
a € Xeqi, b € Xey.

Proof. We define @ based on a refinement of the structural definition of well-matched words. For
each w € % we inductively define:

1r if w=¢ (type 1)
_, v Jelo) if w=c € Zin (type 2)
Plw) = YP(extep)(@(x)) if w=axbfor a € Xean, b € Lyt and = € ¥4 (type 3)
?(x)p(y) if w =y for z,y € £\ {e}, where |z| is minimal (type 4)

Observe that the four above types give unique decompositions. For proving that @ is indeed a
monoid morphism one proves that for all w,v € % we have B(wv) = B(w)@(v) by structural
induction on w given by the four types. The case v = ¢ is direct, we only treat the case v € ¥\ {¢}
in the following. If w is of type 1 we have p(wv) = p(v) = 1g - p(v) = p(w)p(v). If w is of
type 2 or 3, then wv is of type 4 and w is the shortest prefix of wv with w € £& \ {€}, hence
P(wv) = B(w)B(v). If w is of type 4, then w = zy for some z,y € 2 \ {e}, where z is of
minimal length. Then wwv is of type 4, where wv = z(yv) and z is the shortest prefix of wv with
z € T2\ {e}. Hence p(wv) = p(@)p(yv) = B)BW)F() = Fay)(v) = P(w)p(v), where the
first equality follows by definition of % and the second and third equality follow from the induction
hypothesis. Given any ext,, € O(X%) let

exty, =  exXtgy y oexty p 0 --- oext oext

)

o eXtIh yYh

Th—1Yh—1 ap—1,bh—1
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be the unique stair factorization given by Lemma [3.6l We define

P(extyy) = ?;11 (lef‘%(wi) o rightyy,) 0 1 (extq,, z)) o left o rightzy, ) -

P(zn)
For showing that ¢ is indeed a monoid morphism, one proves ¥(extyy vp) = 1(exty ) 0 Y (exty )
for all exty ,,exty v € O(X?) by observing simply that the unique stair factorization of extyu oo
is obtained by composing the unique stair factorizations of ext, , and ext, .
We now show that (,)) is in fact an Ext-algebra morphism. The discussion above first shows
that both 7: ¥* — R and 1): O(X%) — O are monoid morphisms. Next, let us prove that for all
tup € O(X2) and w € 2 we have ¥(exty ) (B(w)) = Plexty,(w)). Let

extyy = eXty 4 oextal,b1 o -+ oexty oext 0 exXty, yn

1:Yh—1 ap—1,bn—1

be the unique stair factorization of ext, , provided by Lemma If h =1, then

Plexty) (P(w)) = leftyy,) o rightyy, ) ([B(w)) = Blanwyn) = Blextyy(w)) -

Otherwise, we have

P(exty,) (B(w))
=0 (leftw(x ) 0 rights .y 0 P (extq, b)) © leftsy, ) © right(,, ) (@(w))
= Q (left@(x )© rlght@(y extal b )( P(zrwyn )

= Q (left@(xz) o rightg .y © @ZJ(eXtai,bi))O
leftf(x} 1) © tht@(yh—l) © w(eXtahq,bhﬂ ) (@(mhwyh))
= Q (left z;) © rightg,.) 0 w(ext%bi))o
leftz(q, ) o rights, ) (@(an—1znwynbn-1))
h2 (leftiz(q,) © Tighty,,) 0 Y(exta, b,)) (P(zh—1an-12hWYRDL-1Yn-1))

=p(z1a1 - Th—10—1THLWYRbL_1Yh—1 - - - b1Y1)
=p(extyn(w)) -

Let us prove that for all w € %% we have 1(left,,) = left(,). Noting that the unique stair
factorization of left,, is ext,, . we obtain

Y (lefty) = th(exty,c) = leftis(,) o right; 5(e) = left oright; . = leftg,) o 1o = leftg(y,) -

b(w)
One proves 1 (right,,) = righte ) for all w € »% analogously.

Therefore, (,1)) is an Ext-algebra morphism and it is the unique one satisfying B(c) = ¢(c)
for each ¢ € iy and (extyp) = Y(extyp) for each a € Sean,b € Lier. Take indeed any such
Ext-algebra morphism (¢’,1’): using the properties of Ext-algebra morphisms, it is straightforward
to prove that then B(w) = ¢'(w) for all w € ¥* by structural induction on w and then to prove
that 1) (exty ) = ¢/ (extyy) for all ext,, € O(X?) by using the unique stair factorization of Xty y
provided by Lemma O

Remark 3.8. The second condition in Deﬁnition i.e. for all v € R we have (left,) = left )
and v (right,.) = right,,(,, does not appear in the definition of Ext-algebra morphisms given in [10].
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But this is actually problematic, because then Proposition[3.7 would not hold in general.

Indeed, consider for instance the visibly pushdown alphabet T' where T oy = {a}, Tine = 0 and
Tyet = {b}, where R the is semi-lattice on two elements {0,1} such that 1-1=1and0-1=1-0=
0-0 = 0; and moreover O is defined as {id,0,1} with 0(0) = 0(1) =0 and 1(0) =1(1) = 1. Then
(R,O) is an Ext-algebra. Let us define the function p: T — R by p(w) = 1 for allw € T® and the
function 1: O(T?) = O by (exten pn) = id for all n € N and ¢(ext,,) = 1 for all u,v € T'* with
uv € T and (u € aT*bI* or v € T*al*b). The pair (¢,1) forms a morphism from (T2, O(T4))
to (R,O), but it is not the only one sending ext,; to id, because we could also take 1) to send all
elements of O(T'?) to id.

Definition 3.9. A language L C $* is recognized by an Ext-algebra (R, O) whenever there exists
a morphism (¢,1): (X2,0(3%)) — (R, 0) such that L = ¢~ (F) for some F C R.

Example 3.10. Consider the language £12 = L(S — aSb; | acSby | €) from Example over
the visibly pushdown alphabet I', where Ty, = {c}, T'can = {a} and T'yet = {b1,b2}. Consider the
Ext-algebra (R, O) defined as follows. We set R = {achy, ¢, ¢, caby, ab;} with multiplication given
by the following table:

acby € c caby | aby
acby | acby | acby | acby | acby | achy
€ acby € c caby | aby

c achby c acby | acby | caby
caby | acby | caby | acby | acby | achy
aby | acby | aby | acby | acby | acby

Thus, observe that € = 1 and acb; is the zero of R. Omitting its multiplication table, we set the
monoid O to be the following

O = {(acby,e),(g,¢),(c,e),(g,c), (abi,e), (g,aby), (caby,e)} U
{(a,b2), (ca,b2), (ca,abibs), (ca,b1), (a,abibs), (a,b1)},

where the elements in the first set comprise {left,,right, | » € R}, more precisely

o (acby,e) = leftyep, = right

acby

o (g,¢) = left, = right, = 1o,

o (c,e) = left,,

(
(
(
o (c,c) = right,,
(
(

e (g,aby) = right

ab1 )

o (caby,e) = left qp, = right

caby

and where the elements from the second set are the following functions from R to R, respectively:
i (CL, b2):
r acby € c ‘ caby ‘ aby ‘

(a,b2)(r) || acby | acby | aby ‘ aby ‘ achy ‘

o (ca,bo):
T achy € c ‘cabl‘ aby ‘
(ca,by)(r) || acby | achy | caby ‘ cabq ‘ achy ‘
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(ca,abibs):
r Hacbl‘ 15 ‘ c ‘cabl‘abl‘

(ca,abiba)(r) H achy ‘ achy ‘ cabq ‘ achy ‘ achy ‘

o (ca,by):
T Hacbl‘ € ‘ c ‘cabl‘abl‘
(ca,by)(r) H ach; ‘ caby ‘ achy ‘ achy ‘ cabq ‘
o (a,abibs):
T Hacbl‘ 15 ‘c‘cabl‘abl‘
(a,abiba)(r) H achy ‘ achy ‘ aby ‘ achy ‘ achy ‘
o (a,by):

T Hacbl‘g‘ c ‘cabl‘abl‘
(a, bl)(’l”) H acbl ‘ ab1 ‘ acb1 ‘ acb1 ‘ ab1 ‘

Consider the unique morphism (¢,v): (I'*, O(T )) — (R, 0) that (thanks to Proposition
satisfies ¢(c) = ¢, Y(extqp,) = (a,b1) and w(exta by) = (a, 2). We have L = ¢~ 1({e,ab1}).

Definition 3.11. Let (R, O) be an Ext-algebra. An equivalence relation on (R, O) is an equivalence
relation ~ on R. We say an equivalence relation ~ is a congruence on (R, O) whenever for alle € O

and for all z,y € R we have that © ~ y implies e(x) ~ e(y). In case ~ is a congruence we denote
by (R,0)/~ the pair (R/~,0"), where

O ={e e (R/~)F/~|3eecOVreR: ¢ (z]) = le(x)]}.
The following lemma actually shows that (R,0)/~ is again an Ext-algebra, that we call the
quotient of (R,O) by ~.

Lemma 3.12. Let (R,0) be an Ext-algebra and ~ be a congruence on (R,0). Then (R/~,0’),
with

O ={e € (R/~)®~|3e € OVzecR: ([z].) = [e(z)]}
a submonoid of (R/~)®/~, is an Ext-algebra and the pair (p,1) of functions ¢: R — R/~ and

Y: O — O satisfying o(r) = [r]~ for allr € R and ¥ (e)([r]~) = [e(r)]~ for alle € O and r € R is
a surjective morphism from (R,O) to (R/~,0’).

Proof. Let u,v € R such that u ~ v. Take any x,y € R: we have that
ruy = right, o left,(u) ~ right, o left,(v) = zvy

by definition of congruence. Thus, ~ is a congruence on R. This implies that R/~ is a monoid.
Let €/, f/ € O': this means there exist e, f € O such that ¢/([r]~) = [e(r)]~ and f'([r]~) = [f(r)]~
for all r € R. Given any r € R, we thus have

¢ o f/(Irlv) = €' ([f(N)]~) = [e(f(r)]~ = [eo f(r)]~

so that ¢’ o f/ € O'. Therefore, O’ is a submonoid of (R/~)%/~ that contains the functions leftp,
and righty, | for all [r]. € R/~. Thus, (R/~,0’) is an Ext-algebra.

Now define the functions ¢p: R — R/~ and ¢: O — O’ by respectively ¢(r) = [r]~ for allr € R
and ¢(e) = € with ¢’ € O such that €/([r].) = [e(r)]~ for all » € R: this is well-defined because
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~ is a congruence on (R,0). Since ~ is a congruence on R, ¢ is a surjective monoid morphism.
Further, let e, f € O. We have

for all r € R, so that ¥(e) o p(f) = (e o f). Therefore, as ¥(10)([r]~) = [lo(r)]~ = [r]~ for all
r € R, it follows that v is also a monoid morphism, that is obviously surjective. By construction,
we do of course have that

for all e € O and r € R. Moreover, for all » € R, it holds that

d(left,)([z]~) = left,(2)]~ = [rz]~ = [r]<[z]~ = lefty ) ([2])

for all z € R, so that t(left,) = left ). Similarly, we can prove that v (right,) = right
r € R. Thus, (p,1) is a surjective morphism from (R, O) to (R/~,0’).

o(r) for all
O

The lemma also proves that the pair (¢, ) of functions ¢: R — R/~ and ¥: O — O’ satisfying
o(r) = [r]~ for all r € R and ¥(e)([r]~) = [e(r)]~ for all e € O and r € R is a surjective morphism
from (R, O) to (R,0)/~. We also call this pair (y,) the morphism associated to the congruence

~,

Definition 3.13. The syntactic congruence of a language L C X2 is the congruence ~p on
(B2, 0(2%)) defined by u ~r v for u,v € 2 whenever e(u) € L < e(v) € L for all e € O(X4).
We define the syntactic Ext-algebra of L to be (Rp,0r) = (X2,0(3%))/~r and the syntactic
morphism of L to be the morphism (¢r,vr1) associated to ~p .

Note that the syntactic Ext-algebra (Rp,Opr) of L recognizes L via the syntactic morphism
(¢r,%r). Indeed, for all u,v € ¥*, we have that if u ~p, v, then u € L < v € L. This implies that
L= gpzl(wL (L)). For instance, it can be proven that the Ext-algebra recognizing the language £ 2
in Example @ is in fact a certain presentation of the syntactic Ext-algebra of L o.

The next lemma states that all languages recognized by an Ext-algebra are also recognized by
the Ext-algebras it divides.

Lemma 3.14. Let (R,0) and (S, P) be two Ext-algebras such that (R, O) divides (S, P). Then any
language L C B* recognized by (R, O) is also recognized by (S, P).

Proof. Let L C £ be a language recognized by (R,O). This means that there exists a morphism
(0, 0): (52,0(2%4)) — (R, 0) such that L = ¢~ 1(F) for some F C R. We will prove the lemma
by combining the following two points:

(1) if (R, O) is a sub-Ext-algebra of (S, P), then so does (S, P) recognize L, and
(2) if (R,0) is a quotient of (S, P), then so does (5, P) recognize L.
For Point (1), assume that (R,O) is a sub-Ext-algebra of (S, P). This means that R is a

submonoid of S and that there exists a submonoid O’ of P satisfying O = O’|. Take an arbitrary
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function o: O — P such that o(e)|, = e for all e € O. Let us consider the unique morphism
(¢, 9"): (22,0(22)) — (S, P) such that ¢/(c) = ¢(c) for all ¢ € Siy and ¥/ (ext, ) = o((extap))
for all a € Yean, b € Xiet, given to us by Proposition We can prove by induction on w that
¢ (w) = (w) for all w € B4

e w=c. Then ¢'(w) =15 = 15 = p(w).

o w = c for some ¢ € By Then ¢'(w) = ¢'(c) = p(c) = p(w).

e w = aw'b for some a € Tean, b € Tret and w’ € 2. Then

Thus, ¢'~1(F) = L, which implies that (S, P) recognizes L.

For Point (2), assume that (R, O) is a quotient of (S, P). This means that there exists a surjective
morphism (a, 8): (S,P) — (R,0). Let us define an arbitrary function p: Xipy — S such that
p(c) € a1 (p(c)) for all ¢ € By as well as an arbitrary function o : {extep | @ € Beanl, b € Epet} — P
such that o(extap) € B71(Y(extap)) for all a € Yean,b € Tret. Now, take the unique morphism
(', "): (22,0(84)) — (S, P) given by Proposition [3.7] for p and o: we claim that it is such that
o' (w)) = (w) for all w € £, We can prove it by induction on w:

e w=c. Then a(¢' (w)) = a(ls) = 1r = p(w).
e w = ¢ for some ¢ € Ejyt. Then a(¢'(w)) = a(p(c)) = p(c) = p(w).

e w = aw'b for some a € Teap, b € Tret and w’ € X2, Then



Therefore, ¢'~!(a~!(F)) = L, which implies that (S, P) recognizes L. O

Next, we show that any language recognized by an Ext-algebra is also recognized by one of its
sub-Ext-algebras via a surjective morphism.

Lemma 3.15. Let (p,%): (X2,0(3%)) — (R,0) be a morphism and let L C X be a language
recognized by (R,O) via (p,v). Then (SO(EA),#)(O(EA))LP(EA)) is a sub-Ext-algebra of (R,O)
recognizing L via the surjective morphism (@, ") where 1/ (exty, ) = w(extu,v)ho(zﬁ) for all exty,, €
O(x%).

Proof. Since (R, O) recognizes L via (¢,), this means that there exists F' C R such that ¢~ 1(F) =
L. We have that ¢(X%) is a submonoid of R and 1(O(X%)) is a submonoid of O. Observe that for
all e € (O(X?)) and r € (%), we have

e(r) = plextuy) (p(w)) = p(uww) € p(=2)
because t(ext, ,) = e for ext,, € O(X%) and r = ¢(w) for w € . Moreover, for all e, f €
Y (O(X4)), it holds that elpzay © flomay = (€0 f)lymay. Therefore, ¢(O(EA))|¢(ZA) is a sub-

monoid of @(ZA)W(ZA). In addition, for each r € p(X%), we have that r = ¢(w) for some w € ¥4
and thus that

left, = leftw(w) = w(leftw)LP(EA) = w(eth,s)’sp(EA)
as well as right, = ¢(eXt5,w)’¢(2A)' Thus, (SD(EA)a w(O(EA))‘v(EA)) is a sub-Ext-algebra of (1, ).
It is clear that ¢ is a surjective monoid morphism from ¥ to ¢(X%). Further,
w,(eXtu,v) o '(/),(eXtu’,v’) = ¢(6Xtu’v) ‘@(EA) o ¢(6Xtu/,vl) |@(ZA)
= (Y(extup) 0 (extys ) b(zA)
= ¢(extu,v o eXtu',v/) |¢(2A)
= ¢I(eXtu,v 0 exty o)

for all exty,y, exty v € O(X4), hence since ¥/ (ext. ) = 10|50, it follows that ¢ is a surjective
monoid morphism from O(%4) to w(O(EA))’@(ZA). Moreover, we have

o ' (exty ) (p(w)) = w(extum)\@(EA)(cp(w)) = P(exty ) (p(w)) = @(exty(w)) for all ext, , €
O(2%) and w € L2;

o ¢/ (left,) = w(eth7e)‘¢(2A) = left, () and ¢'(right,,) = right,,,) for all w € LS
Therefore, (p,1') is a surjective morphism recognizing L. O]

The following lemma states that a language is recognized by an Ext-algebra via a surjective
morphism if, and only if, the syntactic morphism of the language factors through the former mor-
phism.

Lemma 3.16. Let (¢,1): (22,0(2%)) — (R,0) be a surjective morphism, let L C X° and let
(orn,¥r): (52,0(24)) = (Ry,01) be the syntactic morphism of L. Then (R, O) recognizes L via
(¢, %) if and only if there is a surjective morphism («, B): (R,0) — (Rr,OpL) such that o, = aop
(we say that (pr, 1) factors through (¢, )).
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Proof. Assume first that there is a surjective morphism («, 5): (R,O) — (Rr,Or) such that ¢ =
a o . Then

e (a7 (@(L))) = (o) (pr(L) =L (er(L) =L,

hence (R, O) recognizes L via (¢, ).
Assume now that (R, O) recognizes L via (¢, ). This means that there exists F' C R satisfying
¢ 1 (F) = L. Take w,w’ € £* such that ¢(w) = ¢(w'). Then, given any e € O(X*), we have that

Therefore, since ¢~ (F) = L, it holds that w ~p, w’, that is, ¢ (w) = @ (w').
Take exty ,, extys v € O(2?) such that (exty,y) = Y (extys ). Then, for each w € Y2, we have
that

plexty,y(w)) = lextyy)(p(w)) = P(exty o) (p(w)) = plexty v (w)) ,

that is, exty ,(w) ~1 exty s (w). Hence, 1 (extyy) = ¥ (exty ).

We can now define the functions a: R — Ry and 5: O — Oy, such that a(p(w)) = ¢rn(w)
for all w € ¥ and B(v(exty,y)) = ¥ (exty,) for all ext,, € O(X4): those are well-defined by
surjectivity of (¢,%) and what we have proven just above. Since (¢, %) is a surjective morphism
from (24, 0(X%)) to (Rr,Or), we can easily prove that (a, 3) is a surjective morphism from (R, O)
to (Rpr,Op) that does of course satisfy ¢, = a0 p. O

The following proposition shows that the syntactic Ext-algebra of a given language of well-
matched words is the least Ext-algebra recognizing this language.

Proposition 3.17. An Ext-algebra (R, O) recognizes a language L C X* if, and only if, its syntactic
Ext-algebra (Rr,Or) divides (R, O).

Proof. Let (R,O) be an Ext-algebra and let L C Y2 be a language. Consider also its syntactic
Ext-algebra (Rp,Op) and its syntactic morphism (¢, ).

Implication from right to left. Assume that the syntactic Ext-algebra (Rp,Op) of L divides
(R,0O). We have that (Rp,Op,) recognizes L and we then use Lemma to conclude that (R, O)

does also recognize L.

Implication from left to right. Assume that (R, O) recognizes L through a morphism
(p,): (22,0(2%)) — (R, 0). By Lemma, we have that (go(EA),w(O(EA))\@(EA)) =(R,0"
is a sub-Ext-algebra of (R, O) recognizing L via the surjective morphism (p,¢’) where ¢’(exty ) =
¢(eXtu,v)‘(p(2A) for all ext,, € O(X%). Then, by Lemma there exists a surjective morphism
(o, B): (R',0") = (R, Op) such that ¢, = aop. Thus, we have that (Rp,Or) divides (R,0). O

We say that an Ext-algebra (R, O) is finite whenever R is finite (which is the case if and only if
O is finite). The following theorem establishes the equivalence between visibly pushdown languages
and languages recognizable by finite Ext-algebras. Its proof provides effective translations from
DVPAs to Ext-algebras and vice versa.

Theorem 3.18. A language L C X2 is a VPL if, and only if, it is recognized by a finite Ext-algebra.

Proof. Let L C £ be a language. Before we prove the theorem we have the following claim, which
can be easily proven by induction on |u| and structural induction on w, respectively.
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Claim. Let A= (Q,%,T,9,qo,F, L) be a DVPA. We denote by m¢g the projection of @ x I'*
on @ and by 7+ the projection of @ x I'* on I'*. It holds that L(A) C £ and additionally we
have that

S\(q, w, o) = g(wQ(A(q, u,0)), v, T (g(q, u, 0)))
and
g(q, w,a0) = (mg (g(q, w,)),ao)

forallge Q, u,v e *, o0 eI, we L2 and o € T

Implication from left to right. Assume that L is a VPL. This means there exists a DVPA
A=(Q,%,T,8,qo, F, L) such that L(A) = L. Consider the operation * on R = Q¥*" defined so
that for all f,g € R, we have f * g(q,a) = g(f(q,a),a) for all ¢ € @ and o € I". Observe that for
all f,g,h € Q¥*T, we have

(f *xg) xh(qg,) = h(f * g(q, ), ) = h(9(f(q, ), @), ) = g x h(f(q, ), ) = [ x (9 % h)(q, )

for all ¢ € @Q and o € T'. Thus * is associative and since it also has i € R with i(q,«) = ¢ for all
q € Q and a € T as an identity, we have that R = Q¥*T" with operation * forms a monoid. Take
O to be the monoid R¥ (for composition). Since O clearly contains the functions left, and right,.
for all r € R, it follows that (R, O) is a finite Ext-algebra. We now prove that it recognizes L. For
each w € £, define f, € R by fu(q,a) = TFQ(S\(Q,ZU,O()) for all ¢ € @Q and o € T'. Let us consider
the unique morphism (p,): (X2, 0(X%)) — (R, O), given by Proposition such that for each
¢ € Yint, we have ¢(c) = f, and for each a € ¢, b € Xyet, we have that ¢(exty ) sends any f € R
to g € R satisfying that g(q,a) = 7 ((5(f(p, B),b,ﬁ)) with 0(q,a,a) = (p, fa) for all ¢ € Q and
a € T. We claim that for all w € X2, we have that ¢(w) = f,,. We prove it by induction on w.

o w=c. Then p(w) =i = fy.
e w = ¢ for some ¢ € Liyt. Then p(w) = feo = fu.

o w = aw'b for some a € Teap, b € Tyet and w’ € X2, Then

p(w) = plextqp(w')) = lextap) (@) B v(extos) (fur) -

So p(w) = g such that for all ¢ € Q and v € T, if we set 6(q, a, ) = (p, ), we have, recalling
that § extends 9,

9(g,0) = 70 (6(fur (p, ), 0, B))
=q (5(7TQ<A( w', 8)),b, 5))
=7Q (S(WQ(S(P, w', 8)), b, B))
=7Q (g(ﬂQ(A( saw' ), b, mrs (g(q, aw’, oz))))
= no(3(g, aw'b, )
= faw/b(Q7 «
= fw(% a)

Thus p(w) = fu.
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e w = uw for some u,v € £\ {e}. Then p(w) = p(u) * ¢(v) gt fu* fy. But

fu* folq, a) = fv(fU(Qa ), O‘)
fo (m@(q,u a)), )

= WQ( u, ), v,a))

= 70 (3(ra(3(g,w, @), v, 7+ (3(q,u, ) )
=76 (q,uv,a))

= fuv(q, @)

for all ¢ € @ and a € I'. Therefore p(w) = f.
Finally, set P = {f € R| f(qo,L) € F'}. It holds that
¢ '(P) = {w € ° | fulq, L) € F}
= {w e T° | mo(3(g0, w, 1)) € F}
={we x| d(q,w, L) € Fx{L}}

— L(A)
=1L.

Therefore, (R, O) recognizes L.

Implication from right to left. Assume there exists a finite Ext-algebra (R, O) that rec-
ognizes L. This means that there exists a morphism (p,): (32, 0(X%)) — (R, O) such that
L = ¢ Y(F) for some F C R. Let us now define the DVPA

A: (Q727F75717F7—L)7

where Q = R, 1 =1, ' =R X Y U {J_}7 and

(1, (r,a)x) if a € Xean

5(r. . 0) (s(extpq)(r),e) if a € Erer and oo = (5,0) € R X Bean
(r,e) ifa€ Y and a= L
(re(e), @) if a € Eint

forallr € R, a € ¥ and o € I". We prove that g(r,w,a) = (ro(w),o) for all r € R, w € ¥* and
o € I'" L by induction on w.

e w=c. Then d(r,w,0) = (r,0) = (ro(w), o).

o w = ¢ for some ¢ € Sy Then 0(r, w, o) = (ro(c), o) = (re(w), o).
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e w = aw'b for some a € Tean, b € Tret and w’ € 2. Then

4(1, ( )0)

= S(w ;a)o), b, - (1,0, (r, a)o))
8

90() ( a)o)
(Tw(e (p(w')),0)

~ ~

o(r,w,o) =

e w = uv for some u,v € 2\ {e}. Then

~ ~

S\(T,w,a) :g( o(0(r,u,0)), v, mp=(0(r, u, U)))
= 3(re(u),v,0)

Hence,

LA) ={w e 2? | 5(1,w, L) € F x {L1}}
—{wEEA]ﬂQ( (l,w, 1)) e F}
= {w e I* | p(w) € F}
=p Y F)=1L.

Therefore, L is a VPL. O

4 (Weak) length-synchronicity, nesting depth, and quasi-aperiodicity

For the rest of this section let us fix a visibly pushdown alphabet ¥, a finite Ext-algebra (R, O)
and consider a morphism (p,%): (3,0(X%)) — (R, O). Suitably adjusting the pumping lemma
for context-free language we introduce a pumping lemma for Ext-algebra morphisms in Section
In Section we extend the notions of weak length-synchronicity and length-synchronicity to Ext-
algebras morphisms and to visibly pushdown languages. It is shown that for languages generated by
vertically visibly pushdown grammars, (weak) length-synchronicity of the relation of the generating
grammar coincides with (weak) length-synchronicity of language. We concern ourselves with the
nesting depth of visibly pushdown languages in Section [4.3] Finally in Section we introduce
quasi-aperiodicity of Ext-algebra morphisms and prove that a VPL is quasi-counterfree if, and only
if, its syntactic morphism is quasi-aperiodic.

4.1 A pumping lemma for Ext-algebra morphisms

The following is an adaption of the pumping lemma for context-free languages to Ext-algebra
morphisms. It states that if wv € ¥ and u (resp. v) contains a well-matched factor that is
sufficiently long, we can pump certain infixes of u (resp. v): thus, one can find longer and longer
words w1, ug, ... (resp. v1,vs,...) such that uiv,uv,... € B (resp. uvy, uvy,... € °) and the
morphism 1) sends ext,, to the same element in O as ext,, , (resp. as exty ., ).
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Lemma 4.1 (Pumping Lemma). There exists n € Nsg such that for all ext, , € O(X?) we have:

o If there exists a factor w € £ of u satisfying |w| > n, then u = sxzyt with s,x,z,y,t € X*
such that |zy| > 1, |vzy| < n and for alli € N, sxizyitv € B2 and 1 (exty,,) = ¥ (ext

s;rizyit,v) .

o If there exists a factor w € ©° of v satisfying |w| > n, then v = sxzyt with s,z z,y,t € X*
such that |xy| > 1, |zzy| < n and for alli € N, usz'zy't € ¥ and (exty ) = P(exty, syizyit)-

Proof. For each r € R, let n, € N5 be the pumping constant for the context-free language ¢! (r):
it is a VPL and hence a context-free language by Theorem [3.I8] We set n = max,ecrn,. Let
exty, € O(X4) be such that there exists a factor w € X2 of u satisfying |w| > n. Let

extyy = exXty gy 0exte p 00 oo oexty, 4, 0exXty, b, 0eXty, 4,

be the stair factorization of ext,, , provided by Lemma Since no factor of u spanning one of the
a;’s in the factorization can be well-matched, there must exist some j € [1, h] satisfying |z;| > n,
so that if we set v/ = z1a1---zj_1a5-1, V' = bj_1yj—1---biy1, v = ajzjq1---ap_1xp and V7 =
Ynbn_1 - yj+1bjyj, we have u'v’, u"v” € B2 and ext, , = exty/ o exty, - 0 extyr v, By the pump-
ing lemma for context-free languages we have z; = 2’zzyy’ with 3:", T,2,Y, Yy’ € X* such that |zy| > 1,
|zzy| < n and for all i € N, 2/2i2y’y’ € 2 and ¢(x;) = ¢(z'z'zy’y’). This implies that if we set
s =u'z" and t = y'u”, then for all i € N, we have s2'2y"tv = Xty o 0 €Xtyryisyiys - 0 Xty i (€) € rA
and

Ib(extuw) P extu/ﬂ,/) o leftg,(xj) o w(extuu’v//)

(
(extu/w/) o 1eft¢(m/mizyiy/) o ¢(6Xtu//ﬂ)//)
(
(

extu/’/l}/) O w(extx/xizyiy/7€> O w(eXtu”,v”)

ext

(8
(8
(8

sxizyit,v) :

We handle the case where for ext,, € O(X%) there exists a factor w € Y2 of v such that
|w| > n symmetrically. O

4.2 Weak length-synchronicity and length-synchronicity

In this section we introduce the notions of weak length-synchronicity and length-synchronicity for
Ext-algebra morphisms and visibly pushdown languages. Before we do that, let us give some
motivation how TC’hardness can be proven if the syntactic morphism maps certain exXty,u, Xty o
with |u| # || to particular idempotents. For these we require the following notion of reachability.

For F C R we say that an element r € R is F-reachable if e(r) € F for some e € O. We
say e € O is F-reachable if e(r) is F-reachable for some r € R. Although we will mainly study
F-reachable elements over finite Ext-algebras we remark that the notion of F-reachability is defined
over any Ext-algebra, in particular over (X%, O(X%)). Fix any VPL L, its syntactic Ext-algebra
(Rr,Op) along with its syntactic morphism (¢r,%r). Assume some idempotent e € Oy, that is
(L)-reachable.

We claim that if ¢ (exty,) = ¥r(exty ,) = e and A(u), A(u') > 0 for some exty .y, exty , €
O(X%) with |u| # |u|, then L is TC%hard. We remark that we must have A(u) = A(u/). Ex-
ploiting the fact that |u| # |u/| we give a constant-depth reduction from the TC%-complete language
EQUALITY to L.

Since 1y, (exty) is 1 (L)-reachable, we can fix some z,y, 2z € ¥£* such that zuyvz € L. Given
a word w € {0,1}* of length 2n (binary words of odd length can directly be rejected) we map it to

22



zh(w)zo™ (YD gy where h: {0,1}* — ¥* is the length-multiplying morphism satisfiying h(0) =
ul*'l"and h(1) = w/"!: one can prove that w € EQUALITY if, and only if, h(w)v™ 4+ ¢ $2 if,
and only if, zh(w)zo™ (uH1wDy € L,

Dually, one can show that L is TC®-hard in case Y (extyw) = Yr(exty, ) = e and A(u) > 0 for
SOme exty, , ext, v € O(X4) with |v] # |v/].

The following definition of weak length-synchronicity captures the situation when such idempo-
tents do not exist — it adapts the notion of weak length-synchronicity of sets of contexts, given
in Definition to morphisms and VPLs, respectively. Recall that R C Con(X) is defined to
be weakly length-synchronous if v = «’ implies |v| = |[v/| and v = ¢’ implies |u| = |u/| for all
(u,v), (u/,v") € R satisfying A(u), A(u") > 0.

Definition 4.2. For all e € O define the sets of contexts R, and U, as follows:
Re = {(u,v) € Con(X) | Y(extyy) =€} and U, = {(u,v) € Con(E) | e o p(exty,y) = €}

Definition 4.3 (Weak Length-Synchronicity). The morphism (p,v): (£2,0(2%)) = (R,0) is
F-weakly-length-synchronous (where F' C R) if for all F-reachable idempotents e € O the set of
contexts R is weakly length-synchronous. We call a VPL L C 2 weakly length-synchronous if its
syntactic morphism (pr, 1) is o1 (L)-weakly-length-synchronous.

In fact, F-weak-length-synchronicity actually implies weak length-synchronicity of the set of
contexts associated to any subsemigroup of F-reachable elements.

Lemma 4.4. For all ' C R and subsemigroup P of O, if all elements in P are F-reachable and
(@, %) is F-weakly-length-synchronous, then |J.cp Re is weakly length-synchronous.

Proof. Let FF C R and P be a subsemigroup of O. Assume all elements in P are F-reachable and
(¢, 1) is F-weakly-length-synchronous.

Let (u,v), (v/,v) € Con(X) be such that A(u), A(u') > 0 and 9 (extyy), Y(exty ) € P. Set
e = 1(exty,) and f = 9(exty ,). By hypothesis, given w € Nsg the idempotent power of O,
we have (e*f“)* € P, hence (e*f“)* is an F-reachable idempotent and thus R(ewfwye is weakly
length-synchronous. But

/lzz)(eXt(uQ-wu/w)w’vS-wQ) = (ewfw)w = w(eXt(uquw)w’vS-wz)

so since A((u?“u')*) = A((u¥u>*)¥) > 0, we obtain

w 2w Jultw W) =w (W ul+2-w- )

— 2 ful + |u'] = Jul +2 - [u]
= lu| = |u/] .
In the same way, one can prove that for all (u,v),(u,v") € Con(X) such that A(u) > 0 and
(extyy), Y(exty,y) € P, we have |v] = |v/|.

Therefore, | J,cp Re is weakly length-synchronous. O

Instead of considering those pairs (u,v) such that ext, , is being mapped to an F-reachable
idempotent, the following characterization of weak length-synchronicity consider pairs (u,v) such
that ext, , is being mapped to an element that behaves neutrally with respect to right multiplication
with an F-reachable element that is not necessarily idempotent.
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Proposition 4.5. For all F C R we have that (¢, ) is F-weakly-length-synchronous if, and only
if, for all F-reachable e € O the set of contexts U, is weakly length-synchrononous.

Proof. Let F' C R.

If U = {(u,v) € Con(X) | e otp(exty,) = e} is weakly length-synchronous for all F-reachable
e € O, then in particular the set of contexts R, = {(u,v) € Con(X) | ¢(exty ) = e} is weakly
length-synchronous for all F-reachable idempotents e € O.

Conversely, assume that (p,1) is F-weakly-length-synchronous. Fix any F-reachable e € O.
We need to prove that U, is weakly length-synchronous. It is clear that P = {f € O | eo f = e}
forms a subsemigroup of O whose elements are all F-reachable, by F-reachability of e. Therefore,
by Lemma U fep R = U, is weakly length-synchronous. O

Using Lemma [£.1] and Proposition [£.5] the following proposition follows immediately.

Proposition 4.6. Let n be the pumping constant from Lemma let F C R, let e € O be
F-reachable, and let ext, , be such that A(u) > 0 and e o P(exty,) = e. If (p,v) is F-weakly-
length-synchronous, then the stair factorization

exXty .y = eXty, y, O€eXty, p, O - 0 ext oext oexty, u,

Th—1,Yh—1 ap—1,bh—1

satisfies |x;|, lys| < n for all i € [1,h],

As above, the following definition adapts the notion of length-synchronicity of sets of contexts,
given in Definition to Ext-algebra morphisms and VPLs, respectively.

Definition 4.7 (Length-Synchronicity). The morphism (¢,1): (22, 0(2%)) — (R, O) is F-length-
synchronous (where F C R) if for all F-reachable idempotents e € O the set of contexts R is
length-synchronous. We call a VPL L C $* length-synchronous if its syntactic morphism (¢r, 1)
is pr(L)-length-synchronous.

Example 4.8. Consider our running example £19 = L(S — aSby | acSby | €). Recall that
the monoid O, , of the syntactic Ext-algebra (R, ,, O, ,) and syntactic morphism (¢z, ,,%c, ,)
of L2, given in Example has the idempotents (e,¢), (acby,e) and (a,by). Also recall that
©r,,(L1,2) = {€,ab1}. Since %_;11,2((575)) = {ext. .} and (acby,€) is a zero we have that O, ,’s only
idempotent that is {e, ab; }-reachable and whose pre-image under vz, , contains at least one ext,,
with A(u) > 0 is the idempotent (a, b1). However, both ext,p, and extqep,, where A(a) = A(ac) =
1 > 0, are sent to the idempotent (a,b;) = (a,b2) o (¢,e€). Since |a|/|b1] = 1 # 2 = |ac|/|b2|, we
have that £y is not length-synchronous. On the other hand, note that if any ext,, and ext,/,
(resp. exty, and ext,,/) are sent to (a,b1) then v = ' and thus |u| = [«| (resp. v = v’ and thus
|v] = [v']). Hence, L2 is weakly length-synchronous.

As above, F-length-synchronicity actually implies length-synchronicity of the set of contexts
associated to any subsemigroup of F-reachable elements.

Lemma 4.9. For all FF C R and subsemigroup P of O, if all elements in P are F-reachable and
(@, 1) is F-length-synchronous, then |J cp Re is length-synchronous.

Proof. Let FF C R and P be a subsemigroup of O. Assume all elements in P are F-reachable and
(¢,1) is F-length-synchronous.

Let (u,v), (v/,v") € Con(X) be such that A(u), A(u') > 0 and (extyp), Y(exty ) € P. Set
e = 1(exty,) and f = 9(ext, ). By hypothesis, given w € N5 the idempotent power of O,
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we have (e f“)* € P, hence (e f“)* is an F-reachable idempotent and thus R (e fwye is length-
synchronous. But

w(ext(u2<wu/w)w7(vlwy2 w w) == ( wfw)w (eXt(uqu w) ’(,UIZ»wvw)w)

so since A((u?“u™)¥), A((uCu?“)?) > 0, setting (z,y) = ((u*“u)*, (V“v?9)¥) and (2/,y') =
(uu?@)« (v*“v¥)¥), we obtain (using that for a,b,c,d > 0 we have that ¢ = < implies § = & =
gifl and, if additionally a > ¢, it implies § = § = §=5)
lz[ _ =] lel _faf| _ Jel+a'] _ w?- (Jul + ')
yl Iyl yl W Tyl W (ol + o))
x| —w? - (Ju] + | 2| —w? - (Jul + o
IV 2(\| |/!):\/| 2(|| |/|) (1)
lyl —w? - (jol +v']) [ —w? (o] +[v])
jul o ful @ ]l
ol — w2 fol W ]
Therefore, | J.cp Re is length-synchronous. O

The two following propositions characterize length-synchronicity of Ext-algebra morphisms,
which will be of particular importance when approximating the matching relation of a length-
synchronous VPL in terms of FO[+]. This will be an important ingredient to proving that VPLs
that both are length-synchronous and have a quasi-aperiodic syntactic morphism (a notion to be
defined in Subsection are in FO[+] and thus in ACY.

Proposition 4.10. For all F C R, we have that (¢,v) is F-length-synchronous if, and only if, for
all F-reachable e € O the set of contexts U, is length-synchronous.

Proof. Let F' C R.

If Uy = {(u,v) € Con(X) | e o(exty,y) = e} is length-synchronous for all F-reachable e € O,
then in particular the set of contexts R, = {(u,v) € Con(X) | ¥(exty ) = e} is length-synchronous
for all F-reachable idempotents e € O.

Conversely, assume that (p,1) is F-length-synchronous. Fix any F-reachable e € O. We
need to prove that U, is length-synchronous. It is clear that P = {f € O | eo f = e} forms
a subsemigroup of O whose elements are all F-reachable, by F-reachability of e. Therefore, by
Lemma U fep Ry = Ue is length-synchronous. O]

Proposition 4.11. Let F' C R and assume (p,v) is F-weakly-length-synchronous. Then for all
F-reachable e € O the following two statements are equivalent.

1. The set of contexts U, is length-synchronous.
2. There exist o € Qsg, B € N, v € Nug such that for all (u,v) € U with A(u) > 0 we have:
lul _
(a) o = o
(b) For allu',v" € ¥ with v prefix of u and v' suffiz of v such that “z—:; = «, we have that
—A@W) - B <AW) < -A®W)+ 8.
(¢) For all factors u' € ¥* of u such that |u'| = v, we have A(u')
(d) For all factors v' € ¥* of v such that [v'| = v, we have A(v')

1.

>
< -—1.
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Proof. The implication from Point 2 to Point 1 is trivial since Point 2 (a) implies Point 1.

Let us now prove that Point 1 implies Point 2. Fix any e € O that is F-reachable and assume
that U, is length-synchronous. Point 2 (a) follows immediately from length-synchronicity of ¢,. We
can hence write o = % for some A, B € Ny.

For proving Point 2 (b), we define § = (n+ 1) - (|O| + max(A, B) 4+ 1), where n is the constant
taken from Lemma[d.1] Let (u,v) € Ue with A(u) > 0 and let

exXty,p = eXtyy gy 0Xtg, by O -0 Xty 4, OeXtg, |3, 0Xty, 4,

be the stair factorization of ext,, , according to Lemma Since our morphism (p, 1) is F-weakly-
length-synchronous by assumption, we have |z;|, |y;| < n by Lemma Let ' € ¥* be a prefix of u

% —
v
Thus, it remains to consider the case when v’ is a strict prefix of w and v’ is a strict suffix of v:
indeed, due to % = “Z:; =
of v.

Let j € [1, h] be maximal such that x; ---aj_1z; is a prefix of «’ and y;b;_; ---y; is a suffix of
v'. If j =1 we are done, since then min{|u/|, [v'|} < n, so that |A(v) + A@")| < |0/ |+ ]| <n+n-
max(A, B) < . So assume now that j > 1, which implies that A(u”) > 0. Note that j < h since
(u',v") # (u,v). Hence there exist unique words s,t € ¥* such that «' = «”s and v' = tv”, where
W =x1---aj_1zj and v = y;bj_1---y1. By maximality of j we have min{|s|, [t|} < n. Setting
[ =(extyr y) and g = P(Xta;e; - -an_1znynbar-y;41b;) We have P(exty ) = fog. We claim that
there exist exty, ,, € O(X%) such that ¢(ext,, ,,) = g and |zg|, [ys| < |O] - (n+1): indeed, by the
pigeonhole principle and Lemma (as eo fog = e and A(u”) > 0), any ext, , € O(X*) such that
Y(extyy) = g and max(|z, |y]) > |O]-(n+1) must have a stair factorization according to Lemmal[3.6]
with an h > |O| and can thus be factorized as ext,, = exty , oextyn »oextym o such that

Y(extyy) = h(extyr ) 0 Y(extym ), where moreover (z”,y") € X+ x X+, Thus, th(extyry, yoor) =

and v’ be a suffix of v such that a. If (u/;v") = (u,v) we are done since then A(u') = —A(v').

a we have that v is a strict prefix of u if, and only if, v is a strict suffix

h(exty,y) and therefore (u”zg, ygv") € Ue with A(u"z4) > 0. It follows o = Blg/j,‘i" = ||Z;“:r||slj|rl_m‘§||, or
equivalently, using % =
s = [u] +lzgl + allt] = [yg] = [V']) = |24] + a(|t] = [yg]) (2)
[s| — /| — |z i sl = lzgl
¢ = ST IUIT gl = P17 %l . 3
f Wl g gy gy = BT )
Finally, we obtain
[A) + A(V)] = [A(u"s) + A(tv")]
AluN=—A(v"
MU= A + aw)
< |s] + [¢]
= min(|s|, [t|) + max(|s|, |t])
< n + max(|s|, |t])
(2, (3) n — |$g’
< n + max |$g|+a(”*’yg’)vT+|yg|
< n+|0]-(n+ 1)+ n-max(A, B)
< (n+1)-(|]O] +max(A,B)+1)

- 3.
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This proves Point 2 (b).
For Point 2 (c) and Point 2 (d) we set v = ([§] 4+ 1) - (n + 1) + n and remark that v does not
depend on u nor v. We only prove Point 2 (c), the proof of Point 2 (d) is analogous. As above, let

exXty oy = eXty, y, OeXty, p, O - 0ext oext oexty, u,

Th—1,Yh—1 ap—1,bh-1

be the stair factorization of ext,, according to Lemma Let v/ with |[v/| > ~ be a factor
of u and hence of z1a122 - zp_1ap_12,. By definition of stair factorization we have A(x;) = 0
for all i € [1,h] and A(a;) = 1 for all ¢ € [1,h — 1]. Let w be the longest prefix of u' such
that A(w) = min{A(z) | x is a prefix of w'}. Since |z1|, |y1],..., |z, lyn| < n, it immediately

follows A(w) > —% and |w| < n. By the same reason, every prefix of the form ws of u’ satisfies

A(ws) > A(w) + n‘i'l Thus we have

A > A+ e, o (@Dt Ve mn .

The following proposition relates, for languages L generated by vertically visibly pushdown
grammars G, (weak) length-synchronicity of L with (weak) length-synchronicity of R(G).

Proposition 4.12. Let L = L(G) for some vertically visibly pushdown grammar G = (V, %, P, S).
Moreover, let R(G) = {(u,v) € Con(X) | S = uSv}. Then the following equivalences hold:

1. L(G) is length-synchronous if, and only if, R(G) is length-synchronous.
2. L(Q) is weakly length-synchronous if, and only if, R(G) is weakly length-synchronous.

Proof. Let L = L(QG) for a vertically visibly pushdown grammar G = (V, %, P, S). Moreover, let
(or,%r) = (O(%),5%) — (Rr,0r) be the syntactic morphism. For all e € Of, recall the set of
contexts Re = {(u,v) € Con(X) | ¢ (exty ) = e}

Let ' = {e € O, | Jexty, € ¥, (e) : (u,v) € R(G)}. Observe that F is a submonoid of Oy,
all of whose elements are ¢r,(L)-reachable since G is vertically visibly pushdown. Also observe that
R(G) = Ugep Ry We claim that since G is vertically visibly pushdown, there exists a constant

C > 0 such that & < % < C for all (z,y) € R(G) \ {(e,¢)}: indeed, one can take C = % where

A = max{max{[u|, |[v|} | T —¢ uT'v} and B = min{min{|u|, |v|} | T —¢ uT"v} since whenever
T =, 1"y thanks to a derivation comprising k € N> steps, we have
1 k-B |z| k-A

— < — < .
C RASy kB ©

Next, we prove that for all ¢ (L)-reachable idempotents e € Op, there exist g,h € Op, such
that goeoh € F. Fix any such ¢ (L)-reachable idempotent e € Op. Without loss of generality
let us assume that e is not the identity in Oy (indeed, if e is the identity in Oy, then we are
done since we can then choose g = h = e € F'). Thus there exist g € Op and r € Ry, such that
(goe)(r) € ¢r(L). Moreover, let exty, v € 1, (g),exty, € 17 (e), and w € p}*(r). Observe that
we must have (u,v) # (e, ¢) since ¥y, (ext. ¢) is the identity in Op,. Since e is an idempotent we have

that v/u™wv™’ € L for all n > 1. Fix a sufficiently large N > 1 such that N= 1)|u||1\‘;r\|j:|N|v\+lv’l <? c

and ‘UIHNW";K’?W(N DIl > ¢, which exists due to (u,v) # (c,¢). Since w'uNwvNv' € L there

exists (z,y) € R(G) \ {(g,€)} such that zy = v'uNwoNo', S =% xSy, |z| > |u’u\, and |y| > |vv/].
Let (2/,y') € ¥* x ¥* be such that (z,y) = (v/uz’ yvv) As (u/,0), (u,v), (z,y) € Con(X),
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€ (2\ Zret)*, and ¢ € (X \ Xean)*, we can conclude (2/,y') € Con(X). That is, (z,y) =
u',v') o (u,v) o (2/,y') € R(G). Hence,
goeor(exty ) = VYr(extyya o) = Vi (extsy) € F.

We are now ready to prove Point 1. For the first direction, let us assume that L(G) is length-
synchronous. Recalling that F' is a submonoid of Oy, all of whose elements are ¢, (L)-reachable, we
obtain that R(G) = U;cp Ry is length-synchronous by Lemma

Conversely, let us assume that R(G) is length-synchronous. Assume by contradiction that
L(G) is not length-synchronous. Hence R, is not length-synchronous for some ¢y (L)-reachable
idempotent e € Op, i.e. Yr(extyy) = Yr(exty ) = e for some exty y, exty v € O(X?) such that
A(u), A(u') > 0 and % # ||Z:‘| Without loss of generality we may assume that |v| = |v/| (indeed,
if |v] # [v'], then ext,jur| o), €XE( 01 ()0l Satisfies the desired property). As a consequence we

have |u| # |u/|, say |u| < |u/| without loss of generality. Since e is a ¢ (L)-reachable idempotent,
as argued above, there exist g,h € Op, such that goeo h = f’ for some f' € F. Let us fix
exty, 4, € U7 (h) and exty, y, € ¥;(g). We have YL (exXteyuzy, yhoyy) = f' = VL(€Xte,wzy yhv'y,)-
Since |zguxy| < |xgu'zy| and |ypvyy| = |ynv'yy| it follows that Ry is not length-synchronous,
contradicting our assumption that R(G) = | ser Ry is length-synchronous.

Let us next prove Point 2.

Let us first assume that L(G) is weakly length-synchronous. Again, since F' is a submonoid of
Oy all of whose elements are ¢ (L)-reachable, we obtain that R(G) = J;cp Ry is weakly length-
synchronous by Lemma [£.4]

Conversely, assume R(G) is weakly length-synchronous. Assume by contradiction that R is
not weakly length-synchronous for some ¢y (L)-reachable idempotent e € Or. Thus, 9, (ext, ) =
Y (exty ) = e for some exty ,, exty » € O(X%) such that A(u), A(uw') > 0 and moreover either
u=u"and |v| # |v'| or v = v and |u| # |u/|. Without loss of generality let us assume that v = v’
and |v| # |[v|. As mentioned above, there exist g, h € O such that goeoh = f’ for some f' € F.
Fix some exty, ,, € w;l(g) and some exty, o, € wgl(h). Analogously, as argued above, we have
¢L(eXtmguxh,yhvyg) = wL(eXt:L‘guxh,yhv/yg) =f, A(:UQUZL'h) >0, and |yhvyg| # |yhvlyg|7 implying that
Ry is not weakly length-synchronous, a contradiction to our assumption that R(G) = Uscp Ry is
weakly length-synchronous. O

4.3 The nesting depth of visibly pushdown languages

Another central notion is the nesting depth of well-matched words, which is the Horton-Strahler
number [15] of the underlying trees.

Definition 4.13. The nesting depth of well-matched words is given by the function nd: ¥ — N
defined inductively as follows:

e nd(e) =0;
e nd(c) =0 for all c € Xy,
e nd(uv) = max{nd(u),nd(v)} for all u € X Tret U Xins and v € B2\ {e};

o nd(awb) = nd(w) +1 ifw= yv with u,v € 2 and nd(w) = nd(u) = nd(v)
nd(w) otherwise
2call; be Eret and w € EA.

for all a €
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An important property of weakly length-synchronous VPLs is that their words have bounded
nesting depth.

Proposition 4.14. For each weakly length-synchronous VPL L C 2 there exists a constant d € N
such that L C {w € ¥* | nd(w) < d}.

Proposition [4.14] is proved in several steps. For these we introduce a factorization that can be
seen as one that witnesses the nesting depth of a word.

Definition 4.15. A nesting-maximal stair factorization of w € % with nd(w) > 1 is a factorization
of w as
W = exty, y, 0 Xty py O+ 0 exXty, 4, 0 €xXtg, p, (W)

such that k >0, z;,y; € 22, a; € Zean, and by € Xyey for all i € [1,1], and w' € ¥, satisfying that
for alli € [1, k] we have
nd(extz, y, (wi)) = nd(w;),

— /
where w; = extg, p, 0exty, | 4. 00Xty p, (W).

Lemma 4.16. All words w € £ have a nesting-mazimal stair factorization.
Proof. The proof goes by structural induction on w.

e w = ¢e. Then we are done because w contains only internal letters.
e w=cfor acé€ Xy Then we are again done because w contains only internal letters.

o w=awb for a € Leayy, b € Tyt and w’' € X2, By using the inductive hypothesis, w’ has a
nesting-maximal stair factorization exty, ,, ©€Xtq, p, 0+ 0 €Xty, 4, ©€xtq, p, (w”). It directly
follows that extqp 0 exty, 4, 0€Xtq, p, 0+ 0 €xty, . 0€xty, p, (w”) is a nesting-maximal stair
factorization of w.

o w = uv for u,v € L4\ {e}. Then w can be decomposed as zi---zy, with z1,...,2, €
Yeall X2 et U Xing and m € N,m > 2. In this case, either z; € Yy for all i € [1,m] and
thus we are done because w contains only internal letters, or there exists some i € [1,m]
such that z € ZcanX®Yret and has maximal nesting depth, i.e. nd(w) = nd(z;). In this
second subcase, we have that z; = azlb with a € Xca, b € iyt and 2] € IS By using
the inductive hypothesis, z/ has a nesting-maximal stair factorization exty, 4, ©extq, p, 0« - ©
eXty, 4, O €Xtg, p, (W”). Therefore,

"
€Xboyoizi 1 2z O Xt p O OXtyy 4y O€Xty, by O . eXty, 4 0exty, p, (W)

is a nesting-maximal stair factorization of w. O

The following lemma will be a useful tool for proofs by induction on the nesting depth of well-
matched words.

Lemma 4.17. Let u = ajvb; € X2 for some a1 € Yy, b1 € Yiet, and v € Y2 such that
nd(u) = d > 0. Moreover, let u = exty, 4, 0€Xtq, p, 0« 0 eXty, 4, O€xty, p, (u') be a nesting-
mazimal stair factorization of u (i.e. 1 = y1 = €). Then there exists h € [1,k]| such that, setting
U = exty, b, 0 Xty |y, O -0 exty, p, (u) for alli € [1,k] and upyq = ', we have

1. nd(u) = nd(up) =d,
2. nd(ups1) =d—1, and
3. nd(z1),nd(y1),...,nd(zs),nd(yy) < d.
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Proof. Let uj = extgp 0eXty, 4y 10 -0 eXtg, p, (u) for all j € [1,k]. Note that we have
nd(u) = nd(u1) = d > 0 by assumption. Moreover, nd(u;) > nd(u;y1) for all j € [1,k — 1] by
definition of nesting depth. Thus, since nd(ug) =1 > 0 = nd(ug41), it follows that

h =min{j € [L, k] | nd(u;) > nd(uj41)}
is well-defined and nd(u) = nd(u;) = nd(up) = d, thus showing Point 1. Since
d =nd(up) < nd(upsq) +1

and nd(upy1) < nd(up) = d it follows nd(up11) = d — 1, thus showing Point 2. To prove Point
3, assume by contradiction that nd(z;) > d or nd(y;) > d for some j € [1,h]. Without loss of
generality assume nd(z;) > d. Since 1 = y1 = ¢ and d > 0 we must have j € [2, h]. It follows

nd(u) > nd(uj—1) = nd(a;—12;u;y;bj—1) > min(nd(z;),nd(u;)) +1 >d+1>d=nd(u) ,
which is a contradiction. O

We are now ready to prove Proposition 4.14

Proof of Proposition[].14 Let L C »2 be a weakly length-synchronous VPL. We claim that nd(L) <
n + 1, where n is the pumping constant from Lemma Assume by contradiction that nd(u) = d
for some v € L and some d > n+ 1. Let u = exty, 4, 0extg, p, 0« -+ 0 €xXty, 4, 0€xtg, p, (u) be a
nesting-maximal stair factorization of u according to Lemma According to Lemma there
exists 4 € [1, k] such that, setting uj = extq;p; 0exty, 4 4,., 0+ 0 extg, p, (u') for all j € [1,k] and
ug+1 = «', we have nd(u) = nd(u;) = d and nd(u;41) = d— 1. Since d —1 > n > 0, we must
have ¢ + 1 < k‘, so that U; = aixiﬂuiﬂyi“bi with Uir1 € anllZAEret and nd($i+1ui+1yi+1) =
nd(ui+1) = d — 1. Hence it follows that nd(x;4+1) = d — 1 or nd(y;+1) = d — 1. Without loss of gen-
erality let us assume nd(y;4+1) = d — 1 > n. A simple induction shows that |z| > 2"®) —1 > nd(z)
for all z € ¥, Thus, we have |y; 11| > nd(yi1+1) > n, contradicting Proposition O

4.4 Quasi-aperiodicity and its correspondence with quasi-counterfreeness

Let us revisit the notion of quasi-aperiodicity. It has already been defined for visibly pushdown
languages in [24]. Let us define O(X2)F! = {ext,, € O(X2) : |u| = k, [v| = 1} for all k,l € N. We
say the morphism (p,%): (£2,0(X%)) — (R, O) is quasi-aperiodic if all semigroups contained in
the set 9(O(X4)¥!) are aperiodic for all k,1 € N.

The following proposition relates quasi-counterfreeness of a VPL with quasi-aperiodicity of its
syntactic morphism.

Proposition 4.18. A VPL L C X is quasi-counterfree if, and only if, its syntactic morphism is
quasi-aperiodic.

Proof. Recall that (Rp,0p) = (2,0(%%))/~r by Definition Hence for all (u,v), (u/,v') €
Con(X) we have (u,v) =p («/,v") if, and only if, ¥r(extyy) = Y1 (extys ).

First, let us assume that (¢r,9r): (22,0(2%)) — (R, 0p) is quasi-aperiodic. Assume by
contradiction that L is not quasi-counterfree. Thus, there exists some o = (u,v) € Con(X) such
that 0" %7, 0"t! for all n € N and 7 =1, 0 o0 for some 7 = (z,y) € Con(X)N X/ x Il The latter
can equivalently be rephrased as 1 (ext,,y) = ¥ (ext,2 ,2). By choice of o and the fact that =, has
finite index there exist s > 1 and ¢ > 2 such that o*7% =7 ¢*T+ for all i > 0 and o°1% %, o517 for all
i,j € [0,t—1] with i # j. It follows that the set G = vp ({extys+i ys+: | 3 € [0, —1]}) is a non-trivial
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group with identity go = ¢ (extys+r ys+r) € Y (O(R2) Rl +R)U) where k is the unique integer
in [0,t—1] such that s+k is divisible by ¢. Also observe that G is a cyclic group that is generated by

= thp(extystit1 yori+1). That is G = {go,g1,...,9i-1}, where g; = g for all i € [2,¢—1]. But note
that due to 1y (exty ) = 1 (ext,2 ,2) we obtain gy = P (extyssr+1 yarrr1) = YL (€Xb,arh—1 ysrh-1y)
and thus go, g1 € ¥1(O(X4)EHRIL+RI que to x| = |u| and |y| = |v]|. Since g; = g g} for all
i € [0,t—1] we obtain that G = {go, g1, ..., 91} is contained in ¥, (O(2%)~ DR ful - Dis+R)lvly
hereby contradicting quasi-aperiodicity of (¢, ¥r).

For the converse direction, let us assume that L is quasi-counterfree. Assume by contradiction
that (¢r,vr) is not quasi-aperiodic. That is, for some k,I € N the set 17 (O(22)%!) contains a
non-trivial group G. Let gy € G be the identity of G. Fix some g € G with g # g9 and some

Xtyy € O(X2)P! such that 1y (ext,,) = g. Let o0 = (u,v) € Con(X) N X* x ¥L. Since g is not the
identity in G we have that 1y (extyn yn) # tr(ext n+1 n+1) for all n € N, equivalently o” #;, o™
for all n € N. But since moreover 9y (extyn yn) is in G and thus in ¢, (O(X2)%) for all n € N it
follows that o o 0 = 7 for some 7 € Con(X) N X*F x B!, We thus obtain a contradiction to our
assumption that L is quasi-counterfree. O

5 Proof of the main theorem

Before giving an overview of the proof of Theorem [2.9] we will state a proposition saying that
the syntactic Ext-algebra and the syntactic morphism of a given visibly pushdown language L is
computable and that it is decidable if L is quasi-aperiodic, length-synchronous, and weakly length-
synchronous, respectively. Its proof is subject of Section [6]

Proposition 5.1. The following computability and decidability results hold:

1. Given a DVPA A, one can effectively compute the syntactic Ext-algebra of L = L(A), its
syntactic morphism (pr, 1) and or(L).

2. Given a morphism (p,¢): (32,0(3%)) = (R, O) for a visibly pushdown alphabet ¥ and a
finite Ext-algebra (R, O), all of the following are decidable for (p,):

(a) Quasi-aperiodicity. In case (p,v) is not quasi-aperiodic, one can effectively compute
k,1 € N such that »(O(X2)*!) is not aperiodic.

(b) F-length-synchronicity for a given F C R. In case (¢,v) is not F-length-synchronous,
one can effectively compute a quadruple (k,1,k',I") € Ni such that there exist uv,u'v' €
Y2 and some F-reachable idempotent e € O such that w(extu v) = Y(exty ) = e,
Alu) >0, A(w') >0, k= |ul,l = |v[,k = [u/|, ' = ||, and & # %

(c) F-weakly-length-synchronicity for a given F C R.

5.1 Proof outline for Theorem [2.9]

Towards proving our main result (Theorem [2.9)), given a DVPA A, where L = L(A) is a VPL over
a visibly pushdown alphabet Y, we apply Proposition and compute its syntactic Ext-algebra
(Rr,Op) along with its syntactic morphism (pr,% ) and the subset ¢r(L). Then we make the
following effective case distinction which immediately implies Theorem [2.9]

1. If L is not weakly length-synchronous, then L is TC%hard and hence not in AC® (Proposi-
tion in Section. Thus, we can output any m > 1 since MOD,,, <.q EQUALITY <. L
for any m > 1.
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2. If L is not quasi-aperiodic, then one can effectively compute some m > 2 such that MOD,,, <.q

L (Proposition in Section [5.2)).

3. If L is length-synchronous and (¢r,vy) is quasi-aperiodic, then L € AC? (Theorem in
Section [5.3]).

4. If L is weakly length-synchronous but not length-synchronous, and its syntactic morphism
(¢r,vr) is quasi-aperiodic, one can effectively compute vertically visibly pushdown gram-
mars Gy, ..., G, generating intermediate VPLs such that L =.4 -, L(G;) (Theorem
in Section . Moreover, already if a VPL L is weakly length-synchronous but not length-
synchronous, one can effectively compute k,l € Nsg with k # [ such that £i; <cq L (Propo-

sition in Section |5.4)).
We refer to Section [5.5 for the proof of Corollary

5.2 Lower bounds

The following visibly pushdown languages are helpful for proving lower bounds.

Definition 5.2. Let L C X® be a VPL. For each e € Op, and for # € ¥ a fresh internal letter we
define
Lo = {u#v | (u,v) € Con(X) : Y (exty,) = €}

and
Lep = {uf#v | (u,v) € Con(X) : A(u) > 0,9(exty ) = e} = LeN{u#v | (u,v) € Con(X) : A(u) > 0}.

The next lemma shows that both ¢, ! (r) and L, are constant-depth reducible to L in case r € Ry,
and e € Oy, are ¢y (L)-reachable, respectively.

Lemma 5.3. Let L C ¥* be a VPL. Then
o gozl(r) <cd L for all o1, (L)-reachable r € Ry, and
o L. <. L for all pr(L)-reachable e € Of,.

Proof. To show the first point, let us fix some ¢ (L)-reachable r € Ry. Thus, there exist w, € X%
and (u,,v,) € Con(X) such that ¢ (w,) = r and ¢ (u,w,v,) € pr(L). By definition of the syntactic
morphism of L (Definition for all r1,7 € Ry, with r; # ro there exists some e, ,, € Op, such
that e, r,(r1) € @r(L) < €, ry(1r2) € @r(L). For each such ey, r, € Op, fix () 1y, U, ry) € Con(X)
with ¢, (eXt’U/rl,'rz ,’U'rl,'r2) = €ryrg-

Hence, for all w € ¥* we have

w e cpzl(r) — wwu. €L A /\ Up gt WOt € L 4 Uy pr WV 0 € L,

r/ ERy,
r#r’

thus showing gozl(r) <ea L.
For the second point, let us fix some ¢ (L)-reachable e € Or. Fix some (ue,v.) € Con(X)
such that vy (ext,, .,.) = e. Thus, again, there exist w, € %% and (ul,v.) € Con(X) such that

or(uLuewevevl) € wr(L). Again by definition of the syntactic morphism of L (Definition )
for all e;,ep € Op, with e; # e there exist some fe, ., € Or and some 7, ., € Ry, such that

32



ferea(€1(Teren)) € PL(L) & feyen(€2(Terey)) & wr(L). For each such fe, ., and re, ¢, fix, re-
spectively, (Ue, ey, Vereo) € Con(X) and we, ¢, € Y2 such that ¢L(eXtuel,62,vel,62) = fe,e, and
OL(Wey e5) = Tey eq, respectively. Hence, for all u#v € X*#X* we have

u#v € L, <+ u’euwevvé eL A /\ Ue, o' UWe e VVe o € L 45 U o' UeWe ¢/ VeVe et € L,
e'e0r,
e#e’
thus showing Le <.q L. O
The following lower bound has already been sketched in Section
Proposition 5.4. If L is not weakly length-synchronous, then L is TC-hard.

Proof. Recall that (Ry,Oy) is the syntactic Ext-algebra of L and (¢r,,vr): (¥2,0(2%)) = (Rr,0p)
is its syntactic morphism. Assume that (¢, 1) is not ¢r (L)-weakly-length-synchronous.

Assume first there exist exty ., ext,s, € O(X%) satisfying that ¢y (ext,, ) = 11 (ext, ,) that is
a ¢ (L)-reachable idempotent such that A(u), A(u') > 0, but |u| # |u’|. We exploit the fact that
lul # [u'] to reduce EQUALITY = {w € {0,1}* : |w|o = |w|1} to Ly, (ext,.). The constant-depth

reduction works as follows on input w € {0, 1}*:
1. Check if |w| = 2n for some n € N, reject if it is not the case.

2. Compute w' = a(w), where aa{0,1}* — X* is the length-multiplying morphism satisfying
a(1) = ulv'l and «(0) = /1N,

3. Accept whenever w/#o™(lul+v']) ¢ Lip(exct,v)-

Bearing in mind that 0 < A(u) = —A(v) = A(«'), the latter forms a valid reduction, because given
a word w € {0,1}* of length 2n for an n € N that contains k € [0, 2n] many 1’s, for w' #on(ul+lu’])
to be in Ly, (ext, ), it Is in particular required that w'v™(uHYD i well-matched, so it is necessary
and sufficient that

k-Au) - [W'[+(2n —k) - A() - Jul = —n-Av) - (Ju| + [u'])
— (k—n)-Aw) ||+ n—Fk) -A@)-|u = 0
= (k—=n)-Au) - (Ju'| = [u]) = 0
<— k = n.

Additionally applying Lemma we obtain EQUALITY <cq Ly (ext,,) <ca L. Assume now
there exist exty, ., ext, » € O(X7) satisfying that ¢y (exty ) = ¥r(exty,) is an ¢ (L)-reachable
idempotent such that A(u) > 0 but |v| # |[v/|. Symmetrically, one can prove that we also have
EQUALITY <.q L in this case.

In conclusion, as EQUALITY is TC’-complete under constant-depth reductions, it follows that
L is TC%hard under constant-depth reductions. O

The following proposition has essentially already been shown in [24] Proposition 135|, yet with
some inaccuracies (we refer to Section [§]) that we fix here.

Proposition 5.5. If L is not quasi-aperiodic, then one can effectively compute some m > 2 such
that MOD,,, <.q L.
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Proof. Since L is not quasi-aperiodic, by Point 2 (a) Proposition one can effectively compute
k,1 € N such that ¢ (O(Z%)%!) is not aperiodic. Thus, one can compute m > 2 such that
P (O(24)F) contains the additive group G' = ([0, m — 1], +,0) of Z/mZ for some prime number m.
Moreover, there exist extyg g, €Xty, v, € O(X?)*! such that Y1 (extygve) = 0g and Y (exty, v, ) =
1. Since G is a group both 9 (extyy.,) and ¥y (exty, ) are ¢ (L)-reachable. Moreover there
exist zy, z € ©2 such that zugzvey € L if, and only if, zuizv1y € L. Let us assume without loss of
generality that zugzvoy ¢ L and zujzviy € L (the case when zugzvgy € L and zujzvy € L can
be proven analogously). Let hy, hy : {0,1}* — 3* be the length-multiplying morphisms satisfying
ht(i) = u; and h (i) = v; for all ¢ € {0,1}. We claim that

m—1
w € MOD,,, <= /\ th(w)im_thi(wR)im_zy ¢ L.
i=1
Let w; = J:hT(w)im&zhi(wR)imﬂy for all i € [1,m — 1]. Observe that w; € X for all i € [1,m — 1]
directly by definition of the morphisms hy and hy.

To show the above equivalence, let us first assume that |wl|; is divisible by m. Then we have
¢L(6Xtm(w),h¢(wR)) = 11 (extyy,) = Og, and consequently wL(eXthT(w)im72’hL(w)imf2) = 0¢g for all
i€[l,m—1]. It follows w; ¢ L for all ¢ € [1,m — 1], as desired. Conversely, assume that |w|; is not
divisible by m, i.e. |w[1 =4 mod m for some i € [1,m — 1]. Hence ¥ (extyt () ntwr)) = ic # 0
and thus ¢L(eXthT(w)im—27hT(wR)im—2) = (4™ ! mod m)g = 1g by Fermat’s Little Theorem. Hence
w; € L as required.

Altogether we obtain MOD,,, <.q L. O

5.2.1 The non-solvable case

In this additional section we prove a stronger lower bound, namely when the syntactic morphism not
only is not quasi-aperiodic but the syntactic Ext-algebra not solvable. For this we revisit solvable
groups and introduce solvable Ext-algebras.

Let G be a finite group. The word problem for G is the question, given a word w;y - - - w, over
G, to decide if their product wy ---w, in G evaluates to 1g. The commutator of g,h € G is
ghg~'h~™! € G, denoted by [g, h]. The commutator subgroup [G,G] of G is the subgroup of G that
is generated by the commutators of G. We say that G is perfect if G = [G,G]. We say that G
is solvable if in the series of commutator subgroups (a.k.a. derived series) GO cM . a trivial
group is contained, where G(© = @ and GO+ = [G(i),G(i)] for all # € N. Thus, note that any
non-solvable finite group contains a perfect subgroup.

We say the Ext-algebra (R, O) is solvable if all subsets of R or O that are groups (under the
multiplication of R, resp. of O) are solvable. It is worth mentioning that one can prove that if
(0,) : (Z2,0(2%)) = (R,0) is quasi-aperiodic, then (R, O) is solvable. In fact, one can prove
that if (¢, ) is quasi-aperiodic, then (R, O) must contain only Abelian groups.

Our proof that L is NC!-hard (and thus TC%hard) when (Ry, Oy) is not solvable can be reduced
to the case for words [4], by showing that already 17, (O(%%)*!) contains such a non-solvable group
for some fixed k,[ > 0.

Proposition 5.6. If (R, Op) is not solvable, then L is NC'-hard and thus not in AC°.

Before we prove the proposition we remark that not every subset G C Ry, (resp. G C Op,) that
is a group is necessarily a submonoid of Ry, (resp. Op); in particular the neutral element of G need
not necessarily be the neutral element of Oy. Indeed, for instance assume R; = {1,a,b} where
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l-r=1-r=rforalr e R and wherea-b=>b-a=">band a-a = b-b = a; the subset {a, b}
forms the additive group of Z/27Z with neutral element a. It is also worth mentioning that since
R is (isomorphic to) a submonoid of O we could have equivalently defined an Ext-algebra to be
solvable if all subsets of O that are groups are solvable.

Proof of Proposition[5.6. Assume (Rp,Op) is not solvable. Then there exists a subset G C O,
where G is a non-trivial perfect group, i.e. G = [G,G]. Let w be the idempotent power of G. For
all g, h € G there exist exty,,y,, eXty, v, € O(X?) such that

[97 h] — ghgflhfl — ghgwflhwfl — wL (eXtuguhuw_luL;:_l w—lvt;—lvhvg>

g "Uh

and 1g = g*h* = P (extyguy vwow). Therefore, for all g, h € G we have

[97 h’] = wL eXtuguhu;71Uﬁ71,’U;‘Ljil’vg)il’vhvg © O eXtu;)/u(;:/ :UZHU‘;/
(¢',h)eG?
(g",h")#(g:h)

Hence, {[g,h] | g,h € G} C O(Z2)F for

k=Y (ugl+lunl)-w and 1= 3 (lonl + o)) w

(9,h)EG2 (9,h)€G?

Since G = [G, G| every element of G can be written as the product of at most |G| elements in
{lg;h] | g,h € G} and, in fact, even as the product of exactly |G| elements in {[g,h] | g,h € G},
since it contains the identity 1g. Thus, we can conclude that G C ¥, (O(X2)FIGLHIGI Since the
word problem of any non-solvable finite group is NC'-hard by [4] and G C v, (O(X2)*ICHHIG it
follows that the word problem for G is constant-depth reducible to L. Hence L is NCl-hard and in
particular TC%-hard. O

5.3 In AC’: Length-synchronous and quasi-aperiodic

This section is devoted to the following theorem.

Theorem 5.7. If L is length-synchronous and (¢r,%r) is quasi-aperiodic, then L is in FO[+] and
thus in ACY.

For the rest of this section let us fix a VPL L, its syntactic Ext-algebra (Rp,Op), and its
syntactic morphism (¢r,%r) : (82,0(2%)) = (Rr, Or).

Before we explain our proof strategy we introduce approximate matchings and horizontal and
vertical evaluation languages. Approximate matchings generalize the classical matching relation on
well-matched words with respect to our VPL L in the sense that they are subsets of the matching
relation but must equal the matching relation on all those words that are in L. Approximate
matchings in the context of visibly pushdown languages were introduced by Ludwig [24]. We
then introduce suitably padded word languages mimicking the evaluation problem of the horizontal
monoid Ry and the vertical monoid Oy, respectively.

Approximate matchings. For any word w € ¥*, we say that two positions 4,j € [1, |w|] in w
are matched whenever 1 < j, w; € Ycall, wj € Yret and wiqq---wj_1 € ZA; we also say that ¢ is
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matched to j in w. Observe that a word w over ¥ is well-matched if and only if for each position
i€ [1,]wl],

e if i € ¥can, then there exists a position j € [1,|w|] such that ¢ is matched to j in w;
e if i € ¥, then there exists a position j € [1,|w|] such that j is matched to ¢ in w.

Given a word w € Y%, we denote by M* (w) its matching relation (or matching), that is the
relation {(i,5) € [1,|w|]? | i is matched to j in w} . An approzimate matching relative to L C %4
is a function M: ¥* — Ny¢? such that M (w) = M* (w) for all w € L and M (w) € M* (w) for all
w e X*\ L.

Horizontal and vertical evaluation languages. For all £ € N, we define
OB = {exty, € O(Z2) : [ul =k} and O(Z2)** = {exty, € O(E2) : [v| =k} .
We also define O(X%2)y = {exty, € O(32) | A(u) > 0} and finally for all k € N, we define
OEA) =0EH)F* NnOEA); and O(B4)F" =0(B2)"FNOE4); .

Consider the alphabets 'y, = (22 \ {e}) U {$} and I'y, = ¢ (O(52)1) U {$} for a letter
$ ¢ R, UOL. We also define

Vo, = {$Fs |k e N,s € (")} and Vy, = {$¥f |keN, f € ¢L(0(2A)’;Hv*)}* .

Define the pr-evaluation morphism evaly,, : I'}, — Rp, by evaly, (s) = sforall s € or(22\{e}) and
evaly, ($) = 1g. Similarly, define the ¢r-evaluation morphism evaly, : I'y, — Oy by evaly, (f) = f

for all f € ¢y, (O(EA)T) and evaly, (3) = 1o, . Finally, for all r € Ry, we set
Eorr =V N eval;L1 (r)

and for all e € Op, we set
Epre=Vy, N eval;Ll(e) :

5.3.1 Strategy for the proof of Theorem

We are now ready to give the proof strategy for Theorem [5.7] The proof consists of the following
steps.

1. Lemma V., and Vy,, are regular languages whose syntactic morphisms are quasi-aperiodic.

2. Proposition Let L be a VPL whose syntactic morphism (¢r, %) is quasi-aperiodic.

e Forallr € Ry, thelanguage £,, - is regular and its syntactic morphism is quasi-aperiodic.

e For all e € Oy, if for each ¢y (L)-reachable idempotent f € Op such that there exist
g,h € Op, satisfying e = g o f o h we have that Ry = {(u,v) € Con(E) | Y1 (exty) = f}
is length-synchronous, then &y, . is a regular language whose syntactic morphism is
quasi-aperiodic.

3. Proposition If L C ¥* is length-synchronous, then there exists an FOx[+]-formula
p(z,y) such that M: X% — Nyo? defined by M(w) = {(i,5) € [1, |w|]? | w = u(i,j)} for all

w € ¥* is an approximate matching relative to L.
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4. Proposition [5.16} Assume a VPL L has bounded nesting depth and

e &, r is a regular language whose syntactic morphism is quasi-aperiodic for all ¢, (L)-
reachable r € Ry, and

o &y, ¢ is a regular language whose syntactic morphism is quasi-aperiodic for all ¢, (L)-
reachable e € Oy,.

Then there exists an FOy; ..., [+]-sentence 7 such that for any approximate matching M relative
to L, we have w € L if, and only if, (w, M (w)) }= n for all w € ¥*.

Let us argue that Points and [4|indeed imply Theorem (Point [1f will be used in the proof
of Point . Length-synchronicity of L implies weak length-synchronicity of L and thus bounded
nesting depth of L (Proposition . Point [2| implies the other assumptions of Point [4f length-
synchronicity of L means by definition that for each ¢y (L)-reachable idempotent f € Or we have
that Ry = {(u,v) € Con(X) | ¢r(extyy) = f} is length-synchronous, so Point [2| implies that &,, ,
and &y, . are quasi-aperiodic for all 7 € Ry, and all e € O, respectively. Finally, combining the
FOy, ... [+]-sentence of Point ] with the FOx[+]-formula given by Point 8| that defines an approximate
matching relative to L yields an FOyx[+]-sentence defining L, thus proving Theorem

5.3.2 V,, and V,, are quasi-aperiodic (Proof of Point 1)

Before proving Point 1 in the proof strategy for Theorem we require the following auxiliary
lemma. It provides an important periodicity property of Ext-algebra morphisms.

Lemma 5.8. The following periodicity holds:
1. There existt € N and p € Nug such that o, (2 NEY) = o (B2 NS for alli,j € N satisfying
i,j >t andi=j (mod p).
2. There exist t € N and p € Nsqg such that wL(O(ZA)%*) = wL(O(EA)%’*) for all i,j € N
satisfying i,7 >t and i = j (mod p).

3. There exist t € N and p € Nsg such that 9y, (O(EA);’i) = YL ((’)(EA);J) for all i,j € N
satisfying i,7 >t and i = j (mod p).

Proof. To prove Point 1 recall that Lpzl(r) is a VPL and hence a context-free language for all
r € Ry. By Parikh’s Theorem [I4] Section 3| it follows that S, = {|w|: w € %, ¢ (w) =r} C Nis
a semilinear set for all » € Ry. Tt follows that for all U C Ry, the set Sy = {Jw| : w € ¥2, o (w) €
U} C N is semilinear since semilinear sets are closed under union. Point 1 follows immediately from
this observation.

Next we prove Point 2, Point 3 can be proven analogously. According to Lemma[6.4]in Section [6]
for # ¢ % the language L, = {u#v | uv € 2 : ¢ (ext, ) = e} is a VPL for all e € Op. As the
language K = {u#v | u,v € ¥} is obviously a VPL, it follows that for all e € Op, the language

Lt = Le \ K = {u#v | uv € 2 : pp(exty) = ¢, A(u) > 0} C L,
is a VPL as well. By Lemma [6.5]in Section [6] the set
Se={(k,]) eENxN|Juex¥vechu#ve Ly}
is semilinear as well for all e € Oy,. As a consequence we obtain that for all Y C Oy, the set

Sy ={(k,)eNxN|JuexfvexecY u#vc L1} CNxN
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is semilinear as well since semilinear sets are closed under union. Since for all Y C Oy, the set

{k € N | wL((’)(ZA)]TC’* = Y} is nothing but the projection of Sy onto the first component and

semilinear sets are closed under projection, Point 2 follows. O

The following lemma holds irrespective of whether the syntactic morphism (¢r,vr) of L is
quasi-aperiodic or not.

Lemma 5.9. V,,, Vy, are regular languages whose syntactic morphisms are quasi-aperiodic.

Proof. Take t € N and p € Ny given by Lemma [5.8 such that 1)y, ((’)(ZA)%*) =L ((’)(ZA)?*) for
all 4, j € N satisfying 4,j >t and ¢ = j (mod p). Define 6;,,: N — N as

01 (n) n ifn<t
n)=
br min{n’ e N|n' >tAn’=n (modp)} otherwise

for all n € N. Take M to be the syntactic monoid of V,, and h: I’ZL — M to be its syntactic
morphism.

If there exists f € 1/1L((9(EA)T) and k € N such that $*f ¢ V,,, let us fix some f, and
k. that satisfy this. Observe that for all k& € N, we have that h($¥) = h($%»(*)). Further, for
all n € Nuo, k1,....kny1 € Nand fi,..., fn € ¥ (O(Z%)1), we have h($F1fy - §kn f, §Fnt1) =
h($%» (1) £ a0 (knt1))  where

o= {6 if $k2f2'--$k”fn€V¢L

$kL f|  otherwise .

Therefore, M is finite and thus Vy, is regular. Let | € N5 be the stability index of h and take
q € N5g such that ¢-1 >t and ¢-1 =0 (mod p). By definition, we have h(FfﬁL) = h(I‘Z)'i). Thus, to

show that h is quasi-aperiodic it is sufficient to prove that for all m € h(I‘f&), we have m? = m?.

Indeed, given m < h(F%), only the following three cases can occur.

1. m = h($7!). In this case, we have
m? = h($771) = h($%» 1)) = p($Pr (V) = B(§7!) = m |

where the third equality follows from 60; ,(2-q - 1) = 0 ,(q - ).

2. m = h($F f$FL £ $F2) for f € LZJL(O(EA)T) and ki,ke € N satistying 6;,(k1) = ki and
¢ p(k2) = ko. In this case, we have

m? = h($F fekL f Rtk pghs g ghey — p(gk pghe £ gRey = m

where the second equality follows from $%+ f, §k1+k2 fghe ) ¢ ),

3. m = h($" £$*2) for f € vy, (O(EA)T) and k1, ko € N satisfying 0; ,(k1) = k1 and 6, ,(k2) = k.
If f €y (O(B4) 1) then

m? = h($¥ f§F1152 f§72) = n($F1 f$72) = m
because $¥17%2 f € V,, . Otherwise, f ¢ 11, ((’)(EA)IFHCQH’*) and then
m? = h($F f§F1HE2 £§h2) = p($F1 F$ML £ $72)
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because $M1H*2f ¢V, | so
m? = h(8* f§5- fL8F1TR2 f§R2) = h(§F1 F$FL £ $72) = m®
because $F+ f $kitkaf ¢y,

Therefore, Vy, is a regular language whose syntactic morphism is quasi-aperiodic. O

5.3.3 Quasi-aperiodicity of evaluation languages &, , and &, . (Proof of Point 2)

One important consequence of Lemma @ is that for all » € Ry and e € Oy, the languages &,
and &y, . are in fact regular languages. The following proposition gives conditions under which
those languages have moreover quasi-aperiodic syntactic morphisms when the syntactic morphism
of L itself is.

Proposition 5.10. Let L be a VPL whose syntactic morphism (or,%r) is quasi-aperiodic.
e For all v € R, the language &, » is reqular and its syntactic morphism is quasi-aperiodic.

e Foralle € Oy, if for each pr(L)-reachable idempotent f € O such that there exist g,h € Op,
satisfying e = go f o hE| we have that Ry = {(u,v) € Con(X) | ¢r(exty,) = f} is length-
synchronous, then &y, . is a reqular language whose syntactic morphism is quasi-aperiodic.

Proof. We already know that for all » € Ry, and e € O, the languages &, , and &y, . are regular.
To prove the lemma, we then just have to prove that

e if there exists r € Ry, such that the syntactic morphism of £, , is not quasi-aperiodic, then
there exists k € N such that (p(ZA N ¥*) contains a semigroup that is not aperiodic;

e if there exists e € Of, such that the syntactic morphism of &, . is not quasi-aperiodic and
for each o (L)-reachable idempotent f € Op such that there exist f’, f” € Op satisfying
e = f'o fo f” we have that Ry = {(u,v) € ¥* x &* | uv € ¥4, A(u) > 0,9 (exty,) = f}
is length-synchronous, then there exist k,! € N such that ¢,(O(X%)**) contains a semigroup
that is not aperiodic.

Indeed, the first point allows to conclude that (¢, 1) is not quasi-aperiodic, since if there exists a
non-aperiodic semigroup S contained in ¢, (3 NYF), then {left, | s € S} is a semigroup contained
in ¢ (O(X%)*0) (because for each s € S, there exists w € B N T satisfying ¢r(w) = s, so
that vy (exty ) = left,, ) = left;). But this semigroup is non-aperiodic as well, since as S is
non-aperiodic, it must be that for all i € Ny, there exists s € S such that s' # s'T! so that
lefty? # left,“F1

We only prove the second point, the first point can be proved in a similar way by leaving out the
last paragraph of the following proof, that is the sole place where we need, given an e € Oy, length-
synchronicity of Ry for each ¢r,(L)-reachable idempotent f € Op, such that there exist f/, f” € Op,
satisfying e = f' o fo f”. ‘ ‘

Take t € N and p € N5 given by Lemma |5.8 such that 1y, ((’)(EA)?*) =L ((’)(EA)%’*) for all
i,7 € N satisfying 7,7 > ¢t and i = j (mod p).

Assume there exists e € O, such that the syntactic morphism of &y, . is not quasi-aperiodic.
Take M to be the syntactic monoid of £y, . and h: F;‘LL — M to be its syntactic morphism. Let

In the terminology of Green’s relations, to be introduced in the proof of Proposition this is equivalent to
the fact that e <3 f.
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s € Ny be the stability index of h and let w > 2 be a multiple both of the idempotent power of M
and the idempotent power of Oy. Non-quasi-aperiodicity of A implies that there exists g € h(I‘be)
satisfying g¥ # ¢g* T

By definition of the stability index, there exists w € ng for ¢ € Ny such that ¢-s > tandg-s =0
(mod p) satisfying h(w) = g. Sincet < ¢q-s<q¢-sw<gq-s-(w+1l)andg-s=q-sw=¢q-s-(w+1)
(mod p), we cannot have w = $7°*, for otherwise we would have g% = h($75%) = h($4s@t1)) = gwtl
because ¥y, (O(ZA)i'S'erkH’*) = ((’)(ZA)?S'WHHHL*) for all k£ € N. Therefore, we have w =
k1 fy - - $kn £, 85041 for m € Nog, ki1,... kst € Nand fi, ..., f, € ¥ (O(22)1). Since g* # g“*1,
there exist x,y € I'), such that either zw®y € Eyp e and zw Ty & & o, or zuy ¢ &, . and
zw*tly € &y, .. Assume the first case holds. Then we have z = 2/$% and y = $*y’ with
ks, ky € N and 2/, y" € T, satisfying 2/, Ghathif Gk fo . §Fn £, §hnaith g Ghniithyyl €y,
and evaly, (z/) o (fio---o f,)* oevaly, (y') = e. Therefore, we also have zw* ™y € V,, , hence since
zw Ty ¢ £, . we necessarily have

e=-evaly, (z') o (fio---o fy)“ oevaly, (¢)

# evaly, (zw*Tly) = evaly, (z/) o (fio---o fr)e o evaly, (v') .

Thus we have (fio---0 f,)% # (fio---o0 f,)*F! and $knt1th fi§k2 f, ... §kn f, € Vi, - This is also
true for the case when zw®y ¢ &, . and zw* Ty € &, ..

Therefore, we have (fio---0 f)* # (fro---o fu)*! with (fio---0o fn)! € ¥r (O(ZA)%'S'i’*) =
Yr, ((’)(ZA)?S’*) for each i € Ny because kyr1+ki1+- - -+kp+n = q-s > tand kpp1+k1+ - +kp+n =
q-s =0 (mod p). But given w’ the idempotent power of {(fio---o f,)" | i € N5}, we have that

(fiow-o fu)? = (fro- o fu) = (fro-- o fu), sothat (fio---o fo)* # (fio-- o fr) 1,
hence {(fio---0 f,)" | i € Nyo} is not aperiodic.

Assume additionally that for each ¢ (L)-reachable idempotent f € Op such that there exist
f',f" € Oy satisfying e = f' o f o f we have that Ry = {(u,v) € &* x * | uwv € 2, A(u) >
0,1 (exty,») = f} is length-synchronous. For each i € Ny, let exty,, o, € Y1, (O(EA)?S’*) such that
Yr(exty, v,) = (fio---o fn)' If (fio---o f,)® were not ¢, (L)-reachable, then it would imply that
eXty,, v, is not L-reachable. This would in turn entail that for all z € %% and ext, g € O(X%) we
have

eXtanB (eXtuw7vw (Z)) ¢ L A eXtanB (eXtuluwvvwvl (Z)) = eXtaulyvlﬁ(eXtuwavw (Z)) ¢ L ’

so that it would follow that (f1 o --- o fn) = W (exty, v,) = Yr(eXtuyuy v ) = (f1 o+ 0 fr)*FL
a contradiction. Hence, since (f1o0---o f,)“ is a ¢ (L)-reachable idempotent and

evaly, (') o (fio---o fp)¥ ocevaly, (y) if zw®y € &y, o and 2wty & &y, .
e= ,
evaly, (z') o (fio---o fu)*Ttoevaly, (y') otherwise (zw?y & &y, . and zw Ty € &, .)

it follows that R(fe...of,)~ is length-synchronous. So for all i € N,i > 2, since 9 (extyy o) =
Yr(extyy ve) = (fro---o fu)* with A(uf) > 0 and A(uf) > 0, since |u1| = |u;], we have

ut| _ ] Jwl

= = |v1| = |V4] -
o] = Jo] = for] - Jo = il

To conclude, we obtain that the non-aperiodic semigroup {(fi o---o f,)! | i € Nsg} is contained in
Y (O(DA)rslvuly, O
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The following remark states that the length-synchronicity precondition in the second point of
Proposition [5.10| is important. In fact it shows that weak length-synchronicity is not sufficient.

Remark 5.11. For the second point of Proposition it is generally not sufficient to assume,
given e, that for each o, (L)-reachable idempotent f € Oy, such that there exist g, h € Oy, satisfying
e =go foh we have that Ry = {(u,v) € X* x X* | uwv € 2, A(u) > 0,9y (extyy) = f} is weakly
length-synchronous. Indeed, the VPL K generated by the grammar with rules

S — aSby | acTbs | €
T — aTby | acSby .

using S as start symbol is not length-synchronous, but weakly length-synchronous, and has a quasi-
aperiodic syntactic morphism. However, for the syntactic Ext-algebra (R, Ok) and the syntactic
morphism (¢x,VK) of K, we claim that there exists a px (K)-reachable e € O such that £y, .
1s a reqular language whose syntactic morphism is not quasi-aperiodic while, as K is weakly length-
synchronous, for each ¢ (L)-reachable idempotent f € Or, we have that Ry = {(u,v) € ¥* x ¥* |
uv € X2, A(u) > 0,y (exty,) = f} is weakly length-synchronous.

Let T be the wvisibly pushdown alphabet of K. Note that we have K C L12, where L1 =
L(S — aSbi|acSbsle) is the VPL initially introduced in Example [2.5 For all wv,u'v' € Ly 2 with
u,u’ € {a,c}t, v,v" € {by,bo}T, |ule = |v/|. (mod 2) we have zuzvy € K & zu'2v'y € K for all
zy,z € T2, This implies that if we set eg = Y (extop,) and er = P (extqep,), we have that for all
uv € L1 with u € {a,c}™, v € {b1,ba} ™, it holds that Vi (extuy) = €ju|, moa 2- Therefore, while
eg # e1, we have egoe; =ejoeg=-e1 and egoeyg =e1 0e; = eg.

Consider the length-multiplying monoid morphism (: {0,1}* — Iy, such that B(0) = epeq
and B(1) = $e1. Then MODy = B71(Eyy e); 50 Epge cannot have a quasi-aperiodic syntactic
morphism, for otherwise, by closure of the class of regqular languages whose syntactic morphism
is quasi-aperiodic under inverses of length-multiplying morphisms (see [30]), we would have that
MODs has a quasi-aperiodic syntactic morphism.

5.3.4 Approximate matching relation in FO[+] (Proof of Point 3)

The following proposition states that there is a FOx[+]-definable approximate matching relative to
any length-synchronous visibly pushdown language.

Proposition 5.12. If L C £2 is length-synchronous, then there exists an FOx[+]-formula n(z,vy)
such that M : ¥* — Nxo? defined by M(w) = {(i,5) € [1, |w]]?> | w = n(i,§)} for allw € ¥* is an
approximate matching relative to L.

The technical heart of the proof is the following lemma whose proof is postponed and will take
most part of this subsubsection. This lemma realizes the characterization of length-synchronicity
given by Proposition via an FOx[+]-formula.

Lemma 5.13. Assume that (pr, 1) is weakly length-synchronous. Let e € Op, be pr(L)-reachable
and assume that U, = {(u,v) € Con(X) | eotpr(exty ) = e} is length-synchronous. Then there ezists
an FOg[+]-formula w.(x,2',y',y) such that for all w € X7 and i,i',7,j € [1,|w|],i <i < j <j
the following holds,

o ifw = me(i,i', 5, 7), then w; - wpwj - w; € 2 and

o ifw; - wywy - w; € Y2 and (Wi ... wyr,wjr ... wj) € Ue, then w = me(i,7, 5, 7).
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Building an approximate matching assuming predicates m.. Let us prove Proposition [5.12]
by making use of Lemma [5.13

Proof of Proposition[5.19 By assumption (¢r,vr) is ¢r(L)-length-synchronous. Thus, the set of
contexts U, is length-synchronous for all ¢ (L)-reachable e € O, by Proposition Moreover,
there exists d;, € N bounding the nesting depth of the words in L Proposition For defining
our desired formula p, we will construct FOx[+] formulas pg and ug for all 0 < d < dj, with the
following properties: for all w € ¥T and for all 4, j € [1, |w|], we have

o ifwp ,ug(i,j) or w = pg(i, 7), then w; - - w; € B2,
o ifwe L, w...w; € X% nd(w; ... w;) < dand i is matched to j in w, then w = ug(z‘,j), and
o ifwe L, nd(w;...wj) <dand w;...w; € 2, then w = pq(i, j).
We therefore define j1 = 14, . The construction of ,uji and pg is by induction on d. We set
po(i,7) = L and po(i, j) = Vz(z < 2 < y = Sing(2)).

Let us assume d > 0. The formula pg is easily defined assuming Mg- We define
wa(z,y) = Vz [azg 2 <y —
(Zine(2) V 3 ((Bean(2) A Tret () A (2, 2)) V (Sean(2') A Sres (2) A, 2) )) } .

It remains to define MZ- Let us assume u = w;...w; € »2, that i is matched to j in w and
that nd(u) = d > 0. Hence, u = ajvb; € ¥ for some a1 € ean, b1 € Zpet, and v €
¥, We then apply Lemma which states that u has a nesting-maximal stair factoriza-
tion u = exty, y, 0€Xty, p, O ..€Xty, 4, ©€xXty, p, (u) such that for some h € [1,k], setting upy =
Xty b, 0 €Xtay, ypy O 0 0 extg, p, (u') for all £ € [1,k] and ug41 = u', we have

1. nd(u) = nd(up) = d,
2. nd(up41) =d—1, and
3. nd(z1),nd(y1),...,nd(zy),nd(yp) < d.

We remark that 21 = y; = €. Let i =14 < --- <4y and j, < --+ < j; = j be the positions
that correspond to the positions of the letters ai,...,ap € Ycan and by,...,bp € Yt of u in w,
respectively: more precisely iy = i + |21 - - - ap_12¢| and j; = |x1a1 - - - Tpapw' by - - - bey1yes1| + 1 for
all £ € [1,h]. The formula 772 could guess the positions ¢ = i1 < --- < ip and jp < --- < j; = j and
verify the following (recalling that 1 = y; = ¢):

(a) the infix wy, 41---wj, -1 = exty, |y, (Upg1) is well-matched, and

(b) the word wy, - - - w;, wj, - - - wj, is well-matched.
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Point (a) can be realized via the formula py—1 by making use of Point 2 from above, whereas Point
(b) can be realized by the following ad-hoc formula, this time making use of Point 3 and from above:

kp(x, 2’y y) = Jay--ap3yr--yn (x:xl/\x':xh/\y':yh/\y:yh A

h h—1
N\ Sean(@e) A Sree(ye) A N pra—1(@e+ 1w = 1) A paor (e + 1y — 1))
t=1 t=1

The problem with this approach is that the size of the formula depends on the size of w. For
instance, for a € Yean, b € Yiet, ¢ € Bint, and u = a™cb™ we have nd(u) = nd(acb) =1 for all n > 1.
Hence we would have h = n — 1, so h would depend on u which is problematic. Therefore, towards
expressing Point (b) by a formula whose size only depends on |Op|, let us define, for all £, ¢’ € [1, h],
the product

e = Prexty, y, 0exty, p, -+ exty, 4, 0exty, p,) and ey =eyy.

We remark that all ey are ¢r(L)-reachable since w is assumed to be in L. For e € O, we say an
interval I = [s,t] C [1,h] is e-repetitive if s < ¢ and es = e;. We say [s,t] C [1, h] is repetitive if it is
e-repetitive for some e € Oy,.

Claim 5.14. There ewist indices 1 = tg < 51 <t1 < 82 <tp < -+ < 8¢ <ty < Sq41 = h such that
[s1,t1],...,[sq.tq] are all repetitive and for Dy = [to, s1], D1 = [t1,2],...,Dq = [tg, Sq+1] we have
g+ 2 p=0 Dyl <3[0s|.

Proof of the Claim. For all z € [1,h] let A(z) = max{l € [1,h] | e, = e,}. Observe \(z) > z
for all z € [1,h] and that |[A([1,h])] < |Or|. We define ty = 1. Let p > 0 and assume that
we have already defined t,_1. In case t,_1 = h we are done and define ¢ = p — 1 and s441 =
h. So let us assume t,_1 < h. In case there exists z € [t,—1,h] such that z < A(z) we define
sp = min{z € [tp—1,h] | 2 < A(2)} and t, = A(sp), otherwise (i.e. in case z = A(z) for all
z € [tp—1,h]) we are done and define ¢ = p — 1 and sg41 = h. Immediately by definition we have
=ty <s1<t1 <s3<ty<---<sq<ty<sgr1 =h (because if we had t,_1 = s, for a p € [2,4],
we would have e, , = e, ; = es,, 50 A(sp) = A(sp—1) = tp—1 = 5, < A(Sp), a contradiction) and
es, = e, for all p € [1,q]. Moreover, the intervals [s1,t1], ..., [sq, t4] are indeed all repetitive. Since
moreover t, € A([1,h]) for all p € [1,q] and |A([1,h])] < |Or| we must have ¢ < |Or|. Now let
Dy = [to, s1], D1 = [t1,52],...,Dq = [tq, Sq+1]. Clearly, these sets are pairwise disjoint. Moreover,
by construction, the only elements z € |Jj_q D) such that 2 < A(2) are those in X = {s1,...,54},
so that all elements z € (Uj_o Dp) \ X satisfy z = \(2), i.e. are elements from A([1, h]). Thus, we

obtain g+ 54 1Dyl = a+ [ Uiy Dy| < 041+ 1X] + (L H)] = 3]0, =
Let 1 =t < s1 <t <s2 <ty <-<s5q<ty<8gr1 =h be the indices satisfying Claim

along with Dy = [to, s1], D1 = [t1, 82, ..., Dg = [tq, Sq+1]. Let d, = |D,| for all p € [0, ¢]. Since, for
all p € [1,¢], the non-empty interval [s,,t,] is repetitive, we have es, = e;, and thus obtain

€s, = €1, = €5, O YL(eXtay 1omar, by yopi1)-

Hence, we have w = e, (is, + 1,it,, jt,, Js, — 1) where mc_ is the formula given by Lemma
(recall that e, is r(L)-reachable and that U, is length-synchronous). We can therefore use the
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formula e, to witness that wj,, 41 wi,, wj, - wj,,—1 is indeed a well-matched word. Tt will
thus remain to verify that w;, - Wiy Wi L Wi, is well-matched for all p € [0, g]: this can be

guaranteed by evaluating kg, (it,,@s,, 1, Jsy.1%t,). We can now define our final formula :“Il:

ug(x, y) = \/ 31 .. wgyr Ty .. :z:iIEIyl Y1 YY)

q€[0,|0p,1]

a+do+--+dg<30|

[:zogxl<:c'1<$2<-~~<x;<y;<yq<-~-<y'1<y1§y6/\

2o =2 A Yy =Y A pd-1(Tg+1 +1,Yg+1 — 1) A

q q

/\ \/ Te(zp + 1,2,y yp — 1) | A /\ Ky (Tp Tpi1, Ypt 15 Yp) | - O
p=1 \e€Op ¢r(L)-reachable p=0

The following remark is obvious but will be important in Section

Remark 5.15. When constructing our predicate ug, we could have replaced any subset of the pred-
icates m., where e is pr(L)-reachable fmm above, by the predicate w4 expressing that for all
we Xt and i, 7, 5,5 € [1,|w|],i <i <j <jit holds:

w ): WexaCt(’L i ,] j) = Wi wpwy .. wj € EA, €eo ¢L(€thi...wi,,w
A+ wg) > 0

],,...wj) =e, and

It remains to prove Lemma

Proof of Lemma [5.13

In essence, our proof is inspired by the approach taken in [24] Proof of Proposition 126|, which is
itself a flawed adaptation (we refer to Section [8|for more details) of the approach taken in [23, Proof
of Lemma 15].

Let ae € Qs0, B € N and 7. € Ny given by Proposition [4.17] for e. There exist unique
Ne,de € N>0 that are relatively prime such that ae = %¢. We are going to build an FO[+]-formula
me(z, 2,y y) such that for all w € ¥t and i,4, 5/, ] e 1, |w|],7 < ¢ < j < j, we have that
w = me(i,7', 5, 7) if, and only if, all of the following conditions are satisfied:

(i) = = 5
(i) —fe < A(w; -+ Wikon,—1Wj—kedo+1 - wj) < Be for all k € Nyg such that k£ < (j — 5/ +1)/de.
and A(w; - - - wywjr - - wj) = 0;

(iil) A(Wiy(g—1)-ye = Witgre—1) = 1 for all ¢ € Ny with g+ <i' —i+1 and A(w; - wipp-1) >0
for all p € [1,7 — i+ 1];

(iv) A(Wj—gryet1 Wj—(g—1).) < —1forall g € N5 with g-ve < j—j'+1 and A(wj—pi1---wj) <
0foralpell,j—j +1].

Let us first prove that these four conditions whose conjunction the FO[+]-formula 7. (x, z’, v/, y)
will express, indeed imply the two conditions of the lemma.

If conditions ({ . ) to (iv]) are satisfied for a w € T and 4,7/, 5/, j € [1, |w]],i <@’ < j' < j, we actu-
ally have that w; - wlle rwj € 2. Indeed, condition ({i) ensures that A(wj - - SWpwy W) =
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0. Conditions and then additionally imply that A(w; - - w;jyp—1) > 0forallp € [1,¢ —i+1]
and A(wj - - wywjr -+ wjyp—1) > 0 for all p € [1,j — j' 4+ 1]. This is because if there were a
p € [1,j—j+1] such that A(w; - - - wywj - - - wjr4p—1) < 0, then it should be that A(wjryp---wj) >0
with p < j — j' as we already know that A(w; - --wyw;s ---wj) = 0: this would be a contradiction
to condition .

Conversely, let us fix some w € ¥ and indices 4,7, 5,7 € [1, |w]|] such that i <i" < j < j,
Wi WpwWyr Wi € »2, A(w;---wy) > 0 and eo wL(extwi...wi,,wj,..‘wj) = e. In the terminology
of Proposition for F' = ¢r(L), we have (w;---wy, wj ---wj) € U,. We claim that Points (i)
to are actually satisfied. Indeed, recalling that L is length-synchronous by assumption, 2(a)
of Proposition for e in fact states that that Point is satisfied. Next, since for all k €

- b '
N.g such that & < Z iH =1 n’“, the word wj - Wit gpn.—1 is a prefix of w;---wy and the
e e
word wj_p.d,41---wj is a suffix of wj ---w; such that Jwi i hme IZ'_ZE = @, it must hold
e

Wj—kede+1"Wj

that —fe < A(w; -+ Witk —1Wj—kdet1 -~ Wj) < Be by P(j)int 2(b) 0|f Proposition We have
that A(w; - - - wywj ---w;) = 0 immediately follows from our assumption w; - - - wywj - - - w; € »Aa,
thus Point holds. Another consequence of our assumption w; - - wywj ---w; € Y2 is that
A(w; -+ wigp—1) > 0 for all p € [1,i — i+ 1] and A(w; - - wypwjr - wjrgp—1) > 0 for all p €
[1,7 — j' + 1]. This implies that A(wj_py1---w;) <0 for all p € [1,j — j/ + 1], as already argued
above. Since Wy (1), """ Witgr.—1 18 a factor of w; - --w; of length 7, for all ¢ € N> such that
q-Ye <7 —i+1and wj_gry 41 Wj_(g—1)-, is a factor of wj - --w; of length . for all ¢ € Ng
such that ¢ - v. < j — 7' 4+ 1, by Points 2(c) and 2(d) of Proposition we finally have that
conditions and are also satisfied.

It now remains to construct the formula 7. (x,2’, vy, y). We set

7'['6(1',1‘/, y/7 y) :(l'/ —x+ 1) : de = (y - yl + 1) ’ neA
,Ufne,de,ﬁg(xaxlvy/?y)/\
vy, (2, 2") Avy (Y y),

where the first line checks condition (), the FO[+]-formula i, 4, 4. (z,2',y',y) will check con-
dition under the assumption condition is satisfied and the FO[+]-formulas v (z,2') and
v, (v, y) respectively will check conditions and . We now explain how to build those for-
mulas.

Helper formulas. For all £ € N5y and h € Z such that —k < h < k, we let

i@ = \/ </\ Sat(@+p—DA A Sele+p-1DA N\ Swlz+p- 1))
I,JC[1,k] pel peJ pE[LEN\(IUJ)
INJ=0
[1=[J|=h
such that for all w € X+ and i € [1, |w|] such that i < |w| — k + 1, we have w |= H}'(i) if, and only
if, A(wl s wH_k_l) = h.
For all n,d € N+ relatively prime and h € Z,—n — d < h < n + d, we define

Dy g,y 2) = \/ (Hﬁl(a:+(z—1).n)AH§2(y_Z.d+1)) 7

—n<hi<n
—d<hs<d
h1+ho=h

such that for all w € ¥ and 4,5,k € [1,|w|] withi+k-n—1<|w|and j —k-d+ 1> 1, we have
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w = Dzyd(i,j, k) if, and only if,

A(Wit (k-1)n " Witkn—1Wj—kdt1 " Wj—(k—1).d) = I .

Formula i, 44(x,2",y',y). For each p € Nlet ', = {a_p,...,a-1,a0,0a1,...,ap} and define
Ap: Ty — Z to be the p-height monoid morphism satisfying A,(ap) = h for all aj, € I'y. Consider
the language

Lpg={weTl, | Ap(w) =0AVie€ [l |w]],—g < Ap(wr---w;) < g} .

We claim that this language is recognized by a finite aperiodic monoid. This implies, by a theorem
by McNaughton and Papert (see [29, Theorem VI.1.1]), that there exists an FOr, . [<]-sentence
fip,q defining Ly, .

Let now n,d € Ny relatively prime and ¢ € N. Consider w € X" and 4,7, 5,5 € [1, |w|] such

that 1 <4’ < j < j and jz,:j,fl = 5. We want to check whether we have

—q < A(w; - Wik 1Wj—fd41 - W) < ¢

for all & € N5 such that k < (j — 5/ + 1)/d and moreover A(w; - - wywj ---w;) = 0. Since n
and d are relatively prime, this means that there exists [ € [1,|wl|] such that ¢/ —i+1=1-n
and j —j'+1 =1-d. We can hence decompose wj;---wy as uy---u; with uy,...,u; € X" and
wjr -+ w; as vy -+ - vy with vy,..., v € 4 Observe that A(u;v;) € [-n —d,n +d] for all i € [1,1].
Using this decomposition, we now need to check whether —qg < A(ujvy) + -+ + A(ugvg) < ¢ for
all £ € [1,1] and A(uyv1) + -+ + A(wy;) = 0. This is equivalent to checking whether the word
w = AA(uyvy) """ CA(uwy) in F:Ler belongs to Ly 4q.4-

We thus transform the FOr,  ,[<]-sentence fin 14,4 into an FOx[+]-formula ji, 44(z,2’,9/,y) by

e replacing any quantification 3zp(z) by 3z (z <(y—-y+1)/dA p(z));
e replacing any quantification Vzp(z) by Vz(z < (y — ¢/ + 1)/d — p(2));

e replacing any atomic formula of the form ay(2) for ap € I'yiq by DI (2,9, 2).

By this translation for all w € X% and 4,4,5",5 € [1,|w|] with i < 4" < j/ < j and ;/—_jl’——"l_-ll =5
we have w = pin,q4(i,7, 5, 7) if, and only if, —¢ < A(w; -+ Withm—1Wj—k-dt1 -+ wj) < g for all
keNso, k< (j—j +1)/dand A(w; - wywjr - --wj) = 0.

It remains to show that L, , is recognized by a finite aperiodic monoid for all p,q € N. Set
Qq =1{-¢,...,—1,0,1,...,¢q, L} and consider the monoid Qqu with function composition from

left to right. For each aj, € I'y, we define the function f,, : Q4 — Q4 to be such that

W+h ifh#1Land —gq<h'+h<gq

1 otherwise

fah(h/) = {

for all ' € Q,. We take M, , to be the submonoid of Q,%* generated by {fa, | a, € T} and define
¢pq: Iy — My 4 as the unique monoid morphism such that ¢, 4(ap) = fa, for all a € T').

It is straightforward to show, by induction on the length of w, that for all w € T') and all h € @,
we have

h+ Ap(w) ifh# L and —g < h+ Ap(wi---w;) < g foralliel,|wl]

1 otherwise.

Pp,g(w)(h) = {
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Thus Lyg = ¢, a({f € Mpq | f(0) = 0}). We claim that the monoid M, is aperiodic. Indeed, take
f € M,,; we claim that f2+! = f24+2 Since M, , is generated by {fs, | an € T'p}, there exists
w € '} satisfying ¢y, 4(w) = f. There are three subcases to consider.

o If A,(w) = 0, then since h+ A, (w" 1wy -+ w;) = h+Ap(wy -+ w;) forall h € Z, —qg < h < ¢,
for all n € Nyg and ¢ € [1, |w|], we have that f™ = f for all n € N.

o If A,(w) > 0, then since ¢ < h + Ap(w? ) < h + A, (w??+2) for all h € Z, —q < h < g, both
241 and £2972 must be equal to the function sending every element to L.

o If Ay(w) < 0, then since h + Ap(w?+2) < h+ Ap(w?tl) < —gfor all h € Z,—¢ < h < ¢,
both f24t1 and f2¢*2 must be equal to the function sending every element to L.

Formula v;" (z,2'). For all | € N5, we let

12

p k
yﬁ(:c,a:’)z/\(:c’—a:+12p—> /\ \/H,?(a:)) A

p=1 k=1h=0

!
Vz(z-lgx’—a:+1—> \/Hf(x—i—(z—l)-l)) .
h=1
Fix any w € 7 and 4,7 € [1, |w|] such that i < ¢/. We have w |= v;"(i,i’) if, and only if,
A(w; -+ Wigp—1) > 0 forall p € [1, min{I?,7'—i+1}] and A(w;4(g—1)4 - Witqi—1) > 1 forall g € N5g
such that ¢ -1 < i’ —i+ 1. The latter is clearly equivalent to having A(w;i(g—1).1 - - Wirqi-1) > 1
for all ¢ € N5g,q-1 <i' —i+1 and A(w; - - witp—1) > 0 for all p € [1,7' — i + 1], as required.

Formula v; (y/,y). For all [ € Nyq, we let

2 p k
Vf(y’,y)z/\(y—y’+12p—> A \/H,;h(y—k-+1)) A

p=1 k=1 h=0

l
Vz(z-lgy—y/+1—> \/Hl_h(y—z‘l-i-l)).
h=1

Therefore, analogously as for V;r(x, 2'), for all w € ¥ and 5,5 € [1,|w]|] such that j/ < j, we have
w = vy (57, 4) if, and only if, A(w;_g.iq1---wj—(g—1)1) < —1for all ¢ € N5g such that ¢-1 < j—j"+1
and A(wj_p41---wj) <0forall p € [L,j — 5"+ 1].

5.3.5 Evaluation in FO[+] (Proof of Point 4)

The following proposition states that every VPL L that has bounded nesting depth and for which
the horizontal and vertical evaluation languages &, , and &y, . are quasi-aperiodic for all ¢ (L)-
reachable r and e, respectively, is definable by an FOsy; ....[+]-sentence in case an approximate match-
ing is present as built-in predicate.
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Proposition 5.16. Assume a VPL L has bounded nesting depth and

o &, r 15 a regqular language whose syntactic morphism is quasi-aperiodic for all pr,(L)-reachable
r € Rp, and

o &y, e 15 a reqular language whose syntactic morphism is quasi-aperiodic for all pr,(L)-reachable
e€0r.

Then there exists an FOx ...[+]-sentence n such that for any approzimate matching M relative to

L, we have w € L if, and only if, (w, M(w)) = n for all w € ¥*.

Proof. By hypothesis, there exists d;, € N bounding the nesting depth of the words in L.

By hypothesis also, for each ¢r(L)-reachable r € Ry, the language &, , is regular and its
syntactic morphism is quasi-aperiodic. This implies, by [29, Theorem VI.4.1|, that for each ¢ (L)-
reachable r € Ry, there exists an FOr, [<, MOD]-sentence v, , defining &, .

Finally, by hypothesis, for each ¢ (L)-reachable e € Oy, the language £y, . is regular and its
syntactic morphism is quasi-aperiodic. Again, by [29] Theorem VI.4.1|, for each ¢ (L)-reachable
e € Op, there exists an FOpr [<, MOD]-sentence vy, . defining &y, .

Auxiliary formulas. We introduce a few auxiliary formulas that all assume access to the full
matching relation M A(w), represented by the relational symbol «~s.

First let us define a formula A such that for all w € ¥2 and 4, j, k € [1, |w|] satisfying w; - - - w; €
2, we have that (w, M* (w)) = A(i, j, k) if, and only if, i < k < j and A(w; ---wy) > 0. We let

Alz,y,2) =3 (r <2’ <z <y <yAa awy)).

Next, we define a formula U such that for all w € % and i,7,k € [1,|w|], we have that
(w, M* (w)) |= U(i,4', k) if, and only if, i < k < i’ and k is matched to some position larger than
i in w. We let

Ulx, 2, z) =z <z2<a' ANtz tNd <t).

The last formulas we introduce are Ng which express that the infix w; - - - w; € Y2 of w € ¥4 has
nesting depth at least d > 0. More precisely, for all d € N, we introduce auxiliary formulas Ny such
that for all w € X% and 4, j € [1, |w|] satisfying w; - - - w; € %, we have that (w, M* (w)) | Ny(4, j)
if, and only if, nd(w; - - - w;) > d. The case d = 0 is trivial since we can set Ny(i,7) = T.

Take w € X2 such that nd(w) = d > 1. Note that then w can be factorized as w = wiuws
such that wy, ws € ¥, 4 € Yean X et and nd(w) = nd(u) = d’. This means that v = ajvb; for
a1 € Yeall, b1 € Xt and v € Y2, We then apply Lemma and Lemmaimplying that u has
a nesting-maximal stair factorization

/
U = exty, y; 0 extg, b, 0+ 0 Xty g, 0 €xXtq, b, (W)

for which there exists h € [1, %] such that, setting u; = extq, p, 0 exty, | 4 00 extg, p, (u') for
all i € [1,k] and ugq1 = o/, we have nd(u) = nd(up) = d' and nd(exty, ., ©€Xta, | by, O
extg, b, (') = nd(up41) = d’ — 1. Thus, by definition of the nesting depth of a well-matched word,
up, = apz122by for 21, 20 € B2 satisfying nd(z1) =nd(z2) =d' — 1.

Hence, we set

e

Ni(z,y) = 32" (x <2’ <y <yna e yf)
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and for d > 2 we set

Ny(z,y) = Hx'EIy/EIz(ﬂs <z <z<y <yAd ey A=A + 1,y —1,2)A
Ng1(z'+1,2) ANg1(z+ 1,5 = 1)) .

Main construction. To build the FOsy; ...[+]-sentence 7, we build FOsy, ....[+]-formulas
o 1) (x,y) for all d € N and all ¢y, (L)-reachable r € Ry, and
e ng,(x,y) for all d € N and all ¢y, (L)-reachable r € Ry,

that also assume access to the full matching relation M* (w). They will have the following properties
for all w € ¥4 and all 4,5 € [1, |w|]:

e if i is matched to j in w, then (w, M> (w)) = ngr(i,j) if, and only if, nd(w; - - - w;) < d and
or(w;---wj;) = and

o if w;---w; € X2, then (w, M* (w)) E n4,(i,7) if, and only if, nd(w;---w;) < d and
or(w;---wj) =7,

Let the formula E be defined as Vz(x # x) if e € L and L = Jx(z # z) otherwise. Our final formula
n will then be defined as

N =Vz3t((Scan(z) = 2z ev t) A (Sret(2) = £ &v 2))A

(E\/ EIxEIy(—EIa:/(x/ <z) A= (y <) \/ Ny, (T,Y) )
repr (L)

It now remains to build ngr(x, y) and ng,(x,y) for all d € N and ¢ (L)-reachable r € Rr. The

construction is by induction on d. Let r € Ry, that is ¢ (L)-reachable. We define 773,7»(% y) = L.
We define ng - as

7707T<m7 y) = —|N1(x,y) A TO(chL,T) )

where the translation 7y is inductively defined as follows:

o o(z2 <) =2<2;

0 70(5(2)) = Vgt e ©(2) for all s € 1, (52 {e});

e 790(MOD,,(z ))fEIt((z:w—>1:t-m)/\(27éx—>z—a:+1:t-m)) for all m € Ny;
(8(2)) =
o 70(p1(21) A p2(22)) = 10(p1(21)) A 70(p1(22));

(

(

°
3

—p(2)) = ~70(p(2));

o 10(32p(2,2)) = 3z(x < 2 <y A7o(p(z, 2))).

3

Now let d > 0. Let us first define 74, when assuming that we have already defined "7; - Given

w € X4\ {e} and 4,5 € [1, |w|] such that w; - --w; € ¥4\ {e}, note that in case nd(w; - --w;) < d,
then one can factorize w;---w; as w;---wj; = uy---uy, such that uy € iy U Yeal 22 et and
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nd(ug) < d for all £ € [1,m]. Note also that if or(w;---w;) = r, as r is pr(L)-reachable, then
or(ug) is pr(L)-reachable for all £ € [1,m]. Using these observations we define

Nar(®,y) = " Nap1(z,y) A Vz(:v <z<y— (ri(8(2)) vV \/ 7'1(3(2)))> AT (Vpr )
s€pr(22\{e})
o1 (L)-reachable

where the translation 71 agrees with the above translation 7y (where, as expected, occurrences of 7
are replaced by 71) except for the following kinds of subformulas:

° Tl($(2)> = A(CE, Y, Z);

o 71(s(2)) = -A(x,y,2) A (\/66%1(5)ﬁzint cz)VI(z <t < YyAt ow zA 77;3(75» z))) if s is
1 (L)-reachable, 71(s(z)) = L otherwise.

It remains to define 77;r.

We first construct for all ¢ (L)-reachable e € O, a formula xg.(z,2’,y,y) such that for all
w € ¥4 and 4,7, 5,7 € [1,|w|],i < i < j' < j we have that if w; - wywj ---w; € L& and 7' is
matched to j’ in w, then given

exXty; - wy wjrew; = exty, gy, 0 exXty, b O - 0exty, 4, Oexty, b,

the stair factorization of extu,...w, w,,--w,; provided by Lemma|3.6, we have (w, M2 (w)) E Xae(i, i, 5, 5)
if, and only if, nd(x/),nd(y,) < d for all £ € [1,k] and ¢L(6thimwi,,wj,~--wj) =e. Given w,4,4,5',j
and the associated stair factorization as above, note that if @bL(extwil..wi“w _,...wj) = e, as e is
or(L)-reachable, then ¢ (zs) and ¢r(ys) are ¢r(L)-reachable for all ¢ € [1,k]. If additionally
nd(z,),nd(ye) < d for all £ € [1,k], we can inductively make use of the formulas {n4_i, | 7’ €

R @1 (L)-reachable} in order to evaluate ¢r(x1),¢r(y1),...,on(xk), or(yx). Let pi,...,pp €
[i,i'] be the positions in w;---wy where, respectively, aj,...,a; in the above factorization of

€Xbap; -y wjsw; APPEAL: the formula xg4 . will verify if o; - -- 0y € &y, o, Where

left,, (z,,) © Tighty, 5,y © Yr(€xXta,, b,) if ¢ = pm for m € [1, K]
g, =
! $ otherwise

for all g € [¢,7']. Hence we set

vael@, @y y) =Va(z <2 <a' o BV N n(E)) Al |

revs (0(=2);)
o (L)-reachable

where the translation 75 agrees with translation 7y (where, as expected, occurrences of 7y are replaced
by 72) with the following exceptions:

o 7(3zp(z,2)) = J2(x < 2 < 2 Ama(p(z, 2)))
o ($(2)) = ~U(z, 2, 2)

EIt(U(x,x’, 2) Nz e tA (taf(z, @'y, y,2,0) V gz, 2, z,t))) if fis ¢ (L)-reachable

1 otherwise

e 7(f(2)) = {
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for all f € ¢, (O(2%)4), where

va,f(z, 2 Yy, 2, 1) :ﬁElz'(U(:C,x/, YN < Z)/\

\V} <a(z) AD(E)A

aezcalhbezretv””la""”ERL
fZIeftT/Oright,r//O’LZJL(eXtayb) ('1" < zA 77d71,r’( )) \ F ( /\

((t<y/\77d71,r~(t+1,y) )V Fur(y,t >

=z if 1
=2 WS=1Rr o 1 ¢r(L)-reachable s € Ry, and
1 otherwise

with Fy(z,z) = {

Caof(z, 2 2,t) = EIz'EIt'(U(x,:C', DYNZ <2 A —Ez”(z' <" <z2ANU(z, 2, z")) A2 ems A

\/ (a(z) AD(E)A

aGann,beEret,r 7‘ GRL
f=left,soright, //owL(exta b) Nd—1 a7 (2: + 1,2 — 1) A Ng—1 r”(t +1, t— 1)))

We now construct ngr itself. Given w € ¥\ {e} and 4,5 € [1, |w|] such that i is matched to j

in w, observe first that the infix w; - - - w; is of the form w; - - - w; = a1vb; € »2 for some ay € Yicalls
b € Sret, and v € X2, As above, we can directly express nd(wj - - -w;) < d via the formula ~Ng;.
Assuming this holds, towards expressing that ¢r(w; ---w;) = r, we make use of Lemma and
Lemma for the infix w; - - - wj; there is a nesting-maximal stair factorization

_ /
Wi+ Wj = eXbygy gy 0€Xbg, p O 0 Xty 4y OXtg, by (u )

such that we have

1. nd(z1),nd(y1),...,nd(z),nd(yx) < d; and

2. ifpr(w;---wj) =r, asris pr(L)-reachable, then ¢, (exty, 4, 0 exty, p, 0 -0exty, 4, 0€xte, v, )
and ¢r(u') are ¢r,(L)-reachable.

By these points, we can use the formulas {xq.(z,2’,v,y) | e € O ¢r(L)-reachable} to evaluate
1 (exty, yy ©€Xtg, by O+ 0 Xty 4, O€Xty, p, ) and the formulas {ng, | 7’ € Ry ¢r(L)-reachable} to
evaluate ¢r(u'). We are now ready to give the formula 772 - We set

0 (2,y) = “Nag (2, y) A J2'3y’ (:v <z’ <y <yna' e y'A
\/ (Xd,e(xv :LJ’ y,a y) A nO,T’(x/ + 17 y/ - 1))) :

T'/GRL,eeOL
e(r')=r

5.4 The intermediate case

The following theorem effectively characterizes the remaining case, namely those VPLs that are
weakly length-synchronous but not length-synchronous and whose syntactic morphism is quasi-
aperiodic: such VPLs are shown to be constant-depth equivalent to a non-empty disjoint union of
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intermediate VPLs. The computability of k,l € N with k£ # [ such that £;; <.q L is subject of
Section [5.4.21

Theorem 5.17. If L is weakly length-synchronous but not length-synchronous, and its syntactic
morphism (¢r,, 1) is quasi-aperiodic, one can effectively compute vertically visibly pushdown gram-
mars Gi, ..., G, generating intermediate VPLs such that L =4 J;", L(G;).

Before we give the proof of the theorem we need a bit of notation. Let L C ¥ be a VPL that
is weakly length-synchronous, not length-synchronous, and whose syntactic morphism (¢, ) is
quasi-aperiodic. By Proposition one can effectively compute its syntactic Ext-algebra (R, Or),
(¢pr,vr) and ¢r (L) from (a given DVPA for) L.

For all e € Oy, recall that

U, = {(u,v) € Con(X) | e otpr(exty ) = e}
For all ¢ (L)-reachable e € Or, and some fresh internal letter # ¢ X let
M, = {u#v | (u,v) € Con(X), A(u) > 0,e 0 (exty,) = €}.

Note that since L is assumed to be weakly length-synchronous, by Proposition [£.5 U, is weakly
length-synchronous for all ¢, (L)-reachable e € Oy..

Also note that since M, = |J{Ls | f € Or: eo f = e} N{u#v | wv € B, A(u) > 0}, since for all
languages Ly one can effectively compute Ext-algebras recognizing them by Lemma and since
one can effectively computable an Ext-algebra recognizing the language {u#v | uv € £2, A(u) > 0},
we obtain that one can effectively compute an Ext-algebra recognizing M, C Y*#3*. The set
Se = {(k,]) € N* | J(u,v) € ZF x S : u#v € M.} C N%; is hence effectively semilinear by
Lemma Note that the word relation U, is length-synchronous if, and only if, there exists some
a € Qg such that £ = « for all (k,1) € Se. Lemmaimplies that the latter condition is decidable.

As a consequence one can effectively compute the set
Z ={e€Op|eis ¢r(L)reachable and U, is not length-synchronous}.

Observe that since L is not length-synchronous by assumption, we have Z # () (Proposition .
_ Let us introduce two fresh copies ¥ = {7 | 0 € X} and ¥ = {7 | 0 € I} of our alphabet ¥. Let
9:(BUD)* > 3*and 9 : (SUX)* — X be the (letter-to-letter and hence length-multiplying)
morphisms satisfying J(c) = 9(5) = & and 9(¢) = 9(g) = & for all ¢ € %. Conversely, let
71 (SUT)* — =* and A (S UX)* — T* be the morphisms satisfying 9~ (5) = 9 (o) = o
and 5_1(5) = 5_1(0) =o forall o € X.

We define a new visibly pushdown alphabet T = Y. U Ting U Tret where Tean = 2cant, Lint =
Sint US US U {#}, and Tiet = Sret.

For every word u#v € M, consider the unique factorization

uHv = exXtyy y; 0 Xlg, by O+ 0 Xty 40Xty b OOXbay (#)

where k > 1, 1, ..., Thr1,Yls -+ Y1 € 22, a1, ..., € Seanl, and by, ..., by € Dyer. For these we
define

F—exte - e oerts o A
(ufo)' = extiin,) i) O Xtar b 0+ 0 X0, 5y © Xarin © X0, ) 5, () €T
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Notably, (u#v)* does not contain the letter #. Finally, for all e € Z we define the language
N, = {(u#v)* € T* | u#v € M} U{e} CTA .

Remark 5.18. Let be n € N be the constant from Lemmal[].6 for L and let e € Z. When setting
F = (L) and (¢,¥) = (¢r,%1), Lemmal4.6 states that the factorization

UFV = exty, y, 0 €xtg, by 0 O €xXby, 4y O Xty b, O exXtay 1,y i1 (#)

of every word u#v € M, satisfies |x1], ..., |xer1l, [y1l,-- s |[Uk+1] < n. As a consequence, for the
corresponding factorization

T o ... - ~ _
(u#v)* = eXtﬁ(wl)vﬁ(yl) © exta, b, © ° eXtﬂ(xk)vﬂ(yk) © extay by, © eXtﬁ($k+1)ﬂ9(yk+1)(€)

of every word (u#v)* € N, \ {e} we have P y1)

5@1)’, oo ‘5(1’%1)

I(yrr1)| < n.

3 g ey

5.4.1 Proof strategy

We are now ready to give the proof strategy for Theorem The proof consists of the following
steps.

1. N, is an intermediate VPL for all e € Z. Moreover, one can effectively compute a vertically
visibly pushdown grammar G, witnessing that N, is indeed intermediate (Lemma |5.19)).

2. Ne <ca M, for all e € Z (Lemma |5.20)).
3. M, <cq Ne for all e € Z (Lemma [5.21)).

4. Me SCd Lﬂf c OL is @L(L)—reachable Lf fOI' all € 6 Z (Lemma 5.22.
5. L <cq H.cz Me (Lemma [5.23)).

Let us argue that Theorem follows from the above steps. By Point 1 for all e € Z we
have that IV, is an intermediate VPL, for which moreover one can effectively compute a vertically
visibly pushdown grammar G, witnessing that N, is indeed intermediate. Recalling that Z # 0,
it remains to argue that L =.4 W{N, | e € Z}. Before we prove this let us recall some basics of
constant-depth reductions. For this, let K, Lq,...,L,, K1,..., K, be languages. Firstly, observe
that if L; <.q K; for all i € [1,n], then ¢ L; <4 Lﬂz’e[lm] K;. Secondly, if L; <.,q K for all

1€[1,n]
i € [1,n], then |4 < K.

i€[1,n]
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Hence we obtain the following sequence of reductions showing that L =.q H{N, | e € Z}.

Point 5
L Scd L"j Me
ecZ
Point 3
Scd L"_'J Ne
ecZ
Point 2
<cd L"j Me
ecZ
Point 4
Scd L"_-J Lf
f € Or is pr(L)-reachable
Lemma [5.3]
Scd L.

Lemma 5.19. N, is an intermediate language for all e € Z. Moreover, one can effectively compute
a vertically visibly pushdown grammar witnessing that N is indeed an intermediate VPL.

Proof. Let e € Z. For showing that N is an intermediate VPL we first show that NV, is quasi-
counterfree. To this end we show that (pn.,¥n,) of N is quasi-aperiodic, which is equivalent by
Proposition 4.18|

Assume by contradiction that (¢n,,%n,) is not quasi-aperiodic. Then there exist k,l € N such
that 1y, (O(T2)"!) contains a non-trivial group, say G C Op,. Let go be the identity of G and let
g1 € G be such that g1 # go. Thus, we have giﬂ # gt for all Nug. We claim that all g € G are
©nN, (Ne) reachable: indeed, if ¢ € G were not ¢, (Ne)-reachable, then the same would hold for all
g € G since ¢’ = ¢g'g'g, hence implying that ¢’ is the (one and only) zero of Oy, contradicting
that G is non-trivial. Fix some exty vy, €Xty, v € O(Y2)Rl such that YN, (extyyvy) = go and
YN, (exty, v, ) = g1. Note that we must have k > 0 or [ > 0 for otherwise we would have ug = u; = ¢
and vg = v1 = ¢, a contradiction to go # g1. We moreover claim that wug,u; ¥* and hence
v, V1 & " indeed, a consequence of Remark [5.18|is that exty,, € w;,i(f) NY® x X implies 5,t < n
for all ¢, (Ne)-reachable f € On,, yet the fact that ¥y, (ext, ,i) is in G and thus ¢, (N, )-reachable
for all ¢ > 1 contradicts this (recall that |u;| > 0 or |v1] > 0). In other words, both up and u;
contain at least one letter from Y., and both vy and v; contain a letter from X ,et.

Next we claim that neither ug nor u; contain any letter from Y,.: indeed, without loss of
generality if u; were to contain a letter from X,e¢ then ¥pn, (extuiv%) would be the zero of Op,,

contradicting that ¥y, (extu%’vf) is in G. It follows that ug,u; € (E*Ecaufl*ﬁ and hence that
V0,V1 € (i*zfti*)—"_. _ . .

Let uf = 97 (up), uj = 97 (ur), vh =9 (vg), v =9 " (v1) and note that Xty op s €Xbyr o €
O(E*1). Since P(Or) forms a monoid there exists p € N+ such that

wL({eXtué,v(’) ) eXtu/l Y })p = wL({eXtug,vé ) eXtu/l Y }>2p :

This implies that for all 7 € Ny, we have
Yr(ext, ot g me1)' € Pr({exty o extyr o )P = r({extyy uy, exty o 1P

Hence, as |ug| = |ui| = |uy| = |uj| = k and |vo| = |v1] = |vj| = |vj] = I, the semigroup
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{/l/}L(eXtu;)p_lullvviU(l)p_l)i | 1 € N>O} is contained in I/JL((’).(ZA)/&‘PJP). We show that the latter semi-
group is not aperiodic by showing wL(extugpflu,lvvivép,l)l £ wL(extugpqu,lvvivép,l)H—l for all 7 € Nyj.
Indeed, since

ol i+l it2 2
’(bNE (eXtug—luhvlvg—l) == gl # gl — /l;z)Ne (eXtug—lulv’Ulvp—l)

there exist ext, , € O(Y4) and w € T4 such that, without loss of generality

i+1 i+2
(extx?y o (eXtug”ul,vlz}g*1> > (w) € No and (extw,y o (eXtug”ul,vlz}g*1> > (w) & Ne.

p—1

ow since ug, uq call ere exists a factorization un ~ujwv1v =z'y’ suc a
N Jup € (B Yean X))t th ts a factorization uf ' 'y such that

B\ =1
<6Xt51(x)’191(y) o (ext7§71(ug,lul)ﬁq(vlvg,l)) > (9 1(35/)#79 (v)) € M,

and
t t Y W) ¢ M,
1@ ) ° (ex T ) ”‘1>> 7 @) W) & Me

V1V,

By definition of M, we obtain

€ = eovr (eXtﬁfl(w(u’g*ul)ix')ﬁ*(y'(vlvg*wy))

= eoy (ethq(x)’E*l(y)) o (ethfl(ugflul),Fl(mvgfl))i °vr (eXtﬁfl(m’),Wl(y’Q

and
e # eoy (eXt571(x(ug—lul)i+1x/)75—1(y/(vlvg—l)iJrly))

i+1
= eoyy (eXtEA(x)ﬁ_l(y)) oL <6Xt5*1(ug_lm)ﬂ_l(vwg_l)) YL (eXtﬁfl(ﬂﬁ’)vg_l(y'o '

Thus, we must have 7 (ext w1, , w1)' #r(ext w1, , m1)T1 asrequired. As this is true for
Ug 1% Uy U3,V

Uy
each i € Ny, the semigroup {¢L(extu6p71u,lyviv6p71)i | i € Nug} that is contained in 7 (O(X5)*Pip)
is not aperiodic, contradicting quasi-aperiodicity of (¢r,,1r).
It remains to show that one can compute a vertically visibly pushdown grammar G, with
L(G.) = Ng such that R(G,) is weakly length-synchronous but not length-synchronous. By Re-

mark each non-empty word in N, is of the form

(u#v)i — eXtﬁ(m),E(yl) oexty, p; 0+ 0 eXtE(mk),E( o exta, by, © extg(

Yk) $k+1),5(yk+1)(6)

for some k > 1 and some words 1, ..., Tpi1, Y1, -, Ypr1 € L2 all of which have length at most n
such that moreover eot)r (ext, ) = e. We construct the grammar G, = (V, T, P, S.) as follows. The
set of nonterminals is V' = {S; | f € Or}, Se € V is the start nonterminal, the set of productions
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consists of the union of {S. —¢, ¢} and
{Sf =, U(1)ad(@2)Sy0(y2)b0(y1) | f,9 € Or a1, 32,51, 92 € £2, a1, |2al, [y, [y2] < 7,

ac 2calla be 21ret7 f © wL(ethlaxg,yzbm) = g} .

As a consequence we obtain

R(Ge) = {(%l) g ), I )be - B(y1)) | @1, Y € T4

a,...,ar € Xeall, b1, ..., b € e,

€o @Z}L(eXta1---akwk+17yk+1bk---y1) = e}

= {(5(551)"-akfg(mz-ﬁ-l)aﬁ(ykﬁ-l)bk--‘ﬁ(yl)) | Ty D1, T Yhep1 € B2,

al, ..., a4 € Ecallabla'--7bk € Yret,

(71 ... apTry1, Ypy1br - - Y1) € Ue} :

It follows that R(G.) is weakly length-synchronous since U, is: indeed, if R(G.) were not weakly
length-synchronous and without loss of generality there were to exist (u,v), (v/,v") € R(G.) with

u = and |v| # [v'|, then both (9~ (u),d " (v)) and (I~ (u'),d 1(1}’)) would be in U, by definition.
Yet 97 (u) = 9~ (u') and \@_1(v)| = |v| # [V'] = @_1(2/), so this would contradict that U, is indeed
weakly length-synchronous. Analogously it follows that R(G.) is not length-synchronous since U,
is not length-synchronous by assumption. O

Lemma 5.20. N, <. M, for alle € Z.

Proof. Assume we are given w € T*. To decide if w € N, using an oracle to M, we do the following
constant-depth computation:

1. Accept if w = ¢, otherwise continue.

2. Check if w = uv for some u € (i U Ycan)* and some v € (X U Xyer)*, reject if this is not the
case.

3. CheckNWhether u can_be factorized as w = xya1 - - TrapTrr1, where k > 1, 21, ..., 21 €
{z e¥ ||z <nAVYz) € 2} and ay,...,a; € Sean and whether v can be factorized

= ——1
as v = by awyr, where 1> 1y, oy €{y €T | [yl <nAY (y) € 4} and
bi,...,b € Yyer. Reject if it is not possible. (Observe that this is doable by a constant depth
and polynomial size circuit family since we test membership in finite sets that do not depend
on the input.)
4. Finally accept if, and only if, the word

~ ~ —1

I Ha1)ag -+ ﬁ_l(fk—l)aka_l(ﬂﬂkﬂ)#@_l (yl—l—l)blg_l(yl-i-l) Y (1)

is in M.,. O
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Lemma 5.21. M, < N, for alle € Z.

Proof. Assume we are given w € (X U {#})*, where w = w; - wy, and where w; € ¥ U {#} for
all i € [1,m]. To decide if w € M, using an oracle to N, we do the following constant-depth
computation:

1. Check if w = u#v for some u € ¥ and some v € X, reject otherwise.

2. For all return letters b € Xt and all positions j within w at which b appears, check whether
there exists a position ¢ within « such that 1 < j —4¢ < n — 1 and the infix w;---w; is in
»A. (As above, this is doable by a constant depth and polynomial size circuit family since
we check well-matchedness of at most a fixed number of words that does not depend on the
input.) Reject if it is not the case.

3. For all call letters a € Y¢a and all positions ¢ within v at which a appears, check whether
there exists a position j within v such that 1 < j —4 <n —1 and the infix w; - - - wj is in »A,
Reject if it is not the case.

4. For each position ¢ within u, compute P.u(i) where P,y is the unary predicate defined by
w | Pean(?) if, and only if, 4 is a position within u, w; € Y.y, and there does not exist any
position j within u such that 1 < j —4 <n — 1 and the infix w; - - - wj is in »A.

5. For each position j within v, compute P,et(j) where Pt is the unary predicate defined by
w = Pret(7) if, and only if, j is a position within v, w; € X,et, and there does not exist any
position 7 within v such that 1 < j —¢ <n — 1 and the infix w; - - - wj; is in »a,

6. Let 1 < i3 < ig--+ < i < |u|] be an enumeration of {i € [1,|u]] | w E Pean(i)} and let
lu| +2 < j; < ji—1-+- < j1 < m be an enumeration of {j € [|[u| +2,m] | w = Pret(j)}. Build

U= 9w - wiy—1)wiy (Wi 1 Wi —1) Wi (Wi 17 W)

~

and
v = 19(w|u|+2 v wjlﬂ,l)wjl . -19(wj2 +1--- wjl,l)wjlf}(wjl +1--- wm).
7. Accept if, and only if, the word u/v’ is in N,. O]
Lemma 5.22. M, <. L—ijf € Oy is o1, (L)-reachable Ly forallec Z.

Proof. Note that the following equivalence holds:
u#v e M, <= 3f €Oy thatis pr(L)-reachable:eof=eAu#v e Ly ANA(u)>0.

This holds because for ext,, € O(X%) satisfying e o 9y (ext,,) = e, as e is ¢ (L)-reachable,
1, (exty, ) must also be ¢, (L)-reachable. Assume we are given w € (XU{#})*. To decide if w € M,
we do the following constant-depth computation using oracles to |4 € Oy is o1 (L)-reachable Ly:

1. Check if w = u#v for some u,v € 3*, reject otherwise.
2. Check if u#v € Ly for some ¢ (L)-reachable f € Oy, satisfying e o f = e, reject otherwise.
3. Finally, accept if, and only if for all ¢ (L)-reachable f € Or, we have u# ¢ Ly.

If the second check is successful, then ¢ (ext, ) is necessarily ¢ (L)-reachable, so in that case
when A(u) = 0 it holds that u € %% and v (exty.) is ¢r(L)-reachable. Hence, in combination
with the second check, the third check is successful if, and only if A(u) > 0. O
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Lemma 5.23. L <. cz M.

Proof. By assumption L is weakly length-synchronous but not length-synchronous, and its syntactic
morphism (¢r, %) is quasi-aperiodic. There is a constant dy, such that all words in L have nesting
depth at most d;, by Proposition

By the first point of Proposition@we may assume that the evaluation language &,  is regular
and its syntactic morphism is quasi-aperiodic for all ¢ (L)-reachable » € Ry. This implies, by [29]
Theorem VI.4.1], that for each ¢ (L)-reachable r € Ry, there exists an FOr, [<, MOD]-sentence
Vg, r defining &, .

As L is not length-synchronous we cannot assume analogous sentences for the evaluation lan-
guages &y, . for all pr(L)-reachable e € Or,. Indeed, Remark provides an example of a weakly
length-synchronous but non-length-synchronous VPL whose syntactic morphism is quasi-aperiodic
but for which some evaluation language &y, . for e € O, that is ¢ (L)-reachable has a non-quasi-
aperiodic syntactic morphism.

However, let e € Op, be such that R, = {(u,v) € Con(X) | ¥ (ext, ) = e} is length-synchronous.
Take any ¢, (L)-reachable idempotent f € O such that there exist g, h € Op, satisfying e = go foh.
There exist exty, y, ,exty, ,, € O(X%) such that ¢ (exty,,,) = g and ¢r(exty, ) = h. Let
(u,v), (v/,v") € Con(X) such that A(u), A(w') > 0 and ¥p(extyy) = 1 (exty ) = f. Because f
is idempotent, we have that wL(extu|v/|7v|v/|) = pr(exty ol y101) = [, thus wL(eXtCL‘gulvllxh,yhvlvllyg) =
UL (extxgu,\u\ xh,yhv””‘yg) = e. Therefore, because of length-synchronicity of R, it follows that

‘xgub’lxh‘ ‘xgu/|v|xh‘
lynv!lyg| vy,
|zg| + V'] - Jul + [xn] _ |zg| + [0] - [u'] + 24l
lynl + 1] - ol 4+ Tygl lynl + [0l - [0'] + |y,
|| - ful = Tl - |o/]
ful _ ]
ol '

So we can conclude that Ry = {(u,v) € Con(X) | 91 (exty) = f} is length-synchronous. Thus, by
the second point of Proposition we may assume that the evaluation language &y, . is regular
and its syntactic morphism is quasi-aperiodic for all ¢y (L)-reachable e € Op with R, length-
synchronous. This implies again, by [29, Theorem VI.4.1|, that for each ¢r,(L)-reachable e € Of,
with R, length-synchronous, there exists an FOp oL [<, MOD]-sentence vy, . defining &y, .

For proving L <cq H.cz Mc we must thus make use of the oracles to [,z M. All of the
following predicates can be computed by a circuit family of constant depth and polynomial size with
access to these oracles. More concretely, by accessing oracles to i .z M., for all e € Z we may
assume that we have a predicate 72 such that for allw € X and 4,7, j',j € [1, |w]],i < < j' < j
the following holds:

w E w4 5 ) = Wi - Wypwyr Wi E ¥4 eo Yr(eXtuy -y ww;) = € and (4)

A(wi . -'wi/) >0

For all ¢ (L)-reachable e € Oy, that are not in Z we may assume, by Lemma that we
have the FO[+]-definable (and hence constant-depth computable) predicate 7. at hand. It has the
following properties: for all w € X1 and ,4', 5,5 € [1,|w|],i <4 < j' < j:

o if w = m(i,7, 5, 7), then w; - - - wywj - --wj € B4 and
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o if w; - wywy---w; € YA A(w;---wy) > 0 and e o ¢L(extwi“.wi,7wj,...wj) = e, then w =
me(i,4', 5, 7).

We can first build an approximate matching p relative to L. This is done totally analogously
as done in Section by replacing the there appearing 7. for each e € Z by our predicate &2t
indeed, Remark [5.15] states that the predicates 7. from of Lemma [5.13] could have been replaced by
the predicate w&ct,

Thus, as in the proof of Proposition [5.16] we may assume that we have full access to the matching
relation M2 (w) of our input word w.

For verifying if a given word w € X% is in L we follow the same approach as the main construction
in Section[5.3.5 It is however important to stress that this time we cannot assume quasi-aperiodicity
of the syntactic morphisms of the evaluation languages &y, . for all ¢ (L)-reachable e € Oy, Still,
we build formulas

o ﬁgr(m, y) for all d € [0,dy] and all ¢ (L)-reachable r € Ry, and
® Ny, (w,y) for all d € [0,dr] and all ¢ (L)-reachable r € Rf,

that will have the following properties (as 14, and ngr) for all w € £ and all 4,5 € [1, |w]]:

e if i is matched to j in w, then (w, M* (w)) = ﬁgT(i,j) if, and only if, nd(w; - - - w;) < d and
pr(w; - wj) =r;

o if w;---w; € %, then (w, M* (w)) E Ma(i,4) if, and only if, nd(w;---w;) < d and
pr(w;---wj) =r.

It remains to define the formulas 7, ,. and ﬁg . forall d € [0,dr] and all ¢y (L)-reachable r € Ry.

For the definition of the ﬁaT and the 7y, we can simply reuse 79, and ngm as in the proof of
Proposition respectively (1o, will make use of our sentence v, ,). So let us assume d > 0.

We first construct for all or(L)-reachable e € Or, a formula X, .(z,2',y',y) such that for all
w e X2 and i,7,5',j € [1,|w|],i < i < j < j we have that if Wy Wiwy Wy € Y2 and ¢ is
matched to 7’ in w, then given

ethi’”wi/ wyr ethBl;?Jl 0 eXta17b1 ©---0 eXtZimyk 0 eXtakybk

the stair factorization of exty,...w, w,..w; provided by Lemma we have (w, M® (w)) = Xa.e(isi', 5, 7)
if, and only if, nd(x/),nd(y,) < d for all £ € [1,k] and ¢L(6thi~-~wi/,wj,mwj) =e. Given w,1,4,5',j
and the associated stair factorization as above, note that if @bL(extwi..‘wi,ij,A..wj) = e, as e is
or(L)-reachable, then ¢ (zs) and ¢r(ys) are ¢r(L)-reachable for all ¢ € [1,k]. If additionally
nd(z¢),nd(ye) < d for all £ € [1,k], we can inductively make use of the formulas {7;_,, | ' €
Ry, ¢ (L)-reachable} in order to evaluate ¢r (1), pr(y1),--.,vL(Tk), oL (Yk)-

As expected, the problems are, firstly, that we cannot access our evaluation languages &y, . and,
secondly, that we have to build a formula that may not depend on k. As in Section we define

the product
eo = Y (exty, y, 0exty, p, 0+ 0exty, 4, 0exty, p,) and ep=eyy

for all £,¢' € [1,k]. For e € Oy, we say an interval I = [s,t] C [1,k] is e-repetitive if s < t and
es = e;. We say [s,t] C [1,k] is repetitive if it is e-repetitive for some e € Of.

By Claim there exist indices 1 = tp < §1 < t1 < s2 <ty < -+ < 8§ < tg < Sg41 = k
such that [s1,1],...,[sq, tq] are all repetitive and for Dy = [to, s1], D1 = [t1, 82, ..., Dg = [tq, Sq+1]
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we have ¢ + 371 o|Dy| < 3[0z]. Let i = ip < --- < i and jp < --- < ji = j be the po-
sitions that correspond to the positions of the letters aq,...,ar € Ycan and bg,...,b1 € Xyt of
the factorization of extwi...wi”wj,.“wj in w, respectively: more precisely iy = i + |1 ---ay_12¢| and
o= }a:lal S TRARWi 41 Wi 1Dy - 'bz+1y£+1| +1 for all £ € [1, k]. Since the non-empty interval
[sp, tp] is repetitive for all p € [1, ¢], we have e, = e, and thus obtain

€sp = €1, = €5, O P(eXtyy 11 ar by epi1) -

Given p € [1 q] if es, € Z, we can use the predicate ﬂeXBCt to check the above equality; we
set Oge, (v,2',y,y) = ﬂexsd(:c,x Ly I e, ¢ Z and is (pL(L) reachable, then U, is length-
synchronous, so for all ¢/ € Op, such that €s, O e = = es,, we have that ¢’ is pr(L)-reachable and
Re = {(u,v) € ¥ x ¥ | uv € B4, A(u) > 0,1y (ext, ) = €'} is length-synchronous. So to check
the above equality, we can use the formula 9d7esp (z,2',y',y) built by taking the disjunction over
all ¢ € Op, such that ey, o e’ = e, of the formulas defined inductively completely analogously as
Xde' (2,29, 2') in Section m (using the sentence vy, o defining &y, »): we simply replace every
occurrence of 7g—1,, by Mg_1,-

Next, for all m > 0 and all ¢r,(L)-reachable f € O, we will construct a formula ag . ¢(x, 2",y y)
such that for all w € $2 and i,4', 5,7 € [1, |w|],i < i’ < j' < j we have that if w; - - - wypwj - -w; €
»2 and ¢’ is matched to j’ in w, then given

€Xbp, -, wjrew; = extyy 4 06Xty py O -+ 0 Xty 4 O€Xby, b,

the stair factorization of extu,...w, w,-w; Provided by Lemma we have (w, M* (w)) & agm (3,4, 5', )

if, and only if, nd(z,),nd(y,) < d for all £ € [1,k], A(w;---wy) = —A(wy ---wj) = m and
¢L(6thi--~wi,,wj/~--wj) =e Foro=(01,...,0m) €X0, €= (&1....,86m) €X, 7= (r1,...,7m) €
Rp™, and rf = (TJ{, ..., 7h) € R™ we define

[1(0.&.r, ) = O leftn, oxight, o i (exto, e, ).

The formula g, s can be expressed as follows:

/ /
ad,m,f(x’$7y7y): \/ HfUla---anmE'yl,-u,ym
aeEcall’gexmt
rorleRy™: f=]](o.&rrT)

<$/:l‘m/\y,:ym/\$§xl<"'<$m<ym<"‘<y1§y/\

m
/\ 04(xg) NE€g(Yg) NTg o yg)
g=1

Vz((z <z<a' A 7\27&%) — =U(z,a',2))A
g=1

((33 <L ATg_ gy (2,21 — 1)) V Fyy (x,xl))/\

((

m m
/\ ﬁd—l,'r‘g ([Eg_l + 171'9 - 1) A /\ ﬁd—l,rg (yg + 173/9—1 - 1))
9=2 g=2

YL <Y ATy 1y + 1Ly)) Vv Ei(yr, y))A
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=z if 1
with Fy(z,z) = S S | wr(L)-reachable s € Ry,
1 otherwise

We are now ready to define the formula Y,

Yd,e(xvx/7y/’x) = \/ \/

q€[0,|0]] €0,f0:€1:-:fqg—1,€q,fq€0
dQg,---s dg>1: eo=1pAVj€[l,ql:e;=e; _10f:
0=10"VJ »qliej=e;_1°J5—-1
q+dg+---+dq<3|0| e=eqofq

3$1...xq+13330...x23y1...yq+13y'1...y6
xf)gxl<x’1<x2<--'<x;<y;<yq<---<y'1<y1§y6/\
= /\y('):y/\x;:x’/\y;:y’/\

/

Lo

q

/\ ep xp + 17$p73/p7 Yp — )) A /\ adp’fp<$; + lvxp-‘rla yp-l-l’y;) - 1)
p=1 p=0

The inductive definition of ﬁ;r is completely analogous to the definition of 14, in Section|5.3.5
we simply replace every occurrence of 741, by 7,1, and every occurrence of xg. by X4,
The inductive definition of 74, is completely analogous to the definition of 7, in Section
we access the horizontal evaluation languages &,, , for all ¢ (L)-reachable r € R, by making use

of the sentence v, and the already defined ﬁg - O

5.4.2 Computation of k, |

The following proposition implies the computability of k,1 € N such that £; <.q L already when
VPL L is weakly length-synchronous but not length-synchronous.

Proposition 5.24. If o« VPL L is weakly length-synchronous but not length-synchronous, one can
effectively compute k,l € Nsg with k # | such that L; <.q L .

Proof. Let L C ¥ be a weakly length-synchronous VPL that is not length-synchronous. According
to Point 2 (b) of Proposition one can effectively compute a quadruple (ko, lo, k), l(,) € N2, for
which there exist exty ,, exty € O(X?) such that

o |ul = ko, [v] =lo, [v/| = ko, [v'] = Ig

o 1 (extyy) = YPr(exty ) is a ¢ (L)-reachable idempotent,
e A(u),A(u') >0, and

[ ] lfO = | 7& “z/; =3

We can explicitly compute such ext, , and ext,s , by just doing an exhaustive search. This enables
us to assume without loss of generality while maintaining effective computability that A(u) =
A(u'): indeed, in case A(u) # A(u'), we can consider exty, v, = ext,aw) aw) and extyy ., =
ext(,)aw), (y)Aw) satisfying the desired properties.

Let us now define Green’s relations on Oy, (see |26, Chapter 3, Section 1]). Let us consider two
elements z,y of Op.
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o We write x <3 y whenever there are elements e, f of O, such that x = eoyo f. We write
rJyif x <yyand y <5 z. We finally write x <y y if 2 <y y and =z J y.

o We write z <g; y whenever there is an element e of O such that x = yoe. We write x R y
if x <y and y <,y .

e We write x <g¢ y whenever there is an element e of O, such that x = eoy. We write x £ y if
r <gyandy<guw.

e Wewritex HyifrRyand z L£y.

Observe that because A(u) = A(u'), we have that uv’ € ¥ and v/v € 2, so that we can
consider the elements extyyy vory = €Xtyp 0 €Xty o 0 Xty and extyyy poy = €Xtyp 0 eXtyr o, 0 exty
in O(X%). These elements satisfy Y (extypu,vvrv) <3 YL(exty,y) and Yr(extyyy vor) <3 VL(eXtyp).
We claim that we actually have ¥ (extyyyvv) <3 VrL(extyy) and Yr(extyyy vor) <3 VL(eXtyy).
Indeed, assume we would have 11, (€xtyy/y pov) J YL(extyw). Set @ = P (exty,») and y = ¢ (exty ).
By a classical property of Green’s relations (see |26, Chapter 3, Proposition 1.4]), since it would
hold that zoyoxz <n z and xoyox J x, we would have z o y o x R = and dually, since it
would hold that royox <g¢ x and xoyox J x, we would have z oy o x £ x. Therefore,
we would have z oy ox $ z. By another classical result on Green’s relations |26, Chapter 3,
Corollary 1.7], as x is an idempotent, its $-class is a group, hence for w € N5 the idempotent
power of Op, we would have (x oy ox)¥ = z* = z (as the only idempotent element in a group is
the identity). This would finally entail that 17, (ext(yu/u)e,(vov)~) = VL(€Xt (), (wov)+) 18 @ @L(L)-
reachable idempotent and A((uu'u)*) = A((uuw)®) > 0 but |(uw'u)*| # |(uuw)¥|, a contradiction
to the fact that (¢r,vr) is ¢ (L)-weakly-length-synchronous. Symmetrically, we can prove that if
we had ¥, (extyyy vorv) J YL (exty ), this would contradict the fact that (¢, 1) is ¢ (L)-weakly-
length-synchronous.

We distinguish three cases. In each of these we prove that there exist k,l € Nsg, k # [ such that
Lii <cd Ly, (exty..), SO that since Ly, (ext, ,) <cd L (by Lemma and by transitivity of <. we
have Ly <cq L.

Case |v| = |v/|. In that case, we necessarily have |u| # |u’|. Then, we can exploit the fact that
matching u? with vo’v or uu'u with v3 makes us fall down to a smaller J-class to reduce L3ju) 2fu+|u/|
t0 Ly, (ext,.,)- Lhe constant-depth reduction works as follows on input w € ¥*:

1. check if w = zy with z € (ac®=1 4 ac?vHWI=1)* and y € (by + bo)*, reject if it’s not the
case;

2. build 2/ by sending ac3*~1 to u?, a1 1=1 6 /'y and ' by sending by to v and by to
vv'v;
3. accept whenever z'#y" € Ly, (ext,.,)-
This forms a valid reduction. Indeed, take a word w = zy with z € (ac®¥—1 +ac2luHw =1\ for p €
Nand y € (by+b2)™ for m € N and consider z'#y’ produced by the reduction with 2’ € (u?4uu'u)"
and y' € (V3 4+00'0)™. If w € L)y 2pu|+|w|> then it easily follows that 2/#y’ € Ly, (exta..)- Otherwise,

if w ¢ Lgjy) 2/ul+]w|, then either n # m and thus z'y’ is not well-matched because A(z') = n-3-A(u)
and A(y’) =m-3-A(v), or n = m and thus 2y’ is well-matched, so ext, v = ext,; y o oexty 4
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with 2],..., 2, € {v,uv/u} and #|,...,t,, € {v3,vv'v} such that there exists i € [1,n] satisfying
ext sy € {extys yyry, Xty 43}, thereby implying

Vi (exty y) <y rlexty ) <y vr(extuy)

Our algorithm therefore outputs the pair (k,1) = (3ko, 2ko + k{)).

Case |u| = |v/|. This case is symmetric to the previous case. Our algorithm outputs the pair
(k, 1) = (2o + 1§, 3lo).

Case |u| # |[v/| and |v| # |v/|. Then, we can again exploit the fact that matching u® with vv'v
or uu'u with v3 makes us fall down to a smaller J-class to reduce La.p . where A = 3|u| = 3ko,
A" =2ul + |u| = 2ko + kj, B = 3|v| = 3lp and B’ = 2|v| + || = 2lg + I t0 Ly, (ext, ) Indeed, we
have A - B’ # A’ - B because otherwise we would have

Blul - (2[v] + [v']) = (2ful + [u']) - 3Jv]
6|ullv] + 3|u]|v/’ = 6|ul|v| + 3’u/Hv|

|u]|v" = ’u’Hv[ .
The constant-depth reduction works as follows on input w € ¥*:
1. check if w = zy with z € (acA B~ + acA" B=1)* and y € (by + bo)*, reject if it is not the case;

2. build 2’ by sending ac? B~ to (u3)?', ach B~ to (uu'u)? and 3 by sending by to (v3)F" and
by to (vv'v)B,;

3. accept whenever z'#y" € Ly, (ext,.,)-

This forms a valid reduction. Indeed, take a word w = xy with x = 2;---2, where n € N and
Z1,...y2n € {acA'B,_l,acAl‘B_l} and y =ty -+ - t,, where m € N and ¢1,...,t,, € {b1,b2}. Consider
a'#y produced by the reduction with 2/ = 2| ---2/ where 2/,...,2, € {(u®)?, (uu'u)P} and

y =t -t where t),...,t, € {(v})F ()P}, If w € Lap a.p, then it easily follows that
'Y € Ly, (exta,,)- Otherwise, if w ¢ L4.p 4., three situations can occur.

o There exists ¢ E/ [1, min{n, 77/1}] such that z1---2z;_1t;—1---t1 € E//LB’,A'-B but it holds that

(zi,t5) € {(ach B =1 by), (ac? B~ by)}. Assume first (z;,t;) = (acA B~1 by). In this case, let

= (w/u)BP12 2, and § =t - t§+1(v3)B,_1. If A(Z'y") # 0, then

A(r'y') = Al2] -+ 2y (wd'w)o’ti_y - 1) + A@Y) = A@'Y) # 0,

thus 2’y is not well-matched. Otherwise, if A(Z'3") = 0, we can show that Z'y’ is well-matched.
Indeed, since uv € %4, for all j € [1, |u|], we have A(up ---wu;) > 0 and for all j € [1,|v]], we

have A(v; -+ vp,() = —A(uvy -+~ vj—1) < 0. Similarly, since u'v' € 4, for all j € [1,[u/|], we
have A(uj ---u}) > 0 and for all j € [1,[v']], we have A(v] - -- v, ) = —A(w/v---vj_;) < 0.

This implies that for all j € [1,[Z'[], we have A(Z] ---Z}) > 0 and for all j € [1,[§[], we have
A@' R Piog) = A gfgq) > 0. Therefore, &3 € 2. Hence 2’y is well-matched and
eth/,y/ = ethimz’ ot OeXtZ;,t; Oeth’,g’ s

1—17

so that
Vi (exte ) <5 vrlext, ) <gvr(extuw) -
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If we assume that (z;,t;) = (ac*P' =1, by), then we prove in the same way that either zy/ is
not well-matched or it is well-matched and 7, (ext, ) <g ¥r(extyy).

o It holds that n < m and 21 ---2pty---t1 € Lap a.p. This entails that A(z't] ---t]) =
Ay - 2hth -+ t)) =0, so that

Ala'y) = Aty 1) + Alty, - tp 1) = Alty, - thy) <0
because m > n and A(v) < 0 as well as A(v') < 0. Therefore, 2’y is not well-matched.

e It holds that n > m and 21 --- 2ty ---t1 € La.pr 4. Symmetrically to the previous case,
we can also show that then, 2’3y’ is not well-matched.

Hence, our algorithm outputs the pair (k,l) = (A-B’, A"- B) = (3ko(2lo +1{,), (2ko + k{,)3lp) in this
last case. O

5.5 Proof of Corollary [2.17]

Let A = (Q,%,qo, F,00,...,0m) be a m-VCA and let L = L(A). One easily computes from A’ a
DVPA such that L(A’) = L. Details of this standard translation are omitted. It will be sufficient
to prove that L is weakly length-synchronous if, and only if, L is length-synchronous: indeed, one
can simply perform the case distinction of Section [5.1] and observe that, under the assumption that
weak length-synchronicity and length synchronicity coincide, the algorithm for Theorem [2.9] will
either output that L is in ACY or some m > 2 such that MOD,,, <.q L.

It thus suffices to prove that if L is not length-synchronous, then L is not weakly length-
synchronous. Let (Ry,Or) be the syntactic Ext-algebra of L along with with its syntactic morphism
(or,91) : (22,0(5%)) = (R, Or).

Let M = [0,m] x (Q2)[0™ x (Q@)[%™ The behavior of the m-VCA can be described as follows.
To each ext,, € O(X*) we assign the triple ((ext, ) = (4, (fi)ic0,m)» (9i)iejo,m)) € M, where

e j=min(A(u),m) € [0,m],

e fi(q) = ¢ where ¢’ € Q is the unique state such that ¢(i) =4 ¢'(i + 7) for all ¢ € Q and all
i € [0,m], and

e gi(q) = ¢, where ¢’ € Q is the unique state such that ¢'(i + j) 4 ¢'(i) for all ¢ € Q and all
i €10,m].

Over M we define the product
(7, (f)iciom)> (9i)icjom) Oam (s (F)iciom)» (90)ici0,m))
as
(min(j + 7 m), (frlnin(i_i,_j,m) o fi)iE[O,m]v (gmin(i+j,m) o g;nin(i+j+j/7m))i6[0,m})‘
We claim ® 4 is associative. For this, let us fix
o m = (4, (fi)icpo,m]> (9i)iclo,m)) € M,
o m' = (j/7 (fi/)ie[(),m]a (gé)ze[o,m]) € M, and

o m' = (j//, (fi”)ie[qm}? (g;/)ie[o,m]) e M.
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Let m =momm' = (4, (fi)icjo,m]s (Gi)icjom) and m = m' O m” = (4, (fi)ico,m) (Gi)icjom))- We
need to prove m O m’ = m O M.

Since j, 5/, 5", m > 0 we have min(j+5", m) = min(min(j+;/, m)+4", m) = min(j+4'+;", m) =
min(j + min(j’ + j5”,m), m)) = min(j + 7, m) associativity holds on the first component. For each
i € [0,m] the " component of the second component of m ® g m” is

Fintiaim i = Pz © (Frintiim) © 1)

min(i+j,m)

_ 1" ! .

= fmin(i+min(j+j’,m),m) °© (fmin(iJrj,m) o fz)
!

= f1/1,1in (i+j+37',m) © <fmin(i+j,m) © fl)

/
fmln (i47"4+5",m) © fmm (i47,m) ) fl

!/

- <fm1n (min(i+j,m)+j’,m) © fmin(i—i—j,m)) o fi
?mln(z—&—] m) o fz
the latter of which is the i*" component of the second component of m @ x4 7, as required. For each
i € [0,m] the i*" component of the third component of m ® 7 is
Ymin(i+j,m) © gmin(i+j+3,m)) = Y9min(i4j,m) © gmin(i+j+j/+j//’m)
= Ymin(i+jm) © Jmin(min(i+jm)+j'+"m)

/ "
= gmin(i+j7m) o <gmin(min(i+j’m)+j/) o] gmin(min(iJrj,m),j’Jrj”,m))

/ "
- (gmin(iﬂ?m) © 9min(min(z’+j,m)+j’)) © min(min(i+j,m),j'+5" m)

/ "
N (gmin(iﬂm) ° 9min(i+j+j',m)) © Imin(i+min(j+5',m)+5",m)
= gioyg

"
min(i+j+j",m)

the latter of which is the i*® component of the third component of m ®q m”, as required. Clearly
(0, (idg) @™ (idg)[%™) is the identity of M with respect to ® g, hence (M, ®q) is a monoid. The
following points can easily be verified.

1. The function ¢ : O(X*) — M is a monoid morphism.
2. For all exty,y, exty ,» € O(X4) with A(u) = A(u’) we have

C(extuw) = {(extuw/) — C(extuw) = Q(extu/ﬂ,) = C(eXtuﬂ)/) = C(extu/m/).
3. For all exty,,, ext, ,» € O(34) we have

C(extu,v) = C(extu/ﬂ,/) — wL(extu,v) = ¢L(6Xtu',v/)-

Now assume that L is not length-synchronous. We will prove that L is not length-synchronous.
By assumption there exist a ¢, (L)-reachable idempotent e € Oy, and exty, ,, ext, v € O(X2) such

that A(u), A(u') > [l # [l and Yr(exty,y) = Yr(exty ) = e. Without loss of generality we

0, [v] ']

may assume A(u) = A(u'). Let w denote the idempotent power of M. Consider the elements

_ 2w w w _ w 2w \w
extyy = (exty5, oexty /) and exty , = (ext, oext,’,)*.
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By definition we have ((ext,,) = ((exty ,), and since A(z) = A(z’) we obtain ((ext,,) =
C(exty y) = ((exty ) = ((exty ) by Point 2. Hence,

wL(eXtm,y) = wL(eth’,y) = wL(eth,y’) = wL(eth’,y’) =€

by Point 3.

We finally make a case distinction on whether |u| = |u’| or not.

First, assume |u| # |[v/|. Then |z| # |2’| by construction. Since )y, (exty,y) = 1 (exty ) = e,
which is an idempotent of Op, we obtain that L is not weakly length-synchronous.
'l. Since % #+ “Z:; by assumption, we conclude that |v| # [v/|. By
construction, the latter implies |y| # |¢/|. Since )y (exty,y) = ¥ (ext, ) = €, again we obtain that
L is not weakly length-synchronous.

Now assume |u| = |u

6 Proof of Proposition [5.1

We will prove the different statements appearing in Proposition [5.1]in the following subsections.
Computability of the syntactic Ext-algebra. This paragraph will be devoted to proving
Point 1 of Proposition 5.1} rephrased in the following proposition.

Proposition 6.1. Given a DVPA A with L = L(A), one can compute the syntactic Ext-algebra
(Rr,OL) of L, its syntactic morphism (¢r,,vr) and ¢r(L).

We require a bit of notation. For each visibly pushdown alphabet ¥ and each finite Ext-algebra
(R,0) it follows from Proposition that each morphism (p,%): (£2,0(2%)) — (R,0) has a
unique finite presentation: it is given by the tuples

(@(C))Cezint and (¢(eXta,b))(a,b)eEcaHXEret

The syntactic Ext-algebra (Rr,Or) of a VPL L over a visibly pushdown alphabet ¥ can be repre-
sented by any Ext-algebra (R, O) such that R has [1,|RL|] as base set and such that there exists a
bijective morphism («, 8): (R,0) — (Rp,Or). Indeed, in that case we have

1. 2y = z & a(x)a(y) = a(z) for all z,y,z € R;

2. 2y =2 < a Y (2)a T (y) =a1(¥) forall o', y/, 2’ € Ry;

3. f(z) =y < B(f)(a(x)) = a(y) for all f € O and all z,y € R; and

4. fl(2") =9y < B (a Hz") = a }(y) for all f/ € Op and all 2’,y' € Ry,

For the following claim we avoid the tedious standard algebraic constructions on Ext-algebras
to show decidability of the equivalence problem, since the latter decidability has already been
established in [2].

Claim 6.2. There is an algorithm that decides, given two morphisms into finite Ext-algebras
(p1,91): (22,0(52)) = (R1,01) and (pa,12): (B2,0(24)) — (R1,01) for % a visibly push-
down alphabet and subsets F1 C Ry and Fo C Ry, whether Lpl_l(Fl) = (,02_1(F2).

Proof of the Claim. The proof of Theorem shows that one can effectively compute DVPAs A;
and Ay such that L(A;) = ¢ (Fy) and L(A2) = @5 '(Fy). By [2] one can effectively decide if
L(Al) = L(AQ) by deciding L(Al) g L(Ag) and L(AQ) Q L(Al) O
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Proof of Proposition[6.1. By Theorem we first compute from our DVPA A on the visibly push-
down alphabet ¥ an Ext-algebra (R4, 04), a morphism (¢4,%4): (22, 0(2%)) = (Ra,04), and a
subset Fy C R such that L(A) = ¢ ;' (F4). For an Ext-algebra (R, O) define #(R, O) = (|R|, |O]).
Let <C (N x N)2 be the lexicographic order on N x N, i.e. (i,5) < (k, ) if, and only if either i < k,
ori==kandj<I.

Observe that since (R4, O 4) recognizes L, we have that the syntactic Ext-algebra (R, Or) of L
divides (R4,04) by Proposition so that #(Ryp,0r) < #(R4,04). In fact, we have that any
Ext-algebra (R, O) having [1,4] for i € [1,|Ry|] as base set, satisfying #(R,0) < #(Rr,Or) and
recognizing L via a morphism (¢,v): (£2,0(2%)) — (R,0) is a presentation of (Rp,Or) with
(¢,1) and F presentations of, respectively, (¢r,%r) and ¢r(L). Indeed, since such an Ext-algebra
recognizes L, by Proposition [3.17)it is divided by (R, Op): this implies that #(Ry,Or) < #(R, 0),
but as also #(R,0) < #(Rp,0L), we have #(R,0) = #(Rr,0r). The morphism (¢,) must
be surjective, otherwise, by Lemma (@(ZA),Lb((’)(EA))MEA)) would be a sub-Ext-algebra
of (R,O) recognizing L such that #(SO(EA),TZJ(O(EA))LP(EA)) < #(R,0) = #(Rr,0r) while
(Rr,Op) divides (@(ZA),U)(O(EA))]@(EA)), which is contradictory. Therefore, by Lemma
there is a surjective morphism («, 3): (R,0) — (Rr,Or), that must be bijective, such that ¢, =
a o, so that (R, O) is a presentation of (R, Or) with (¢,1) and F' presentations of, respectively,
(¢r,vr) and ¢r(L).

Under the assumption that such an Ext-algebra exists, we compute (Rr,Or), (¢r,%r) and
w1 (L) by enumerating all the finitely many triples made of a finite Ext-algebra (R, O), a morphism
(0, 0): (22,0(2%4)) — (R,0) and a subset F' C R such that R has [1,i] for i € [1,|R4]] as base
set and #(R,0) < #(Ra,04). For each of these we test whether ¢~ !(F) = ¢, '(F4), which is
possible by the above claim and take (R, O), (p,v) and F' from a triple validating this test with
#(R, O) minimal with respect to <.

It remains to prove that an Ext-algebra (R, O) having [1,14] for i € [1,|R|] as base set, satisfying
#(R,0) < #(Rr,0r) and recognizing L exists. Take any bijection a: Ry, — [1,|Rr|]. We define
R to be the monoid with base set [1,|Rp|] and operation defined by z -y = a(a™*(z)a!(y)) for all
x,y € [1,|Rr|]. This is a monoid because

e z-a(lg) = a(a ! (z)a (a(lgr))) = a(a™(z)) = a(a ™ (a(lr))a(z)) = a(lg) - z for all
r € R; and

e for all z,y,z € R, we have

- (y-2)=o <a1(aj)a1 (a(al(y)al(Z))))
=a(a™ (z)a" (y)a" (2))
— a0 ol e w))a )
=(z-y) 2.

Define the function 3: O, — R by B(f')(z) = a(f'(a!(z))) for all f' € Or and z € R. Set O to
be the monoid with base set 3(Or) and with composition as operation. This is a monoid because

e B(10)(z) = a(lo(a!(z))) =z = idg(z) for all z € R; and
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e forall f',¢' € Op,
8" 0 B(g')(a) = (f’ (o (a(g'<a—1<x>>)))) — a(f o g 071 (@)) = B o (@)

for all x € R, so that 8(f") o 8(¢') € O.

Then (R, O) is an Ext-algebra, because for all 7’ € Ry, we have
B(left,)(z) = a(left, (a ! (2))) = a(a Ha()a () = a() - = left oy ()

for all z € R and S(right,)(z) = right, ) (z) for all z € R, so that left,,right, € O for all 7 € R
by surjectivity of «.

We now define (p,1): (22,0(2%)) — (R,0) as the unique morphism satisfying p(c) =
a(pr(c)) for all ¢ € Eiyy and Y(extyp) = B(Yr(extyp)) for all a € Bean, b € Xret given by Proposi-
tion . It is easy to show that then, p(w) = a(pr(w)) for all w € X2 by structural induction on
w. Hence, by injectivity of «, we have

¢~ (alpr(L) = {w € 2% | alpr(w)) € alpr (L))}
={we=® |pr(w) € pr(L)} = o (pr(L) = L,

thus (R, O) recognizes L. O

Decidability of quasi-aperiodicity. This paragraph is devoted to proving Point 2 (a) of
Proposition 5.1} rephrased in the following proposition.

Proposition 6.3. Given a morphism (¢,1): (22,0(X%)) — (R,0) for ¥ a wvisibly pushdown
alphabet and (R, O) a finite Ext-algebra, it is decidable if (p, 1)) is quasi-aperiodic. If (p,1)) is not
quasi-aperiodic, one can effectively compute k,1 € N such that »(O(X)%) is not aperiodic.

For the rest of this paragraph, let us fix a morphism (g, 1): (22, 0(2%)) — (R, O), where ¥ is
a visibly pushdown alphabet and (R, O) is some finite Ext-algebra that is the input to our problem.
We first have the following lemma.

Lemma 6.4. For all e € O one can effectively compute a finite Ext-algebra recognizing Le = {u#v |
w € X2 ¢ (exty ) = e}, where # is a fresh internal letter that does not appear in ¥, along with
an associated morphism and subset.

Proof. Let ¥/ be the alphabet that emerges from ¥ by additionally declaring # as an internal letter.
We will construct an Ext-algebra (R’,0’) and a morphism (¢',): (X'2,0(2)%) — (R, 0’) such
that for some element r’ € R’ we have L, = ¢'~(r').

We define R = RUO U{L}, for some fresh zero L, where multiplication between two elements
in R’ is defined as follows:

e multiplication between two elements in R is inherited from the monoid R;
o r- f=left,of and f-r =right, o f for all r € R and all f € O;
e | actsas azero,ie. L-7"=7"-1 =1 forall " € R/;

o f-g=_Lforall f,geO.
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Clearly the identity of R is the identity of R'. Associativity is immediate except for products of the
formry - f-ro,71-19- f, and f-ry-re, where f € O and 71,79 € R. In the first case we have

(r1- f)-ra = (left,, o f) - ro = right,., o (left,, o f) = (right,., o left, ) o f
= (left,, oright, ) o f =1 - (right,, o f) =71 - (f - 72) .

In the second case we have
(r1-re) - f =lefty , o f = (lefty, oleft,,) o f =left,, o (left,, o f) =11 (r2- f)

and in the third case we have
[+ (r1-r2) =right, ,, o f = (right,, oright, ) o f =right,, o (right, o f) = (f-r1) r2.

We define O’ = (R')® which is clearly a monoid for composition and thus directly get that (R’,0’)
is an Ext-algebra. Applying Proposition we define the morphism (o', 1) (X2, O(X)%) —
(R',0') as the unique one satisfying ¢'(c) = ¢(c) for all ¢ € Xy, ¢’ (#) = idp and where for all
a € Yeall, b € Yret, we have

Y(extap)(z) fzeR
V' (extap) (@) =  plextap)ox ifx €O
1 otherwise (i.e.if z = 1)

for all x € R'. It suffices to prove the following claim, which directly implies the desired equality
O Ye) = {uftv | uv € B2 s.t. P(exty,) = e}. For all w € ' we have

o(w) if we x4
¢ (w) = ¢ lexty,) if w = uftv for some uv € L4

1 otherwise.

We prove it by structural induction on w. The cases when w = € or w = ¢ € Y follow immediately
from the definition of ¢’. In case w = # = e#e, we have ¢/ (w) = idp = Y (ext. ).

For the inductive step first assume w = aw’b for some w' € ¥'?. If w' is neither in ¥ nor
of the form u#v with uv € £%, then ¢'(w’) = L by induction hypothesis and thus ¢'(w) =
V' (extap) (@' (W) = ¥/ (extyp)(L) = L as required. If w' € 2, then ¢'(w') = ¢(w') € R by in-
duction hypothesis, and hence ¢'(w) = ¢/ (extqp) (¢ (W) = ¢ (extqp) (@(w')) = Y(extap)(p(w')) =
o(w) as required. If w' = uftv with uv € B2, i.e. w = auftvb, then ¢'(w') = P(exty,) € O
by induction hypothesis. Hence, we have ¢'(w) = ¢/(extqp) (¢’ (w')) = ¢ (extep)(Y(extyy)) =
w(eXta,b) o w(eXtu,v) = w(eXtau,vb)-

Finally assume w = xy for some x,y € X'\ {e}. The case when z or y is neither in £ nor of
the form u#v with uv € 2 is easily handled by applying the induction hypothesis and observing
that L is a zero in R’. Two other immediate cases are when both z and y are in £ and when
both = and y are of the form u#v with uv € 2. Consider the case when z € ¥ \ {¢} and
y = u#v with uv € ¥2, hence w = ru#v. The induction hypothesis yields ¢'(z) = p(z) € R and
' (y) = Y(extyy) € O. We obtain

¢ (zy) = ¢'(x) - &' (y) = p(x) - Plexty,y) = leftyy 0 h(extyy) = th(extauy)
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as required. Finally, let us treat the case when z = u#v with uv € ¥ and y € 22\ {¢}, ie.
w = u#vy. The induction hypothesis yields ¢'(z) = t(ext,,) € O and ¢'(y) = ¢(y) € R. We
obtain

¢ (zy) = ¢'(x) - @' (y) = Y(extuy) - p(y) = righty, 0 Y(extyy) = P(extyy)

as required. O

The next goal will be to prove that the set of pairs of word lengths (Jul, [v|) of words u#v € L,
is effectively semilinear for each e € O.

A (realtime) pushdown automaton (PDA for short)is a tuple A = (Q,%,T',Q, qo, F, L), where Q
is a finite set of states, X is a finite input alphabet, I is a finite stack alphabet, qo € Q is an initial state,
F C @ is the set of final states, L € T'\ X is the bottom-of-stack symbol, and Q C Q@ x X xT'x Q x I'*
is a finite transition relation such that for all (p,a, X, q,a) € Q we have o € I L if X = 1 and
a € (I'\{L})* otherwise. The relation € is naturally extended to the relation Q2* C Q x X* x I'* L x
Q@ x I'" L, namely as the smallest relation containing the set {(p,e,a,p,a) | p € Q,a € T* L} and
such that moreover, if (p,a, X, q,a) € Q and (q,w,af,r,v) € Q*, then (p,aw, X3, r,v) € Q*. The
language of Ais L(A) ={w € ¥* | Ja € T*L,3qg € F : (qo,w, L, q, &) € Q*}. Hence it is clear that
one can compute a PDA A’ such that L(A") = L(A).

Lemma 6.5. Let A be a DVPA that accepts a language over a visibly pushdown alphabet X' such
that L(A) C {u#v | uv € X2\ *#5"Y and # € X, .. Then the set

P(L(A)) = {(k,]) e N x N | Fu e (X' \ {#})" v e (" \{#}) : u#tv € L(A)}
1s effectively semilinear.

Proof. We first compute a PDA A’ accepting the same language as A, i.e. L(A") = L(A). Let us
assume without loss of generality that 0,1 ¢ ¥'. We claim that from A’ = (Q, %', T,, qo, F, L) one
can compute a PDA A” such that

L(A"Y = {01l | ugbv € L(A)} .
Indeed, the PDA A” can simply be computed as follows: we set
A" =(Q x{0,1},{0,1,#},T, €, {9,0), F x {1}, 1) ,

where ' is the union of {((p,4),7, X, (q,i),a) | i € {0,1},3c € X'\ {#} : (p,, X,q, ) € Q}
and {((p,0),#, X, (¢, 1), ) | (p,#,X,q,«) € Q}. Finally, we apply Parikh’s Theorem, cf. |14,
Section 3|, which implies that the set {(m,n) € N x N | 0m#1" € L(A”)} = P(L(A)) is effectively
semilinear. O

We are now ready to prove Proposition [6.3

Proof of Proposition[6.3. Let e € O. By Lemma[6.4 we first compute a finite Ext-algebra recoginiz-
ing L, along with an associated morphism and subset. From the latter we can compute (by
Theorem [3.18)) a DVPA A, accepting L.. We then use Lemma to conclude that the set

P(Le) = {(k,)) e NxN|Jue ¥ vex:uwe D2 lexty,) = e}

is effectively semilinear, and this holds for all e € O.
We make use of the folklore fact that semilinear sets are effectively closed under Boolean op-
erations, cf. [9] for a recent study. To decide whether (p,%) is quasi-aperiodic, we go through all
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possible subsets U C O: if it is a subsemigroup of O that is a non-trivial group, we compute the set
MNecr P(Le) and reject if it is non-empty (which is easy to check given a semilinear presentation of
the set), otherwise we continue. If we were able to go through all those subsets without rejecting,
we accept.

Thus, if (,) is not quasi-aperiodic we can find a subset U C O that contains a non-trivial
group and output a pair (k,1) € (e P(Le); it witnesses that ¢(O(X4)*!) is not aperiodic. O

Decidability of length-synchronicity. This paragraph is devoted to proving Point 2 (b) of
Proposition 5.1} rephrased in the following proposition.

Proposition 6.6. Given a morphism (p,7): (X2, 0(2%)) — (R,0), for ¥ a visibly pushdown
alphabet and (R,O) a finite Ext-algebra, and some F C R, it is decidable if (p,1)) is F-length-
synchronous. If (p,1)) is not length-synchronous, one can effectively compute a tuple (k,1, k' ,1") €
Nio such that that there exist uwv,u'v' € 2 and some F-reachable idempotent e € O such that

P(extyy) = Y(exty ) =e, k= |ul, I = |v|, ¥ = ||, I' = [V/| and % + ]f—,/

Before proving the proposition we need a technical lemma characterizing when a two-dimensional
semilinear set contains only vectors with the same slope. We say two vectors Z, i € N? are collinear
if Y = a- T for some a € Qs

Lemma 6.7. Let S = [J;c; <5170+Z?:1 N:E'iyj) C N2, be a non-empty semilinear set, where
% ; # (0,0) for alli € I and all j € [0,t;]. Then,

k
'{l‘(kz,l) € S}‘ =1 <= Vi,i'€eIVjel0,t;]Vj €l0,ty]:Ti; and Ty j are collinear.

Proof. First assume that Z; ; and & j are collinear for all i, € I, j € [0,¢;], and j' € [0,¢y]. Let
(k, 1), (K,l') € S. Thatis, (k,l) = & o+n1Zi1+- - -+ng, Tig, and (K1) = fi/70+n/1fi/,1+' : '+n£¢/fi/vti’
for some i,7" € I and some nq,...,n,,n},... ,n;i, € N. But due to pairwise collinearity there exist
a,d’ € Qs such that (k,1) = aZ;o and (K',l') = /% o, thus implying % = ]lf—,/

Conversely assume that there exist two vectors (k,l) = Z;; and (k',l') = & ; that are not
collinear. In case this is possible when i # ¢’ and j = j' = 0 we are done, since then (k,1), (k¥',1") € S
and thus % % ]l““—,/ Otherwise Z; o and @ ( are collinear for all ¢,4" € I, so there must exist ¢ € I and
j € [0,t;] such that #; o and Z; ; are not collinear. Then ;o and & + @; ; are in S but also not
collinear: indeed, if oo = @ + & ; for some a € Qxg, then Z; ; = (v — 1)Z; 0 with « —1 > 0
due to %0, 7;; € N2\ {(0,0)}, a contradiction. Hence there exist (k,l),(k’,!') € S that are not
collinear, and therefore % #* ’;—,, O

Proof of Proposition[6.6. Let us fix the Ext-algebra morphism (¢,1): (B2,0(22)) — (R,0),
where (R, O) is a finite Ext-algebra and where F' C R.

Recall that over the alphabet Y/, obtained from X by declaring a fresh letter # as internal, the
language

Loy = {u#v | uv € DI A(u) > 0,1 (extyy) = e} = Le N {uFtv | uv € DI A(u) > 0}

is given for all e € O. The language {u#v | uv € ¥ : A(u) > 0} is a clearly a VPL. Thus, for all
e € O, we have that the set

P(Let) = {(k,l) ENxN|JueTFvesuwe D2 Alu) > 0, d(exty,) = e}
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is effectively semilinear: indeed, given e € O, using Lemma [6.4] and Theorem [3.18] we can as in
the proof of Point 2 (a) of Proposition compute a DVPA A, accepting L.; we then compute a
DVPA A4 accepting Ler = L(Ae) N L(A) by using the effective construction given in [2] and finally
use Lemma [6.5] to conclude.

Observe that (¢,v) is F-length-synchronous if, and only if, for each F-reachable idempotent
e € O for which P(Let) is non-empty we have |{§ | (k,1) € P(Lep)}| = 1. The latter condition is
easily seen to be decidable by the characterization provided in Lemma [6.7 Hence, for deciding if
(p,) is length-synchronous our algorithm verifies if for all F-reachable e € O for which P(L.y) is
non-empty we have [{% | (k,1) € P(L¢)}| = 1. On the other hand, if this verification fails, i.e. in
case (p, 1) is not F-length-synchronous, our algorithm outputs, again using the characterization of
Lemma , a quadruple (k,I,k',l') € Nio such that for some F-reachable idempotent e € O we
have (k,1), (K',1') € P(Let) and & #£ & O

Decidability of weak length-synchronicity. This paragraph is devoted to proving Point 2
(c) of Proposition rephrased in the following proposition.

Proposition 6.8. Given a morphism (p,7): (22, 0(2%)) = (R,0), for ¥ a visibly pushdown
alphabet and (R,O) a finite Ext-algebra, and some F C R, it is decidable if (p,v) is F-weakly-
length-synchronous.

Let us fix the morphism (p,1): (22, 0(2%)) — (R, O), for ¥ a visibly pushdown alphabet and
(R,0) a finite Ext-algebra, and some F' C R.

Define the new visibly pushdown alphabet ¥ by Ycan = {b | b € Zet}, Sint = {€ | ¢ € Zine} and
Sret = {@ | a € Xcan}. For all w € ¥*, we define

_ € ifw=e¢e
w =
Wy ---wy ifw=wy - w, forn € Nyg and wy,...w, € X .
We have the following lemma, that we prove later on.

Lemma 6.9. For all e € O one can effectively compute a finite Ext-algebra recognizing the language
of well-matched words K. = {u#u’ | u,u’ € ¥*,FJv € ¥* : wv € Y2, u'v € T2 h(exty,) =
p(exty ) = e}, where # is a fresh internal letter that does not appear in ¥ U 3, along with an
associated morphism and subset.

Over the alphabet ¥’ obtained from ¥ U by declaring the fresh letter # as internal, we define
u,u’ € X%, Jv e X*: }

wv € 22, u'v € B2, A(u) > 0,1)(exty,,) = P(exty ) =€

= K. N{u#u |ud € (ZUD)D : A(u) > 0}

KET = {u#u’

for all e € O. As in the proof of Point (2) of the second statement of Proposition we can prove
that the language {u#u’ | uv/ € (ZUX)® : A(u) > 0} is a VPL and thus conclude that for all
e € O, the set

Juesh v exlven: }

P(K,) =14 (k1) €NxN
(Ket) {( ) w € B2 u'v € B2, A(u) > 0,1(exty,,) = p(exty ) = e

is effectively semilinear.
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It is clear that (p,%) is F-weakly-length-synchronous if and only if for each idempotent e € O
that is F-reachable, there does not exist any (z1,z2) € P(K¢t) such that x1 # xo. Therefore, to
decide whether (p, 1) is F-weakly-length-synchronous, we go through all e € O: if e is an idempotent
that is F-reachable, we compute the set P(K,y) and reject if it contains a vector (z1,2) such that
x1 # w2 (which is easy to check given a semilinear presentation of the set), otherwise we continue.
Finally, if we were able to go through all those elements without rejecting, we accept.

Proof of Lemma[6.9. Let X' be the alphabet that emerges from X U Y by additionally declaring
# as an internal letter. We will construct an Ext-algebra (R, 0’) and a morphism (¢’,v’) from
(X2, 0(2)%) to (R, 0") such that for some subset F' C R’ we have K, = /"1 (F).

Let R = {7 | r € R}. We define R' = RU RUR(0?)\ DU {L,1}, for some fresh zero L and
identity 1, where multiplication between two elements in R’ is defined as follows:

e for all r1,79 € R,

T1 T =T1T2 1 T2 =1

1 T3 = TorT rT =1

for all r € R and E € B(0?) \ 0,

- -

E = {(left, o e1, €2)

T (e1,e2) € E} E
E -7 ={(ey,left, o e2)

(61, 62) S E}

S|
o <
I

|
|
e for all By, By € P(O?)\ 0, we have Ey - By = L;

e | actsasazero,ie. L-r"=7"-1L =1 forallr € R;

e 1 acts as an identity, i.e. 1 -7/ =7+ -1 =7/ for all ¥’ € R'.

Associativity is immediate except for products of the form 71 - 75 - 73, r1 - E - 73, r1 - o - E and
E 71 - 73, where E € B(0?)\ ) and 71, 79,73 € R. In the first case we have

(T1-T2) T3 =Taly - T3 =T3rar] =71 -T3ra =71 - (T2 - T3) .
In the second case we have

(7’1 . E) “To = {<leftrl o 61,62) | (61,62) € E} - Ty
= {(left,, o e1,left,, o es) | (e1,e2) € E}
=ry-{(e1,left,, oea) | (e1,e2) € E} =11 - (E-T3) .

In the third case we have

(r1-7r2) - E = {(lefty,r, o e1,e2) | (e1,e2) € E}
= {(left,, oleft,, oe1,e2) | (e1,€2) € E}
=17 {(leftm o 61,62) | (61,62) € E} =17 (’1”2 . E)
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and in the fourth case we have

E - (r1-7T2) = {(e1, lefty,,, o €2) | (e1,€2) € E}
{(ey,left,, oleft,, oes) | (e1,e2) € E}
{

(e1,right, oes) | (e1,e2) € B} -To = (E-71) -T2 .

We define O’ = (R') which is clearly a monoid for composition and thus directly get that (R, 0') is
a finite Ext-algebra. Applying Proposition we define the morphism (¢',¢): (X2, 0(Z)%) —
(R',0’) as the unique one satisfying ¢'(¢) = ¢(c) and ¢'(¢) = @(c) for all ¢ € iy, @' (#) =
{(¥(extep), ¥(exte,)) | v € B2} and where for all a,a’ € Sean, b, b’ € Yrer, we have

¢(exta7b)(13) ifx=1
V' (extap)(x) =  Plextep) (@) ifz€R
1 otherwise

Horta s 0w it =1
Y (exty o) (x {d}(extwy)(:v’) if v =21/ fora’ € R
1 otherwise
U vesn {(W(extap:) o er,dh(extarps) o e2)} if o € FO*)\ 0
7/’/ ext { (e;i,eez;)ex
otherwise
W’ extp =1

for all z € R'. Note that (¢, ') is computable because

{(W(extep), ¥lexte,)) [ v € B2} = {(rvight,y(,), right,,) | v € B2}
= {(right,, right,) | r € R}

and

U { eXta bz O €1, w(eXta’,bz) o 62)}
bEX et
2eLP
(e1,e2)€x
U {(right,, .y 0 1(extap) o e, right,, .y o P(exta p) o e2)}
bGZret
zent
(e1,e2)€x
U {(right, o ¥(extyp) o €1, right, o ¢ (exty p) 0 €2)}

bGZret
reR
(e1,e2)€x

for all z € P(0O?)\ 0 and a,a’ € Sean.
Now define the set of pairs P = {(u,u') € ¥* x ¥* | Jv € ¥* : wv € ¥4, u/v € ¥4}, it is not
difficult to check that for all w € ¥, w € X2 N L*#% if and only if w = u#u/ for (u,u/) € P. Tt
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suffices to prove the following claim, which directly implies the desired equality

PTHHE € PO\ 0| (e,e) € E})
={u | (u,u) € P,Fv € Bt uw € B2, u'v € B2, h(exty,,) = (exty ) = e}
={u#u | u,u’ € X%, 30 € B 1 uv € B8, u'v € B8, 1h(exty,) = P(exty ) = e} .

For all w € ¥4 we have

1 ifw=e¢
p(w) if we X2\ {e}

¢'(w) = ¢ o(w) if w=w forw € L4\ {e}
{((extup), ¥(exty ) | v € 25 uv,u'v € B2} if w = u# for (u,u’) € P
L otherwise.

We prove it by structural induction on w. The cases when w = ¢ or w = ¢ € Ljyt Or W = € € Dint
follow immediately from the definition of ¢'. In case w = # = e#te, we have

@' (w) = {((extey), Y(extey)) | v € B2} = {(Plexte ), Y(exte,)) | v € T, cv € B2}

as required.

For the inductive step first assume w = aw’S for w' € L2, o € Tean U Scan and S € Tret U Tyet.
If w' is neither in 2 UT" nor of the form u#tu/ with (u,u’) € P, then ¢/(w') = L by induction
hypothesis and thus ¢'(w) = ¥'(extqg)(¢'(w')) = ¥ (extq,p)(L) = L as required, since w is also
neither in £ UE" nor of the form u#u/ with (u,u’) € P. If w' = ¢, then ¢'(w') = 1 and hence

¢'(w) = P’ (exta,g) (¢’ (w))
= ¢/ (extq,)(1)
P(extag)(1r) = p(w) if a € Xean and € et
= Y(extap)(1g) = p(ab) if a = beXnand B =7 € Xyt
1L otherwise

as required, because w = ba@ = ab in the second case. If w’ € ¥\ {e}, then ¢'(w') = p(w') € R by
induction hypothesis, and hence

@' (w) = P’ (exta,p) (¢ (W) = ¢ (exta,p) (p(w'))
_ {ﬂ)(extaﬂ)(go(w’)) =p(w) if @ €Yy and B € Tyt

1 otherwise

as required. If w’ € D \ {e}, then w' = w” for w" € 25\ {e}, so ¢'(w') = p(w”) € R by induction
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hypothesis, and hence

¢ (w) = <wmm<<w»
Y/ (exte,p) (p(w"))
:{ww%w<< ) = plaw’®) if a =b € Seay and f=a € Siet

1 otherwise

as required, because w = bw”a@ = aw’b in the first case. If w' = u#u’ with (u,u') € P, i.e.
w = au#u' 3, then

@ (w') = {(h(exty), Y(exty ) | v € B w’, u'v' € B2} € P(0?) \ 0

by induction hypothesis. Hence, we have

¢ (w) = ¢/ (exta,p)(¢'(w'))
= (exte 5) ({(V(exty ), Y(exty ) | v € BF wv’, u'v' € B2})
U {(w(eXtau,v’b2)7w(eXta’u’,v’bz» ’ v e E*, UUI,UIUI S EA}

bEEret
zens

= {(P(extaup), Y(extary o)) | v € BF, auv, d'u'v € 22}

ifa=a€ S and B=d € T, (where the last inclusion from right to left follows by considering
the unique stair factorizations given by Lemma for the elements of each pair) and ¢'(w) = L
otherwise, as required.

Finally assume w = zy for some z,y € X'\ {€}. The case when z or ¥ is neither in 22 UX
nor of the form u#u’ with (u,u') € P is easily handled by applying the induction hypothesis and
observing that L is a zero in R’. Four other immediate cases are when both z and y are in £,
when z is in 2 and y in EA, when z is in i and y in 2 and when both z and y are of the form
u#u’ with (u,u’) € P. For the case when both z and y are in EA, we have that = 2/ and y = ¢/
for 2/,y' € B2, so that ¢/(x) = p(z') € R and ¢'(y) = ¢(y/) € R by induction hypothesis, hence

¢ (zy) = ¢'(x) - &' (y) = o(@') - o(y) = oW )p(a’) = p(y'x’)

as required, because zy = 2’y = y'z’. Consider the case when z € (¥ U SA) \ {¢} and y = u#u’/
with (u,u) € P, hence w = zu#u’. The induction hypothesis yields

oy = (PR ER iz et \ ()
P go(x/)eﬁ ifx:yforwlez:&\{g}

and ¢’ (y) = {(P(extyy), (exty o)) | v € X%, uv,u'v € 24} € P(O?) \ §. We obtain

' (w) = ¢'(z) - ¢'(y)

(@) - {(1h(extun), Y(exty ) | v € BF uv,u'v € B4}
(lefty () © Y(extyy), Y(exty ) | v € B, uv,u'v € 24}
(h(extpun), Y(exty o)) | v € X%, zuv,u'v € B4}

¥
Px

{
{
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if 2 € 24\ {e} and ¢’ (w) = (') - {(Y(extyp), Y(exty o)) | v € T¥, uv,u'v € ¥4} = L if x = 2/ for
2’ € X2\ {e}, as required. Eventually, let us treat the case when & = u#u’ with (u,u’) € P and y €
(EAUEA)\{s}, hence w = u#u'y. The induction hypothesis yields ¢'(z) = {(1(exty,y), P (exty o)) |
ply) e R ifyeX?\ {e}

* 1 A 2 / — ]
v e X uv,u'v EX }G‘B(O)\@andw(y)—{MER ify:?fory’eEA\{s}.WeObtam
' (w) = ¢'(z) - ¢'(y)
(Y(extyp), P(exty ) | v € 5 uv,u'v € EA} m

)

{((
{(1h(exta,p), lefty(,) o Y(exty ) | v € TF uv,v'v € B2}
{(w(

)

(W (extyy), (exty/u/,v)) | v e X% u, y'u'v e 4}

if y =1y fory € B2\ {e} and ¢'(w) = {(v p(exty,p), P(exty y)) | v € X uv,u'v € YA p(y) = L if
r € X2\ {e}, as required, because y'u’ = vy’ in the first case. O

7 Conclusion

In this paper we have studied the question which visibly pushdown languages lie in the complexity
class ACY.

We have introduced the notions of length-synchronicity, weak length-synchronicity and quasi-
counterfreeness. We have introduced intermediate VPLs: these are quasi-counterfree VPLs gen-
erated by context-free grammars G involving the production S —¢ ¢ for the start nonterminal
S and whose further productions are all of the form T —g uT"v, where uv is well-matched,

€ (B ZeanXi )T, v € (X5, St Xh) T, and the set of contexts {(u,v) € Con(X) | S =§ uSv}
Weakly length synchronous but not length-synchronous. To the best of our knowledge our commu-
nity is unaware of whether at all there is an intermediate VPL that is provably in AC° (even in
ACCY) or provably not in AC®. We conjecture that none of the intermediate VPLs are in ACCY nor
TC%hard.

Our main result states that there is an algorithm that, given a visibly pushdown language L,
outputs if L surely lies in AC?, surely does not lie in AC® (by providing some m > 1 such that MOD,,
is constant-depth reducible to L), or outputs a disjoint finite union of intermediate VPLs that L is
constant-depth equivalant to. In the latter case one can moreover compute distinct k,! € N5 such
that already Ly, = L(S — ¢ | ac®1Sb; | ac'=1Sby) is constant-depth reducible to L.

We conjecture that due to the particular nature of intermediate VPLs, either all of them are
in AC? or all are not: this conjecture together with our main result indeed implies that there is an
algorithm that decides if a given visibly pushdown language is in AC°.

As main tools we carefully revisited Ext-algebras, introduced by Czarnetzki et al. [10], being
closely related to forest algebras, introduced by Bojanczyk and Walukiewicz [7]. For the reductions
from L ; we made use of Green’s relations.

Natural questions arise. Is there any concrete intermediate VPL that is provably in ACC, prov-
ably not in AC?, or hard for TC%? Another exciting question is whether one can effectively compute
those visibly pushdown languages that lie in the complexity class TC?. Is there is a TCY/NC! com-
plexity dichotomy? For these questions new techniques seem to be necessary. In this context it is
already interesting to mention there is an NC!-complete visibly pushdown language whose syntactic
Ext-algebra is aperiodic. Another exciting question is to give an algebraic characterization of the
visibly counter languages.
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8 Some errata in previous work

The following section summarizes some crucial errata in [24].

1.

10.
11.

On page 176 line 8 it is written

if a VPL has SHB there exist unique rationals A& and Ain such that for (u,v) €

ngl(m) we unambiguously have Ah(f“) = A}, and %T) = A},

The following language is a counter-example to this claim: consider the VPL generated by the
context-free grammar S — aSb | a’cSV | €, where a,a’ are call letters, b, b’ are return letters
and c is an internal letter. This rest of the section makes use of the above.

. The previous point leads to problems, for instance the last two sentences on page 176 are

problematic. By definition, it does not follow that for each m there is a unique slope 7 such

that for all (u,v) € n71(m) we have vy = %

. The reduction in Proposition 135 has some problems. Firstly, one cannot assume that aufSvy

is necessarily in L. It can be assumed without loss of generality though. Secondly, if p > 2,
then w +— a@(w)By(w?)y could possibly be mapped to an element i € Z,, where i & {0,1}:
in this case it is not clear if ag(w)By(w!)y is in L or not.

. Top of page 182: The quotient n / dl € @. As mentioned in Point 1 its existence does not

follow from the definition of bounded corridor. The construction of the approximate matching
(proof of Proposition 126 relies on this).

. Page 184: The relation ~~p, is not well-defined. Proposition 126 essentially states a property

that ~~ 1 should satisfy, but the relation ~~p, is defined by the formula appearing in Proposition
126. Yet, the formulas appearing already rely on the wrong observation that unique slopes
exist (Point 1 from above). This has consequences for Lemma 127, Conjecture 128, Corollary
129, Conjecture 130, Conjecture 132, and Proposition 137.

. Conjecture 128: If one were to interpret ~»7, it as “the matching relation”, then the Conjecture

128 is easily seen to be wrong. The VPL generated by the grammar S — acbe | aSb | € does
not satisfy SHB, but its matching relation is definable in FO[arb].

Page 177, line -6. It is written
If such an m exists, we also find such an element that is idempotent.

The language generated by the grammar S — aSbh | ajcby | ageeby is a counter-example.

. The statement of Proposition 131 is wrong. The language {a"b" | n > 0}* is a counter-

example.

. Proposition 131: the proof has problems since the morphism is not length-multiplying.

Page 181: In the characterization the first bullet point is incorrect.

The statement of Lemma 125 is wrong. Counter-example: L = {a™b" | n > 0}*. Clearly,
cancel 7t (w) = 2% for all w € L but L does not have the WSHB.
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12.

13.

14.

15.

16.

The statement of Proposition 144 is wrong. Consider the language generated by the grammar
S — aSb | aycby | azecby which is a visibly counter language that does not have the SHB
property. However, it is in AC°.

Corollary 145 is wrong due to the previous point.

In the proof on page 192 in line 3 one cannot assume that an idempotent m’ € V exists for
which ;' (m’) is also a witness.

Statement of Lemma 146 is unclear since ~~p, is not clearly defined.

Lemma 147 is unclear since ~-p, is not clearly defined. There is no proof given.
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