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Abstract

We study the question of which visibly pushdown languages (VPLs) are in the complexity
class AC0 and how to effectively decide this question. Our contribution is to introduce a par-
ticular subclass of one-turn VPLs, called intermediate VPLs, for which the raised question is
entirely unclear: to the best of our knowledge our research community is unaware of containment
or non-containment in AC0 for any intermediate VPL. Our main result states that there is an
algorithm that, given a visibly pushdown automaton, correctly outputs either that its language
is in AC0, outputs some m ≥ 2 such that MODm is constant-depth reducible to L (implying that
L is not in AC0), or outputs a finite disjoint union of intermediate VPLs that L is constant-depth
equivalent to. In the latter case one can moreover effectively compute k, l ∈ N>0 with k ̸= l such
that the concrete intermediate VPL L(S → ε | ack−1Sb1 | acl−1Sb2) is constant-depth reducible
to the language L. Due to their particular nature we conjecture that either all intermediate
VPLs are in AC0 or all are not. As a corollary of our main result we obtain that in case the
input language is a visibly counter language our algorithm can effectively determine if it is in
AC0 — hence our main result generalizes a result by Krebs et al. stating that it is decidable if
a given visibly counter language is in AC0 (when restricted to well-matched words).

For our proofs we revisit so-called Ext-algebras (introduced by Czarnetzki et al.), which are
closely related to forest algebras (introduced by Bojańczyk and Walukiewicz), and use Green’s
relations.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Complexity and logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Corollary for visibly counter languages . . . . . . . . . . . . . . . . . . . . . . . . . . 8
∗The first author was supported by the Agence Nationale de la Recherche grant no. ANR-17-CE40-0010.

1

stefan.goeller@uni-kassel.de
nathan.grosshans@polytechnique.edu


3 Language-theoretic and algebraic foundations and Ext-Algebras 8
3.1 Basic algebraic automata theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Ext-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 (Weak) length-synchronicity, nesting depth, and quasi-aperiodicity 21
4.1 A pumping lemma for Ext-algebra morphisms . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Weak length-synchronicity and length-synchronicity . . . . . . . . . . . . . . . . . . . 22
4.3 The nesting depth of visibly pushdown languages . . . . . . . . . . . . . . . . . . . . 28
4.4 Quasi-aperiodicity and its correspondence with quasi-counterfreeness . . . . . . . . . 30

5 Proof of the main theorem 31
5.1 Proof outline for Theorem 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 The non-solvable case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 In AC0: Length-synchronous and quasi-aperiodic . . . . . . . . . . . . . . . . . . . . 35

Approximate matchings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Horizontal and vertical evaluation languages. . . . . . . . . . . . . . . . . . . 36

5.3.1 Strategy for the proof of Theorem 5.7 . . . . . . . . . . . . . . . . . . . . . . 36
5.3.2 VφL and VψL are quasi-aperiodic (Proof of Point 1) . . . . . . . . . . . . . . . 37
5.3.3 Quasi-aperiodicity of evaluation languages EφL,r and EψL,e (Proof of Point 2) 39
5.3.4 Approximate matching relation in FO[+] (Proof of Point 3) . . . . . . . . . . 41

Building an approximate matching assuming predicates πe. . . . . . . . . . . 42
5.3.5 Evaluation in FO[+] (Proof of Point 4) . . . . . . . . . . . . . . . . . . . . . . 47

5.4 The intermediate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.1 Proof strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.2 Computation of k, l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Proof of Corollary 2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Proof of Proposition 5.1 66

7 Conclusion 77

8 Some errata in previous work 78

1 Introduction

This paper studies the circuit complexity of formal word languages. It is well-known that the regular
word languages are characterized as the languages recognizable by finite monoids. When restricting
the finite monoids to be aperiodic Schützenberger proved that one obtains precisely the star-free
regular languages [28]. In terms of logic, these correspond to the languages definable in first-order
logic FO[<] by a result of McNaughton and Papert [29]. The more general class of regular languages
expressible in FO[arb], i.e. first-order logic with arbitrary numerical predicates, coincides with the
regular languages in AC0 [16, 19]. These can be characterized algebraically as the regular languages
whose syntactic morphism is quasi-aperiodic [5]. The latter algebraic characterization also shows
that it is decidable if a regular language is in AC0.

Generalizing regular languages, input-driven languages were introduced by Mehlhorn [25]. They
are described by pushdown automata whose input alphabet is partitioned into letters that are either
of type call, internal, or return. Rediscovered by Alur and Madhusudan in 2004 [2] under the name
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of visibly pushdown languages (VPLs), it was shown that they enjoy many of the desirable effective
closure properties of the regular languages. For instance, the visibly pushdown languages form an
effective Boolean algebra. Algebraically, VPLs were characterized by Alur et al. [1] by congruences
on well-matched words of finite index. Extending upon these, Czarnetzki et al. introduced so-
called Ext-algebras [10]; these involve pairs of monoids (R,O) where O is a submonoid of RR.
Being tailored towards recognizing word languages, Ext-algebras are closely connected to forest
algebras, introduced by Bojańczyk and Walukiewicz [7]: in [10] it is shown that a language of
well-matched words is visibly pushdown if, and only if, its syntactic Ext-algebra is finite. While
context-free languages are generally in LOGCFL = SAC1, the visibly pushdown languages, as the
regular languages, are known to be in NC1 [11]. By a famous result of Barrington [4], there already
exist regular languages that are NC1-hard. In this paper we study the question of which visibly
pushdown languages are in AC0 and how one can effectively decide this question.

Related work. Visibly pushdown languages (VPLs) were introduced [2] via deterministic visibly
pushdown automata (DVPA for short). Inspired by forest algebras [7] the paper [10] introduces
Ext-algebras. Unfortunately, the definition of Ext-algebra morphisms in [10] is incorrect in that it
provably does not lead to freeness.

The regular languages that are in AC0 were effectively characterized by Barrington et al. [5]: a
regular language is in AC0 if, and only if, its syntactic morphism is quasi-aperiodic. By an automata-
theoretic approach, Krebs et al. [22] effectively characterized the visibly counter languages that are
in AC0. These are particular VPLs that are essentially accepted by visibly pushdown automata that
use only one stack symbol. In his PhD thesis [24] Ludwig already considers the question of which
VPLs are in AC0. Yet, his conjectural characterization contains several serious flaws — a detailled
discussion of these shortcomings can be found in Section 8.

Our contribution. We reintroduce Ext-algebras, fix the notion of Ext-algebra morphisms and
define the languages they recognize. We also reintroduce the syntactic Ext-algebra of languages of
well-matched words. We rigorously prove classical results like freeness and minimality of syntactic
Ext-algebras with respect to recognition. We prove that a language of well-matched words is a VPL
if, and only if, it is recognizable by a finite Ext-algebra. While these results essentially revisit the
constructions of [10], we use Ext-algebras as a technical tool for studying the complexity of visibly
pushdown languages.

Fix a visibly pushdown alphabet Σ, i.e. Σ is partitioned into Σcall (call letters), Σint (internal
letters), and Σret (return letters). Denoting ∆(u) as the difference between the number of occur-
rences of call and return letters in u ∈ Σ∗ a word w ∈ Σ∗ is well-matched if ∆(w) = 0 and ∆(u) ≥ 0
for all prefixes u of w. A context is a pair (u, v) such that uv is well-matched — contexts have a
natural composition operation: (u, v) ◦ (u′, v′) = (uu′, v′v).

We introduce the following notions: a set of contexts R is length-synchronous if |u|/|v| = |u′|/|v′|
for all (u, v), (u′, v′) ∈ R with ∆(u),∆(u′) > 0 and weakly length-synchronous if u = u′ implies
|v| = |v′| and v = v′ implies |u| = |u′| for all (u, v), (u′, v′) ∈ R with ∆(u),∆(u′) > 0. Any language
L of well-matched words induces a congruence ≡L on contexts: (u, v) ≡L (u′, v′) if xuwvy ∈ L ⇔
xu′wv′y ∈ L for all contexts (x, y) and all well-matched words w. We introduce the notion of quasi-
counterfreeness: a VPL is quasi-counterfree if for all contexts σ ∈ Σk × Σl we have σn ≡L σ

n+1 for
some n ∈ N or all contexts in Σk × Σl are not ≡L-equivalent to σ ◦ σ. Finally, we introduce our
central class of intermediate VPLs: a VPL is intermediate if it is quasi-counterfree and generated by a
context-free grammar containing the production S →G ε, where S is the start nonterminal and whose
other productions are of the form T →G uT

′v such that uv is well-matched, u ∈ (Σ∗
intΣcallΣ

∗
int)

+ and
v ∈ (Σ∗

intΣretΣ
∗
int)

+ such that the set of contexts {(u, v) | S ⇒∗
G uSv} is weakly length-synchronous

but not length-synchronous. Note that intermediate VPLs are particular one-turn visibly pushdown

3



languages, that is, visibly pushdown languages that are subsets of (Σ \ Σret)
∗(Σ \ Σcall)

∗. As an
example, for all k, l ≥ 1 with k ̸= l a concrete intermediate VPL, denoted by Lk,l is the one that is
generated by the context-free grammar S → ε | ack−1Sb1 | acl−1Sb2: here a is a call letter, c is an
internal letter and b1 and b2 are return letters.

As far as we know our community is unaware of whether at all there is some intermediate VPL
that is provably in AC0 or provably not in AC0 — analogous remarks apply to ACC0.

Our main result states that there is an algorithm that, given a DVPA A correctly outputs
either L(A) ∈ AC0, outputs some m ≥ 2 such that MODm is constant-depth reducible to L (thus
witnessing that L(A) ̸∈ AC0), or outputs a non-empty disjoint finite union of intermediate VPLs
that L(A) is constant-depth equivalent to. In the latter case one can moreover effectively compute
k, l ∈ N>0 with k ̸= l such that the above-mentioned Lk,l is constant-depth reducible to L(A). We
conjecture that either all intermediate VPLs are in AC0 or all are not: note that together with
our main result this conjecture implies the existence of an algorithm that can determine if a given
visibly pushdown language is in AC0. As a corollary of our main result we obtain that in case the
input language is a visibly counter language our algorithm can determine if it is in AC0, hence our
main result generalizes a result by Krebs et al. stating that it is decidable if a given visibly counter
lanugage is in AC0 (when restricted to well-matched words).

For our main result we extensively study Ext-algebras, the syntactic morphisms of VPLs, and
make use of Green’s relations.

Organization. Our paper is organized as follows. We introduce notation and give an overview
of our main result in Section 2. In Section 3 we first recall general algebraic concepts and then
revisit Ext-algebras and their correspondence to visibly pushdown languages. Section 4 introduces
central notions like length-synchronicity and weak length-synchronicity for Ext-algebra morphisms
and visibly pushdown languages. The proof of our main result is content of Section 5. In Section 6
we concern ourselves with the computability of the syntactic Ext-algebra as well as decidability of
quasi-aperiodicity and (weak) length-synchronicity. We conclude in Section 7.

2 Preliminaries

By N we denote the non-negative integers and by N>0 the positive integers. For integers i, j ∈ Z
we denote by [i, j] the set {i, . . . , j}. For any function f : X → Y and any subset Z ⊆ X we denote
by f |Z : Z → Y the restriction of f to domain Z, i.e. f |Z(z) = f(z) for all z ∈ Z.

For all words w = w1 · · ·wn, where wi ∈ Σ for all i ∈ [1, n], and for subsets Γ ⊆ Σ, let
|w|Γ = |{i ∈ [1, |w|] | wi ∈ Γ}| denote the number of occurrences of letters in Γ. For all a ∈ Γ we
write |w|a to denote |w|{a}.

We define the languages

EQUALITY = {w ∈ {0, 1}∗ : |w|0 = |w|1} and MODm = {w ∈ {0, 1}∗ : m divides |w|1}

for each m ≥ 2.
A visibly pushdown alphabet is a finite alphabet Σ = Σcall ∪ Σint ∪ Σret, where the alphabets

Σcall,Σint, and Σret are pairwise disjoint.

Definition 2.1. The set of well-matched words over a visibly pushdown alphabet Σ, denoted by
Σ△, is the smallest set satisfying the following:

• ε ∈ Σ△ and c ∈ Σ△ for all c ∈ Σint,

• awb ∈ Σ△ for all w ∈ Σ△, a ∈ Σcall and b ∈ Σret, and
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• uv ∈ Σ△ for all u, v ∈ Σ△ \ {ε}.

A well-matched word w ∈ Σ△ is one-turn if w ∈ (Σ\Σret)
∗(Σ\Σcall)

∗. A language L ⊆ Σ△ is one-
turn if it contains only one-turn words. Let Σ be a visibly pushdown alphabet. We define ∆: Σ∗ → Z
to be the height monoid morphism such that ∆(w) = |w|Σcall − |w|Σret for all w ∈ Σ∗. A context is
a pair (u, v) ∈ Σ∗ ×Σ∗ such that uv ∈ Σ△. The composition of two contexts (u, v), (x, y) ∈ Con(Σ)
is defined as (u, v) ◦ (x, y) = (ux, yv). For σ ∈ Con(Σ) by σk we denote the k-fold composition
σ◦· · ·◦σ. For any context (u, v) ∈ Con(Σ) and well-matched word w ∈ Σ△ we define (u, v)w = uwv.
An equivalence relation ≡ on Con(Σ) is a congruence if for all χ, χ′, σ, τ ∈ Con(Σ) we have that
σ ≡ τ implies χ ◦ σ ◦ χ′ ≡ χ ◦ τ ◦ χ′. Given a congruence ≡ over Con(Σ) we denote by [σ]≡ the
equivalence class of σ. Given a language of well-matched words L ⊆ Σ△ we write σ ≡L τ if for all
χ ∈ Con(Σ) and all w ∈ Σ△ we have (χ ◦ σ)w ∈ L if, and only if, (χ ◦ τ)w ∈ L. Clearly, ≡L is a
congruence.

Let us briefly introduce context-free grammars. A context-free grammar is a tupleG = (V,Σ, P, S),
where V is a finite set of nonterminals, Σ is a non-empty finite alphabet, P ⊆ V × (V ∪Σ)∗ is a finite
set of productions, and S ∈ V is the start nonterminal. We write T →G y whenever (T, y) ∈ P .
The binary relation ⇒G over (V ∪ Σ)∗ is defined as u ⇒G v if there exists a production T →G y
and x, z ∈ (V ∪ Σ)∗ such that u = xTz and v = xyz. By L(G) = {w ∈ Σ∗ | S ⇒∗

G w} we denote
the language of G where ⇒∗

G is the reflexive transitive closure of ⇒G.
In the following we introduce deterministic visibly pushdown automata, remarking that nonde-

terministic visibly pushdown automata are determinizable [2].

Definition 2.2. A deterministic visibly pushdown automaton (DVPA) is a tuple A = (Q,Σ,Γ, δ,
q0, F,⊥), where

• Q is a finite set of states,

• Σ is a visibly pushdown alphabet, the input alphabet,

• Γ is a finite alphabet, the stack alphabet,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of final states,

• ⊥ ∈ Γ is the bottom-of-stack symbol, and

• δ : Q × Σ × Γ → Q ×
(
{ε} ∪ Γ ∪ (Γ \ {⊥})Γ

)
is the transition function such that for all

q ∈ Q, a ∈ Σ, α ∈ Γ:

– if a ∈ Σcall, then δ(q, a, α) ∈ Q× (Γ \ {⊥})α,
– if a ∈ Σret, then δ(q, a, α) ∈ Q× {ε}, and
– if a ∈ Σint, then δ(q, a, α) ∈ Q× {α}.

We define the extended transition function δ̂ : Q× Σ∗ × Γ∗ → Q× Γ∗ inductively as

• δ̂(q, ε, β) = (q, β) for all q ∈ Q and β ∈ Γ∗,

• δ̂(q, w, ε) = (q, ε) for all q ∈ Q and w ∈ Σ+, and

• δ̂(q, aw, αβ) = δ̂(p, w, γβ), where δ(q, a, α) = (p, γ) for all q ∈ Q, a ∈ Σ, w ∈ Σ∗, α ∈ Γ and
β ∈ Γ∗.

The language accepted by A is the language L(A) = {w ∈ Σ∗ | δ̂(q0, w,⊥) ∈ F × {⊥}}. We call
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such a language a visibly pushdown language (VPL). We remark that visibly pushdown languages
are always subsets of Σ△.

We refer to [17] for further details on formal language theory.

Semi-linear sets. Given d ∈ N>0, for x⃗ = (x1, . . . , xd), y⃗ = (y1, . . . , yd) ∈ Nd we define x⃗ + y⃗ =
(x1 + y1, . . . , xd + yd). We define the norm of a vector x⃗ ∈ Nd as ∥x⃗∥ = max{xi | i ∈ [1, d]}. For
X,Y ⊆ Nd define X + Y = {x⃗+ y⃗ | x⃗ ∈ X, y⃗ ∈ Y }. For x⃗ = (x1, . . . , xd) ∈ Nd and n ∈ N we define
nx⃗ = (nx1, . . . , nxd) and Nx⃗ = {nx⃗ | n ∈ N}. A set X ⊆ Nd is linear if X = y⃗+

∑k
i=1Nx⃗i for k ∈ N

and y, x1, . . . , xk ∈ Nd and it is semilinear if X is a finite union of linear sets.

2.1 Complexity and logic

We assume familiarity with standard circuit complexity, we refer to [31, 21] for an introduction to
the topic. Recall the following Boolean functions: the AND-function, the OR-function, the majority
function (that outputs 1 if the majority of its inputs are 1s), and the modm function (that outputs
1 if the number of its inputs that are 1s is divisible by m) for all m ≥ 2.

A circuit family (Cn)n∈N decides a binary language L ⊆ {0, 1}∗ if Cn is a circuit with n inputs
such that L ∩ {0, 1}n = {x1 . . . xn ∈ {0, 1}n | Cn(x1, . . . , xn) = 1} for all n ∈ N. In this paper, we
will consider circuits deciding languages over arbitrary finite alphabets: to do this, we just consider
implicitly that any language over an arbitrary finite alphabet comes with a fixed binary encoding
that encodes each letter as a block of bits of fixed size. By ≤cd we mean constant-depth truth table
reducibility (or just constant-depth reducibility) as introduced in [8]. Formally for two languages
K ⊆ Γ∗ and L ⊆ Σ∗ for finite alphabets Σ,Γ, we write K ≤cd L in case there is a polynomial
p, a constant d ∈ N, and circuit family (Cn)n∈N deciding L such that each circuit Cn satisfies the
following: it is of depth at most d and size at most p(n) and its non-input gates are either AND-
labeled, OR-labeled, or so-called oracle gates, labeled by L, that are gates deciding L ∩ Σm, where
m ≤ p(n), such that there is no path from the output of an oracle gate to an input of another oracle
gate. We write K =cd L if K ≤cd L and L ≤cd K; we also say that K and L are constant-depth
equivalent. We say a language L is hard for a complexity class C (or just C-hard) if L′ ≤cd L for
all L′ ∈ C. We say L is C-complete if L is C-hard and L ∈ C. The following complexity classes are
relevant in this paper:

• AC0 is the class of all languages decided by circuit families with NOT gates, AND, OR gates
of unbounded fan-in, constant depth and polynomial size;

• ACC0 is the class of all languages decided by circuit families with NOT gates, AND, OR and
modular gates (for some fixed m) of unbounded fan-in, constant depth and polynomial size;

• TC0 is the class of all languages decided by circuit families with NOT gates, AND, OR and
majority gates of unbounded fan-in, constant depth and polynomial size;

• NC1 is the class of all languages decided by circuit families with NOT gates, AND, OR gates
of bounded fan-in, logarithmic depth and polynomial size.

We also consider the framework of first order logic over finite words. (See [20, 29] for a proper
introduction to the topic.) A numerical predicate of arity r ∈ N>0 is a symbol of arity r associated
to a subset of N>0

r. Given a class C of numerical predicates and a finite alphabet Σ, we call FOΣ[C]-
formula a first order formula over finite words using the alphabet Σ and numerical predicates from
the class C. On occasions, we might also consider FOΣ,↭[C]-formulas that in comparison to the
previous ones can use an additional binary predicate ↭ and are interpreted on structures (w,M)
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with w ∈ Σ∗ andM ⊆ [1, |w|]2, where everything is interpreted as for FOΣ[C]-formulas on w excepted
for ↭ that is interpreted by M . Given a class C of numerical predicates, by FO[C] we denote the
class of all languages over any finite alphabet Σ defined by a FOΣ[C]-sentence. A classical result
at the interplay of circuit complexity and logic is that AC0 = FO[arb], where arb denotes the class
of all numerical predicates (see [29, Theorem IX.2.1] or [20, Corollary 5.32]). The other numerical
predicates that we will encounter in this paper are <, + and MODm for all m ∈ N>0 (gathered
together in the set MOD = {MODm | m > 0}).

2.2 Main result

The notion of length-synchronicity and weak length-synchronicity will be a central notion in our
main result. In the following Σ always denotes a visibly pushdown alphabet.

Definition 2.3 ((Weak) Length-Synchronicity). Let R ⊆ Con(Σ) be a set of contexts.

• R is length-synchronous if |u|/|v| = |u′|/|v′| for all (u, v), (u′, v′) ∈ R with ∆(u),∆(u′) > 0.

• R is weakly length-synchronous if u = u′ implies |v| = |v′| and v = v′ implies |u| = |u′| for
all (u, v), (u′, v′) ∈ R with ∆(u),∆(u′) > 0.

Note that a set of contexts R is weakly length-synchronous if R is length-synchronous. Indeed,
if, say (u, v), (u, v′) ∈ R, where |v| ̸= |v′| and ∆(u) > 0, then |u|, |v|, |v′| > 0 and so the quotients
|u|
|v| and |u|

|v′| are distinct, thus violating length-synchronicity of R.

Definition 2.4 (Quasi-Counterfree). A VPL L ⊆ Σ△ is quasi-counterfree if for all σ = (u, v) ∈
Con(Σ) we have σn ≡L σ

n+1 for some n ∈ N or for all τ ∈ Σ|u|×Σ|v| ∩Con(Σ) we have τ ̸≡L σ ◦σ.

We will later show that quasi-counterfreeness of a VPL L ⊆ Σ△ is equivalent to the condition
that there is no k, l ∈ N such that there is a subset of Con(Σ) ∩ Σk × Σl that forms a non-trivial
group when considering the associated equivalence classes with respect to ≡L (Proposition 4.18).

Example 2.5. Consider the visibly pushdown alphabet Σ, where Σcall = {a}, Σint = {c} and
Σret = {b1, b2}. For all k, l ∈ N>0 satisfying k ̸= l, consider the language Lk,l generated by the
context-free grammar S → ack−1Sb1 | acl−1Sb2 | ε . We have that the set of contexts {(u, v) ∈
Con(Σ) | S ⇒∗

G uSv} is weakly length-synchronous since both the relation and its reverse is a
partial function — however, it is not length-synchronous. It is also not hard to see that Lk,l is
quasi-counterfree.

We say a context-free grammar G = (V,Σ, P, S) is vertically visibly pushdown if the underlying
alphabet Σ is a visibly pushdown alphabet, S →G ε, and all other productions of G are of the form
T →G uT ′v, where uv ∈ Σ△ is one-turn such that u ∈ (Σ∗

intΣcallΣ
∗
int)

+ and v ∈ (Σ∗
intΣretΣ

∗
int)

+.
Note that each grammar generating Lk,l in Example 2.5 is vertically visibly pushdown. The following
remark is obvious.

Remark 2.6. The languages generated by vertically visibly pushdown grammars are one-turn VPLs.

Definition 2.7 (Intermediate VPL). A VPL L is intermediate if it is quasi-counterfree and L =
L(G) for some vertically visibly pushdown grammar G for which R(G) = {(u, v) ∈ Con(Σ) | S ⇒∗

G

uSv} is weakly-length synchronous but not length synchronous.

Thus the languages Lk,l from Example 2.5 are all intermediate VPLs. Loosely speaking, they
are the simplest intermediate VPLs. We have the following conjecture.
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Conjecture 2.8. There is no intermediate VPL that is in ACC0 or TC0-hard under constant-depth
reductions.

In fact, the authors are not even aware of any intermediate VPL that is provably not in AC0.
An indication for the inadequacies of known techniques to prove it is that the robustness [21] of
intermediate VPLs can be proven to be constant. Further techniques, based for instance on the
switching lemma [18] or on the polynomial method [6] also do not seem to be applicable.

Our main result is the following theorem.

Theorem 2.9. There is an algorithm that, given a DVPA A, correctly outputs either

• L(A) ∈ AC0,

• m ≥ 2 such that MODm ≤cd L(A) (hence implying L(A) ̸∈ AC0),

• vertically visibly pushdown grammars G1, . . . , Gm each generating intermediate VPLs such
that L =cd

⊎m
i=1 L(Gi). In this case one can moreover effectively compute k, l ∈ N with k ̸= l

such that Lk,l ≤cd L(A).

Theorem 2.9 and the following conjecture imply the existence of an algorithm that decides if a
given visibly pushdown language is in AC0.

Conjecture 2.10. Either all intermediate VPLs are in AC0 or all are not.

2.3 Corollary for visibly counter languages

A visibly counter automaton with threshold m (m-VCA) over a visibly pushdown alphabet Σ is a
tuple A = (Q,Σ, q0, F, δ0, . . . , δm), where Q is a finite set of states, q0 is the initial state, F ⊆ Q
is a set of final states, m ≥ 0 is a threshold, and δi : Q × Σ → Q is a transition function for each
i ∈ [0,m].

A configuration of A is an element of Q× N. For any two configurations (q, n), (q′, n′) and any
x ∈ Σ we define (q, n)

x−→A (q′, n′) if q′ = δmin(n,m)(q, x) and n′ = n + ∆(x). The relation x−→A is
naturally extended to w−→A for w ∈ Σ∗. By L(A) = {w ∈ Σ△ | ∃q ∈ F : (q0, 0)

w−→A (q, 0)} we
denote the language (of well-matched words) of A. We remark that the language of any m-VCA is
a visibly pushdown language. We also remark that the languages of m-VCAs are defined to be sets
of well-matched words as in [3], whereas in [23] the well-matched requirement is not present.

The following corollary implies the main result of [23] when restricted to well-matched words.

Corollary 2.11. There is an algorithm that, given an m-VCA A, correctly outputs either that L(A)
is in AC0 or some m ≥ 2 such that MODm ≤cd L(A) (hence implying L(A) ̸∈ AC0).

For the proof of Corollary 2.11 we refer to Section 5.5.

3 Language-theoretic and algebraic foundations and Ext-Algebras

3.1 Basic algebraic automata theory

For a thorough introduction to algebraic automata theory, we refer the reader to the two classical
references of the domain by Eilenberg [12, 13] and Pin [26], but also to the following central reference
in automata theory [27, Chapter 1].

A semigroup is a pair (M, ·), where M is a non-empty set and · is a binary operation on M that
is associative, i.e. x · (y · z) = (x · y) · z for all x, y, z ∈M . Usually, when the operation is clear from
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the context, we write it multiplicatively and write just M instead of (M, ·). The semigroup M is
trivial if |M | = 1, and non-trivial otherwise. A subsemigroup of M is a semigroup N such that N is
a subset of M and the operation of N is the restriction of the operation of M to N . We often just
write xy to denote x · y. An idempotent of a semigroup M is an element x ∈M satisfying x = xx.
The idempotent power of a finite semigroup M is the smallest positive integer ω such that xω is an
idempotent for all x ∈ M . The zero of a semigroup M is the unique element x ∈ M (if it exists)
satisfying xy = yx = x for all y ∈M . A monoid is a semigroup M with a neutral element, that is,
an element e ∈M such that x · e = e · x = x for all x ∈M . We usually denote the neutral element
of a monoid M by 1M . A submonoid of M is a monoid N that is a subsemigroup of M containing
1M (which is thus also the neutral element of N). Consider some monoid M . A congruence on M
is an equivalence relation ∼ on M that satisfies vxz ∼ vyz for all v, z ∈ M and all x, y ∈ M with
x ∼ y. We denote by [x]∼ the equivalence class of x ∈ M . The quotient of M with respect to a
congruence ≡ is the monoid M/≡ with base set M/≡= {[m]≡ | m ∈ M} and operation given by
[x]≡ · [y]≡ = [xy]≡ for all x, y ∈M .

A group is a monoid M in which for all x ∈ M there exists an inverse, that is, an element
x′ ∈M such that xx′ = x′x = 1M . Each element in a group M has a unique inverse, so we denote
by x−1 the unique inverse of an x ∈ M . A subgroup of a group M is a submonoid of M that is a
group. Given a semigroup M , a set S and a subsemigroup N of M , whenever N ⊆ S, N is said to
be contained in S. A semigroup M is aperiodic if it does not contain any non-trivial group. It is
well-known that a finite semigroup M is aperiodic if, and only if, given ω the idempotent power of
M , it holds that xω = xω+1 for all x ∈M if, and only if, there exists k ∈ N>0 such that xk = xk+1

for all x ∈M .
A morphism from a monoid M to a monoid N is a mapping φ : M → N such that φ(1M ) = 1N

and φ(xy) = φ(x)φ(y) for all x, y ∈M . If M = Σ∗ and N = Γ∗ where Σ and Γ are finite alphabets,
we call φ length-multiplying whenever there exists k ∈ N such that φ(Σ) ⊆ Γk. Let φ : Σ∗ → M
be a morphism, where Σ is a finite alphabet and M is finite. Then there exists l ∈ N>0 such that
φ(Σl) = φ(Σ2l): this implies that φ(Σl) is a semigroup. The smallest such l is called the stability
index of the morphism φ. It is easily shown that if φ(Σn) contains a non-trivial group for some
n ∈ N, then so does φ(Σl). We say that h is quasi-aperiodic if φ(Σn) does not contain any non-
trivial group for all n ∈ N, which is equivalent to the fact that φ(Σl) is aperiodic. (See [5, 29] for
the original definition and [30] for the definition using the stability index, though it has been only
formulated for surjective morphisms.)

A language L over a finite alphabet Σ is recognized by a monoid M if there is a morphism
φ : Σ∗ →M and F ⊆M such that L = φ−1(F ). The syntactic monoid of a language L ⊆ Σ∗ is the
quotient of Σ∗ by the congruence ∼L (called the syntactic congruence of L) defined by x ∼L y for
x, y ∈ Σ∗ whenever for all u, v ∈ Σ∗, uxv ∈ L ⇔ uyv ∈ L. The syntactic monoid of L recognizes L
via the syntactic morphism of L sending any word w ∈ Σ∗ to [w]∼L . A fundamental and well-known
result is that a language L is regular if, and only if, it is recognized by a finite monoid if, and only
if, its syntactic monoid is finite.

3.2 Ext-algebras

This section builds on [10], but identifies an inaccuracy in the definition of Ext-algebra morphisms
to establish freeness.

Let (M, ·, 1M ) be a monoid. For each m ∈M , we shall respectively denote by leftm and rightm
the left-multiplication map x 7→ m · x and the right-multiplication map x 7→ x ·m.

Definition 3.1. An Ext-algebra (R,O, ·, ◦) consists of a monoid (R, ·, 1R) and a monoid (O, ◦, 1O)
that is a submonoid of (RR, ◦) containing the maps leftr and rightr for each r ∈ R.
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Definition 3.2. Let (R,O) and (S, P ) be Ext-algebras. An Ext-algebra morphism from (R,O) to
(S, P ) is a pair (φ,ψ) of monoid morphisms φ : R→ S and ψ : O → P such that:

• for all e ∈ O and r ∈ R we have ψ(e)(φ(r)) = φ(e(r));

• for all r ∈ R we have ψ(leftr) = leftφ(r) and ψ(rightr) = rightφ(r).

We write (φ,ψ) : (R,O) → (S, P ). The morphism (φ,ψ) is called surjective (respectively bijective)
if both φ and ψ are surjective (respectively bijective).

When it is clear from the context, we shall write morphism to mean Ext-algebra morphism.

Remark 3.3. In the above definition, φ is totally determined by ψ, because for each r ∈ R, we have
φ(r) = φ(leftr(1R)) = ψ(leftr)(φ(1R)) = ψ(leftr)(1S).

Definition 3.4. Let (R,O) and (S, P ) be Ext-algebras. Then

• (R,O) is a sub-Ext-algebra of (S, P ) whenever R is a submonoid of S and there exists a
submonoid O′ of P such that O = {e|R | e ∈ O′}, so that we may denote O by O′|R.

• (R,O) is a quotient of (S, P ) whenever there exists a surjective morphism from (S, P ) to
(R,O).

• (R,O) divides (S, P ) whenever (R,O) is a quotient of a sub-Ext-algebra of (S, P ).

For the rest of this section, let us fix some visibly pushdown alphabet Σ.

Definition 3.5. For all (u, v) ∈ Con(Σ), consider the function extu,v : Σ
△ → Σ∗ such that extu,v(x) =

uxv for all x ∈ Σ△. We call

extu,v = extx1,y1 ◦ · · · ◦ extxm,ym

a factorization of extu,v. That is, u = x1 . . . xm, v = ym · · · y1.

The following lemma states that each extu,v has a unique factorization when restricting the
(xi, yi) to be from Σ△ ×Σ△ or from Σcall ×Σret and minimizing the number of (xi, yi) ∈ Σ△ ×Σ△:
we obtain its so-called stair factorization.

Lemma 3.6. For all extu,v there exists a unique factorization

extu,v = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxh−1,yh−1
◦ extah−1,bh−1

◦ extxh,yh

satisfying h ≥ 1, xi, yi ∈ Σ△ for all i ∈ [1, h] and ai ∈ Σcall and bi ∈ Σret for all i ∈ [1, h − 1]. In
particular, extu,v is in fact a function from Σ△ to Σ△.

Proof. We show additionally that the required factorization must satisfy h = ∆(u) + 1. We prove
the statement by induction on |uv|. In case |uv| ≤ 1, then either extu,v = extε,ε, or there is some
c ∈ Σint such that extu,v = extε,c or extu,v = extc,ε. In any of these cases, we uniquely factorize
extu,v as extx1,y1 with x1 = u and y1 = v.

Let us consider the case when |uv| ≥ 2 and let h = ∆(u) + 1. Note that since uv ∈ Σ△ we have
u ∈ Σ△ if, and only if, v ∈ Σ△. In case u, v ∈ Σ△ we have ∆(u) = 0, hence the only factorization
of the desired form is indeed extu,v = extx1,y1 , where x1 = u and y1 = v. Let us finally treat the
case when u, v /∈ Σ△, thus ∆(u) ≥ 1 and hence h ≥ 2. Let x be the maximal prefix of u satisfying
x ∈ Σ△ and let y be the maximal suffix of v satisfying y ∈ Σ△. Due to maximality of x and y there
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must exist a ∈ Σcall, b ∈ Σret, and u′, v′ ∈ Σ∗ such that u = xau′, v = v′by and u′v′ ∈ Σ△ with
∆(u′) = ∆(u) − 1 = h − 2. Let extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxh−2,yh−2

◦ extah−2,bh−2
◦ extxh−1,yh−1

be
the unique factorization of the desired form for extu′,v′ by induction hypothesis. We claim that

extx,y ◦ exta,b ◦ extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxh−2,yh−2
◦ extah−2,bh−2

◦ extxh−1,yh−1

is the unique factorization of the desired form for extu,v. Indeed, since ∆(u) ≥ 1 any potential
factorization of the desired form for extu,v must be of the form extx′,y′ ◦ exta′,b′ ◦π, where x′ is a
prefix of u satisfying x′ ∈ Σ△, y′ is a suffix of v satisfying y′ ∈ Σ△, a′ ∈ Σcall, and b′ ∈ Σret. In
particular x′ is a prefix of x and y′ is suffix of y. In case x′ = x and y′ = y it follows a′ = a and
b′ = b and uniqueness follows from induction hypothesis. It remains to consider the case when x′ is
a strict prefix of x or y′ is a strict suffix of y. We only treat the former case. It must hold x = x′a′s
for some s ∈ Σ+ such that a′s ∈ Σ△. But then π is a factorization for extsu′,v′z for some z ∈ Σ∗

which is a contradiction since ∆(s) = −1 due to a′s ∈ Σ△.

In the following we will denote the unique factorization provided by Lemma 3.6 as the stair
factorization of extu,v. Consider now the set O(Σ△) of all functions extu,v for (u, v) ∈ Con(Σ): it
is a subset of (Σ△)Σ

△ closed under composition. Thus, (O(Σ△), ◦) is a submonoid of ((Σ△)Σ
△
, ◦).

Since for all w ∈ Σ△ we have leftw = extw,ε and rightw = extε,w, the set O(Σ△) contains the
functions leftw and rightw for all w ∈ Σ△. Hence, (Σ△,O(Σ△), ·, ◦) is an Ext-algebra. The following
important proposition establishes freeness of (Σ△,O(Σ△)).

Proposition 3.7. Let (R,O) be an Ext-algebra and consider two functions φ : Σint → R and
ψ : {exta,b | a ∈ Σcall, b ∈ Σret} → O. Then there exists a unique Ext-algebra morphism (φ,ψ) from
(Σ△,O(Σ△)) to (R,O) satisfying φ(c) = φ(c) for each c ∈ Σint and ψ(exta,b) = ψ(exta,b) for each
a ∈ Σcall, b ∈ Σret.

Proof. We define φ based on a refinement of the structural definition of well-matched words. For
each w ∈ Σ△ we inductively define:

φ(w) =


1R if w = ε (type 1)
φ(c) if w = c ∈ Σint (type 2)
ψ(exta,b)(φ(x)) if w = axb for a ∈ Σcall, b ∈ Σret and x ∈ Σ△ (type 3)
φ(x)φ(y) if w = xy for x, y ∈ Σ△ \ {ε}, where |x| is minimal (type 4)

Observe that the four above types give unique decompositions. For proving that φ is indeed a
monoid morphism one proves that for all w, v ∈ Σ△ we have φ(wv) = φ(w)φ(v) by structural
induction on w given by the four types. The case v = ε is direct, we only treat the case v ∈ Σ△ \{ε}
in the following. If w is of type 1 we have φ(wv) = φ(v) = 1R · φ(v) = φ(w)φ(v). If w is of
type 2 or 3, then wv is of type 4 and w is the shortest prefix of wv with w ∈ Σ△ \ {ε}, hence
φ(wv) = φ(w)φ(v). If w is of type 4, then w = xy for some x, y ∈ Σ△ \ {ε}, where x is of
minimal length. Then wv is of type 4, where wv = x(yv) and x is the shortest prefix of wv with
x ∈ Σ△ \ {ε}. Hence φ(wv) = φ(x)φ(yv) = φ(x)φ(y)φ(v) = φ(xy)φ(v) = φ(w)φ(v), where the
first equality follows by definition of φ and the second and third equality follow from the induction
hypothesis. Given any extu,v ∈ O(Σ△) let

extu,v = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxh−1,yh−1
◦ extah−1,bh−1

◦ extxh,yh
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be the unique stair factorization given by Lemma 3.6. We define

ψ(extu,v) = ⃝h−1
i=1

(
leftφ(xi) ◦ rightφ(yi) ◦ ψ(extai,bi)

)
◦ leftφ(xh) ◦ rightφ(yh) .

For showing that ψ is indeed a monoid morphism, one proves ψ(extuu′,v′v) = ψ(extu,v) ◦ ψ(extu′,v′)
for all extu,v, extu′,v′ ∈ O(Σ△) by observing simply that the unique stair factorization of extuu′,v′v
is obtained by composing the unique stair factorizations of extu,v and extu′,v′ .

We now show that (φ,ψ) is in fact an Ext-algebra morphism. The discussion above first shows
that both φ : Σ△ → R and ψ : O(Σ△) → O are monoid morphisms. Next, let us prove that for all
extu,v ∈ O(Σ△) and w ∈ Σ△ we have ψ(extu,v)(φ(w)) = φ(extu,v(w)). Let

extu,v = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxh−1,yh−1
◦ extah−1,bh−1

◦ extxh,yh

be the unique stair factorization of extu,v provided by Lemma 3.6. If h = 1, then

ψ(extu,v)(φ(w)) = leftφ(xh) ◦ rightφ(yh)(φ(w)) = φ(xhwyh) = φ(extu,v(w)) .

Otherwise, we have

ψ(extu,v)(φ(w))

=⃝h−1
i=1

(
leftφ(xi) ◦ rightφ(yi) ◦ ψ(extai,bi)

)
◦ leftφ(xh) ◦ rightφ(yh)(φ(w))

=⃝h−1
i=1

(
leftφ(xi) ◦ rightφ(yi) ◦ ψ(extai,bi)

)(
φ(xhwyh)

)
=⃝h−2

i=1

(
leftφ(xi) ◦ rightφ(yi) ◦ ψ(extai,bi)

)
◦

leftφ(xh−1) ◦ rightφ(yh−1)
◦ ψ(extah−1,bh−1

)
(
φ(xhwyh)

)
=⃝h−2

i=1

(
leftφ(xi) ◦ rightφ(yi) ◦ ψ(extai,bi)

)
◦

leftφ(xh−1) ◦ rightφ(yh−1)

(
φ(ah−1xhwyhbh−1)

)
=⃝h−2

i=1

(
leftφ(xi) ◦ rightφ(yi) ◦ ψ(extai,bi)

)(
φ(xh−1ah−1xhwyhbh−1yh−1)

)
= · · ·
=φ(x1a1 · · ·xh−1ah−1xhwyhbh−1yh−1 · · · b1y1)
=φ(extu,v(w)) .

Let us prove that for all w ∈ Σ△ we have ψ(leftw) = leftφ(w). Noting that the unique stair
factorization of leftw is extw,ε we obtain

ψ(leftw) = ψ(extw,ε) = leftφ(w) ◦ rightφ(ε) = leftφ(w) ◦ right1R = leftφ(w) ◦ 1O = leftφ(w) .

One proves ψ(rightw) = rightφ(w) for all w ∈ Σ△ analogously.
Therefore, (φ,ψ) is an Ext-algebra morphism and it is the unique one satisfying φ(c) = φ(c)

for each c ∈ Σint and ψ(exta,b) = ψ(exta,b) for each a ∈ Σcall, b ∈ Σret. Take indeed any such
Ext-algebra morphism (φ′, ψ′): using the properties of Ext-algebra morphisms, it is straightforward
to prove that then φ(w) = φ′(w) for all w ∈ Σ△ by structural induction on w and then to prove
that ψ(extu,v) = ψ′(extu,v) for all extu,v ∈ O(Σ△) by using the unique stair factorization of extu,v
provided by Lemma 3.6.

Remark 3.8. The second condition in Definition 3.2, i.e. for all r ∈ R we have ψ(leftr) = leftφ(r)
and ψ(rightr) = rightφ(r), does not appear in the definition of Ext-algebra morphisms given in [10].
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But this is actually problematic, because then Proposition 3.7 would not hold in general.
Indeed, consider for instance the visibly pushdown alphabet Γ where Γcall = {a}, Γint = ∅ and

Γret = {b}, where R the is semi-lattice on two elements {0, 1} such that 1 · 1 = 1 and 0 · 1 = 1 · 0 =
0 · 0 = 0; and moreover O is defined as {id,0,1} with 0(0) = 0(1) = 0 and 1(0) = 1(1) = 1. Then
(R,O) is an Ext-algebra. Let us define the function φ : Γ△ → R by φ(w) = 1 for all w ∈ Γ△ and the
function ψ : O(Γ△) → O by ψ(extan,bn) = id for all n ∈ N and ψ(extu,v) = 1 for all u, v ∈ Γ∗ with
uv ∈ Γ△ and (u ∈ aΓ∗bΓ∗ or v ∈ Γ∗aΓ∗b). The pair (φ,ψ) forms a morphism from (Γ△,O(Γ△))
to (R,O), but it is not the only one sending exta,b to id, because we could also take ψ to send all
elements of O(Γ△) to id.

Definition 3.9. A language L ⊆ Σ△ is recognized by an Ext-algebra (R,O) whenever there exists
a morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) such that L = φ−1(F ) for some F ⊆ R.

Example 3.10. Consider the language L1,2 = L(S → aSb1 | acSb2 | ε) from Example 2.5 over
the visibly pushdown alphabet Γ, where Γint = {c}, Γcall = {a} and Γret = {b1, b2}. Consider the
Ext-algebra (R,O) defined as follows. We set R = {acb1, ε, c, cab1, ab1} with multiplication given
by the following table:

· acb1 ε c cab1 ab1
acb1 acb1 acb1 acb1 acb1 acb1
ε acb1 ε c cab1 ab1
c acb1 c acb1 acb1 cab1

cab1 acb1 cab1 acb1 acb1 acb1
ab1 acb1 ab1 acb1 acb1 acb1

Thus, observe that ε = 1R and acb1 is the zero of R. Omitting its multiplication table, we set the
monoid O to be the following

O = {(acb1, ε), (ε, ε), (c, ε), (ε, c), (ab1, ε), (ε, ab1), (cab1, ε)} ∪
{(a, b2), (ca, b2), (ca, ab1b2), (ca, b1), (a, ab1b2), (a, b1)},

where the elements in the first set comprise {leftr, rightr | r ∈ R}, more precisely

• (acb1, ε) = leftacb1 = rightacb1 ,

• (ε, ε) = leftε = rightε = 1O,

• (c, ε) = leftc,

• (ε, c) = rightc,

• (ab1, ε) = leftab1 ,

• (ε, ab1) = rightab1 ,

• (cab1, ε) = leftcab1 = rightcab1 ,

and where the elements from the second set are the following functions from R to R, respectively:

• (a, b2):
r acb1 ε c cab1 ab1

(a, b2)(r) acb1 acb1 ab1 ab1 acb1

• (ca, b2):
r acb1 ε c cab1 ab1

(ca, b2)(r) acb1 acb1 cab1 cab1 acb1
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• (ca, ab1b2):
r acb1 ε c cab1 ab1

(ca, ab1b2)(r) acb1 acb1 cab1 acb1 acb1

• (ca, b1):
r acb1 ε c cab1 ab1

(ca, b1)(r) acb1 cab1 acb1 acb1 cab1

• (a, ab1b2):
r acb1 ε c cab1 ab1

(a, ab1b2)(r) acb1 acb1 ab1 acb1 acb1

• (a, b1):
r acb1 ε c cab1 ab1

(a, b1)(r) acb1 ab1 acb1 acb1 ab1 .

Consider the unique morphism (φ,ψ) : (Γ△,O(Γ△)) → (R,O) that (thanks to Proposition 3.7)
satisfies φ(c) = c, ψ(exta,b1) = (a, b1) and ψ(exta,b2) = (a, b2). We have L = φ−1({ε, ab1}).

Definition 3.11. Let (R,O) be an Ext-algebra. An equivalence relation on (R,O) is an equivalence
relation ∼ on R. We say an equivalence relation ∼ is a congruence on (R,O) whenever for all e ∈ O
and for all x, y ∈ R we have that x ∼ y implies e(x) ∼ e(y). In case ∼ is a congruence we denote
by (R,O)/∼ the pair (R/∼, O′), where

O′ = {e′ ∈ (R/∼)R/∼ | ∃e ∈ O ∀x ∈ R : e′([x]∼) = [e(x)]∼}.

The following lemma actually shows that (R,O)/∼ is again an Ext-algebra, that we call the
quotient of (R,O) by ∼.

Lemma 3.12. Let (R,O) be an Ext-algebra and ∼ be a congruence on (R,O). Then (R/∼, O′),
with

O′ = {e′ ∈ (R/∼)R/∼ | ∃e ∈ O ∀x ∈ R : e′([x]∼) = [e(x)]∼}

a submonoid of (R/∼)R/∼, is an Ext-algebra and the pair (φ,ψ) of functions φ : R → R/∼ and
ψ : O → O′ satisfying φ(r) = [r]∼ for all r ∈ R and ψ(e)([r]∼) = [e(r)]∼ for all e ∈ O and r ∈ R is
a surjective morphism from (R,O) to (R/∼, O′).

Proof. Let u, v ∈ R such that u ∼ v. Take any x, y ∈ R: we have that

xuy = righty ◦ leftx(u) ∼ righty ◦ leftx(v) = xvy

by definition of congruence. Thus, ∼ is a congruence on R. This implies that R/∼ is a monoid.
Let e′, f ′ ∈ O′: this means there exist e, f ∈ O such that e′([r]∼) = [e(r)]∼ and f ′([r]∼) = [f(r)]∼

for all r ∈ R. Given any r ∈ R, we thus have

e′ ◦ f ′([r]∼) = e′([f(r)]∼) = [e(f(r))]∼ = [e ◦ f(r)]∼ ,

so that e′ ◦ f ′ ∈ O′. Therefore, O′ is a submonoid of (R/∼)R/∼ that contains the functions left[r]∼
and right[r]∼ for all [r]∼ ∈ R/∼. Thus, (R/∼, O′) is an Ext-algebra.

Now define the functions φ : R→ R/∼ and ψ : O → O′ by respectively φ(r) = [r]∼ for all r ∈ R
and ψ(e) = e′ with e′ ∈ O′ such that e′([r]∼) = [e(r)]∼ for all r ∈ R: this is well-defined because
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∼ is a congruence on (R,O). Since ∼ is a congruence on R, φ is a surjective monoid morphism.
Further, let e, f ∈ O. We have

ψ(e) ◦ ψ(f)([r]∼) = ψ(e)([f(r)]∼)

= [e(f(r))]∼

= [e ◦ f(r)]∼
= ψ(e ◦ f)([r]∼)

for all r ∈ R, so that ψ(e) ◦ ψ(f) = ψ(e ◦ f). Therefore, as ψ(1O)([r]∼) = [1O(r)]∼ = [r]∼ for all
r ∈ R, it follows that ψ is also a monoid morphism, that is obviously surjective. By construction,
we do of course have that

ψ(e)(φ(r)) = ψ(e)([r]∼) = [e(r)]∼ = φ(e(r))

for all e ∈ O and r ∈ R. Moreover, for all r ∈ R, it holds that

ψ(leftr)([x]∼) = [leftr(x)]∼ = [rx]∼ = [r]∼[x]∼ = leftφ(r)([x]∼)

for all x ∈ R, so that ψ(leftr) = leftφ(r). Similarly, we can prove that ψ(rightr) = rightφ(r) for all
r ∈ R. Thus, (φ,ψ) is a surjective morphism from (R,O) to (R/∼, O′).

The lemma also proves that the pair (φ,ψ) of functions φ : R→ R/∼ and ψ : O → O′ satisfying
φ(r) = [r]∼ for all r ∈ R and ψ(e)([r]∼) = [e(r)]∼ for all e ∈ O and r ∈ R is a surjective morphism
from (R,O) to (R,O)/∼. We also call this pair (φ,ψ) the morphism associated to the congruence
∼.

Definition 3.13. The syntactic congruence of a language L ⊆ Σ△ is the congruence ∼L on
(Σ△,O(Σ△)) defined by u ∼L v for u, v ∈ Σ△ whenever e(u) ∈ L ⇔ e(v) ∈ L for all e ∈ O(Σ△).
We define the syntactic Ext-algebra of L to be (RL, OL) = (Σ△,O(Σ△))/∼L and the syntactic
morphism of L to be the morphism (φL, ψL) associated to ∼L.

Note that the syntactic Ext-algebra (RL, OL) of L recognizes L via the syntactic morphism
(φL, ψL). Indeed, for all u, v ∈ Σ△, we have that if u ∼L v, then u ∈ L⇔ v ∈ L. This implies that
L = φ−1

L (φL(L)). For instance, it can be proven that the Ext-algebra recognizing the language L1,2

in Example 3.10 is in fact a certain presentation of the syntactic Ext-algebra of L1,2.
The next lemma states that all languages recognized by an Ext-algebra are also recognized by

the Ext-algebras it divides.

Lemma 3.14. Let (R,O) and (S, P ) be two Ext-algebras such that (R,O) divides (S, P ). Then any
language L ⊆ Σ△ recognized by (R,O) is also recognized by (S, P ).

Proof. Let L ⊆ Σ△ be a language recognized by (R,O). This means that there exists a morphism
(φ,ψ) : (Σ△,O(Σ△)) → (R,O) such that L = φ−1(F ) for some F ⊆ R. We will prove the lemma
by combining the following two points:

(1) if (R,O) is a sub-Ext-algebra of (S, P ), then so does (S, P ) recognize L, and

(2) if (R,O) is a quotient of (S, P ), then so does (S, P ) recognize L.

For Point (1), assume that (R,O) is a sub-Ext-algebra of (S, P ). This means that R is a
submonoid of S and that there exists a submonoid O′ of P satisfying O = O′|R. Take an arbitrary
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function σ : O → P such that σ(e)|R = e for all e ∈ O. Let us consider the unique morphism
(φ′, ψ′) : (Σ△,O(Σ△)) → (S, P ) such that φ′(c) = φ(c) for all c ∈ Σint and ψ′(exta,b) = σ(ψ(exta,b))
for all a ∈ Σcall, b ∈ Σret, given to us by Proposition 3.7. We can prove by induction on w that
φ′(w) = φ(w) for all w ∈ Σ△:

• w = ε. Then φ′(w) = 1S = 1R = φ(w).

• w = c for some c ∈ Σint. Then φ′(w) = φ′(c) = φ(c) = φ(w).

• w = aw′b for some a ∈ Σcall, b ∈ Σret and w′ ∈ Σ△. Then

φ′(w) = φ′(exta,b(w
′))

= ψ′(exta,b)(φ
′(w′))

IH
= σ(ψ(exta,b))(φ(w

′))

= σ(ψ(exta,b))|R(φ(w
′))

= ψ(exta,b)(φ(w
′))

= φ(exta,b(w
′))

= φ(w) .

• w = uv for some u, v ∈ Σ△ \ {ε}. Then

φ′(w) = φ′(u)φ′(v)
IH
= φ(u)φ(v) = φ(w) .

Thus, φ′−1(F ) = L, which implies that (S, P ) recognizes L.
For Point (2), assume that (R,O) is a quotient of (S, P ). This means that there exists a surjective

morphism (α, β) : (S, P ) → (R,O). Let us define an arbitrary function ρ : Σint → S such that
ρ(c) ∈ α−1(φ(c)) for all c ∈ Σint as well as an arbitrary function σ : {exta,b | a ∈ Σcall, b ∈ Σret} → P
such that σ(exta,b) ∈ β−1(ψ(exta,b)) for all a ∈ Σcall, b ∈ Σret. Now, take the unique morphism
(φ′, ψ′) : (Σ△,O(Σ△)) → (S, P ) given by Proposition 3.7 for ρ and σ: we claim that it is such that
α(φ′(w)) = φ(w) for all w ∈ Σ△. We can prove it by induction on w:

• w = ε. Then α(φ′(w)) = α(1S) = 1R = φ(w).

• w = c for some c ∈ Σint. Then α(φ′(w)) = α(ρ(c)) = φ(c) = φ(w).

• w = aw′b for some a ∈ Σcall, b ∈ Σret and w′ ∈ Σ△. Then

α(φ′(w)) = α
(
φ′(exta,b(w

′))
)

= α
(
ψ′(exta,b)(φ

′(w′))
)

= β(ψ′(exta,b))
(
α(φ′(w′))

)
IH
= β(σ(exta,b))(φ(w

′))

= ψ(exta,b)(φ(w
′))

= φ(exta,b(w
′))

= φ(w) .

• w = uv for some u, v ∈ Σ△ \ {ε}. Then

α(φ′(w)) = α(φ′(u))α(φ′(v))
IH
= φ(u)φ(v) = φ(w) .
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Therefore, φ′−1(α−1(F )) = L, which implies that (S, P ) recognizes L.

Next, we show that any language recognized by an Ext-algebra is also recognized by one of its
sub-Ext-algebras via a surjective morphism.

Lemma 3.15. Let (φ,ψ) : (Σ△,O(Σ△)) → (R,O) be a morphism and let L ⊆ Σ△ be a language
recognized by (R,O) via (φ,ψ). Then

(
φ(Σ△), ψ(O(Σ△))|φ(Σ△)

)
is a sub-Ext-algebra of (R,O)

recognizing L via the surjective morphism (φ,ψ′) where ψ′(extu,v) = ψ(extu,v)|φ(Σ△) for all extu,v ∈
O(Σ△).

Proof. Since (R,O) recognizes L via (φ,ψ), this means that there exists F ⊆ R such that φ−1(F ) =
L. We have that φ(Σ△) is a submonoid of R and ψ(O(Σ△)) is a submonoid of O. Observe that for
all e ∈ ψ(O(Σ△)) and r ∈ φ(Σ△), we have

e(r) = ψ(extu,v)(φ(w)) = φ(uwv) ∈ φ(Σ△)

because ψ(extu,v) = e for extu,v ∈ O(Σ△) and r = φ(w) for w ∈ Σ△. Moreover, for all e, f ∈
ψ(O(Σ△)), it holds that e|φ(Σ△) ◦ f |φ(Σ△) = (e ◦ f)|φ(Σ△). Therefore, ψ(O(Σ△))|φ(Σ△) is a sub-
monoid of φ(Σ△)φ(Σ

△). In addition, for each r ∈ φ(Σ△), we have that r = φ(w) for some w ∈ Σ△

and thus that
leftr = leftφ(w) = ψ(leftw)|φ(Σ△) = ψ(extw,ε)|φ(Σ△)

as well as rightr = ψ(extε,w)|φ(Σ△). Thus,
(
φ(Σ△), ψ(O(Σ△))|φ(Σ△)

)
is a sub-Ext-algebra of (R,O).

It is clear that φ is a surjective monoid morphism from Σ△ to φ(Σ△). Further,

ψ′(extu,v) ◦ ψ′(extu′,v′) = ψ(extu,v)|φ(Σ△) ◦ ψ(extu′,v′)|φ(Σ△)

=
(
ψ(extu,v) ◦ ψ(extu′,v′)

)∣∣
φ(Σ△)

= ψ(extu,v ◦ extu′,v′)|φ(Σ△)

= ψ′(extu,v ◦ extu′,v′)

for all extu,v, extu′,v′ ∈ O(Σ△), hence since ψ′(extε,ε) = 1O|φ(Σ△), it follows that ψ′ is a surjective
monoid morphism from O(Σ△) to ψ(O(Σ△))|φ(Σ△). Moreover, we have

• ψ′(extu,v)(φ(w)) = ψ(extu,v)|φ(Σ△)(φ(w)) = ψ(extu,v)(φ(w)) = φ(extu,v(w)) for all extu,v ∈
O(Σ△) and w ∈ Σ△;

• ψ′(leftw) = ψ(extw,ε)|φ(Σ△) = leftφ(w) and ψ′(rightw) = rightφ(w) for all w ∈ Σ△.

Therefore, (φ,ψ′) is a surjective morphism recognizing L.

The following lemma states that a language is recognized by an Ext-algebra via a surjective
morphism if, and only if, the syntactic morphism of the language factors through the former mor-
phism.

Lemma 3.16. Let (φ,ψ) : (Σ△,O(Σ△)) → (R,O) be a surjective morphism, let L ⊆ Σ△ and let
(φL, ψL) : (Σ

△,O(Σ△)) → (RL, OL) be the syntactic morphism of L. Then (R,O) recognizes L via
(φ,ψ) if and only if there is a surjective morphism (α, β) : (R,O) → (RL, OL) such that φL = α ◦φ
(we say that (φL, ψL) factors through (φ,ψ)).
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Proof. Assume first that there is a surjective morphism (α, β) : (R,O) → (RL, OL) such that φL =
α ◦ φ. Then

φ−1
(
α−1(φ(L))

)
= (α ◦ φ)−1

(
φL(L)) = φ−1

L (φL(L)) = L ,

hence (R,O) recognizes L via (φ,ψ).
Assume now that (R,O) recognizes L via (φ,ψ). This means that there exists F ⊆ R satisfying

φ−1(F ) = L. Take w,w′ ∈ Σ△ such that φ(w) = φ(w′). Then, given any e ∈ O(Σ△), we have that

φ(e(w)) = ψ(e)(φ(w)) = ψ(e)(φ(w′)) = φ(e(w′)) .

Therefore, since φ−1(F ) = L, it holds that w ∼L w
′, that is, φL(w) = φL(w

′).
Take extu,v, extu′,v′ ∈ O(Σ△) such that ψ(extu,v) = ψ(extu′,v′). Then, for each w ∈ Σ△, we have

that
φ(extu,v(w)) = ψ(extu,v)(φ(w)) = ψ(extu′,v′)(φ(w)) = φ(extu′,v′(w)) ,

that is, extu,v(w) ∼L extu′,v′(w). Hence, ψL(extu,v) = ψL(extu′,v′).
We can now define the functions α : R → RL and β : O → OL such that α(φ(w)) = φL(w)

for all w ∈ Σ△ and β(ψ(extu,v)) = ψL(extu,v) for all extu,v ∈ O(Σ△): those are well-defined by
surjectivity of (φ,ψ) and what we have proven just above. Since (φL, ψL) is a surjective morphism
from (Σ△,O(Σ△)) to (RL, OL), we can easily prove that (α, β) is a surjective morphism from (R,O)
to (RL, OL) that does of course satisfy φL = α ◦ φ.

The following proposition shows that the syntactic Ext-algebra of a given language of well-
matched words is the least Ext-algebra recognizing this language.

Proposition 3.17. An Ext-algebra (R,O) recognizes a language L ⊆ Σ△ if, and only if, its syntactic
Ext-algebra (RL, OL) divides (R,O).

Proof. Let (R,O) be an Ext-algebra and let L ⊆ Σ△ be a language. Consider also its syntactic
Ext-algebra (RL, OL) and its syntactic morphism (φL, ψL).

Implication from right to left. Assume that the syntactic Ext-algebra (RL, OL) of L divides
(R,O). We have that (RL, OL) recognizes L and we then use Lemma 3.14 to conclude that (R,O)
does also recognize L.

Implication from left to right. Assume that (R,O) recognizes L through a morphism
(φ,ψ) : (Σ△,O(Σ△)) → (R,O). By Lemma 3.15, we have that

(
φ(Σ△), ψ(O(Σ△))|φ(Σ△)

)
= (R′, O′)

is a sub-Ext-algebra of (R,O) recognizing L via the surjective morphism (φ,ψ′) where ψ′(extu,v) =
ψ(extu,v)|φ(Σ△) for all extu,v ∈ O(Σ△). Then, by Lemma 3.16, there exists a surjective morphism
(α, β) : (R′, O′) → (RL, OL) such that φL = α ◦φ. Thus, we have that (RL, OL) divides (R,O).

We say that an Ext-algebra (R,O) is finite whenever R is finite (which is the case if and only if
O is finite). The following theorem establishes the equivalence between visibly pushdown languages
and languages recognizable by finite Ext-algebras. Its proof provides effective translations from
DVPAs to Ext-algebras and vice versa.

Theorem 3.18. A language L ⊆ Σ△ is a VPL if, and only if, it is recognized by a finite Ext-algebra.

Proof. Let L ⊆ Σ△ be a language. Before we prove the theorem we have the following claim, which
can be easily proven by induction on |u| and structural induction on w, respectively.
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Claim. Let A = (Q,Σ,Γ, δ, q0, F,⊥) be a DVPA. We denote by πQ the projection of Q × Γ∗

on Q and by πΓ∗ the projection of Q × Γ∗ on Γ∗. It holds that L(A) ⊆ Σ△ and additionally we
have that

δ̂(q, uv, σ) = δ̂
(
πQ(δ̂(q, u, σ)), v, πΓ∗(δ̂(q, u, σ))

)
and

δ̂(q, w, ασ) =
(
πQ(δ̂(q, w, α)), ασ

)
for all q ∈ Q, u, v ∈ Σ∗, σ ∈ Γ∗, w ∈ Σ△ and α ∈ Γ.

Implication from left to right. Assume that L is a VPL. This means there exists a DVPA
A = (Q,Σ,Γ, δ, q0, F,⊥) such that L(A) = L. Consider the operation ∗ on R = QQ×Γ defined so
that for all f, g ∈ R, we have f ∗ g(q, α) = g(f(q, α), α) for all q ∈ Q and α ∈ Γ. Observe that for
all f, g, h ∈ QQ×Γ, we have

(f ∗ g) ∗ h(q, α) = h(f ∗ g(q, α), α) = h(g(f(q, α), α), α) = g ∗ h(f(q, α), α) = f ∗ (g ∗ h)(q, α)

for all q ∈ Q and α ∈ Γ. Thus ∗ is associative and since it also has i ∈ R with i(q, α) = q for all
q ∈ Q and α ∈ Γ as an identity, we have that R = QQ×Γ with operation ∗ forms a monoid. Take
O to be the monoid RR (for composition). Since O clearly contains the functions leftr and rightr
for all r ∈ R, it follows that (R,O) is a finite Ext-algebra. We now prove that it recognizes L. For
each w ∈ Σ△, define fw ∈ R by fw(q, α) = πQ(δ̂(q, w, α)) for all q ∈ Q and α ∈ Γ. Let us consider
the unique morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O), given by Proposition 3.7, such that for each
c ∈ Σint, we have φ(c) = fc and for each a ∈ Σcall, b ∈ Σret, we have that ψ(exta,b) sends any f ∈ R
to g ∈ R satisfying that g(q, α) = πQ

(
δ(f(p, β), b, β)

)
with δ(q, a, α) = (p, βα) for all q ∈ Q and

α ∈ Γ. We claim that for all w ∈ Σ△, we have that φ(w) = fw. We prove it by induction on w.

• w = ε. Then φ(w) = i = fw.

• w = c for some c ∈ Σint. Then φ(w) = fc = fw.

• w = aw′b for some a ∈ Σcall, b ∈ Σret and w′ ∈ Σ△. Then

φ(w) = φ(exta,b(w
′)) = ψ(exta,b)(φ(w

′))
IH
= ψ(exta,b)(fw′) .

So φ(w) = g such that for all q ∈ Q and α ∈ Γ, if we set δ(q, a, α) = (p, βα), we have, recalling
that δ̂ extends δ,

g(q, α) = πQ
(
δ(fw′(p, β), b, β)

)
= πQ

(
δ
(
πQ(δ̂(p, w

′, β)), b, β
))

= πQ

(
δ̂
(
πQ(δ̂(p, w

′, β)), b, β
))

= πQ

(
δ̂
(
πQ(δ̂(q, aw

′, α)), b, πΓ∗(δ̂(q, aw′, α))
))

= πQ(δ̂(q, aw
′b, α))

= faw′b(q, α)

= fw(q, α) .

Thus φ(w) = fw.
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• w = uv for some u, v ∈ Σ△ \ {ε}. Then φ(w) = φ(u) ∗ φ(v) IH
= fu ∗ fv. But

fu ∗ fv(q, α) = fv(fu(q, α), α)

= fv
(
πQ(δ̂(q, u, α)), α

)
= πQ

(
δ̂
(
πQ(δ̂(q, u, α)), v, α

))
= πQ

(
δ̂
(
πQ(δ̂(q, u, α)), v, πΓ∗(δ̂(q, u, α))

))
= πQ(δ̂(q, uv, α))

= fuv(q, α)

for all q ∈ Q and α ∈ Γ. Therefore φ(w) = fw.

Finally, set P = {f ∈ R | f(q0,⊥) ∈ F}. It holds that

φ−1(P ) = {w ∈ Σ△ | fw(q0,⊥) ∈ F}

= {w ∈ Σ△ | πQ(δ̂(q0, w,⊥)) ∈ F}

= {w ∈ Σ△ | δ̂(q0, w,⊥) ∈ F × {⊥}}
= L(A)

= L .

Therefore, (R,O) recognizes L.

Implication from right to left. Assume there exists a finite Ext-algebra (R,O) that rec-
ognizes L. This means that there exists a morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) such that
L = φ−1(F ) for some F ⊆ R. Let us now define the DVPA

A = (Q,Σ,Γ, δ, 1, F,⊥),

where Q = R, 1 = 1R, Γ = R× Σcall ∪ {⊥}, and

δ(r, a, α) =


(1, (r, a)α) if a ∈ Σcall

(sψ(extb,a)(r), ε) if a ∈ Σret and α = (s, b) ∈ R× Σcall

(r, ε) if a ∈ Σret and α = ⊥
(rφ(c), α) if a ∈ Σint

for all r ∈ R, a ∈ Σ and α ∈ Γ. We prove that δ̂(r, w, σ) = (rφ(w), σ) for all r ∈ R, w ∈ Σ△ and
σ ∈ Γ∗⊥ by induction on w.

• w = ε. Then δ̂(r, w, σ) = (r, σ) = (rφ(w), σ).

• w = c for some c ∈ Σint. Then δ̂(r, w, σ) = (rφ(c), σ) = (rφ(w), σ).
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• w = aw′b for some a ∈ Σcall, b ∈ Σret and w′ ∈ Σ△. Then

δ̂(r, w, σ) = δ̂(1, w′b, (r, a)σ)

= δ̂
(
πQ(1, w

′, (r, a)σ), b, πΓ∗(1, w′, (r, a)σ)
)

IH
= δ̂(φ(w′), b, (r, a)σ)

=
(
rψ(exta,b)(φ(w

′)), σ
)

= (rφ(w), σ) .

• w = uv for some u, v ∈ Σ△ \ {ε}. Then

δ̂(r, w, σ) = δ̂
(
πQ(δ̂(r, u, σ)), v, πΓ∗(δ̂(r, u, σ))

)
IH
= δ̂(rφ(u), v, σ)

IH
= (rφ(u)φ(v), σ)

= (rφ(w), σ) .

Hence,

L(A) = {w ∈ Σ△ | δ̂(1, w,⊥) ∈ F × {⊥}}

= {w ∈ Σ△ | πQ(δ̂(1, w,⊥)) ∈ F}
= {w ∈ Σ△ | φ(w) ∈ F}
= φ−1(F ) = L .

Therefore, L is a VPL.

4 (Weak) length-synchronicity, nesting depth, and quasi-aperiodicity

For the rest of this section let us fix a visibly pushdown alphabet Σ, a finite Ext-algebra (R,O)
and consider a morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O). Suitably adjusting the pumping lemma
for context-free language we introduce a pumping lemma for Ext-algebra morphisms in Section 4.1.
In Section 4.2 we extend the notions of weak length-synchronicity and length-synchronicity to Ext-
algebras morphisms and to visibly pushdown languages. It is shown that for languages generated by
vertically visibly pushdown grammars, (weak) length-synchronicity of the relation of the generating
grammar coincides with (weak) length-synchronicity of language. We concern ourselves with the
nesting depth of visibly pushdown languages in Section 4.3. Finally in Section 4.4 we introduce
quasi-aperiodicity of Ext-algebra morphisms and prove that a VPL is quasi-counterfree if, and only
if, its syntactic morphism is quasi-aperiodic.

4.1 A pumping lemma for Ext-algebra morphisms

The following is an adaption of the pumping lemma for context-free languages to Ext-algebra
morphisms. It states that if uv ∈ Σ△ and u (resp. v) contains a well-matched factor that is
sufficiently long, we can pump certain infixes of u (resp. v): thus, one can find longer and longer
words u1, u2, . . . (resp. v1, v2, . . .) such that u1v, u2v, . . . ∈ Σ△ (resp. uv1, uv2, . . . ∈ Σ△) and the
morphism ψ sends extu,v to the same element in O as extui,v (resp. as extu,vi).
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Lemma 4.1 (Pumping Lemma). There exists n ∈ N>0 such that for all extu,v ∈ O(Σ△) we have:

• If there exists a factor w ∈ Σ△ of u satisfying |w| ≥ n, then u = sxzyt with s, x, z, y, t ∈ Σ∗

such that |xy| ≥ 1, |xzy| ≤ n and for all i ∈ N, sxizyitv ∈ Σ△ and ψ(extu,v) = ψ(extsxizyit,v).

• If there exists a factor w ∈ Σ△ of v satisfying |w| ≥ n, then v = sxzyt with s, x, z, y, t ∈ Σ∗

such that |xy| ≥ 1, |xzy| ≤ n and for all i ∈ N, usxizyit ∈ Σ△ and ψ(extu,v) = ψ(extu,sxizyit).

Proof. For each r ∈ R, let nr ∈ N>0 be the pumping constant for the context-free language φ−1(r):
it is a VPL and hence a context-free language by Theorem 3.18. We set n = maxr∈R nr. Let
extu,v ∈ O(Σ△) be such that there exists a factor w ∈ Σ△ of u satisfying |w| ≥ n. Let

extu,v = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxh−1,yh−1
◦ extah−1,bh−1

◦ extxh,yh

be the stair factorization of extu,v provided by Lemma 3.6. Since no factor of u spanning one of the
aj ’s in the factorization can be well-matched, there must exist some j ∈ [1, h] satisfying |xj | ≥ n,
so that if we set u′ = x1a1 · · ·xj−1aj−1, v′ = bj−1yj−1 · · · b1y1, u′′ = ajxj+1 · · · ah−1xh and v′′ =
yhbh−1 · · · yj+1bjyj , we have u′v′, u′′v′′ ∈ Σ△ and extu,v = extu′,v′ ◦ extxj ,ε ◦ extu′′,v′′ . By the pump-
ing lemma for context-free languages we have xj = x′xzyy′ with x′, x, z, y, y′ ∈ Σ∗ such that |xy| ≥ 1,
|xzy| ≤ n and for all i ∈ N, x′xizyiy′ ∈ Σ△ and φ(xj) = φ(x′xizyiy′). This implies that if we set
s = u′x′ and t = y′u′′, then for all i ∈ N, we have sxizyitv = extu′,v′ ◦ extx′xizyiy′,ε ◦ extu′′,v′′(ε) ∈ Σ△

and

ψ(extu,v) = ψ(extu′,v′) ◦ leftφ(xj) ◦ ψ(extu′′,v′′)
= ψ(extu′,v′) ◦ leftφ(x′xizyiy′) ◦ ψ(extu′′,v′′)
= ψ(extu′,v′) ◦ ψ(extx′xizyiy′,ε) ◦ ψ(extu′′,v′′)
= ψ(extsxizyit,v) .

We handle the case where for extu,v ∈ O(Σ△) there exists a factor w ∈ Σ△ of v such that
|w| ≥ n symmetrically.

4.2 Weak length-synchronicity and length-synchronicity

In this section we introduce the notions of weak length-synchronicity and length-synchronicity for
Ext-algebra morphisms and visibly pushdown languages. Before we do that, let us give some
motivation how TC0-hardness can be proven if the syntactic morphism maps certain extu,v, extu′,v
with |u| ≠ |u′| to particular idempotents. For these we require the following notion of reachability.

For F ⊆ R we say that an element r ∈ R is F -reachable if e(r) ∈ F for some e ∈ O. We
say e ∈ O is F -reachable if e(r) is F -reachable for some r ∈ R. Although we will mainly study
F -reachable elements over finite Ext-algebras we remark that the notion of F -reachability is defined
over any Ext-algebra, in particular over (Σ△,O(Σ△)). Fix any VPL L, its syntactic Ext-algebra
(RL, OL) along with its syntactic morphism (φL, ψL). Assume some idempotent e ∈ OL that is
φ(L)-reachable.

We claim that if ψL(extu,v) = ψL(extu′,v) = e and ∆(u),∆(u′) > 0 for some extu,v, extu′,v ∈
O(Σ△) with |u| ̸= |u′|, then L is TC0-hard. We remark that we must have ∆(u) = ∆(u′). Ex-
ploiting the fact that |u| ≠ |u′| we give a constant-depth reduction from the TC0-complete language
EQUALITY to L.

Since ψL(extu,v) is φL(L)-reachable, we can fix some x, y, z ∈ Σ∗ such that xuyvz ∈ L. Given
a word w ∈ {0, 1}∗ of length 2n (binary words of odd length can directly be rejected) we map it to
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xh(w)zvn·(|u|+|u′|)y, where h : {0, 1}∗ → Σ∗ is the length-multiplying morphism satisfiying h(0) =
u|u

′| and h(1) = u′|u|: one can prove that w ∈ EQUALITY if, and only if, h(w)vn·(|u|+|u′|) ∈ Σ△ if,
and only if, xh(w)zvn·(|u|+|u′|)y ∈ L.

Dually, one can show that L is TC0-hard in case ψL(extu,v) = ψL(extu,v′) = e and ∆(u) > 0 for
some extu,v, extu,v′ ∈ O(Σ△) with |v| ≠ |v′|.

The following definition of weak length-synchronicity captures the situation when such idempo-
tents do not exist — it adapts the notion of weak length-synchronicity of sets of contexts, given
in Definition 2.3, to morphisms and VPLs, respectively. Recall that R ⊆ Con(Σ) is defined to
be weakly length-synchronous if u = u′ implies |v| = |v′| and v = v′ implies |u| = |u′| for all
(u, v), (u′, v′) ∈ R satisfying ∆(u),∆(u′) > 0.

Definition 4.2. For all e ∈ O define the sets of contexts Re and Ue as follows:

Re = {(u, v) ∈ Con(Σ) | ψ(extu,v) = e} and Ue = {(u, v) ∈ Con(Σ) | e ◦ ψ(extu,v) = e}

Definition 4.3 (Weak Length-Synchronicity). The morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) is
F -weakly-length-synchronous (where F ⊆ R) if for all F -reachable idempotents e ∈ O the set of
contexts Re is weakly length-synchronous. We call a VPL L ⊆ Σ△ weakly length-synchronous if its
syntactic morphism (φL, ψL) is φL(L)-weakly-length-synchronous.

In fact, F -weak-length-synchronicity actually implies weak length-synchronicity of the set of
contexts associated to any subsemigroup of F -reachable elements.

Lemma 4.4. For all F ⊆ R and subsemigroup P of O, if all elements in P are F -reachable and
(φ,ψ) is F -weakly-length-synchronous, then

⋃
e∈P Re is weakly length-synchronous.

Proof. Let F ⊆ R and P be a subsemigroup of O. Assume all elements in P are F -reachable and
(φ,ψ) is F -weakly-length-synchronous.

Let (u, v), (u′, v) ∈ Con(Σ) be such that ∆(u),∆(u′) > 0 and ψ(extu,v), ψ(extu′,v) ∈ P . Set
e = ψ(extu,v) and f = ψ(extu′,v). By hypothesis, given ω ∈ N>0 the idempotent power of O,
we have (eωfω)ω ∈ P , hence (eωfω)ω is an F -reachable idempotent and thus R(eωfω)ω is weakly
length-synchronous. But

ψ(ext
(u2·ωu′ω)ω ,v3·ω2 ) = (eωfω)ω = ψ(ext

(uωu′2·ω)ω ,v3·ω2 )

so since ∆((u2·ωu′ω)ω) = ∆((uωu′2·ω)ω) > 0, we obtain

ω · (2 · ω · |u|+ ω · |u′|) = ω · (ω · |u|+ 2 · ω · |u′|)

⇐⇒ 2 · |u|+ |u′| = |u|+ 2 · |u′|

⇐⇒ |u| = |u′| .

In the same way, one can prove that for all (u, v), (u, v′) ∈ Con(Σ) such that ∆(u) > 0 and
ψ(extu,v), ψ(extu,v′) ∈ P , we have |v| = |v′|.

Therefore,
⋃
e∈P Re is weakly length-synchronous.

Instead of considering those pairs (u, v) such that extu,v is being mapped to an F -reachable
idempotent, the following characterization of weak length-synchronicity consider pairs (u, v) such
that extu,v is being mapped to an element that behaves neutrally with respect to right multiplication
with an F -reachable element that is not necessarily idempotent.

23



Proposition 4.5. For all F ⊆ R we have that (φ,ψ) is F -weakly-length-synchronous if, and only
if, for all F -reachable e ∈ O the set of contexts Ue is weakly length-synchrononous.

Proof. Let F ⊆ R.
If Ue = {(u, v) ∈ Con(Σ) | e ◦ ψ(extu,v) = e} is weakly length-synchronous for all F -reachable

e ∈ O, then in particular the set of contexts Re = {(u, v) ∈ Con(Σ) | ψ(extu,v) = e} is weakly
length-synchronous for all F -reachable idempotents e ∈ O.

Conversely, assume that (φ,ψ) is F -weakly-length-synchronous. Fix any F -reachable e ∈ O.
We need to prove that Ue is weakly length-synchronous. It is clear that P = {f ∈ O | e ◦ f = e}
forms a subsemigroup of O whose elements are all F -reachable, by F -reachability of e. Therefore,
by Lemma 4.4,

⋃
f∈P Rf = Ue is weakly length-synchronous.

Using Lemma 4.1 and Proposition 4.5, the following proposition follows immediately.

Proposition 4.6. Let n be the pumping constant from Lemma 4.1, let F ⊆ R, let e ∈ O be
F -reachable, and let extu,v be such that ∆(u) > 0 and e ◦ ψ(extu,v) = e. If (φ,ψ) is F -weakly-
length-synchronous, then the stair factorization

extu,v = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxh−1,yh−1
◦ extah−1,bh−1

◦ extxh,yh

satisfies |xi|, |yi| ≤ n for all i ∈ [1, h],

As above, the following definition adapts the notion of length-synchronicity of sets of contexts,
given in Definition 2.3, to Ext-algebra morphisms and VPLs, respectively.

Definition 4.7 (Length-Synchronicity). The morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) is F -length-
synchronous (where F ⊆ R) if for all F -reachable idempotents e ∈ O the set of contexts Re is
length-synchronous. We call a VPL L ⊆ Σ△ length-synchronous if its syntactic morphism (φL, ψL)
is φL(L)-length-synchronous.

Example 4.8. Consider our running example L1,2 = L(S → aSb1 | acSb2 | ε). Recall that
the monoid OL1,2 of the syntactic Ext-algebra (RL1,2 , OL1,2) and syntactic morphism (φL1,2 , ψL1,2)
of L1,2, given in Example 3.10, has the idempotents (ε, ε), (acb1, ε) and (a, b1). Also recall that
φL1,2(L1,2) = {ε, ab1}. Since ψ−1

L1,2
((ε, ε)) = {extε,ε} and (acb1, ε) is a zero we have that OL1,2 ’s only

idempotent that is {ε, ab1}-reachable and whose pre-image under ψL1,2 contains at least one extu,v
with ∆(u) > 0 is the idempotent (a, b1). However, both exta,b1 and extac,b2 , where ∆(a) = ∆(ac) =
1 > 0, are sent to the idempotent (a, b1) = (a, b2) ◦ (c, ε). Since |a|/|b1| = 1 ̸= 2 = |ac|/|b2|, we
have that L1,2 is not length-synchronous. On the other hand, note that if any extu,v and extu′,v
(resp. extu,v and extu,v′) are sent to (a, b1) then u = u′ and thus |u| = |u′| (resp. v = v′ and thus
|v| = |v′|). Hence, L1,2 is weakly length-synchronous.

As above, F -length-synchronicity actually implies length-synchronicity of the set of contexts
associated to any subsemigroup of F -reachable elements.

Lemma 4.9. For all F ⊆ R and subsemigroup P of O, if all elements in P are F -reachable and
(φ,ψ) is F -length-synchronous, then

⋃
e∈P Re is length-synchronous.

Proof. Let F ⊆ R and P be a subsemigroup of O. Assume all elements in P are F -reachable and
(φ,ψ) is F -length-synchronous.

Let (u, v), (u′, v′) ∈ Con(Σ) be such that ∆(u),∆(u′) > 0 and ψ(extu,v), ψ(extu′,v′) ∈ P . Set
e = ψ(extu,v) and f = ψ(extu′,v′). By hypothesis, given ω ∈ N>0 the idempotent power of O,
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we have (eωfω)ω ∈ P , hence (eωfω)ω is an F -reachable idempotent and thus R(eωfω)ω is length-
synchronous. But

ψ(ext(u2·ωu′ω)ω ,(v′ωv2·ω)ω) = (eωfω)ω = ψ(ext(uωu′2·ω)ω ,(v′2·ωvω)ω)

so since ∆((u2·ωu′ω)ω),∆((uωu′2·ω)ω) > 0, setting (x, y) = ((u2·ωu′ω)ω, (v′ωv2·ω)ω) and (x′, y′) =
((uωu′2·ω)ω, (v′2·ωvω)ω), we obtain (using that for a, b, c, d > 0 we have that a

b = c
d implies a

b = c
d =

a+c
b+d and, if additionally a > c, it implies a

b = c
d = a−c

b−d )

|x|
|y|

=
|x′|
|y′|

=⇒ |x|
|y|

=
|x′|
|y′|

=
|x|+ |x′|
|y|+ |y′|

=
ω2 · (|u|+ |u′|)
ω2 · (|v|+ |v′|)

=⇒ |x| − ω2 · (|u|+ |u′|)
|y| − ω2 · (|v|+ |v′|)

=
|x′| − ω2 · (|u|+ |u′|)
|y′| − ω2 · (|v|+ |v′|)

(1)

=⇒ |u|
|v|

=
ω2 · |u|
ω2 · |v|

(1)
=
ω2 · |u′|
ω2 · |v′|

=
|u′|
|v′|

.

Therefore,
⋃
e∈P Re is length-synchronous.

The two following propositions characterize length-synchronicity of Ext-algebra morphisms,
which will be of particular importance when approximating the matching relation of a length-
synchronous VPL in terms of FO[+]. This will be an important ingredient to proving that VPLs
that both are length-synchronous and have a quasi-aperiodic syntactic morphism (a notion to be
defined in Subsection 4.4) are in FO[+] and thus in AC0.

Proposition 4.10. For all F ⊆ R, we have that (φ,ψ) is F -length-synchronous if, and only if, for
all F -reachable e ∈ O the set of contexts Ue is length-synchronous.

Proof. Let F ⊆ R.
If Ue = {(u, v) ∈ Con(Σ) | e ◦ ψ(extu,v) = e} is length-synchronous for all F -reachable e ∈ O,

then in particular the set of contexts Re = {(u, v) ∈ Con(Σ) | ψ(extu,v) = e} is length-synchronous
for all F -reachable idempotents e ∈ O.

Conversely, assume that (φ,ψ) is F -length-synchronous. Fix any F -reachable e ∈ O. We
need to prove that Ue is length-synchronous. It is clear that P = {f ∈ O | e ◦ f = e} forms
a subsemigroup of O whose elements are all F -reachable, by F -reachability of e. Therefore, by
Lemma 4.9,

⋃
f∈P Rf = Ue is length-synchronous.

Proposition 4.11. Let F ⊆ R and assume (φ,ψ) is F -weakly-length-synchronous. Then for all
F -reachable e ∈ O the following two statements are equivalent.

1. The set of contexts Ue is length-synchronous.

2. There exist α ∈ Q>0, β ∈ N, γ ∈ N>0 such that for all (u, v) ∈ Ue with ∆(u) > 0 we have:

(a) |u|
|v| = α.

(b) For all u′, v′ ∈ Σ+ with u′ prefix of u and v′ suffix of v such that |u′|
|v′| = α, we have that

−∆(v′)− β ≤ ∆(u′) ≤ −∆(v′) + β.

(c) For all factors u′ ∈ Σ∗ of u such that |u′| = γ, we have ∆(u′) ≥ 1.

(d) For all factors v′ ∈ Σ∗ of v such that |v′| = γ, we have ∆(v′) ≤ −1.
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Proof. The implication from Point 2 to Point 1 is trivial since Point 2 (a) implies Point 1.
Let us now prove that Point 1 implies Point 2. Fix any e ∈ O that is F -reachable and assume

that Ue is length-synchronous. Point 2 (a) follows immediately from length-synchronicity of Ue. We
can hence write α = A

B for some A,B ∈ N>0.
For proving Point 2 (b), we define β = (n+ 1) · (|O|+max(A,B) + 1), where n is the constant

taken from Lemma 4.1. Let (u, v) ∈ Ue with ∆(u) > 0 and let

extu,v = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxh−1,yh−1
◦ extah−1,bh−1

◦ extxh,yh

be the stair factorization of extu,v according to Lemma 3.6. Since our morphism (φ,ψ) is F -weakly-
length-synchronous by assumption, we have |xi|, |yi| ≤ n by Lemma 4.6. Let u′ ∈ Σ∗ be a prefix of u
and v′ be a suffix of v such that |u′|

|v′| = α. If (u′, v′) = (u, v) we are done since then ∆(u′) = −∆(v′).
Thus, it remains to consider the case when u′ is a strict prefix of u and v′ is a strict suffix of v:
indeed, due to |u|

|v| =
|u′|
|v′| = α we have that u′ is a strict prefix of u if, and only if, v′ is a strict suffix

of v.
Let j ∈ [1, h] be maximal such that x1 · · · aj−1xj is a prefix of u′ and yjbj−1 · · · y1 is a suffix of

v′. If j = 1 we are done, since then min{|u′|, |v′|} ≤ n, so that |∆(u′)+∆(v′)| ≤ |u′|+ |v′| ≤ n+n ·
max(A,B) ≤ β. So assume now that j > 1, which implies that ∆(u′′) > 0. Note that j < h since
(u′, v′) ̸= (u, v). Hence there exist unique words s, t ∈ Σ∗ such that u′ = u′′s and v′ = tv′′, where
u′′ = x1 · · · aj−1xj and v′′ = yjbj−1 · · · y1. By maximality of j we have min{|s|, |t|} ≤ n. Setting
f = ψ(extu′′,v′′) and g = ψ(extajxj+1···ah−1xh,yhbh−1···yj+1bj ) we have ψ(extu,v) = f ◦ g. We claim that
there exist extxg ,yg ∈ O(Σ△) such that ψ(extxg ,yg) = g and |xg|, |yg| ≤ |O| · (n+ 1): indeed, by the
pigeonhole principle and Lemma 4.6 (as e◦f ◦g = e and ∆(u′′) > 0), any extx,y ∈ O(Σ△) such that
ψ(extx,y) = g and max(|x|, |y|) > |O|·(n+1) must have a stair factorization according to Lemma 3.6
with an h > |O| and can thus be factorized as extx,y = extx′,y′ ◦ extx′′,y′′ ◦ extx′′′,y′′′ such that
ψ(extx,y) = ψ(extx′,y′) ◦ψ(extx′′′,y′′′), where moreover (x′′, y′′) ∈ Σ+ ×Σ+. Thus, ψ(extu′′xg ,ygv′′) =
ψ(extu,v) and therefore (u′′xg, ygv

′′) ∈ Ue with ∆(u′′xg) > 0. It follows α =
|u′′xg |
|ygv′′| =

|u′|−|s|+|xg |
|yg |+|v′|−|t| , or

equivalently, using |u′|
|v′| = α:

|s| = |u′|+ |xg|+ α(|t| − |yg| − |v′|) = |xg|+ α(|t| − |yg|) (2)

|t| =
|s| − |u′| − |xg|

α
+ |yg|+ |v′| = |s| − |xg|

α
+ |yg| . (3)

Finally, we obtain

|∆(u′) + ∆(v′)| = |∆(u′′s) + ∆(tv′′)|
∆(u′′)=−∆(v′′)

= |∆(s) + ∆(t)|
≤ |s|+ |t|
= min(|s|, |t|) + max(|s|, |t|)
≤ n+max(|s|, |t|)

(2),(3)

≤ n+max

(
|xg|+ α(n− |yg|),

n− |xg|
α

+ |yg|
)

≤ n+ |O| · (n+ 1) + n ·max(A,B)

≤ (n+ 1) · (|O|+max(A,B) + 1)

= β .
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This proves Point 2 (b).
For Point 2 (c) and Point 2 (d) we set γ = (⌈n2 ⌉+ 1) · (n+ 1) + n and remark that γ does not

depend on u nor v. We only prove Point 2 (c), the proof of Point 2 (d) is analogous. As above, let

extu,v = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxh−1,yh−1
◦ extah−1,bh−1

◦ extxh,yh

be the stair factorization of extu,v according to Lemma 3.6. Let u′ with |u′| ≥ γ be a factor
of u and hence of x1a1x2 · · ·xh−1ah−1xh. By definition of stair factorization we have ∆(xi) = 0
for all i ∈ [1, h] and ∆(ai) = 1 for all i ∈ [1, h − 1]. Let w be the longest prefix of u′ such
that ∆(w) = min{∆(x) | x is a prefix of u′}. Since |x1|, |y1|, . . . , |xh|, |yh| ≤ n, it immediately
follows ∆(w) ≥ −n

2 and |w| ≤ n. By the same reason, every prefix of the form ws of u′ satisfies
∆(ws) ≥ ∆(w) + |s|

n+1 . Thus we have

∆(u′) ≥ ∆(w) +
|u′| − |w|
n+ 1

≥ −n
2
+

((⌈n2 ⌉+ 1) · (n+ 1) + n)− n

n+ 1
≥ 1 .

The following proposition relates, for languages L generated by vertically visibly pushdown
grammars G, (weak) length-synchronicity of L with (weak) length-synchronicity of R(G).

Proposition 4.12. Let L = L(G) for some vertically visibly pushdown grammar G = (V,Σ, P, S).
Moreover, let R(G) = {(u, v) ∈ Con(Σ) | S ⇒∗

G uSv}. Then the following equivalences hold:

1. L(G) is length-synchronous if, and only if, R(G) is length-synchronous.

2. L(G) is weakly length-synchronous if, and only if, R(G) is weakly length-synchronous.

Proof. Let L = L(G) for a vertically visibly pushdown grammar G = (V,Σ, P, S). Moreover, let
(φL, ψL) : (O(Σ),Σ△) → (RL, OL) be the syntactic morphism. For all e ∈ OL recall the set of
contexts Re = {(u, v) ∈ Con(Σ) | ψL(extu,v) = e}.

Let F = {e ∈ OL | ∃ extu,v ∈ ψ−1
L (e) : (u, v) ∈ R(G)}. Observe that F is a submonoid of OL

all of whose elements are φL(L)-reachable since G is vertically visibly pushdown. Also observe that
R(G) =

⋃
f∈F Rf . We claim that since G is vertically visibly pushdown, there exists a constant

C > 0 such that 1
C ≤ |x|

|y| ≤ C for all (x, y) ∈ R(G) \ {(ε, ε)}: indeed, one can take C = A
B where

A = max
{
max{|u|, |v|}

∣∣ T →G uT ′v
}

and B = min
{
min{|u|, |v|}

∣∣ T →G uT ′v
}

since whenever
T ⇒∗

G xT
′y thanks to a derivation comprising k ∈ N>0 steps, we have

1

C
=
k ·B
k ·A

≤ |x|
|y|

≤ k ·A
k ·B

= C .

Next, we prove that for all φL(L)-reachable idempotents e ∈ OL there exist g, h ∈ OL such
that g ◦ e ◦ h ∈ F . Fix any such φL(L)-reachable idempotent e ∈ OL. Without loss of generality
let us assume that e is not the identity in OL (indeed, if e is the identity in OL, then we are
done since we can then choose g = h = e ∈ F ). Thus there exist g ∈ OL and r ∈ RL such that
(g ◦ e)(r) ∈ φL(L). Moreover, let extu′,v′ ∈ ψ−1

L (g), extu,v ∈ ψ−1
L (e), and w ∈ φ−1

L (r). Observe that
we must have (u, v) ̸= (ε, ε) since ψL(extε,ε) is the identity in OL. Since e is an idempotent we have
that u′unwvnv′ ∈ L for all n ≥ 1. Fix a sufficiently large N ≥ 1 such that |u′|+|u|

(N−1)|u|+|w|+N |v|+|v′| ≤
1
C

and |u′|+N |u|+|w|+(N−1)|v|
|v|+|v′| ≥ C, which exists due to (u, v) ̸= (ε, ε). Since u′uNwvNv′ ∈ L there

exists (x, y) ∈ R(G) \ {(ε, ε)} such that xy = u′uNwvNv′, S ⇒∗
G xSy, |x| ≥ |u′u|, and |y| ≥ |vv′|.

Let (x′, y′) ∈ Σ∗ × Σ∗ be such that (x, y) = (u′ux′, y′vv′). As (u′, v′), (u, v), (x, y) ∈ Con(Σ),
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x′ ∈ (Σ \ Σret)
∗, and y′ ∈ (Σ \ Σcall)

∗, we can conclude (x′, y′) ∈ Con(Σ). That is, (x, y) =
(u′, v′) ◦ (u, v) ◦ (x′, y′) ∈ R(G). Hence,

g ◦ e ◦ ψL(extx′,y′) = ψL(extu′ux′,y′vv′) = ψL(extx,y) ∈ F.

We are now ready to prove Point 1. For the first direction, let us assume that L(G) is length-
synchronous. Recalling that F is a submonoid of OL all of whose elements are φL(L)-reachable, we
obtain that R(G) =

⋃
f∈F Rf is length-synchronous by Lemma 4.9.

Conversely, let us assume that R(G) is length-synchronous. Assume by contradiction that
L(G) is not length-synchronous. Hence Re is not length-synchronous for some φL(L)-reachable
idempotent e ∈ OL, i.e. ψL(extu,v) = ψL(extu′,v′) = e for some extu,v, extu′,v′ ∈ O(Σ△) such that
∆(u),∆(u′) > 0 and |u|

|v| ̸=
|u′|
|v′| . Without loss of generality we may assume that |v| = |v′| (indeed,

if |v| ̸= |v′|, then extu|v′|,v|v′| , ext(u′)|v|,(v′)|v| satisfies the desired property). As a consequence we
have |u| ̸= |u′|, say |u| < |u′| without loss of generality. Since e is a φL(L)-reachable idempotent,
as argued above, there exist g, h ∈ OL such that g ◦ e ◦ h = f ′ for some f ′ ∈ F . Let us fix
extxh,yh ∈ ψ−1

L (h) and extxg ,yg ∈ ψ−1
L (g). We have ψL(extxguxh,yhvyg) = f ′ = ψL(extxgu′xh,yhv′yg).

Since |xguxh| < |xgu′xh| and |yhvyg| = |yhv′yg| it follows that Rf ′ is not length-synchronous,
contradicting our assumption that R(G) =

⋃
f∈F Rf is length-synchronous.

Let us next prove Point 2.
Let us first assume that L(G) is weakly length-synchronous. Again, since F is a submonoid of

OL all of whose elements are φL(L)-reachable, we obtain that R(G) =
⋃
f∈F Rf is weakly length-

synchronous by Lemma 4.4.
Conversely, assume R(G) is weakly length-synchronous. Assume by contradiction that Re is

not weakly length-synchronous for some φL(L)-reachable idempotent e ∈ OL. Thus, ψL(extu,v) =
ψL(extu′,v′) = e for some extu,v, extu′,v′ ∈ O(Σ△) such that ∆(u),∆(u′) > 0 and moreover either
u = u′ and |v| ≠ |v′| or v = v′ and |u| ≠ |u′|. Without loss of generality let us assume that u = u′

and |v| ̸= |v′|. As mentioned above, there exist g, h ∈ OL such that g ◦ e ◦ h = f ′ for some f ′ ∈ F .
Fix some extxg ,yg ∈ ψ−1

L (g) and some extxh,yh ∈ ψ−1
L (h). Analogously, as argued above, we have

ψL(extxguxh,yhvyg) = ψL(extxguxh,yhv′yg) = f ′, ∆(xguxh) > 0, and |yhvyg| ̸= |yhv′yg|, implying that
Rf ′ is not weakly length-synchronous, a contradiction to our assumption that R(G) =

⋃
f∈F Rf is

weakly length-synchronous.

4.3 The nesting depth of visibly pushdown languages

Another central notion is the nesting depth of well-matched words, which is the Horton-Strahler
number [15] of the underlying trees.

Definition 4.13. The nesting depth of well-matched words is given by the function nd: Σ△ → N
defined inductively as follows:

• nd(ε) = 0;

• nd(c) = 0 for all c ∈ Σint;

• nd(uv) = max{nd(u), nd(v)} for all u ∈ ΣcallΣ
△Σret ∪ Σint and v ∈ Σ△ \ {ε};

• nd(awb) =

{
nd(w) + 1 if w = uv with u, v ∈ Σ△ and nd(w) = nd(u) = nd(v)

nd(w) otherwise
for all a ∈

Σcall, b ∈ Σret and w ∈ Σ△.
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An important property of weakly length-synchronous VPLs is that their words have bounded
nesting depth.

Proposition 4.14. For each weakly length-synchronous VPL L ⊆ Σ△ there exists a constant d ∈ N
such that L ⊆ {w ∈ Σ△ | nd(w) ≤ d}.

Proposition 4.14 is proved in several steps. For these we introduce a factorization that can be
seen as one that witnesses the nesting depth of a word.

Definition 4.15. A nesting-maximal stair factorization of w ∈ Σ△ with nd(w) ≥ 1 is a factorization
of w as

w = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxk,yk ◦ extak,bk(w
′)

such that k ≥ 0, xi, yi ∈ Σ△, ai ∈ Σcall, and bi ∈ Σret for all i ∈ [1, l], and w′ ∈ Σ∗
int satisfying that

for all i ∈ [1, k] we have
nd(extxi,yi(wi)) = nd(wi),

where wi = extai,bi ◦ extxi+1,yi+1 ◦ · · · ◦ extak,bk(w′).

Lemma 4.16. All words w ∈ Σ△ have a nesting-maximal stair factorization.

Proof. The proof goes by structural induction on w.

• w = ε. Then we are done because w contains only internal letters.

• w = c for a c ∈ Σint. Then we are again done because w contains only internal letters.

• w = aw′b for a ∈ Σcall, b ∈ Σret and w′ ∈ Σ△. By using the inductive hypothesis, w′ has a
nesting-maximal stair factorization extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxk,yk ◦ extak,bk(w′′). It directly
follows that exta,b ◦ extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxk,yk ◦ extak,bk(w′′) is a nesting-maximal stair
factorization of w.

• w = uv for u, v ∈ Σ△ \ {ε}. Then w can be decomposed as z1 · · · zm with z1, . . . , zm ∈
ΣcallΣ

△Σret ∪ Σint and m ∈ N,m ≥ 2. In this case, either zi ∈ Σint for all i ∈ [1,m] and
thus we are done because w contains only internal letters, or there exists some i ∈ [1,m]
such that zi ∈ ΣcallΣ

△Σret and has maximal nesting depth, i.e. nd(w) = nd(zi). In this
second subcase, we have that zi = az′ib with a ∈ Σcall, b ∈ Σret and z′i ∈ Σ△. By using
the inductive hypothesis, z′i has a nesting-maximal stair factorization extx1,y1 ◦ exta1,b1 ◦ · · · ◦
extxk,yk ◦ extak,bk(w′′). Therefore,

extz1···zi−1,zi+1···zk ◦ exta,b ◦ extx1,y1 ◦ exta1,b1 ◦ . . . extxk,yk ◦ extak,bk(w
′′)

is a nesting-maximal stair factorization of w.

The following lemma will be a useful tool for proofs by induction on the nesting depth of well-
matched words.

Lemma 4.17. Let u = a1vb1 ∈ Σ△ for some a1 ∈ Σcall, b1 ∈ Σret, and v ∈ Σ△ such that
nd(u) = d > 0. Moreover, let u = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxk,yk ◦ extak,bk(u′) be a nesting-
maximal stair factorization of u (i.e. x1 = y1 = ε). Then there exists h ∈ [1, k] such that, setting
ui = extai,bi ◦ extxi+1,yi+1 ◦ · · · ◦ extak,bk(u

′) for all i ∈ [1, k] and uk+1 = u′, we have

1. nd(u) = nd(uh) = d,

2. nd(uh+1) = d− 1, and

3. nd(x1), nd(y1), . . . ,nd(xh),nd(yh) < d.
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Proof. Let uj = extaj ,bj ◦ extxj+1,yj+1 ◦ · · · ◦ extak,bk(u
′) for all j ∈ [1, k]. Note that we have

nd(u) = nd(u1) = d > 0 by assumption. Moreover, nd(uj) ≥ nd(uj+1) for all j ∈ [1, k − 1] by
definition of nesting depth. Thus, since nd(uk) = 1 > 0 = nd(uk+1), it follows that

h = min{j ∈ [1, k] | nd(uj) > nd(uj+1)}

is well-defined and nd(u) = nd(u1) = nd(uh) = d, thus showing Point 1. Since

d = nd(uh) ≤ nd(uh+1) + 1

and nd(uh+1) < nd(uh) = d it follows nd(uh+1) = d − 1, thus showing Point 2. To prove Point
3, assume by contradiction that nd(xj) ≥ d or nd(yj) ≥ d for some j ∈ [1, h]. Without loss of
generality assume nd(xj) ≥ d. Since x1 = y1 = ε and d > 0 we must have j ∈ [2, h]. It follows

nd(u) ≥ nd(uj−1) = nd(aj−1xjujyjbj−1) ≥ min(nd(xj),nd(uj)) + 1 ≥ d+ 1 > d = nd(u) ,

which is a contradiction.

We are now ready to prove Proposition 4.14.

Proof of Proposition 4.14. Let L ⊆ Σ△ be a weakly length-synchronous VPL. We claim that nd(L) ≤
n+ 1, where n is the pumping constant from Lemma 4.1. Assume by contradiction that nd(u) = d
for some u ∈ L and some d > n + 1. Let u = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxk,yk ◦ extak,bk(u′) be a
nesting-maximal stair factorization of u according to Lemma 4.16. According to Lemma 4.17 there
exists i ∈ [1, k] such that, setting uj = extaj ,bj ◦ extxj+1,yj+1 ◦ · · · ◦ extak,bk(u′) for all j ∈ [1, k] and
uk+1 = u′, we have nd(u) = nd(ui) = d and nd(ui+1) = d − 1. Since d − 1 > n > 0, we must
have i + 1 ≤ k, so that ui = aixi+1ui+1yi+1bi with ui+1 ∈ ΣcallΣ

△Σret and nd(xi+1ui+1yi+1) =
nd(ui+1) = d− 1. Hence it follows that nd(xi+1) = d− 1 or nd(yi+1) = d− 1. Without loss of gen-
erality let us assume nd(yi+1) = d− 1 > n. A simple induction shows that |x| ≥ 2nd(x) − 1 ≥ nd(x)
for all x ∈ Σ△. Thus, we have |yi+1| ≥ nd(yi+1) > n, contradicting Proposition 4.6.

4.4 Quasi-aperiodicity and its correspondence with quasi-counterfreeness

Let us revisit the notion of quasi-aperiodicity. It has already been defined for visibly pushdown
languages in [24]. Let us define O(Σ△)k,l = {extu,v ∈ O(Σ△) : |u| = k, |v| = l} for all k, l ∈ N. We
say the morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) is quasi-aperiodic if all semigroups contained in
the set ψ(O(Σ△)k,l) are aperiodic for all k, l ∈ N.

The following proposition relates quasi-counterfreeness of a VPL with quasi-aperiodicity of its
syntactic morphism.

Proposition 4.18. A VPL L ⊆ Σ△ is quasi-counterfree if, and only if, its syntactic morphism is
quasi-aperiodic.

Proof. Recall that (RL, OL) = (Σ△,O(Σ△))/∼L by Definition 3.13. Hence for all (u, v), (u′, v′) ∈
Con(Σ) we have (u, v) ≡L (u′, v′) if, and only if, ψL(extu,v) = ψL(extu′,v′).

First, let us assume that (φL, ψL) : (Σ
△,O(Σ△)) → (RL, OL) is quasi-aperiodic. Assume by

contradiction that L is not quasi-counterfree. Thus, there exists some σ = (u, v) ∈ Con(Σ) such
that σn ̸≡L σ

n+1 for all n ∈ N and τ ≡L σ ◦σ for some τ = (x, y) ∈ Con(Σ)∩Σ|u|×Σ|v|. The latter
can equivalently be rephrased as ψL(extx,y) = ψL(extu2,v2). By choice of σ and the fact that ≡L has
finite index there exist s ≥ 1 and t ≥ 2 such that σs+i ≡L σ

s+i+t for all i ≥ 0 and σs+i ̸≡L σ
s+j for all

i, j ∈ [0, t−1] with i ̸= j. It follows that the set G = ψL({extus+i,vs+i | i ∈ [0, t−1]}) is a non-trivial
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group with identity g0 = ψL(extus+k,vs+k) ∈ ψL(O(Σ△)(s+k)|u|,(s+k)|v|), where k is the unique integer
in [0, t−1] such that s+k is divisible by t. Also observe that G is a cyclic group that is generated by
g1 = ψL(extus+k+1,vs+k+1). That is G = {g0, g1, . . . , gt−1}, where gi = gi1 for all i ∈ [2, t−1]. But note
that due to ψL(extx,y) = ψL(extu2,v2) we obtain g1 = ψL(extus+k+1,vs+k+1) = ψL(extxus+k−1,vs+k−1y)

and thus g0, g1 ∈ ψL(O(Σ△)(s+k)|u|,(s+k)|v|) due to |x| = |u| and |y| = |v|. Since gi = gt−1−i
0 gi1 for all

i ∈ [0, t−1] we obtain that G = {g0, g1, . . . , gt−1} is contained in ψL(O(Σ△)(t−1)(s+k)|u|,(t−1)(s+k)|v|),
hereby contradicting quasi-aperiodicity of (φL, ψL).

For the converse direction, let us assume that L is quasi-counterfree. Assume by contradiction
that (φL, ψL) is not quasi-aperiodic. That is, for some k, l ∈ N the set ψL(O(Σ△)k,l) contains a
non-trivial group G. Let g0 ∈ G be the identity of G. Fix some g ∈ G with g ̸= g0 and some
extu,v ∈ O(Σ△)k,l such that ψL(extu,v) = g. Let σ = (u, v) ∈ Con(Σ) ∩ Σk × Σl. Since g is not the
identity in G we have that ψL(extun,un) ̸= ψL(extun+1,vn+1) for all n ∈ N, equivalently σn ̸≡L σ

n+1

for all n ∈ N. But since moreover ψL(extun,vn) is in G and thus in ψL(O(Σ△)k,l) for all n ∈ N it
follows that σ ◦ σ ≡L τ for some τ ∈ Con(Σ) ∩ Σk × Σl. We thus obtain a contradiction to our
assumption that L is quasi-counterfree.

5 Proof of the main theorem

Before giving an overview of the proof of Theorem 2.9 we will state a proposition saying that
the syntactic Ext-algebra and the syntactic morphism of a given visibly pushdown language L is
computable and that it is decidable if L is quasi-aperiodic, length-synchronous, and weakly length-
synchronous, respectively. Its proof is subject of Section 6.

Proposition 5.1. The following computability and decidability results hold:

1. Given a DVPA A, one can effectively compute the syntactic Ext-algebra of L = L(A), its
syntactic morphism (φL, ψL) and φL(L).

2. Given a morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) for a visibly pushdown alphabet Σ and a
finite Ext-algebra (R,O), all of the following are decidable for (φ,ψ):

(a) Quasi-aperiodicity. In case (φ,ψ) is not quasi-aperiodic, one can effectively compute
k, l ∈ N such that ψ(O(Σ△)k,l) is not aperiodic.

(b) F -length-synchronicity for a given F ⊆ R. In case (φ,ψ) is not F -length-synchronous,
one can effectively compute a quadruple (k, l, k′, l′) ∈ N4

>0 such that there exist uv, u′v′ ∈
Σ△ and some F -reachable idempotent e ∈ O such that ψ(extu,v) = ψ(extu′,v′) = e,
∆(u) > 0, ∆(u′) > 0, k = |u|, l = |v|, k′ = |u′|, l′ = |v′|, and k

l ̸=
k′

l′ .

(c) F -weakly-length-synchronicity for a given F ⊆ R.

5.1 Proof outline for Theorem 2.9

Towards proving our main result (Theorem 2.9), given a DVPA A, where L = L(A) is a VPL over
a visibly pushdown alphabet Σ, we apply Proposition 5.1 and compute its syntactic Ext-algebra
(RL, OL) along with its syntactic morphism (φL, ψL) and the subset φL(L). Then we make the
following effective case distinction which immediately implies Theorem 2.9.

1. If L is not weakly length-synchronous, then L is TC0-hard and hence not in AC0 (Proposi-
tion 5.4 in Section 5.2). Thus, we can output any m > 1 since MODm ≤cd EQUALITY ≤cd L
for any m > 1.
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2. If L is not quasi-aperiodic, then one can effectively compute some m ≥ 2 such that MODm ≤cd
L (Proposition 5.5 in Section 5.2).

3. If L is length-synchronous and (φL, ψL) is quasi-aperiodic, then L ∈ AC0 (Theorem 5.7 in
Section 5.3).

4. If L is weakly length-synchronous but not length-synchronous, and its syntactic morphism
(φL, ψL) is quasi-aperiodic, one can effectively compute vertically visibly pushdown gram-
mars G1, . . . , Gm generating intermediate VPLs such that L =cd

⊎m
i=1 L(Gi) (Theorem 5.17

in Section 5.4). Moreover, already if a VPL L is weakly length-synchronous but not length-
synchronous, one can effectively compute k, l ∈ N>0 with k ̸= l such that Lk,l ≤cd L (Propo-
sition 5.24 in Section 5.4).

We refer to Section 5.5 for the proof of Corollary 2.11.

5.2 Lower bounds

The following visibly pushdown languages are helpful for proving lower bounds.

Definition 5.2. Let L ⊆ Σ△ be a VPL. For each e ∈ OL and for # ̸∈ Σ a fresh internal letter we
define

Le = {u#v | (u, v) ∈ Con(Σ) : ψL(extu,v) = e}

and

Le↑ = {u#v | (u, v) ∈ Con(Σ) : ∆(u) > 0, ψ(extu,v) = e} = Le∩{u#v | (u, v) ∈ Con(Σ) : ∆(u) > 0}.

The next lemma shows that both φ−1
L (r) and Le are constant-depth reducible to L in case r ∈ RL

and e ∈ OL are φL(L)-reachable, respectively.

Lemma 5.3. Let L ⊆ Σ△ be a VPL. Then

• φ−1
L (r) ≤cd L for all φL(L)-reachable r ∈ RL, and

• Le ≤cd L for all φL(L)-reachable e ∈ OL.

Proof. To show the first point, let us fix some φL(L)-reachable r ∈ RL. Thus, there exist wr ∈ Σ△

and (ur, vr) ∈ Con(Σ) such that φL(wr) = r and φL(urwrvr) ∈ φL(L). By definition of the syntactic
morphism of L (Definition 3.13) for all r1, r2 ∈ RL with r1 ̸= r2 there exists some er1,r2 ∈ OL such
that er1,r2(r1) ∈ φL(L) ⇔ er1,r2(r2) ̸∈ φL(L). For each such er1,r2 ∈ OL fix (ur1,r2 , vr1,r2) ∈ Con(Σ)
with ψL(extur1,r2 ,vr1,r2 ) = er1,r2 .

Hence, for all w ∈ Σ∗ we have

w ∈ φ−1
L (r) ⇐⇒ urwvr ∈ L ∧

∧
r′∈RL
r ̸=r′

ur,r′wvr,r′ ∈ L↔ ur,r′wrvr,r′ ∈ L ,

thus showing φ−1
L (r) ≤cd L.

For the second point, let us fix some φL(L)-reachable e ∈ OL. Fix some (ue, ve) ∈ Con(Σ)
such that ψL(extue,ve) = e. Thus, again, there exist we ∈ Σ△ and (u′e, v

′
e) ∈ Con(Σ) such that

φL(u
′
euewevev

′
e) ∈ φL(L). Again by definition of the syntactic morphism of L (Definition 3.13),

for all e1, e2 ∈ OL with e1 ̸= e2 there exist some fe1,e2 ∈ OL and some re1,e2 ∈ RL such that
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fe1,e2(e1(re1,e2)) ∈ φL(L) ⇔ fe1,e2(e2(re1,e2)) ̸∈ φL(L). For each such fe1,e2 and re1,e2 fix, re-
spectively, (ue1,e2 , ve1,e2) ∈ Con(Σ) and we1,e2 ∈ Σ△ such that ψL(extue1,e2 ,ve1,e2 ) = fe1,e2 and
φL(we1,e2) = re1,e2 , respectively. Hence, for all u#v ∈ Σ∗#Σ∗ we have

u#v ∈ Le ⇐⇒ u′euwevv
′
e ∈ L ∧

∧
e′∈OL
e̸=e′

ue,e′uwe,e′vve,e′ ∈ L↔ ue,e′uewe,e′veve,e′ ∈ L ,

thus showing Le ≤cd L.

The following lower bound has already been sketched in Section 4.

Proposition 5.4. If L is not weakly length-synchronous, then L is TC0-hard.

Proof. Recall that (RL, OL) is the syntactic Ext-algebra of L and (φL, ψL) : (Σ
△,O(Σ△)) → (RL, OL)

is its syntactic morphism. Assume that (φL, ψL) is not φL(L)-weakly-length-synchronous.
Assume first there exist extu,v, extu′,v ∈ O(Σ△) satisfying that ψL(extu,v) = ψL(extu′,v) that is

a φL(L)-reachable idempotent such that ∆(u), ∆(u′) > 0, but |u| ≠ |u′|. We exploit the fact that
|u| ̸= |u′| to reduce EQUALITY = {w ∈ {0, 1}∗ : |w|0 = |w|1} to LψL(extu,v). The constant-depth
reduction works as follows on input w ∈ {0, 1}∗:

1. Check if |w| = 2n for some n ∈ N, reject if it is not the case.

2. Compute w′ = α(w), where αα{0, 1}∗ → Σ∗ is the length-multiplying morphism satisfying
α(1) = u|u

′| and α(0) = u′|u|.

3. Accept whenever w′#vn(|u|+|u′|) ∈ Lψ(extu,v).

Bearing in mind that 0 < ∆(u) = −∆(v) = ∆(u′), the latter forms a valid reduction, because given
a word w ∈ {0, 1}∗ of length 2n for an n ∈ N that contains k ∈ [0, 2n] many 1’s, for w′#vn(|u|+|u′|)

to be in LψL(extu,v), it is in particular required that w′vn(|u|+|u′|) is well-matched, so it is necessary
and sufficient that

k ·∆(u) · |u′|+ (2n− k) ·∆(u′) · |u| = −n ·∆(v) · (|u|+ |u′|)
⇐⇒ (k − n) ·∆(u) · |u′|+ (n− k) ·∆(u′) · |u| = 0
⇐⇒ (k − n) ·∆(u) · (|u′| − |u|) = 0
⇐⇒ k = n .

Additionally applying Lemma 5.3 we obtain EQUALITY ≤cd LψL(extu,v) ≤cd L. Assume now
there exist extu,v, extu,v′ ∈ O(Σ△) satisfying that ψL(extu,v) = ψL(extu,v′) is an φL(L)-reachable
idempotent such that ∆(u) > 0 but |v| ̸= |v′|. Symmetrically, one can prove that we also have
EQUALITY ≤cd L in this case.

In conclusion, as EQUALITY is TC0-complete under constant-depth reductions, it follows that
L is TC0-hard under constant-depth reductions.

The following proposition has essentially already been shown in [24, Proposition 135], yet with
some inaccuracies (we refer to Section 8) that we fix here.

Proposition 5.5. If L is not quasi-aperiodic, then one can effectively compute some m ≥ 2 such
that MODm ≤cd L.
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Proof. Since L is not quasi-aperiodic, by Point 2 (a) Proposition 5.1 one can effectively compute
k, l ∈ N such that ψL(O(Σ△)k,l) is not aperiodic. Thus, one can compute m ≥ 2 such that
ψL(O(Σ△)k,l) contains the additive group G = ([0,m−1],+, 0) of Z/mZ for some prime number m.
Moreover, there exist extu0,v0 , extu1,v1 ∈ O(Σ△)k,l such that ψL(extu0,v0) = 0G and ψL(extu1,v1) =
1G. Since G is a group both ψL(extu0,v0) and ψL(extu1,v1) are φL(L)-reachable. Moreover there
exist xy, z ∈ Σ△ such that xu0zv0y ∈ L if, and only if, xu1zv1y ̸∈ L. Let us assume without loss of
generality that xu0zv0y ̸∈ L and xu1zv1y ∈ L (the case when xu0zv0y ∈ L and xu1zv1y ̸∈ L can
be proven analogously). Let h↑, h↓ : {0, 1}∗ → Σ∗ be the length-multiplying morphisms satisfying
h↑(i) = ui and h↓(i) = vi for all i ∈ {0, 1}. We claim that

w ∈ MODm ⇐⇒
m−1∧
i=1

xh↑(w)
im−2

zh↓(w
R)i

m−2
y ̸∈ L.

Let wi = xh↑(w)
im−2

zh↓(w
R)i

m−2
y for all i ∈ [1,m− 1]. Observe that wi ∈ Σ△ for all i ∈ [1,m− 1]

directly by definition of the morphisms h↑ and h↓.
To show the above equivalence, let us first assume that |w|1 is divisible by m. Then we have

ψL(exth↑(w),h↓(wR)) = ψL(extu0,v0) = 0G, and consequently ψL(exth↑(w)im−2 ,h↓(w)im−2 ) = 0G for all
i ∈ [1,m− 1]. It follows wi ̸∈ L for all i ∈ [1,m− 1], as desired. Conversely, assume that |w|1 is not
divisible by m, i.e. |w|1 ≡ i mod m for some i ∈ [1,m − 1]. Hence ψL(exth↑(w),h↑(wR)) = iG ̸= 0G
and thus ψL(exth↑(w)im−2 ,h↑(wR)im−2 ) = (im−1 mod m)G = 1G by Fermat’s Little Theorem. Hence
wi ∈ L as required.

Altogether we obtain MODm ≤cd L.

5.2.1 The non-solvable case

In this additional section we prove a stronger lower bound, namely when the syntactic morphism not
only is not quasi-aperiodic but the syntactic Ext-algebra not solvable. For this we revisit solvable
groups and introduce solvable Ext-algebras.

Let G be a finite group. The word problem for G is the question, given a word w1 · · ·wn over
G, to decide if their product w1 · · ·wn in G evaluates to 1G. The commutator of g, h ∈ G is
ghg−1h−1 ∈ G, denoted by [g, h]. The commutator subgroup [G,G] of G is the subgroup of G that
is generated by the commutators of G. We say that G is perfect if G = [G,G]. We say that G
is solvable if in the series of commutator subgroups (a.k.a. derived series) G(0), G(1), . . . a trivial
group is contained, where G(0) = G and G(i+1) = [G(i), G(i)] for all i ∈ N. Thus, note that any
non-solvable finite group contains a perfect subgroup.

We say the Ext-algebra (R,O) is solvable if all subsets of R or O that are groups (under the
multiplication of R, resp. of O) are solvable. It is worth mentioning that one can prove that if
(φ,ψ) : (Σ△,O(Σ△)) → (R,O) is quasi-aperiodic, then (R,O) is solvable. In fact, one can prove
that if (φ,ψ) is quasi-aperiodic, then (R,O) must contain only Abelian groups.

Our proof that L is NC1-hard (and thus TC0-hard) when (RL, OL) is not solvable can be reduced
to the case for words [4], by showing that already ψL(O(Σ△)k,l) contains such a non-solvable group
for some fixed k, l ≥ 0.

Proposition 5.6. If (RL, OL) is not solvable, then L is NC1-hard and thus not in AC0.

Before we prove the proposition we remark that not every subset G ⊆ RL (resp. G ⊆ OL) that
is a group is necessarily a submonoid of RL (resp. OL); in particular the neutral element of G need
not necessarily be the neutral element of OL. Indeed, for instance assume RL = {1, a, b} where
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1 · r = 1 · r = r for all r ∈ R and where a · b = b · a = b and a · a = b · b = a; the subset {a, b}
forms the additive group of Z/2Z with neutral element a. It is also worth mentioning that since
R is (isomorphic to) a submonoid of O we could have equivalently defined an Ext-algebra to be
solvable if all subsets of O that are groups are solvable.

Proof of Proposition 5.6. Assume (RL, OL) is not solvable. Then there exists a subset G ⊆ OL,
where G is a non-trivial perfect group, i.e. G = [G,G]. Let ω be the idempotent power of G. For
all g, h ∈ G there exist extug ,vg , extuh,vh ∈ O(Σ△) such that

[g, h] = ghg−1h−1 = ghgω−1hω−1 = ψL

(
extuguhuω−1

g uω−1
h ,vω−1

h vω−1
g vhvg

)
and 1G = gωhω = ψL(extuωg uωh ,v

ω
h v

ω
g
). Therefore, for all g, h ∈ G we have

[g, h] = ψL

extuguhuω−1
g uω−1

h ,vω−1
h vω−1

g vhvg
◦ ⃝

(g′,h′)∈G2

(g′,h′ )̸=(g,h)

extuω
g′u

ω
h′ ,v

ω
h′ ,v

ω
g′

 .

Hence, {[g, h] | g, h ∈ G} ⊆ O(Σ△)k,l for

k =
∑

(g,h)∈G2

(|ug|+ |uh|) · ω and l =
∑

(g,h)∈G2

(|vh|+ |vg|) · ω .

Since G = [G,G] every element of G can be written as the product of at most |G| elements in
{[g, h] | g, h ∈ G} and, in fact, even as the product of exactly |G| elements in {[g, h] | g, h ∈ G},
since it contains the identity 1G. Thus, we can conclude that G ⊆ ψL(O(Σ△)k·|G|,l·|G|. Since the
word problem of any non-solvable finite group is NC1-hard by [4] and G ⊆ ψL(O(Σ△)k·|G|,l·|G|, it
follows that the word problem for G is constant-depth reducible to L. Hence L is NC1-hard and in
particular TC0-hard.

5.3 In AC0: Length-synchronous and quasi-aperiodic

This section is devoted to the following theorem.

Theorem 5.7. If L is length-synchronous and (φL, ψL) is quasi-aperiodic, then L is in FO[+] and
thus in AC0.

For the rest of this section let us fix a VPL L, its syntactic Ext-algebra (RL, OL), and its
syntactic morphism (φL, ψL) : (Σ

△,O(Σ△)) → (RL, OL).
Before we explain our proof strategy we introduce approximate matchings and horizontal and

vertical evaluation languages. Approximate matchings generalize the classical matching relation on
well-matched words with respect to our VPL L in the sense that they are subsets of the matching
relation but must equal the matching relation on all those words that are in L. Approximate
matchings in the context of visibly pushdown languages were introduced by Ludwig [24]. We
then introduce suitably padded word languages mimicking the evaluation problem of the horizontal
monoid RL and the vertical monoid OL, respectively.

Approximate matchings. For any word w ∈ Σ∗, we say that two positions i, j ∈ [1, |w|] in w
are matched whenever i < j, wi ∈ Σcall, wj ∈ Σret and wi+1 · · ·wj−1 ∈ Σ△; we also say that i is
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matched to j in w. Observe that a word w over Σ is well-matched if and only if for each position
i ∈ [1, |w|],

• if i ∈ Σcall, then there exists a position j ∈ [1, |w|] such that i is matched to j in w;

• if i ∈ Σret, then there exists a position j ∈ [1, |w|] such that j is matched to i in w.

Given a word w ∈ Σ△, we denote by M△ (w) its matching relation (or matching), that is the
relation {(i, j) ∈ [1, |w|]2 | i is matched to j in w} . An approximate matching relative to L ⊆ Σ△

is a function M : Σ∗ → N>0
2 such that M(w) =M△ (w) for all w ∈ L and M(w) ⊆M△ (w) for all

w ∈ Σ∗ \ L.

Horizontal and vertical evaluation languages. For all k ∈ N, we define

O(Σ△)k,∗ = {extu,v ∈ O(Σ△) : |u| = k} and O(Σ△)∗,k = {extu,v ∈ O(Σ△) : |v| = k} .

We also define O(Σ△)↑ = {extu,v ∈ O(Σ△) | ∆(u) > 0} and finally for all k ∈ N, we define

O(Σ△)k,∗↑ = O(Σ△)k,∗ ∩ O(Σ△)↑ and O(Σ△)∗,k↑ = O(Σ△)∗,k ∩ O(Σ△)↑ .

Consider the alphabets ΓφL = φL(Σ
△ \ {ε}) ∪ {$} and ΓψL = ψL

(
O(Σ△)↑

)
∪ {$} for a letter

$ /∈ RL ∪OL. We also define

VφL = {$ks | k ∈ N, s ∈ φL(Σ
k+1)}∗ and VψL =

{
$kf

∣∣ k ∈ N, f ∈ ψL
(
O(Σ△)k+1,∗

↑
)}∗

.

Define the φL-evaluation morphism evalφL : Γ
∗
φL

→ RL by evalφL(s) = s for all s ∈ φL(Σ
△\{ε}) and

evalφL($) = 1R. Similarly, define the ψL-evaluation morphism evalψL : Γ
∗
ψL

→ OL by evalψL(f) = f

for all f ∈ ψL
(
O(Σ△)↑

)
and evalψL($) = 1OL . Finally, for all r ∈ RL, we set

EφL,r = VφL ∩ eval−1
φL

(r)

and for all e ∈ OL, we set
EψL,e = VψL ∩ eval−1

ψL
(e) .

5.3.1 Strategy for the proof of Theorem 5.7

We are now ready to give the proof strategy for Theorem 5.7. The proof consists of the following
steps.

1. Lemma 5.9: VφL and VψL are regular languages whose syntactic morphisms are quasi-aperiodic.

2. Proposition 5.10: Let L be a VPL whose syntactic morphism (φL, ψL) is quasi-aperiodic.

• For all r ∈ RL, the language EφL,r is regular and its syntactic morphism is quasi-aperiodic.
• For all e ∈ OL, if for each φL(L)-reachable idempotent f ∈ OL such that there exist
g, h ∈ OL satisfying e = g ◦ f ◦ h we have that Rf = {(u, v) ∈ Con(Σ) | ψL(extu,v) = f}
is length-synchronous, then EψL,e is a regular language whose syntactic morphism is
quasi-aperiodic.

3. Proposition 5.12: If L ⊆ Σ△ is length-synchronous, then there exists an FOΣ[+]-formula
µ(x, y) such that M : Σ∗ → N>0

2 defined by M(w) = {(i, j) ∈ [1, |w|]2 | w |= µ(i, j)} for all
w ∈ Σ∗ is an approximate matching relative to L.
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4. Proposition 5.16: Assume a VPL L has bounded nesting depth and

• EφL,r is a regular language whose syntactic morphism is quasi-aperiodic for all φL(L)-
reachable r ∈ RL, and

• EψL,e is a regular language whose syntactic morphism is quasi-aperiodic for all φL(L)-
reachable e ∈ OL.

Then there exists an FOΣ,↭[+]-sentence η such that for any approximate matching M relative
to L, we have w ∈ L if, and only if, (w,M(w)) |= η for all w ∈ Σ∗.

Let us argue that Points 2, 3 and 4 indeed imply Theorem 5.7 (Point 1 will be used in the proof
of Point 2). Length-synchronicity of L implies weak length-synchronicity of L and thus bounded
nesting depth of L (Proposition 4.14). Point 2 implies the other assumptions of Point 4: length-
synchronicity of L means by definition that for each φL(L)-reachable idempotent f ∈ OL we have
that Rf = {(u, v) ∈ Con(Σ) | ψL(extu,v) = f} is length-synchronous, so Point 2 implies that EφL,r
and EψL,e are quasi-aperiodic for all r ∈ RL and all e ∈ OL, respectively. Finally, combining the
FOΣ,↭[+]-sentence of Point 4 with the FOΣ[+]-formula given by Point 3 that defines an approximate
matching relative to L yields an FOΣ[+]-sentence defining L, thus proving Theorem 5.7.

5.3.2 VφL and VψL are quasi-aperiodic (Proof of Point 1)

Before proving Point 1 in the proof strategy for Theorem 5.7 we require the following auxiliary
lemma. It provides an important periodicity property of Ext-algebra morphisms.

Lemma 5.8. The following periodicity holds:

1. There exist t ∈ N and p ∈ N>0 such that φL(Σ△∩Σi) = φL(Σ
△∩Σj) for all i, j ∈ N satisfying

i, j ≥ t and i ≡ j (mod p).

2. There exist t ∈ N and p ∈ N>0 such that ψL
(
O(Σ△)i,∗↑

)
= ψL

(
O(Σ△)j,∗↑

)
for all i, j ∈ N

satisfying i, j ≥ t and i ≡ j (mod p).

3. There exist t ∈ N and p ∈ N>0 such that ψL
(
O(Σ△)∗,i↑

)
= ψL

(
O(Σ△)∗,j↑

)
for all i, j ∈ N

satisfying i, j ≥ t and i ≡ j (mod p).

Proof. To prove Point 1 recall that φ−1
L (r) is a VPL and hence a context-free language for all

r ∈ RL. By Parikh’s Theorem [14, Section 3] it follows that Sr = {|w| : w ∈ Σ△, φL(w) = r} ⊆ N is
a semilinear set for all r ∈ RL. It follows that for all U ⊆ RL the set SU = {|w| : w ∈ Σ△, φL(w) ∈
U} ⊆ N is semilinear since semilinear sets are closed under union. Point 1 follows immediately from
this observation.

Next we prove Point 2, Point 3 can be proven analogously. According to Lemma 6.4 in Section 6
for # ̸∈ Σ the language Le = {u#v | uv ∈ Σ△ : ψL(extu,v) = e} is a VPL for all e ∈ OL. As the
language K = {u#v | u, v ∈ Σ△} is obviously a VPL, it follows that for all e ∈ OL the language

Le↑ = Le \K = {u#v | uv ∈ Σ△ : ψL(extu,v) = e,∆(u) > 0} ⊆ Le

is a VPL as well. By Lemma 6.5 in Section 6 the set

Se = {(k, l) ∈ N× N | ∃u ∈ Σk, v ∈l: u#v ∈ Le↑}

is semilinear as well for all e ∈ OL. As a consequence we obtain that for all Y ⊆ OL the set

SY = {(k, l) ∈ N× N | ∃u ∈ Σk, v ∈ Σl, e ∈ Y : u#v ∈ Le↑} ⊆ N× N
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is semilinear as well since semilinear sets are closed under union. Since for all Y ⊆ OL the set
{k ∈ N | ψL(O(Σ△)k,∗↑ = Y } is nothing but the projection of SY onto the first component and
semilinear sets are closed under projection, Point 2 follows.

The following lemma holds irrespective of whether the syntactic morphism (φL, ψL) of L is
quasi-aperiodic or not.

Lemma 5.9. VφL, VψL are regular languages whose syntactic morphisms are quasi-aperiodic.

Proof. Take t ∈ N and p ∈ N>0 given by Lemma 5.8 such that ψL
(
O(Σ△)i,∗↑

)
= ψL

(
O(Σ△)j,∗↑

)
for

all i, j ∈ N satisfying i, j ≥ t and i ≡ j (mod p). Define θt,p : N → N as

θt,p(n) =

{
n if n < t

min{n′ ∈ N | n′ ≥ t ∧ n′ ≡ n (mod p)} otherwise

for all n ∈ N. Take M to be the syntactic monoid of VψL and h : Γ∗
ψL

→ M to be its syntactic
morphism.

If there exists f ∈ ψL
(
O(Σ△)↑

)
and k ∈ N such that $kf /∈ VψL , let us fix some f⊥ and

k⊥ that satisfy this. Observe that for all k ∈ N, we have that h($k) = h($θt,p(k)). Further, for
all n ∈ N>0, k1, . . . , kn+1 ∈ N and f1, . . . , fn ∈ ψL

(
O(Σ△)↑

)
, we have h($k1f1 · · · $knfn$kn+1) =

h($θt,p(k1)f1α$
θt,p(kn+1)), where

α =

{
ε if $k2f2 · · · $knfn ∈ VψL
$k⊥f⊥ otherwise .

Therefore, M is finite and thus VψL is regular. Let l ∈ N>0 be the stability index of h and take
q ∈ N>0 such that q · l ≥ t and q · l ≡ 0 (mod p). By definition, we have h(ΓlψL) = h(Γq·lψL). Thus, to
show that h is quasi-aperiodic it is sufficient to prove that for all m ∈ h(Γq·lψL), we have m2 = m3.
Indeed, given m ∈ h(Γq·lψL), only the following three cases can occur.

1. m = h($q·l). In this case, we have

m2 = h($2·q·l) = h($θt,p(2·q·l)) = h($θt,p(q·l)) = h($q·l) = m ,

where the third equality follows from θt,p(2 · q · l) = θt,p(q · l).

2. m = h($k1f$k⊥f⊥$
k2) for f ∈ ψL

(
O(Σ△)↑

)
and k1, k2 ∈ N satisfying θt,p(k1) = k1 and

θt,p(k2) = k2. In this case, we have

m2 = h($k1f$k⊥f⊥$
k1+k2f$k⊥f⊥$

k2) = h($k1f$k⊥f⊥$
k2) = m ,

where the second equality follows from $k⊥f⊥$
k1+k2f$k⊥f⊥ /∈ VψL .

3. m = h($k1f$k2) for f ∈ ψL
(
O(Σ△)↑

)
and k1, k2 ∈ N satisfying θt,p(k1) = k1 and θt,p(k2) = k2.

If f ∈ ψL
(
O(Σ△)k1+k2+1,∗

↑
)
, then

m2 = h($k1f$k1+k2f$k2) = h($k1f$k2) = m

because $k1+k2f ∈ VψL . Otherwise, f /∈ ψL
(
O(Σ△)k1+k2+1,∗

↑
)

and then

m2 = h($k1f$k1+k2f$k2) = h($k1f$k⊥f⊥$
k2)
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because $k1+k2f /∈ VψL , so

m3 = h($k1f$k⊥f⊥$
k1+k2f$k2) = h($k1f$k⊥f⊥$

k2) = m2

because $k⊥f⊥$
k1+k2f /∈ VψL .

Therefore, VψL is a regular language whose syntactic morphism is quasi-aperiodic.

5.3.3 Quasi-aperiodicity of evaluation languages EφL,r and EψL,e (Proof of Point 2)

One important consequence of Lemma 5.9 is that for all r ∈ RL and e ∈ OL, the languages EφL,r
and EψL,e are in fact regular languages. The following proposition gives conditions under which
those languages have moreover quasi-aperiodic syntactic morphisms when the syntactic morphism
of L itself is.

Proposition 5.10. Let L be a VPL whose syntactic morphism (φL, ψL) is quasi-aperiodic.

• For all r ∈ RL, the language EφL,r is regular and its syntactic morphism is quasi-aperiodic.

• For all e ∈ OL, if for each φL(L)-reachable idempotent f ∈ OL such that there exist g, h ∈ OL
satisfying e = g ◦ f ◦ h1 we have that Rf = {(u, v) ∈ Con(Σ) | ψL(extu,v) = f} is length-
synchronous, then EψL,e is a regular language whose syntactic morphism is quasi-aperiodic.

Proof. We already know that for all r ∈ RL and e ∈ OL, the languages EφL,r and EψL,e are regular.
To prove the lemma, we then just have to prove that

• if there exists r ∈ RL such that the syntactic morphism of EφL,r is not quasi-aperiodic, then
there exists k ∈ N such that φ(Σ△ ∩ Σk) contains a semigroup that is not aperiodic;

• if there exists e ∈ OL such that the syntactic morphism of EψL,e is not quasi-aperiodic and
for each φL(L)-reachable idempotent f ∈ OL such that there exist f ′, f ′′ ∈ OL satisfying
e = f ′ ◦ f ◦ f ′′ we have that Rf = {(u, v) ∈ Σ∗ × Σ∗ | uv ∈ Σ△,∆(u) > 0, ψL(extu,v) = f}
is length-synchronous, then there exist k, l ∈ N such that ψL(O(Σ△)k,l) contains a semigroup
that is not aperiodic.

Indeed, the first point allows to conclude that (φL, ψL) is not quasi-aperiodic, since if there exists a
non-aperiodic semigroup S contained in φL(Σ△∩Σk), then {lefts | s ∈ S} is a semigroup contained
in ψL(O(Σ△)k,0) (because for each s ∈ S, there exists w ∈ Σ△ ∩ Σk satisfying φL(w) = s, so
that ψL(extw,ε) = leftφL(w) = lefts). But this semigroup is non-aperiodic as well, since as S is
non-aperiodic, it must be that for all i ∈ N>0, there exists s ∈ S such that si ̸= si+1, so that
lefts

i ̸= lefts
i+1.

We only prove the second point, the first point can be proved in a similar way by leaving out the
last paragraph of the following proof, that is the sole place where we need, given an e ∈ OL, length-
synchronicity of Rf for each φL(L)-reachable idempotent f ∈ OL such that there exist f ′, f ′′ ∈ OL
satisfying e = f ′ ◦ f ◦ f ′′.

Take t ∈ N and p ∈ N>0 given by Lemma 5.8 such that ψL
(
O(Σ△)i,∗↑

)
= ψL

(
O(Σ△)j,∗↑

)
for all

i, j ∈ N satisfying i, j ≥ t and i ≡ j (mod p).
Assume there exists e ∈ OL such that the syntactic morphism of EψL,e is not quasi-aperiodic.

Take M to be the syntactic monoid of EψL,e and h : Γ∗
ψL

→ M to be its syntactic morphism. Let

1In the terminology of Green’s relations, to be introduced in the proof of Proposition 5.24, this is equivalent to
the fact that e ≤J f .
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s ∈ N>0 be the stability index of h and let ω ≥ 2 be a multiple both of the idempotent power of M
and the idempotent power of OL. Non-quasi-aperiodicity of h implies that there exists g ∈ h(ΓsψL)

satisfying gω ̸= gω+1.
By definition of the stability index, there exists w ∈ Γq·sψL for q ∈ N>0 such that q·s ≥ t and q·s ≡ 0

(mod p) satisfying h(w) = g. Since t ≤ q ·s ≤ q ·s ·ω ≤ q ·s · (ω+1) and q ·s ≡ q ·s ·ω ≡ q ·s · (ω+1)
(mod p), we cannot have w = $q·s, for otherwise we would have gω = h($q·s·ω) = h($q·s·(ω+1)) = gω+1

because ψL
(
O(Σ△)q·s·ω+k+1,∗

↑
)
= ψL

(
O(Σ△)

q·s·(ω+1)+k+1,∗
↑

)
for all k ∈ N. Therefore, we have w =

$k1f1 · · · $knfn$kn+1 for n ∈ N>0, k1, . . . , kn+1 ∈ N and f1, . . . , fn ∈ ψL
(
O(Σ△)↑

)
. Since gω ̸= gω+1,

there exist x, y ∈ Γ∗
ψL

such that either xwωy ∈ EψL,e and xwω+1y /∈ EψL,e, or xwωy /∈ EψL,e and
xwω+1y ∈ EψL,e. Assume the first case holds. Then we have x = x′$kx and y = $kyy′ with
kx, ky ∈ N and x′, y′ ∈ Γ∗

ψL
satisfying x′, $kx+k1f1, $

k2f2, . . . , $
knfn, $

kn+1+k1f1, $
kn+1+kyy′ ∈ VψL

and evalψL(x
′) ◦ (f1 ◦ · · · ◦ fn)ω ◦ evalψL(y′) = e. Therefore, we also have xwω+1y ∈ VψL , hence since

xwω+1y /∈ EψL,e we necessarily have

e = evalψL(x
′) ◦ (f1 ◦ · · · ◦ fn)ω ◦ evalψL(y

′)

̸= evalψL(xw
ω+1y) = evalψL(x

′) ◦ (f1 ◦ · · · ◦ fn)ω+1 ◦ evalψL(y
′) .

Thus we have (f1 ◦ · · · ◦ fn)ω ̸= (f1 ◦ · · · ◦ fn)ω+1 and $kn+1+k1f1$
k2f2 · · · $knfn ∈ VψL . This is also

true for the case when xwωy /∈ EψL,e and xwω+1y ∈ EψL,e.
Therefore, we have (f1 ◦ · · · ◦ fn)ω ̸= (f1 ◦ · · · ◦ fn)ω+1 with (f1 ◦ · · · ◦ fn)i ∈ ψL

(
O(Σ△)q·s·i,∗↑

)
=

ψL
(
O(Σ△)q·s,∗↑

)
for each i ∈ N>0 because kn+1+k1+· · ·+kn+n = q·s ≥ t and kn+1+k1+· · ·+kn+n =

q · s ≡ 0 (mod p). But given ω′ the idempotent power of {(f1 ◦ · · · ◦ fn)i | i ∈ N>0}, we have that
(f1 ◦ · · · ◦ fn)ω = (f1 ◦ · · · ◦ fn)ωω

′
= (f1 ◦ · · · ◦ fn)ω

′ , so that (f1 ◦ · · · ◦ fn)ω
′ ̸= (f1 ◦ · · · ◦ fn)ω

′+1,
hence {(f1 ◦ · · · ◦ fn)i | i ∈ N>0} is not aperiodic.

Assume additionally that for each φL(L)-reachable idempotent f ∈ OL such that there exist
f ′, f ′′ ∈ OL satisfying e = f ′ ◦ f ◦ f ′′ we have that Rf = {(u, v) ∈ Σ∗ × Σ∗ | uv ∈ Σ△,∆(u) >
0, ψL(extu,v) = f} is length-synchronous. For each i ∈ N>0, let extui,vi ∈ ψL

(
O(Σ△)q·s,∗↑

)
such that

ψL(extui,vi) = (f1 ◦ · · · ◦ fn)i. If (f1 ◦ · · · ◦ fn)ω were not φL(L)-reachable, then it would imply that
extuω ,vω is not L-reachable. This would in turn entail that for all z ∈ Σ△ and extα,β ∈ O(Σ△) we
have

extα,β(extuω ,vω(z)) /∈ L ∧ extα,β(extu1uω ,vωv1(z)) = extαu1,v1β(extuω ,vω(z)) /∈ L ,

so that it would follow that (f1 ◦ · · · ◦ fn)ω = ψL(extuω ,vω) = ψL(extu1uω ,vωv1) = (f1 ◦ · · · ◦ fn)ω+1,
a contradiction. Hence, since (f1 ◦ · · · ◦ fn)ω is a φL(L)-reachable idempotent and

e =

{
evalψL(x

′) ◦ (f1 ◦ · · · ◦ fn)ω ◦ evalψL(y′) if xwωy ∈ EψL,e and xwω+1y /∈ EψL,e
evalψL(x

′) ◦ (f1 ◦ · · · ◦ fn)ω+1 ◦ evalψL(y′) otherwise (xwωy /∈ EψL,e and xwω+1y ∈ EψL,e)
,

it follows that R(f1◦···◦fn)ω is length-synchronous. So for all i ∈ N, i ≥ 2, since ψL(extuω1 ,vω1 ) =
ψL(extuωi ,vωi ) = (f1 ◦ · · · ◦ fn)ω with ∆(uω1 ) > 0 and ∆(uωi ) > 0, since |u1| = |ui|, we have

|uω1 |
|vω1 |

=
|uωi |
|vωi |

⇒ |u1|
|v1|

=
|ui|
|vi|

⇒ |v1| = |vi| .

To conclude, we obtain that the non-aperiodic semigroup {(f1 ◦ · · · ◦ fn)i | i ∈ N>0} is contained in
ψL(O(Σ△)q·s,|v1|).
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The following remark states that the length-synchronicity precondition in the second point of
Proposition 5.10 is important. In fact it shows that weak length-synchronicity is not sufficient.

Remark 5.11. For the second point of Proposition 5.10 it is generally not sufficient to assume,
given e, that for each φL(L)-reachable idempotent f ∈ OL such that there exist g, h ∈ OL satisfying
e = g ◦ f ◦ h we have that Rf = {(u, v) ∈ Σ∗ × Σ∗ | uv ∈ Σ△,∆(u) > 0, ψL(extu,v) = f} is weakly
length-synchronous. Indeed, the VPL K generated by the grammar with rules

S → aSb1 | acTb2 | ε
T → aTb1 | acSb2 .

using S as start symbol is not length-synchronous, but weakly length-synchronous, and has a quasi-
aperiodic syntactic morphism. However, for the syntactic Ext-algebra (RK , OK) and the syntactic
morphism (φK , ψK) of K, we claim that there exists a φK(K)-reachable e ∈ OK such that EψK ,e
is a regular language whose syntactic morphism is not quasi-aperiodic while, as K is weakly length-
synchronous, for each φL(L)-reachable idempotent f ∈ OL we have that Rf = {(u, v) ∈ Σ∗ × Σ∗ |
uv ∈ Σ△,∆(u) > 0, ψL(extu,v) = f} is weakly length-synchronous.

Let Γ be the visibly pushdown alphabet of K. Note that we have K ⊂ L1,2, where L1,2 =
L(S → aSb1|acSb2|ε) is the VPL initially introduced in Example 2.5. For all uv, u′v′ ∈ L1,2 with
u, u′ ∈ {a, c}+, v, v′ ∈ {b1, b2}+, |u|c ≡ |u′|c (mod 2) we have xuzvy ∈ K ⇔ xu′zv′y ∈ K for all
xy, z ∈ Γ△. This implies that if we set e0 = ψK(exta,b1) and e1 = ψK(extac,b2), we have that for all
uv ∈ L1,2 with u ∈ {a, c}+, v ∈ {b1, b2}+, it holds that ψK(extu,v) = e|u|c mod 2. Therefore, while
e0 ̸= e1, we have e0 ◦ e1 = e1 ◦ e0 = e1 and e0 ◦ e0 = e1 ◦ e1 = e0.

Consider the length-multiplying monoid morphism β : {0, 1}∗ → Γ∗
ψK

such that β(0) = e0e0
and β(1) = $e1. Then MOD2 = β−1(EψK ,e0), so EψK ,e0 cannot have a quasi-aperiodic syntactic
morphism, for otherwise, by closure of the class of regular languages whose syntactic morphism
is quasi-aperiodic under inverses of length-multiplying morphisms (see [30]), we would have that
MOD2 has a quasi-aperiodic syntactic morphism.

5.3.4 Approximate matching relation in FO[+] (Proof of Point 3)

The following proposition states that there is a FOΣ[+]-definable approximate matching relative to
any length-synchronous visibly pushdown language.

Proposition 5.12. If L ⊆ Σ△ is length-synchronous, then there exists an FOΣ[+]-formula η(x, y)
such that M : Σ∗ → N>0

2 defined by M(w) = {(i, j) ∈ [1, |w|]2 | w |= η(i, j)} for all w ∈ Σ∗ is an
approximate matching relative to L.

The technical heart of the proof is the following lemma whose proof is postponed and will take
most part of this subsubsection. This lemma realizes the characterization of length-synchronicity
given by Proposition 4.11 via an FOΣ[+]-formula.

Lemma 5.13. Assume that (φL, ψL) is weakly length-synchronous. Let e ∈ OL be φL(L)-reachable
and assume that Ue = {(u, v) ∈ Con(Σ) | e◦ψL(extu,v) = e} is length-synchronous. Then there exists
an FOΣ[+]-formula πe(x, x′, y′, y) such that for all w ∈ Σ+ and i, i′, j′, j ∈ [1, |w|], i ≤ i′ < j′ ≤ j
the following holds,

• if w |= πe(i, i
′, j′, j), then wi · · ·wi′wj′ · · ·wj ∈ Σ△ and

• if wi · · ·wi′wj′ · · ·wj ∈ Σ△ and (wi . . . wi′ , wj′ . . . wj) ∈ Ue, then w |= πe(i, i
′, j′, j).
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Building an approximate matching assuming predicates πe. Let us prove Proposition 5.12
by making use of Lemma 5.13.

Proof of Proposition 5.12. By assumption (φL, ψL) is φL(L)-length-synchronous. Thus, the set of
contexts Ue is length-synchronous for all φL(L)-reachable e ∈ OL by Proposition 4.10. Moreover,
there exists dL ∈ N bounding the nesting depth of the words in L Proposition 4.14. For defining
our desired formula µ, we will construct FOΣ[+] formulas µd and µ↑d for all 0 ≤ d ≤ dL with the
following properties: for all w ∈ Σ+ and for all i, j ∈ [1, |w|], we have

• if w |= µ↑d(i, j) or w |= µd(i, j), then wi · · ·wj ∈ Σ△,

• if w ∈ L, wi . . . wj ∈ Σ△, nd(wi . . . wj) ≤ d and i is matched to j in w, then w |= µ↑d(i, j), and

• if w ∈ L, nd(wi . . . wj) ≤ d and wi . . . wj ∈ Σ△, then w |= µd(i, j).

We therefore define µ = µdL . The construction of µ↑d and µd is by induction on d. We set

µ0(i, j) = ⊥ and µ0(i, j) = ∀z
(
x ≤ z ≤ y → Σint(z)

)
.

Let us assume d > 0. The formula µd is easily defined assuming µ↑d. We define

µd(x, y) = ∀z
[
x ≤ z ≤ y →(
Σint(z) ∨ ∃z′

(
(Σcall(z) ∧ Σret(z

′) ∧ µ↑d(z, z
′)) ∨ (Σcall(z

′) ∧ Σret(z) ∧ µ↑d(z
′, z)

))]
.

It remains to define µ↑d. Let us assume u = wi . . . wj ∈ Σ△, that i is matched to j in w and
that nd(u) = d > 0. Hence, u = a1vb1 ∈ Σ△ for some a1 ∈ Σcall, b1 ∈ Σret, and v ∈
Σ△. We then apply Lemma 4.17 which states that u has a nesting-maximal stair factoriza-
tion u = extx1,y1 ◦ exta1,b1 ◦ . . . extxk,yk ◦ extak,bk(u′) such that for some h ∈ [1, k], setting uℓ =
extaℓ,bℓ ◦ extxℓ+1,yℓ+1

◦ · · · ◦ extak,bk(u
′) for all ℓ ∈ [1, k] and uk+1 = u′, we have

1. nd(u) = nd(uh) = d,

2. nd(uh+1) = d− 1, and

3. nd(x1),nd(y1), . . . ,nd(xh),nd(yh) < d.

We remark that x1 = y1 = ε. Let i = i1 < · · · < ih and jh < · · · < j1 = j be the positions
that correspond to the positions of the letters a1, . . . , ah ∈ Σcall and b1, . . . , bh ∈ Σret of u in w,
respectively: more precisely iℓ = i+ |x1 · · · aℓ−1xℓ| and jℓ = |x1a1 · · ·xkaku′bkyk · · · bℓ+1yℓ+1|+1 for
all ℓ ∈ [1, h]. The formula η↑d could guess the positions i = i1 < · · · < ih and jh < · · · < j1 = j and
verify the following (recalling that x1 = y1 = ε):

(a) the infix wih+1 · · ·wjh−1 = extxh+1,yh+1
(uh+1) is well-matched, and

(b) the word wi1 · · ·wihwjh · · ·wj1 is well-matched.
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Point (a) can be realized via the formula µd−1 by making use of Point 2 from above, whereas Point
(b) can be realized by the following ad-hoc formula, this time making use of Point 3 and from above:

κh(x, x
′, y′, y) = ∃x1 · · ·xh∃y1 · · · yh

(
x = x1 ∧ x′ = xh ∧ y′ = yh ∧ y = yh ∧

h∧
t=1

Σcall(xt) ∧ Σret(yt) ∧
h−1∧
t=1

µd−1(xt + 1, xt+1 − 1) ∧ µd−1(yt+1 + 1, yt − 1)

)

The problem with this approach is that the size of the formula depends on the size of w. For
instance, for a ∈ Σcall, b ∈ Σret, c ∈ Σint, and u = ancbn we have nd(u) = nd(acb) = 1 for all n ≥ 1.
Hence we would have h = n− 1, so h would depend on u which is problematic. Therefore, towards
expressing Point (b) by a formula whose size only depends on |OL|, let us define, for all ℓ, ℓ′ ∈ [1, h],
the product

eℓ,ℓ′ = ψL(extxℓ,yℓ ◦ extaℓ,bℓ · · · extxℓ′ ,yℓ′ ◦ extaℓ′ ,bℓ′ ) and eℓ = e1,ℓ.

We remark that all eℓ,ℓ′ are φL(L)-reachable since w is assumed to be in L. For e ∈ OL we say an
interval I = [s, t] ⊆ [1, h] is e-repetitive if s < t and es = et. We say [s, t] ⊆ [1, h] is repetitive if it is
e-repetitive for some e ∈ OL.

Claim 5.14. There exist indices 1 = t0 ≤ s1 < t1 < s2 < t2 < · · · < sq < tq ≤ sq+1 = h such that
[s1, t1], . . . , [sq, tq] are all repetitive and for D0 = [t0, s1], D1 = [t1, s2], . . . , Dq = [tq, sq+1] we have
q +

∑q
p=0 |Dp| ≤ 3|OL|.

Proof of the Claim. For all z ∈ [1, h] let λ(z) = max{ℓ ∈ [1, h] | eℓ = ez}. Observe λ(z) ≥ z
for all z ∈ [1, h] and that |λ([1, h])| ≤ |OL|. We define t0 = 1. Let p > 0 and assume that
we have already defined tp−1. In case tp−1 = h we are done and define q = p − 1 and sq+1 =
h. So let us assume tp−1 < h. In case there exists z ∈ [tp−1, h] such that z < λ(z) we define
sp = min{z ∈ [tp−1, h] | z < λ(z)} and tp = λ(sp), otherwise (i.e. in case z = λ(z) for all
z ∈ [tp−1, h]) we are done and define q = p − 1 and sq+1 = h. Immediately by definition we have
1 = t0 ≤ s1 < t1 < s2 < t2 < · · · < sq < tq ≤ sq+1 = h (because if we had tp−1 = sp for a p ∈ [2, q],
we would have esp−1 = etp−1 = esp , so λ(sp) = λ(sp−1) = tp−1 = sp < λ(sp), a contradiction) and
esp = etp for all p ∈ [1, q]. Moreover, the intervals [s1, t1], . . . , [sq, tq] are indeed all repetitive. Since
moreover tp ∈ λ([1, h]) for all p ∈ [1, q] and |λ([1, h])| ≤ |OL| we must have q ≤ |OL|. Now let
D0 = [t0, s1], D1 = [t1, s2], . . . , Dq = [tq, sq+1]. Clearly, these sets are pairwise disjoint. Moreover,
by construction, the only elements z ∈

⋃q
p=0Dp such that z < λ(z) are those in X = {s1, . . . , sq},

so that all elements z ∈ (
⋃q
p=0Dp) \X satisfy z = λ(z), i.e. are elements from λ([1, h]). Thus, we

obtain q +
∑q

p=0 |Dp| = q +
∣∣∣⋃q

p=0Dp

∣∣∣ ≤ |OL|+ |X|+ |λ([1, h])| = 3 |OL|.

Let 1 = t0 ≤ s1 < t1 < s2 < t2 < · · · < sq < tq ≤ sq+1 = h be the indices satisfying Claim 5.14
along with D0 = [t0, s1], D1 = [t1, s2], . . . , Dq = [tq, sq+1]. Let dp = |Dp| for all p ∈ [0, q]. Since, for
all p ∈ [1, q], the non-empty interval [sp, tp] is repetitive, we have esp = etp and thus obtain

esp = etp = esp ◦ ψL(extxsp+1···atp ,btp ···ysp+1).

Hence, we have w |= πesp (isp + 1, itp , jtp , jsp − 1) where πesp is the formula given by Lemma 5.13
(recall that esp is φL(L)-reachable and that Uesp is length-synchronous). We can therefore use the
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formula πesp to witness that wisp+1 · · ·witpwjtp · · ·wjsp−1 is indeed a well-matched word. It will
thus remain to verify that witp · · ·wisp+1

wjsp+1
· · ·witp is well-matched for all p ∈ [0, q]: this can be

guaranteed by evaluating κdp(itp , isp+1 , jsp+1 , itp). We can now define our final formula µ↑d:

µ↑d(x, y) =
∨

q∈[0,|OL|]
d0,...,dq≥1:

q+d0+···+dq≤3|0|

∃x1 . . . xq+1∃x′0 . . . x′q∃y1 . . . yq+1∃y′1 . . . y′0

[
x0 ≤ x1 < x′1 < x2 < · · · < x′q < y′q < yq < · · · < y′1 < y1 ≤ y′0 ∧

x′0 = x ∧ y′0 = y ∧ µd−1(xq+1 + 1, yq+1 − 1) ∧
q∧
p=1

 ∨
e∈OL φL(L)-reachable

πe(xp + 1, x′p, y
′
p, yp − 1)

 ∧
q∧
p=0

κdp(x
′
p, xp+1, yp+1, y

′
p)

 .

The following remark is obvious but will be important in Section 5.4.

Remark 5.15. When constructing our predicate µ↑d, we could have replaced any subset of the pred-
icates πe, where e is φL(L)-reachable from above, by the predicate πexact

e expressing that for all
w ∈ Σ+ and i, i′, j′, j ∈ [1, |w|], i ≤ i′ < j′ ≤ j it holds:

w |= πexact
e (i, i′, j′, j) ⇐⇒ wi . . . wi′wj′ . . . wj ∈ Σ△, e ◦ ψL(extwi···wi′ ,wj′ ···wj ) = e, and

∆(wi · · ·wi′) > 0

It remains to prove Lemma 5.13.

Proof of Lemma 5.13

In essence, our proof is inspired by the approach taken in [24, Proof of Proposition 126], which is
itself a flawed adaptation (we refer to Section 8 for more details) of the approach taken in [23, Proof
of Lemma 15].

Let αe ∈ Q>0, βe ∈ N and γe ∈ N>0 given by Proposition 4.11 for e. There exist unique
ne, de ∈ N>0 that are relatively prime such that αe = ne

de
. We are going to build an FO[+]-formula

πe(x, x
′, y′, y) such that for all w ∈ Σ+ and i, i′, j′, j ∈ [1, |w|], i ≤ i′ < j′ ≤ j, we have that

w |= πe(i, i
′, j′, j) if, and only if, all of the following conditions are satisfied:

(i) i′−i+1
j−j′+1 = ne

de
;

(ii) −βe ≤ ∆(wi · · ·wi+k·ne−1wj−k·de+1 · · ·wj) ≤ βe for all k ∈ N>0 such that k ≤ (j − j′ + 1)/de
and ∆(wi · · ·wi′wj′ · · ·wj) = 0;

(iii) ∆(wi+(q−1)·γe · · ·wi+q·γe−1) ≥ 1 for all q ∈ N>0 with q ·γe ≤ i′− i+1 and ∆(wi · · ·wi+p−1) ≥ 0
for all p ∈ [1, i′ − i+ 1];

(iv) ∆(wj−q·γe+1 · · ·wj−(q−1)·γe) ≤ −1 for all q ∈ N>0 with q ·γe ≤ j−j′+1 and ∆(wj−p+1 · · ·wj) ≤
0 for all p ∈ [1, j − j′ + 1].

Let us first prove that these four conditions whose conjunction the FO[+]-formula πe(x, x′, y′, y)
will express, indeed imply the two conditions of the lemma.

If conditions (i) to (iv) are satisfied for a w ∈ Σ+ and i, i′, j′, j ∈ [1, |w|], i ≤ i′ < j′ ≤ j, we actu-
ally have that wi · · ·wi′wj′ · · ·wj ∈ Σ△. Indeed, condition (ii) ensures that ∆(wi · · ·wi′wj′ · · ·wj) =
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0. Conditions (iii) and (iv) then additionally imply that ∆(wi · · ·wi+p−1) ≥ 0 for all p ∈ [1, i′−i+1]
and ∆(wi · · ·wi′wj′ · · ·wj′+p−1) ≥ 0 for all p ∈ [1, j − j′ + 1]. This is because if there were a
p ∈ [1, j−j′+1] such that ∆(wi · · ·wi′wj′ · · ·wj′+p−1) < 0, then it should be that ∆(wj′+p · · ·wj) > 0
with p ≤ j − j′ as we already know that ∆(wi · · ·wi′wj′ · · ·wj) = 0: this would be a contradiction
to condition (iv).

Conversely, let us fix some w ∈ Σ+ and indices i, i′, j′, j ∈ [1, |w|] such that i ≤ i′ < j′ ≤ j,
wi · · ·wi′wj′ · · ·wj ∈ Σ△, ∆(wi · · ·wi′) > 0 and e ◦ ψL(extwi···wi′ ,wj′ ···wj ) = e. In the terminology
of Proposition 4.11, for F = φL(L), we have (wi · · ·wi′ , wj′ · · ·wj) ∈ Ue. We claim that Points (i)
to (iv) are actually satisfied. Indeed, recalling that L is length-synchronous by assumption, 2(a)
of Proposition 4.11 for e in fact states that that Point (i) is satisfied. Next, since for all k ∈
N>0 such that k ≤ j−j′+1

de
= i′−i+1

ne
, the word wi · · ·wi+k·ne−1 is a prefix of wi · · ·wi′ and the

word wj−k·de+1 · · ·wj is a suffix of wj′ · · ·wj such that |wi···wi+k·ne−1|
|wj−k·de+1···wj| = k·ne

k·de = αe, it must hold

that −βe ≤ ∆(wi · · ·wi+k·ne−1wj−k·de+1 · · ·wj) ≤ βe by Point 2(b) of Proposition 4.11. We have
that ∆(wi · · ·wi′wj′ · · ·wj) = 0 immediately follows from our assumption wi · · ·wi′wj′ · · ·wj ∈ Σ△,
thus Point (ii) holds. Another consequence of our assumption wi · · ·wi′wj′ · · ·wj ∈ Σ△ is that
∆(wi · · ·wi+p−1) ≥ 0 for all p ∈ [1, i′ − i + 1] and ∆(wi · · ·wi′wj′ · · ·wj′+p−1) ≥ 0 for all p ∈
[1, j − j′ + 1]. This implies that ∆(wj−p+1 · · ·wj) ≤ 0 for all p ∈ [1, j − j′ + 1], as already argued
above. Since wi+(q−1)·γe · · ·wi+q·γe−1 is a factor of wi · · ·wi′ of length γe for all q ∈ N>0 such that
q · γe ≤ i′ − i + 1 and wj−q·γe+1 · · ·wj−(q−1)·γe is a factor of wj′ · · ·wj of length γe for all q ∈ N>0

such that q · γe ≤ j − j′ + 1, by Points 2(c) and 2(d) of Proposition 4.11, we finally have that
conditions (iii) and (iv) are also satisfied.

It now remains to construct the formula πe(x, x′, y′, y). We set

πe(x, x
′, y′, y) =(x′ − x+ 1) · de = (y − y′ + 1) · ne∧

µne,de,βe(x, x
′, y′, y)∧

ν+γe(x, x
′) ∧ ν−γe(y

′, y),

where the first line checks condition (i), the FO[+]-formula µne,de,βe(x, x
′, y′, y) will check con-

dition (ii) under the assumption condition (i) is satisfied and the FO[+]-formulas ν+γe(x, x
′) and

ν−γe(y
′, y) respectively will check conditions (iii) and (iv). We now explain how to build those for-

mulas.

Helper formulas. For all k ∈ N>0 and h ∈ Z such that −k ≤ h ≤ k, we let

Hh
k (x) =

∨
I,J⊆[1,k]
I∩J=∅

|I|−|J |=h

(∧
p∈I

Σcall(x+ p− 1) ∧
∧
p∈J

Σret(x+ p− 1) ∧
∧

p∈[1,k]\(I∪J)

Σint(x+ p− 1)
)

such that for all w ∈ Σ+ and i ∈ [1, |w|] such that i ≤ |w| − k + 1, we have w |= Hh
k (i) if, and only

if, ∆(wi · · ·wi+k−1) = h.
For all n, d ∈ N>0 relatively prime and h ∈ Z,−n− d ≤ h ≤ n+ d, we define

Dh
n,d(x, y, z) =

∨
−n≤h1≤n
−d≤h2≤d
h1+h2=h

(
Hh1
n

(
x+ (z − 1) · n

)
∧Hh2

d

(
y − z · d+ 1

))
,

such that for all w ∈ Σ+ and i, j, k ∈ [1, |w|] with i+ k · n− 1 ≤ |w| and j − k · d+ 1 ≥ 1, we have
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w |= Dh
n,d(i, j, k) if, and only if,

∆(wi+(k−1)·n · · ·wi+k·n−1wj−k·d+1 · · ·wj−(k−1)·d) = h .

Formula µn,d,q(x, x
′, y′, y). For each p ∈ N let Γp = {a−p, . . . , a−1, a0, a1, . . . , ap} and define

∆p : Γ
∗
p → Z to be the p-height monoid morphism satisfying ∆p(ah) = h for all ah ∈ Γp. Consider

the language

Lp,q = {w ∈ Γ∗
p | ∆p(w) = 0 ∧ ∀i ∈ [1, |w|],−q ≤ ∆p(w1 · · ·wi) ≤ q} .

We claim that this language is recognized by a finite aperiodic monoid. This implies, by a theorem
by McNaughton and Papert (see [29, Theorem VI.1.1]), that there exists an FOΓn+d [<]-sentence
µ̃p,q defining Lp,q.

Let now n, d ∈ N>0 relatively prime and q ∈ N. Consider w ∈ Σ+ and i, i′, j′, j ∈ [1, |w|] such
that i ≤ i′ < j′ ≤ j and i′−i+1

j−j′+1 = n
d . We want to check whether we have

−q ≤ ∆(wi · · ·wi+k·n−1wj−k·d+1 · · ·wj) ≤ q

for all k ∈ N>0 such that k ≤ (j − j′ + 1)/d and moreover ∆(wi · · ·wi′wj′ · · ·wj) = 0. Since n
and d are relatively prime, this means that there exists l ∈ [1, |w|] such that i′ − i + 1 = l · n
and j − j′ + 1 = l · d. We can hence decompose wi · · ·wi′ as u1 · · ·ul with u1, . . . , ul ∈ Σn and
wj′ · · ·wj as vl · · · v1 with v1, . . . , vl ∈ Σd. Observe that ∆(uivi) ∈ [−n − d, n + d] for all i ∈ [1, l].
Using this decomposition, we now need to check whether −q ≤ ∆(u1v1) + · · · + ∆(ukvk) ≤ q for
all k ∈ [1, l] and ∆(u1v1) + · · · + ∆(ulvl) = 0. This is equivalent to checking whether the word
w̃ = a∆(u1v1) · · · a∆(ulvl) in Γ∗

n+d belongs to Ln+d,q.
We thus transform the FOΓn+d [<]-sentence µ̃n+d,q into an FOΣ[+]-formula µn,d,q(x, x′, y′, y) by

• replacing any quantification ∃zρ(z) by ∃z
(
z ≤ (y − y′ + 1)/d ∧ ρ(z)

)
;

• replacing any quantification ∀zρ(z) by ∀z
(
z ≤ (y − y′ + 1)/d→ ρ(z)

)
;

• replacing any atomic formula of the form ah(z) for ah ∈ Γn+d by Dh
n,d(x, y, z).

By this translation for all w ∈ Σ+ and i, i′, j′, j ∈ [1, |w|] with i ≤ i′ < j′ ≤ j and i′−i+1
j−j′+1 = n

d

we have w |= µn,d,q(i, i
′, j′, j) if, and only if, −q ≤ ∆(wi · · ·wi+k·n−1wj−k·d+1 · · ·wj) ≤ q for all

k ∈ N>0, k ≤ (j − j′ + 1)/d and ∆(wi · · ·wi′wj′ · · ·wj) = 0.
It remains to show that Lp,q is recognized by a finite aperiodic monoid for all p, q ∈ N. Set

Qq = {−q, . . . ,−1, 0, 1, . . . , q,⊥} and consider the monoid Qq
Qq with function composition from

left to right. For each ah ∈ Γp, we define the function fah : Qq → Qq to be such that

fah(h
′) =

{
h′ + h if h′ ̸= ⊥ and −q ≤ h′ + h ≤ q

⊥ otherwise

for all h′ ∈ Qq. We take Mp,q to be the submonoid of QqQq generated by {fah | ah ∈ Γp} and define
φp,q : Γ

∗
p →Mp,q as the unique monoid morphism such that φp,q(ah) = fah for all ah ∈ Γp.

It is straightforward to show, by induction on the length of w, that for all w ∈ Γ∗
p and all h ∈ Qq,

we have

φp,q(w)(h) =

{
h+∆p(w) if h ̸= ⊥ and −q ≤ h+∆p(w1 · · ·wi) ≤ q for all i ∈ [1, |w|]
⊥ otherwise.
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Thus Lp,q = φ−1
p,q({f ∈Mp,q | f(0) = 0}). We claim that the monoid Mp,q is aperiodic. Indeed, take

f ∈ Mp,q; we claim that f2q+1 = f2q+2. Since Mp,q is generated by {fah | ah ∈ Γp}, there exists
w ∈ Γ∗

p satisfying φp,q(w) = f . There are three subcases to consider.

• If ∆p(w) = 0, then since h+∆p(w
n−1w1 · · ·wi) = h+∆p(w1 · · ·wi) for all h ∈ Z,−q ≤ h ≤ q,

for all n ∈ N>0 and i ∈ [1, |w|], we have that fn = f for all n ∈ N>0.

• If ∆p(w) > 0, then since q < h+∆p(w
2q+1) ≤ h+∆p(w

2q+2) for all h ∈ Z,−q ≤ h ≤ q, both
f2q+1 and f2q+2 must be equal to the function sending every element to ⊥.

• If ∆p(w) < 0, then since h + ∆p(w
2q+2) ≤ h + ∆p(w

2q+1) < −q for all h ∈ Z,−q ≤ h ≤ q,
both f2q+1 and f2q+2 must be equal to the function sending every element to ⊥.

Formula ν+l (x, x
′). For all l ∈ N>0, we let

ν+l (x, x
′) =

l2∧
p=1

(
x′ − x+ 1 ≥ p→

p∧
k=1

k∨
h=0

Hh
k (x)

)
∧

∀z
(
z · l ≤ x′ − x+ 1 →

l∨
h=1

Hh
l

(
x+ (z − 1) · l

))
.

Fix any w ∈ Σ+ and i, i′ ∈ [1, |w|] such that i ≤ i′. We have w |= ν+l (i, i
′) if, and only if,

∆(wi · · ·wi+p−1) ≥ 0 for all p ∈ [1,min{l2, i′−i+1}] and ∆(wi+(q−1)·l · · ·wi+q·l−1) ≥ 1 for all q ∈ N>0

such that q · l ≤ i′ − i + 1. The latter is clearly equivalent to having ∆(wi+(q−1)·l · · ·wi+q·l−1) ≥ 1
for all q ∈ N>0, q · l ≤ i′ − i+ 1 and ∆(wi · · ·wi+p−1) ≥ 0 for all p ∈ [1, i′ − i+ 1], as required.

Formula ν−l (y
′, y). For all l ∈ N>0, we let

ν−l (y
′, y) =

l2∧
p=1

(
y − y′ + 1 ≥ p→

p∧
k=1

k∨
h=0

H−h
k (y − k + 1)

)
∧

∀z
(
z · l ≤ y − y′ + 1 →

l∨
h=1

H−h
l

(
y − z · l + 1

))
.

Therefore, analogously as for ν+l (x, x
′), for all w ∈ Σ+ and j′, j ∈ [1, |w|] such that j′ ≤ j, we have

w |= ν−l (j
′, j) if, and only if, ∆(wj−q·l+1 · · ·wj−(q−1)·l) ≤ −1 for all q ∈ N>0 such that q ·l ≤ j−j′+1

and ∆(wj−p+1 · · ·wj) ≤ 0 for all p ∈ [1, j − j′ + 1].

5.3.5 Evaluation in FO[+] (Proof of Point 4)

The following proposition states that every VPL L that has bounded nesting depth and for which
the horizontal and vertical evaluation languages EφL,r and EψL,e are quasi-aperiodic for all φL(L)-
reachable r and e, respectively, is definable by an FOΣ,↭[+]-sentence in case an approximate match-
ing is present as built-in predicate.
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Proposition 5.16. Assume a VPL L has bounded nesting depth and

• EφL,r is a regular language whose syntactic morphism is quasi-aperiodic for all φL(L)-reachable
r ∈ RL, and

• EψL,e is a regular language whose syntactic morphism is quasi-aperiodic for all φL(L)-reachable
e ∈ OL.

Then there exists an FOΣ,↭[+]-sentence η such that for any approximate matching M relative to
L, we have w ∈ L if, and only if, (w,M(w)) |= η for all w ∈ Σ∗.

Proof. By hypothesis, there exists dL ∈ N bounding the nesting depth of the words in L.
By hypothesis also, for each φL(L)-reachable r ∈ RL, the language EφL,r is regular and its

syntactic morphism is quasi-aperiodic. This implies, by [29, Theorem VI.4.1], that for each φL(L)-
reachable r ∈ RL, there exists an FOΓφL

[<,MOD]-sentence νφL,r defining EφL,r.
Finally, by hypothesis, for each φL(L)-reachable e ∈ OL, the language EψL,e is regular and its

syntactic morphism is quasi-aperiodic. Again, by [29, Theorem VI.4.1], for each φL(L)-reachable
e ∈ OL, there exists an FOΓψL

[<,MOD]-sentence νψL,e defining EψL,e.

Auxiliary formulas. We introduce a few auxiliary formulas that all assume access to the full
matching relation M△(w), represented by the relational symbol↭.

First let us define a formula A such that for all w ∈ Σ△ and i, j, k ∈ [1, |w|] satisfying wi · · ·wj ∈
Σ△, we have that (w,M△ (w)) |= A(i, j, k) if, and only if, i ≤ k < j and ∆(wi · · ·wk) > 0. We let

A(x, y, z) = ∃x′∃y′(x ≤ x′ ≤ z < y′ ≤ y ∧ x′↭ y′) .

Next, we define a formula U such that for all w ∈ Σ△ and i, i′, k ∈ [1, |w|], we have that
(w,M△ (w)) |= U(i, i′, k) if, and only if, i ≤ k ≤ i′ and k is matched to some position larger than
i′ in w. We let

U(x, x′, z) = x ≤ z ≤ x′ ∧ ∃t(z↭ t ∧ x′ < t) .

The last formulas we introduce are Nd which express that the infix wi · · ·wj ∈ Σ△ of w ∈ Σ△ has
nesting depth at least d ≥ 0. More precisely, for all d ∈ N, we introduce auxiliary formulas Nd such
that for all w ∈ Σ△ and i, j ∈ [1, |w|] satisfying wi · · ·wj ∈ Σ△, we have that (w,M△ (w)) |= Nd(i, j)
if, and only if, nd(wi · · ·wj) ≥ d. The case d = 0 is trivial since we can set N0(i, j) = ⊤.

Take w ∈ Σ△ such that nd(w) = d′ ≥ 1. Note that then w can be factorized as w = w1uw2

such that w1, w2 ∈ Σ△, u ∈ ΣcallΣ
△Σret and nd(w) = nd(u) = d′. This means that u = a1vb1 for

a1 ∈ Σcall, b1 ∈ Σret and v ∈ Σ△. We then apply Lemma 4.16 and Lemma 4.17 implying that u has
a nesting-maximal stair factorization

u = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxk,yk ◦ extak,bk(u
′)

for which there exists h ∈ [1, k] such that, setting ui = extai,bi ◦ extxi+1,yi+1 ◦ · · · ◦ extak,bk(u
′) for

all i ∈ [1, k] and uk+1 = u′, we have nd(u) = nd(uh) = d′ and nd(extxh+1,yh+1
◦ extah+1,bh+1

◦ · · · ◦
extak,bk(u

′)) = nd(uh+1) = d′ − 1. Thus, by definition of the nesting depth of a well-matched word,
uh = ahz1z2bh for z1, z2 ∈ Σ△ satisfying nd(z1) = nd(z2) = d′ − 1.

Hence, we set
N1(x, y) = ∃x′∃y′(x ≤ x′ < y′ ≤ y ∧ x′↭ y′)
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and for d ≥ 2 we set

Nd(x, y) = ∃x′∃y′∃z
(
x ≤ x′ < z < y′ ≤ y ∧ x′↭ y′ ∧ ¬A(x′ + 1, y′ − 1, z)∧
Nd−1(x

′ + 1, z) ∧Nd−1(z + 1, y′ − 1)
)

.

Main construction. To build the FOΣ,↭[+]-sentence η, we build FOΣ,↭[+]-formulas

• η↑d,r(x, y) for all d ∈ N and all φL(L)-reachable r ∈ RL and

• ηd,r(x, y) for all d ∈ N and all φL(L)-reachable r ∈ RL

that also assume access to the full matching relationM∆(w). They will have the following properties
for all w ∈ Σ△ and all i, j ∈ [1, |w|]:

• if i is matched to j in w, then (w,M△ (w)) |= η↑d,r(i, j) if, and only if, nd(wi · · ·wj) ≤ d and
φL(wi · · ·wj) = r and

• if wi · · ·wj ∈ Σ△, then (w,M△ (w)) |= ηd,r(i, j) if, and only if, nd(wi · · ·wj) ≤ d and
φL(wi · · ·wj) = r.

Let the formula E be defined as ∀x(x ̸= x) if ε ∈ L and ⊥ = ∃x(x ̸= x) otherwise. Our final formula
η will then be defined as

η =∀z∃t
(
(Σcall(z) → z↭ t) ∧ (Σret(z) → t↭ z)

)
∧(

E ∨ ∃x∃y
(
¬∃x′(x′ < x) ∧ ¬∃y′(y < y′) ∧

∨
r∈φL(L)

ηdL,r(x, y)
))
.

It now remains to build η↑d,r(x, y) and ηd,r(x, y) for all d ∈ N and φL(L)-reachable r ∈ RL. The
construction is by induction on d. Let r ∈ RL that is φL(L)-reachable. We define η↑0,r(x, y) = ⊥.
We define η0,r as

η0,r(x, y) = ¬N1(x, y) ∧ τ0(νφL,r) ,

where the translation τ0 is inductively defined as follows:

• τ0(z < z′) = z < z′;

• τ0(s(z)) =
∨
c∈φ−1

L (s)∩Σint
c(z) for all s ∈ φL(Σ

△ \ {ε});

• τ0(MODm(z)) = ∃t
(
(z = x→ 1 = t ·m) ∧ (z ̸= x→ z − x+ 1 = t ·m)

)
for all m ∈ N>0;

• τ0($(z)) = ⊥;

• τ0(ρ1(z1) ∧ ρ2(z2)) = τ0(ρ1(z1)) ∧ τ0(ρ1(z2));

• τ0(¬ρ(z)) = ¬τ0(ρ(z));

• τ0(∃zρ(z, z)) = ∃z
(
x ≤ z ≤ y ∧ τ0(ρ(z,z))

)
.

Now let d > 0. Let us first define ηd,r when assuming that we have already defined η↑d,r. Given
w ∈ Σ△ \ {ε} and i, j ∈ [1, |w|] such that wi · · ·wj ∈ Σ△ \ {ε}, note that in case nd(wi · · ·wj) ≤ d,
then one can factorize wi · · ·wj as wi · · ·wj = u1 · · ·um such that uℓ ∈ Σint ∪ ΣcallΣ

△Σret and
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nd(uℓ) ≤ d for all ℓ ∈ [1,m]. Note also that if φL(wi · · ·wj) = r, as r is φL(L)-reachable, then
φL(uℓ) is φL(L)-reachable for all ℓ ∈ [1,m]. Using these observations we define

ηd,r(x, y) = ¬Nd+1(x, y) ∧ ∀z
(
x ≤ z ≤ y →

(
τ1($(z)) ∨

∨
s∈φL(Σ△\{ε})
φL(L)-reachable

τ1(s(z))
))

∧ τ1(νφL,r) ,

where the translation τ1 agrees with the above translation τ0 (where, as expected, occurrences of τ0
are replaced by τ1) except for the following kinds of subformulas:

• τ1($(z)) = A(x, y, z);

• τ1(s(z)) = ¬A(x, y, z) ∧
(∨

c∈φ−1
L (s)∩Σint

c(z) ∨ ∃t
(
x ≤ t ≤ y ∧ t ↭ z ∧ η↑d,s(t, z)

))
if s is

φL(L)-reachable, τ1(s(z)) = ⊥ otherwise.

It remains to define η↑d,r.
We first construct for all φL(L)-reachable e ∈ OL a formula χd,e(x, x

′, y′, y) such that for all
w ∈ Σ△ and i, i′, j′, j ∈ [1, |w|], i ≤ i′ < j′ ≤ j we have that if wi · · ·wi′wj′ · · ·wj ∈ Σ△ and i′ is
matched to j′ in w, then given

extwi···wi′ ,wj′ ···wj = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxk,yk ◦ extak,bk

the stair factorization of extwi···wi′ ,wj′ ···wj provided by Lemma 3.6, we have (w,M△ (w)) |= χd,e(i, i
′, j′, j)

if, and only if, nd(xℓ), nd(yℓ) < d for all ℓ ∈ [1, k] and ψL(extwi···wi′ ,wj′ ···wj ) = e. Given w, i, i′, j′, j
and the associated stair factorization as above, note that if ψL(extwi···wi′ ,wj′ ···wj ) = e, as e is
φL(L)-reachable, then φL(xℓ) and φL(yℓ) are φL(L)-reachable for all ℓ ∈ [1, k]. If additionally
nd(xℓ), nd(yℓ) < d for all ℓ ∈ [1, k], we can inductively make use of the formulas {ηd−1,r′ | r′ ∈
RL φL(L)-reachable} in order to evaluate φL(x1), φL(y1), . . . , φL(xk), φL(yk). Let p1, . . . , pk ∈
[i, i′] be the positions in wi · · ·wi′ where, respectively, a1, . . . , ak in the above factorization of
extwi···wi′ ,wj′ ···wj appear: the formula χd,e will verify if σi · · ·σi′ ∈ EψL,e, where

σq =

{
leftφL(xm) ◦ rightφL(ym) ◦ ψL(extam,bm) if q = pm for m ∈ [1, k]

$ otherwise

for all q ∈ [i, i′]. Hence we set

χd,e(x, x
′, y′, y) = ∀z

(
x ≤ z ≤ x′ →

(
τ2($(z)) ∨

∨
f∈ψL

(
O(Σ△)↑

)
φL(L)-reachable

τ2(f(z))
))

∧ τ2(νψL,e) ,

where the translation τ2 agrees with translation τ0 (where, as expected, occurrences of τ0 are replaced
by τ2) with the following exceptions:

• τ2(∃zρ(z,z)) = ∃z
(
x ≤ z ≤ x′ ∧ τ2(ρ(z, z))

)
• τ2($(z)) = ¬U(x, x′, z)

• τ2(f(z)) =

{
∃t
(
U(x, x′, z) ∧ z↭ t ∧

(
ιd,f (x, x

′, y′, y, z, t) ∨ ζd,f (x, x′, z, t)
))

if f is φL(L)-reachable

⊥ otherwise
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for all f ∈ ψL
(
O(Σ△)↑

)
, where

ιd,f (x, x
′, y′, y, z, t) =¬∃z′

(
U(x, x′, z′) ∧ z′ < z

)
∧∨

a∈Σcall,b∈Σret,r′,r′′∈RL
f=leftr′◦rightr′′◦ψL(exta,b)

(
a(z) ∧ b(t)∧((
x < z ∧ ηd−1,r′(x, z − 1)

)
∨ Fr′(x, z)

)
∧((

t < y ∧ ηd−1,r′′(t+ 1, y)
)
∨ Fr′′(y, t)

))

with Fs(x, z) =

{
x = z if s = 1RL
⊥ otherwise

for all φL(L)-reachable s ∈ RL and

ζd,f (x, x
′, z, t) = ∃z′∃t′

(
U(x, x′, z′) ∧ z′ < z ∧ ¬∃z′′

(
z′ < z′′ < z ∧ U(x, x′, z′′)

)
∧ z′↭ t′∧∨

a∈Σcall,b∈Σret,r′,r′′∈RL
f=leftr′◦rightr′′◦ψL(exta,b)

(
a(z) ∧ b(t)∧

ηd−1,r′(z
′ + 1, z − 1) ∧ ηd−1,r′′(t+ 1, t′ − 1)

))
.

We now construct η↑d,r itself. Given w ∈ Σ△ \ {ε} and i, j ∈ [1, |w|] such that i is matched to j
in w, observe first that the infix wi · · ·wj is of the form wi · · ·wj = a1vb1 ∈ Σ△ for some a1 ∈ Σcall,
b1 ∈ Σret, and v ∈ Σ△. As above, we can directly express nd(wi · · ·wj) ≤ d via the formula ¬Nd+1.
Assuming this holds, towards expressing that φL(wi · · ·wj) = r, we make use of Lemma 4.16 and
Lemma 4.17: for the infix wi · · ·wj there is a nesting-maximal stair factorization

wi · · ·wj = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxk,yk ◦ extak,bk(u
′)

such that we have

1. nd(x1),nd(y1), . . . ,nd(xk), nd(yk) < d; and

2. if φL(wi · · ·wj) = r, as r is φL(L)-reachable, then ψL(extx1,y1 ◦ exta1,b1 ◦ · · ·◦extxk,yk ◦ extak,bk)
and φL(u′) are φL(L)-reachable.

By these points, we can use the formulas {χd,e(x, x′, y′, y) | e ∈ OL φL(L)-reachable} to evaluate
ψL(extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxk,yk ◦ extak,bk) and the formulas {η0,r′ | r′ ∈ RL φL(L)-reachable} to
evaluate φL(u′). We are now ready to give the formula η↑d,r. We set

η↑d,r(x, y) = ¬Nd+1(x, y) ∧ ∃x′∃y′
(
x ≤ x′ < y′ ≤ y ∧ x′↭ y′∧∨
r′∈RL,e∈OL
e(r′)=r

(
χd,e(x, x

′, y′, y) ∧ η0,r′(x′ + 1, y′ − 1)
))

.

5.4 The intermediate case

The following theorem effectively characterizes the remaining case, namely those VPLs that are
weakly length-synchronous but not length-synchronous and whose syntactic morphism is quasi-
aperiodic: such VPLs are shown to be constant-depth equivalent to a non-empty disjoint union of
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intermediate VPLs. The computability of k, l ∈ N with k ̸= l such that Lk,l ≤cd L is subject of
Section 5.4.2.

Theorem 5.17. If L is weakly length-synchronous but not length-synchronous, and its syntactic
morphism (φL, ψL) is quasi-aperiodic, one can effectively compute vertically visibly pushdown gram-
mars G1, . . . , Gm generating intermediate VPLs such that L =cd

⊎m
i=1 L(Gi).

Before we give the proof of the theorem we need a bit of notation. Let L ⊆ Σ△ be a VPL that
is weakly length-synchronous, not length-synchronous, and whose syntactic morphism (φL, ψL) is
quasi-aperiodic. By Proposition 5.1 one can effectively compute its syntactic Ext-algebra (RL, OL),
(φL, ψL) and φL(L) from (a given DVPA for) L.

For all e ∈ OL recall that

Ue = {(u, v) ∈ Con(Σ) | e ◦ ψL(extu,v) = e}.

For all φL(L)-reachable e ∈ OL and some fresh internal letter # ̸∈ Σ let

Me = {u#v | (u, v) ∈ Con(Σ),∆(u) > 0, e ◦ ψL(extu,v) = e}.

Note that since L is assumed to be weakly length-synchronous, by Proposition 4.5, Ue is weakly
length-synchronous for all φL(L)-reachable e ∈ OL.

Also note that since Me =
⋃
{Lf | f ∈ OL : e◦f = e}∩{u#v | uv ∈ Σ△,∆(u) > 0}, since for all

languages Lf one can effectively compute Ext-algebras recognizing them by Lemma 6.4, and since
one can effectively computable an Ext-algebra recognizing the language {u#v | uv ∈ Σ△,∆(u) > 0},
we obtain that one can effectively compute an Ext-algebra recognizing Me ⊆ Σ∗#Σ∗. The set
Se = {(k, l) ∈ N2 | ∃(u, v) ∈ Σk × Σl : u#v ∈ Me} ⊆ N2

>0 is hence effectively semilinear by
Lemma 6.5. Note that the word relation Ue is length-synchronous if, and only if, there exists some
α ∈ Q>0 such that k

l = α for all (k, l) ∈ Se. Lemma 6.7 implies that the latter condition is decidable.
As a consequence one can effectively compute the set

Z = {e ∈ OL | e is φL(L)-reachable and Ue is not length-synchronous}.

Observe that since L is not length-synchronous by assumption, we have Z ̸= ∅ (Proposition 4.10).
Let us introduce two fresh copies Σ̃ = {σ̃ | σ ∈ Σ} and Σ = {σ | σ ∈ Σ} of our alphabet Σ. Let

ϑ̃ : (Σ̃ ∪ Σ)∗ → Σ̃∗ and ϑ : (Σ ∪ Σ)∗ → Σ
∗ be the (letter-to-letter and hence length-multiplying)

morphisms satisfying ϑ̃(σ) = ϑ̃(σ̃) = σ̃ and ϑ(σ) = ϑ(σ) = σ for all σ ∈ Σ. Conversely, let
ϑ̃−1 : (Σ̃ ∪ Σ)∗ → Σ∗ and ϑ

−1
: (Σ ∪ Σ)∗ → Σ∗ be the morphisms satisfying ϑ̃−1(σ̃) = ϑ̃−1(σ) = σ

and ϑ−1
(σ) = ϑ

−1
(σ) = σ for all σ ∈ Σ.

We define a new visibly pushdown alphabet Υ = Υcall ∪Υint ∪Υret where Υcall = Σcall, Υint =
Σint ∪ Σ̃ ∪ Σ ∪ {#}, and Υret = Σret.

For every word u#v ∈Me consider the unique factorization

u#v = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxk,yk ◦ extak,bk ◦ extxk+1,yk+1
(#)

where k ≥ 1, x1, . . . , xk+1, y1, . . . , yk+1 ∈ Σ△, a1, . . . , ak ∈ Σcall, and b1, . . . , bk ∈ Σret. For these we
define

(u#v)‡ = ext
ϑ̃(x1),ϑ(y1)

◦ exta1,b1 ◦ · · · ◦ extϑ̃(xk),ϑ(yk) ◦ extak,bk ◦ extϑ̃(xk+1),ϑ(yk+1)
(ε) ∈ Υ△ .
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Notably, (u#v)‡ does not contain the letter #. Finally, for all e ∈ Z we define the language

Ne = {(u#v)‡ ∈ Υ∗ | u#v ∈Me} ∪ {ε} ⊆ Υ△ .

Remark 5.18. Let be n ∈ N be the constant from Lemma 4.6 for L and let e ∈ Z. When setting
F = φL(L) and (φ,ψ) = (φL, ψL), Lemma 4.6 states that the factorization

u#v = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxk,yk ◦ extak,bk ◦ extxk+1,yk+1
(#)

of every word u#v ∈ Me satisfies |x1|, . . . , |xk+1|, |y1|, . . . , |yk+1| ≤ n. As a consequence, for the
corresponding factorization

(u#v)‡ = ext
ϑ̃(x1),ϑ(y1)

◦ exta1,b1 ◦ · · · ◦ extϑ̃(xk),ϑ(yk) ◦ extak,bk ◦ extϑ̃(xk+1),ϑ(yk+1)
(ε)

of every word (u#v)‡ ∈ Ne \ {ε} we have
∣∣∣ϑ̃(x1)∣∣∣, . . . , ∣∣∣ϑ̃(xk+1)

∣∣∣, ∣∣ϑ(y1)∣∣, . . . , ∣∣ϑ(yk+1)
∣∣ ≤ n.

5.4.1 Proof strategy

We are now ready to give the proof strategy for Theorem 5.17. The proof consists of the following
steps.

1. Ne is an intermediate VPL for all e ∈ Z. Moreover, one can effectively compute a vertically
visibly pushdown grammar Ge witnessing that Ne is indeed intermediate (Lemma 5.19).

2. Ne ≤cd Me for all e ∈ Z (Lemma 5.20).

3. Me ≤cd Ne for all e ∈ Z (Lemma 5.21).

4. Me ≤cd
⊎
f ∈ OL is φL(L)-reachable Lf for all e ∈ Z (Lemma 5.22).

5. L ≤cd
⊎
e∈Z Me (Lemma 5.23).

Let us argue that Theorem 5.17 follows from the above steps. By Point 1 for all e ∈ Z we
have that Ne is an intermediate VPL, for which moreover one can effectively compute a vertically
visibly pushdown grammar Ge witnessing that Ne is indeed intermediate. Recalling that Z ≠ ∅,
it remains to argue that L =cd

⊎
{Ne | e ∈ Z}. Before we prove this let us recall some basics of

constant-depth reductions. For this, let K,L1, . . . , Ln,K1, . . . ,Kn be languages. Firstly, observe
that if Li ≤cd Ki for all i ∈ [1, n], then

⊎
i∈[1,n] Li ≤cd

⊎
i∈[1,n]Ki. Secondly, if Li ≤cd K for all

i ∈ [1, n], then
⊎
i∈[1,n] ≤cd K.
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Hence we obtain the following sequence of reductions showing that L =cd
⊎
{Ne | e ∈ Z}.

L
Point 5
≤cd

⊎
e∈Z

Me

Point 3
≤cd

⊎
e∈Z

Ne

Point 2
≤cd

⊎
e∈Z

Me

Point 4
≤cd

⊎
f ∈ OL is φL(L)-reachable

Lf

Lemma 5.3
≤cd L .

Lemma 5.19. Ne is an intermediate language for all e ∈ Z. Moreover, one can effectively compute
a vertically visibly pushdown grammar witnessing that Ne is indeed an intermediate VPL.

Proof. Let e ∈ Z. For showing that Ne is an intermediate VPL we first show that Ne is quasi-
counterfree. To this end we show that (φNe , ψNe) of Ne is quasi-aperiodic, which is equivalent by
Proposition 4.18.

Assume by contradiction that (φNe , ψNe) is not quasi-aperiodic. Then there exist k, l ∈ N such
that ψNe(O(Υ△)k,l) contains a non-trivial group, say G ⊆ ONe . Let g0 be the identity of G and let
g1 ∈ G be such that g1 ̸= g0. Thus, we have gi+1

1 ̸= gi1 for all N>0. We claim that all g ∈ G are
φNe(Ne) reachable: indeed, if g ∈ G were not φNe(Ne)-reachable, then the same would hold for all
g′ ∈ G since g′ = g′g−1g, hence implying that g′ is the (one and only) zero of ONe , contradicting
that G is non-trivial. Fix some extu0,v0 , extu1,v1 ∈ O(Υ△)k,l such that ψNe(extu0,v0) = g0 and
ψNe(extu1,v1) = g1. Note that we must have k > 0 or l > 0 for otherwise we would have u0 = u1 = ε

and v0 = v1 = ε, a contradiction to g0 ̸= g1. We moreover claim that u0, u1 ̸∈ Σ̃∗ and hence
v0, v1 ̸∈ Σ

∗: indeed, a consequence of Remark 5.18 is that extu,v ∈ ψ−1
Ne

(f)∩ Σ̃s×Σ
t implies s, t ≤ n

for all φNe(Ne)-reachable f ∈ ONe , yet the fact that ψNe(extui,vi) is inG and thus φNe(Ne)-reachable
for all i ≥ 1 contradicts this (recall that |u1| > 0 or |v1| > 0). In other words, both u0 and u1
contain at least one letter from Σcall and both v0 and v1 contain a letter from Σret.

Next we claim that neither u0 nor u1 contain any letter from Σret: indeed, without loss of
generality if u1 were to contain a letter from Σret then ψNe(extu21,v21 ) would be the zero of ONe ,
contradicting that ψNe(extu21,v21 ) is in G. It follows that u0, u1 ∈ (Σ̃∗ΣcallΣ̃

∗)+ and hence that
v0, v1 ∈ (Σ

∗
ΣretΣ

∗
)+.

Let u′0 = ϑ̃−1(u0), u′1 = ϑ̃−1(u1), v′0 = ϑ
−1

(v0), v′1 = ϑ
−1

(v1) and note that extu′0,v′0 , extu′1,v′1 ∈
O(Σk,l). Since P(OL) forms a monoid there exists p ∈ N>0 such that

ψL({extu′0,v′0 , extu′1,v′1})
p = ψL({extu′0,v′0 , extu′1,v′1})

2p .

This implies that for all i ∈ N>0, we have

ψL(extu′p−1
0 u′1,v

′
1v

′p−1
0

)i ∈ ψL({extu′0,v′0 , extu′1,v′1})
ip = ψL({extu′0,v′0 , extu′1,v′1})

p .

Hence, as |u0| = |u1| = |u′0| = |u′1| = k and |v0| = |v1| = |v′0| = |v′1| = l, the semigroup
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{ψL(extu′p−1
0 u′1,v

′
1v

′p−1
0

)i | i ∈ N>0} is contained in ψL(O(Σ△)kp,lp). We show that the latter semi-
group is not aperiodic by showing ψL(extu′p−1

0 u′1,v
′
1v

′p−1
0

)i ̸= ψL(extu′p−1
0 u′1,v

′
1v

′p−1
0

)i+1 for all i ∈ N>0.
Indeed, since

ψNe

((
ext

up−1
0 u1,v1v

p−1
0

)i+1
)

= gi+1
1 ̸= gi+2

1 = ψNe

((
ext

up−1
0 u1,v1v

p−1
0

)i+2
)

there exist extx,y ∈ O(Υ△) and w ∈ Υ△ such that, without loss of generality(
extx,y ◦

(
ext

up−1
0 u1,v1v

p−1
0

)i+1
)
(w) ∈ Ne and

(
extx,y ◦

(
ext

up−1
0 u1,v1v

p−1
0

)i+2
)
(w) ̸∈ Ne.

Now since u0, u1 ∈ (Σ̃∗ΣcallΣ̃
∗)+ there exists a factorization up−1

0 u1wv1v
p−1
0 = x′y′ such that(

ext
ϑ̃−1(x),ϑ

−1
(y)

◦
(
ext

ϑ̃−1(up−1
0 u1),ϑ

−1
(v1v

p−1
0 )

)i)
(ϑ̃−1(x′)#ϑ

−1
(y′)) ∈Me

and (
ext

ϑ̃−1(x),ϑ
−1

(y)
◦
(
ext

ϑ̃−1(up−1
0 u1),ϑ

−1
(v1v

p−1
0 )

)i+1
)
(ϑ̃−1(x′)#ϑ

−1
(y′)) ̸∈Me

By definition of Me we obtain

e = e ◦ ψL
(
ext

ϑ̃−1(x(up−1
0 u1)ix′),ϑ

−1
(y′(v1v

p−1
0 )iy)

)
= e ◦ ψL

(
ext

ϑ̃−1(x),ϑ
−1

(y)

)
◦ ψL

(
ext

ϑ̃−1(up−1
0 u1),ϑ

−1
(v1v

p−1
0 )

)i
◦ ψL

(
ext

ϑ̃−1(x′),ϑ
−1

(y′)

)
and

e ̸= e ◦ ψL
(
ext

ϑ̃−1(x(up−1
0 u1)i+1x′),ϑ

−1
(y′(v1v

p−1
0 )i+1y)

)
= e ◦ ψL

(
ext

ϑ̃−1(x),ϑ
−1

(y)

)
◦ ψL

(
ext

ϑ̃−1(up−1
0 u1),ϑ

−1
(v1v

p−1
0 )

)i+1
◦ ψL

(
ext

ϑ̃−1(x′),ϑ
−1

(y′)

)
.

Thus, we must have ψL(extu′p−1
0 u′1,v

′
1v

′p−1
0

)i ̸= ψL(extu′p−1
0 u′1,v

′
1v

′p−1
0

)i+1, as required. As this is true for
each i ∈ N>0, the semigroup {ψL(extu′p−1

0 u′1,v
′
1v

′p−1
0

)i | i ∈ N>0} that is contained in ψL(O(Σ△)kp,lp)

is not aperiodic, contradicting quasi-aperiodicity of (φL, ψL).
It remains to show that one can compute a vertically visibly pushdown grammar Ge with

L(Ge) = Ne such that R(Ge) is weakly length-synchronous but not length-synchronous. By Re-
mark 5.18 each non-empty word in Ne is of the form

(u#v)‡ = ext
ϑ̃(x1),ϑ(y1)

◦ exta1,b1 ◦ · · · ◦ extϑ̃(xk),ϑ(yk) ◦ extak,bk ◦ extϑ̃(xk+1),ϑ(yk+1)
(ε)

for some k ≥ 1 and some words x1, . . . , xk+1, y1, . . . , yk+1 ∈ Σ△ all of which have length at most n
such that moreover e◦ψL(extu,v) = e. We construct the grammar Ge = (V,Υ, P, Se) as follows. The
set of nonterminals is V = {Sf | f ∈ OL}, Se ∈ V is the start nonterminal, the set of productions
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consists of the union of {Se →Ge ε} and{
Sf →Ge ϑ̃(x1)aϑ̃(x2)Sgϑ(y2)bϑ(y1)

∣∣ f, g ∈ OL, x1, x2, y1, y2 ∈ Σ△, |x1|, |x2|, |y1|, |y2| ≤ n,

a ∈ Σcall, b ∈ Σret, f ◦ ψL(extx1ax2,y2by1) = g

}
.

As a consequence we obtain

R(Ge) =

{(
ϑ̃(x1) . . . akϑ̃(xx+1), ϑ(yk+1)bk . . . ϑ(y1)

) ∣∣ x1, . . . , xk+1, x1, . . . , yk+1 ∈ Σ△,

a1, . . . , ak ∈ Σcall, b1, . . . , bk ∈ Σret,

e ◦ ψL(exta1...akxk+1,yk+1bk...y1) = e

}

=

{(
ϑ̃(x1) . . . akϑ̃(xx+1), ϑ(yk+1)bk . . . ϑ(y1)

) ∣∣ x1, . . . , xk+1, x1, . . . , yk+1 ∈ Σ△,

a1, . . . , ak ∈ Σcall, b1, . . . , bk ∈ Σret,

(x1 . . . akxk+1, yk+1bk . . . y1) ∈ Ue
}
.

It follows that R(Ge) is weakly length-synchronous since Ue is: indeed, if R(Ge) were not weakly
length-synchronous and without loss of generality there were to exist (u, v), (u′, v′) ∈ R(Ge) with
u = u′ and |v| ≠ |v′|, then both (ϑ̃−1(u), ϑ

−1
(v)) and (ϑ̃−1(u′), ϑ

−1
(v′)) would be in Ue by definition.

Yet ϑ̃−1(u) = ϑ̃−1(u′) and |ϑ−1
(v)| = |v| ≠ |v′| = ϑ

−1
(v′), so this would contradict that Ue is indeed

weakly length-synchronous. Analogously it follows that R(Ge) is not length-synchronous since Ue
is not length-synchronous by assumption.

Lemma 5.20. Ne ≤cd Me for all e ∈ Z.

Proof. Assume we are given w ∈ Υ∗. To decide if w ∈ Ne using an oracle to Me we do the following
constant-depth computation:

1. Accept if w = ε, otherwise continue.

2. Check if w = uv for some u ∈ (Σ̃ ∪ Σcall)
∗ and some v ∈ (Σ ∪ Σret)

∗, reject if this is not the
case.

3. Check whether u can be factorized as u = x1a1 · · ·xkakxk+1, where k ≥ 1, x1, . . . , xk+1 ∈
{x ∈ Σ̃∗ | |x| ≤ n ∧ ϑ̃−1(x) ∈ Σ△} and a1, . . . , ak ∈ Σcall and whether v can be factorized
as v = yl+1blyl · · · a1y1, where l ≥ 1, y1, . . . , yl+1 ∈ {y ∈ Σ

∗ | |y| ≤ n ∧ ϑ−1
(y) ∈ Σ△} and

b1, . . . , bl ∈ Σret. Reject if it is not possible. (Observe that this is doable by a constant depth
and polynomial size circuit family since we test membership in finite sets that do not depend
on the input.)

4. Finally accept if, and only if, the word

ϑ̃−1(x1)a1 · · · ϑ̃−1(xk−1)akϑ̃
−1(xk+1)#ϑ

−1
(yl+1)blϑ

−1
(yl+1) · · · b1ϑ

−1
(y1)

is in Me.
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Lemma 5.21. Me ≤ Ne for all e ∈ Z.

Proof. Assume we are given w ∈ (Σ ∪ {#})∗, where w = w1 · · ·wm and where wi ∈ Σ ∪ {#} for
all i ∈ [1,m]. To decide if w ∈ Me using an oracle to Ne we do the following constant-depth
computation:

1. Check if w = u#v for some u ∈ Σ+ and some v ∈ Σ+, reject otherwise.

2. For all return letters b ∈ Σret and all positions j within u at which b appears, check whether
there exists a position i within u such that 1 ≤ j − i ≤ n − 1 and the infix wi · · ·wj is in
Σ△. (As above, this is doable by a constant depth and polynomial size circuit family since
we check well-matchedness of at most a fixed number of words that does not depend on the
input.) Reject if it is not the case.

3. For all call letters a ∈ Σcall and all positions i within v at which a appears, check whether
there exists a position j within v such that 1 ≤ j − i ≤ n− 1 and the infix wi · · ·wj is in Σ△.
Reject if it is not the case.

4. For each position i within u, compute Pcall(i) where Pcall is the unary predicate defined by
w |= Pcall(i) if, and only if, i is a position within u, wi ∈ Σcall, and there does not exist any
position j within u such that 1 ≤ j − i ≤ n− 1 and the infix wi · · ·wj is in Σ△.

5. For each position j within v, compute Pret(j) where Pret is the unary predicate defined by
w |= Pret(j) if, and only if, j is a position within v, wj ∈ Σret, and there does not exist any
position i within v such that 1 ≤ j − i ≤ n− 1 and the infix wi · · ·wj is in Σ△.

6. Let 1 ≤ i1 < i2 · · · < ik ≤ |u| be an enumeration of {i ∈ [1, |u|] | w |= Pcall(i)} and let
|u|+ 2 ≤ jl < jl−1 · · · < j1 ≤ m be an enumeration of {j ∈ [|u|+ 2,m] | w |= Pret(j)}. Build

u′ = ϑ̃(w1 · · ·wi1−1)wi1 · · · ϑ̃(wik−1+1 · · ·wik−1)wik ϑ̃(wik+1+1 · · ·w|u|)

and
v′ = ϑ(w|u|+2 · · ·wjl+1−1)wjl · · ·ϑ(wj2 + 1 · · ·wj1−1)wj1ϑ(wj1 + 1 · · ·wm).

7. Accept if, and only if, the word u′v′ is in Ne.

Lemma 5.22. Me ≤cd
⊎
f ∈ OL is φL(L)-reachable Lf for all e ∈ Z.

Proof. Note that the following equivalence holds:

u#v ∈Me ⇐⇒ ∃f ∈ OL that is φL(L)-reachable : e ◦ f = e ∧ u#v ∈ Lf ∧∆(u) > 0 .

This holds because for extu,v ∈ O(Σ△) satisfying e ◦ ψL(extu,v) = e, as e is φL(L)-reachable,
ψL(extu,v) must also be φL(L)-reachable. Assume we are given w ∈ (Σ∪{#})∗. To decide if w ∈Me

we do the following constant-depth computation using oracles to
⊎
f ∈ OL is φL(L)-reachable Lf :

1. Check if w = u#v for some u, v ∈ Σ∗, reject otherwise.

2. Check if u#v ∈ Lf for some φL(L)-reachable f ∈ OL satisfying e ◦ f = e, reject otherwise.

3. Finally, accept if, and only if for all φL(L)-reachable f ∈ OL we have u# ̸∈ Lf .

If the second check is successful, then ψL(extu,v) is necessarily φL(L)-reachable, so in that case
when ∆(u) = 0 it holds that u ∈ Σ△ and ψL(extu,ε) is φL(L)-reachable. Hence, in combination
with the second check, the third check is successful if, and only if ∆(u) > 0.
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Lemma 5.23. L ≤cd
⊎
e∈Z Me.

Proof. By assumption L is weakly length-synchronous but not length-synchronous, and its syntactic
morphism (φL, ψL) is quasi-aperiodic. There is a constant dL such that all words in L have nesting
depth at most dL by Proposition 4.14.

By the first point of Proposition 5.10 we may assume that the evaluation language EφL,r is regular
and its syntactic morphism is quasi-aperiodic for all φL(L)-reachable r ∈ RL. This implies, by [29,
Theorem VI.4.1], that for each φL(L)-reachable r ∈ RL, there exists an FOΓφL

[<,MOD]-sentence
νφL,r defining EφL,r.

As L is not length-synchronous we cannot assume analogous sentences for the evaluation lan-
guages EψL,e for all φL(L)-reachable e ∈ OL. Indeed, Remark 5.11 provides an example of a weakly
length-synchronous but non-length-synchronous VPL whose syntactic morphism is quasi-aperiodic
but for which some evaluation language EψL,e for e ∈ OL that is φL(L)-reachable has a non-quasi-
aperiodic syntactic morphism.

However, let e ∈ OL be such that Re = {(u, v) ∈ Con(Σ) | ψL(extu,v) = e} is length-synchronous.
Take any φL(L)-reachable idempotent f ∈ OL such that there exist g, h ∈ OL satisfying e = g◦f ◦h.
There exist extxg ,yg , extxh,yh ∈ O(Σ△) such that ψL(extxg ,yg) = g and ψL(extxh,yh) = h. Let
(u, v), (u′, v′) ∈ Con(Σ) such that ∆(u),∆(u′) > 0 and ψL(extu,v) = ψL(extu′,v′) = f . Because f
is idempotent, we have that ψL(extu|v′|,v|v′|) = ψL(extu′|v|,v′|v|) = f , thus ψL(extxgu|v′|xh,yhv|v′|yg) =
ψL(extxgu′|v|xh,yhv′|v|yg) = e. Therefore, because of length-synchronicity of Re, it follows that∣∣∣xgu|v′|xh∣∣∣∣∣yhv|v′|yg∣∣ =

∣∣xgu′|v|xh∣∣∣∣yhv′|v|yg∣∣
|xg|+ |v′| · |u|+ |xh|
|yh|+ |v′| · |v|+ |yg|

=
|xg|+ |v| · |u′|+ |xh|
|yh|+ |v| · |v′|+ |yg|∣∣v′∣∣ · |u| = |v| ·
∣∣u′∣∣

|u|
|v|

=
|u′|
|v′|

.

So we can conclude that Rf = {(u, v) ∈ Con(Σ) | ψL(extu,v) = f} is length-synchronous. Thus, by
the second point of Proposition 5.10 we may assume that the evaluation language EψL,e is regular
and its syntactic morphism is quasi-aperiodic for all φL(L)-reachable e ∈ OL with Re length-
synchronous. This implies again, by [29, Theorem VI.4.1], that for each φL(L)-reachable e ∈ OL
with Re length-synchronous, there exists an FOΓψL

[<,MOD]-sentence νψL,e defining EψL,e.
For proving L ≤cd

⊎
e∈Z Me we must thus make use of the oracles to

⊎
e∈Z Me. All of the

following predicates can be computed by a circuit family of constant depth and polynomial size with
access to these oracles. More concretely, by accessing oracles to

⊎
e∈Z Me, for all e ∈ Z we may

assume that we have a predicate πexacte such that for all w ∈ Σ+ and i, i′, j′, j ∈ [1, |w|], i ≤ i′ < j′ ≤ j
the following holds:

w |= πexacte (i, i′, j′, j) ⇐⇒ wi · · ·wi′wj′ · · ·wj ∈ Σ△, e ◦ ψL(extwi···wi′ ,wj′ ···wj ) = e and (4)
∆(wi · · ·wi′) > 0

For all φL(L)-reachable e ∈ OL that are not in Z we may assume, by Lemma 5.13, that we
have the FO[+]-definable (and hence constant-depth computable) predicate πe at hand. It has the
following properties: for all w ∈ Σ+ and i, i′, j′, j ∈ [1, |w|], i ≤ i′ < j′ ≤ j:

• if w |= πe(i, i
′, j′, j), then wi · · ·wi′wj′ · · ·wj ∈ Σ△ and
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• if wi · · ·wi′wj′ · · ·wj ∈ Σ△, ∆(wi · · ·wi′) > 0 and e ◦ ψL(extwi···wi′ ,wj′ ···wj ) = e, then w |=
πe(i, i

′, j′, j).

We can first build an approximate matching µ relative to L. This is done totally analogously
as done in Section 5.3.4 by replacing the there appearing πe for each e ∈ Z by our predicate πexacte :
indeed, Remark 5.15 states that the predicates πe from of Lemma 5.13 could have been replaced by
the predicate πexacte .

Thus, as in the proof of Proposition 5.16 we may assume that we have full access to the matching
relation M∆(w) of our input word w.

For verifying if a given word w ∈ Σ△ is in L we follow the same approach as the main construction
in Section 5.3.5. It is however important to stress that this time we cannot assume quasi-aperiodicity
of the syntactic morphisms of the evaluation languages EψL,e for all φL(L)-reachable e ∈ OL. Still,
we build formulas

• η↑d,r(x, y) for all d ∈ [0, dL] and all φL(L)-reachable r ∈ RL and

• ηd,r(x, y) for all d ∈ [0, dL] and all φL(L)-reachable r ∈ RL

that will have the following properties (as ηd,r and η↑d,r) for all w ∈ Σ△ and all i, j ∈ [1, |w|]:

• if i is matched to j in w, then (w,M△ (w)) |= η↑d,r(i, j) if, and only if, nd(wi · · ·wj) ≤ d and
φL(wi · · ·wj) = r;

• if wi · · ·wj ∈ Σ△, then (w,M△ (w)) |= ηd,r(i, j) if, and only if, nd(wi · · ·wj) ≤ d and
φL(wi · · ·wj) = r.

It remains to define the formulas ηd,r and η↑d,r for all d ∈ [0, dL] and all φL(L)-reachable r ∈ RL.
For the definition of the η↑0,r and the η0,r we can simply reuse η0,r and η↑0,r as in the proof of
Proposition 5.16 respectively (η0,r will make use of our sentence νφL,r). So let us assume d > 0.

We first construct for all φL(L)-reachable e ∈ OL a formula χd,e(x, x
′, y′, y) such that for all

w ∈ Σ△ and i, i′, j′, j ∈ [1, |w|], i ≤ i′ < j′ ≤ j we have that if wi · · ·wi′wj′ · · ·wj ∈ Σ△ and i′ is
matched to j′ in w, then given

extwi···wi′ ,wj′ ···wj = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxk,yk ◦ extak,bk

the stair factorization of extwi···wi′ ,wj′ ···wj provided by Lemma 3.6, we have (w,M△ (w)) |= χd,e(i, i
′, j′, j)

if, and only if, nd(xℓ), nd(yℓ) < d for all ℓ ∈ [1, k] and ψL(extwi···wi′ ,wj′ ···wj ) = e. Given w, i, i′, j′, j
and the associated stair factorization as above, note that if ψL(extwi···wi′ ,wj′ ···wj ) = e, as e is
φL(L)-reachable, then φL(xℓ) and φL(yℓ) are φL(L)-reachable for all ℓ ∈ [1, k]. If additionally
nd(xℓ), nd(yℓ) < d for all ℓ ∈ [1, k], we can inductively make use of the formulas {ηd−1,r′ | r′ ∈
RL φL(L)-reachable} in order to evaluate φL(x1), φL(y1), . . . , φL(xk), φL(yk).

As expected, the problems are, firstly, that we cannot access our evaluation languages EψL,e and,
secondly, that we have to build a formula that may not depend on k. As in Section 5.3.4 we define
the product

eℓ,ℓ′ = ψL(extxℓ,yℓ ◦ extaℓ,bℓ ◦ · · · ◦ extxℓ′ ,yℓ′ ◦ extaℓ′ ,bℓ′ ) and eℓ = e1,ℓ

for all ℓ, ℓ′ ∈ [1, k]. For e ∈ OL we say an interval I = [s, t] ⊆ [1, k] is e-repetitive if s < t and
es = et. We say [s, t] ⊆ [1, k] is repetitive if it is e-repetitive for some e ∈ OL.

By Claim 5.14 there exist indices 1 = t0 ≤ s1 < t1 < s2 < t2 < · · · < sq < tq ≤ sq+1 = k
such that [s1, t1], . . . , [sq, tq] are all repetitive and for D0 = [t0, s1], D1 = [t1, s2], . . . , Dq = [tq, sq+1]
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we have q +
∑q

p=0 |Dp| ≤ 3 |OL|. Let i = i1 < · · · < ik and jk < · · · < j1 = j be the po-
sitions that correspond to the positions of the letters a1, . . . , ak ∈ Σcall and bk, . . . , b1 ∈ Σret of
the factorization of extwi···wi′ ,wj′ ···wj in w, respectively: more precisely iℓ = i + |x1 · · · aℓ−1xℓ| and
jℓ =

∣∣x1a1 · · ·xkakwi′+1 · · ·wj′−1bkyk · · · bℓ+1yℓ+1

∣∣+1 for all ℓ ∈ [1, k]. Since the non-empty interval
[sp, tp] is repetitive for all p ∈ [1, q], we have esp = etp and thus obtain

esp = etp = esp ◦ ψ(extxsp+1···atp ,btp ···ysp+1) .

Given p ∈ [1, q], if esp ∈ Z, we can use the predicate πexactesp
to check the above equality; we

set θd,esp (x, x
′, y′, y) = πexactesp

(x, x′, y′, y). If esp /∈ Z and is φL(L)-reachable, then Uesp is length-
synchronous, so for all e′ ∈ OL such that esp ◦ e′ = esp , we have that e′ is φL(L)-reachable and
Re′ = {(u, v) ∈ Σ∗ × Σ∗ | uv ∈ Σ△,∆(u) > 0, ψL(extu,v) = e′} is length-synchronous. So to check
the above equality, we can use the formula θd,esp (x, x

′, y′, y) built by taking the disjunction over
all e′ ∈ OL such that esp ◦ e′ = esp of the formulas defined inductively completely analogously as
χd,e′(x, x

′, y′, x′) in Section 5.3.5 (using the sentence νψL,e′ defining EψL,e′): we simply replace every
occurrence of ηd−1,r by ηd−1,r.

Next, for allm > 0 and all φL(L)-reachable f ∈ OL we will construct a formula αd,m,f (x, x′, y′, y)
such that for all w ∈ Σ△ and i, i′, j′, j ∈ [1, |w|], i ≤ i′ < j′ ≤ j we have that if wi · · ·wi′wj′ · · ·wj ∈
Σ△ and i′ is matched to j′ in w, then given

extwi···wi′ ,wj′ ···wj = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxk,yk ◦ extak,bk

the stair factorization of extwi···wi′ ,wj′ ···wj provided by Lemma 3.6, we have (w,M△ (w)) |= αd,m,f (i, i
′, j′, j)

if, and only if, nd(xℓ),nd(yℓ) < d for all ℓ ∈ [1, k], ∆(wi · · ·wi′) = −∆(wj′ · · ·wj) = m and
ψL(extwi···wi′ ,wj′ ···wj ) = e. For σ = (σ1, . . . ,σm) ∈ Σmcall, ξ = (ξ1 . . . , ξm) ∈ Σmret, r = (r1, . . . , rm) ∈
RL

m, and r† = (r†1, . . . , r
†
m) ∈ RL

m we define∏
(σ, ξ, r, r†) = ⃝m

g=1leftrg ◦ rightr†
g
◦ ψL(extσg ,ξg).

The formula αd,m,f can be expressed as follows:

αd,m,f (x, x
′, y′, y) =

∨
σ∈Σmcall,ξ∈Σ

m
ret

r,r†∈RLm:f=
∏

(σ,ξ,r,r†)

∃x1, . . . , xm∃y1, . . . , ym

(
x′ = xm ∧ y′ = ym ∧ x ≤ x1 < · · · < xm < ym < · · · < y1 ≤ y∧
m∧
g=1

(
σg(xg) ∧ ξg(yg) ∧ xg↭ yg

)
∧

∀z
(
(x ≤ z ≤ x′ ∧

m∧
g=1

z ̸= xg) → ¬U(x, x′, z)
)
∧((

x < x1 ∧ ηd−1,r1(x, x1 − 1)
)
∨ Fr1(x, x1)

)
∧((

y1 < y ∧ η
d−1,r†

1
(y1 + 1, y)

)
∨ F

r†
1
(y1, y)

)
∧

m∧
g=2

ηd−1,rg(xg−1 + 1, xg − 1) ∧
m∧
g=2

η
d−1,r†

g
(yg + 1, yg−1 − 1)

)
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with Fs(x, z) =

{
x = z if s = 1RL
⊥ otherwise

for all φL(L)-reachable s ∈ RL.

We are now ready to define the formula χd,e:

χd,e(x, x
′, y′, x) =

∨
q∈[0,|O|]
d0,...,dq≥1:

q+d0+···+dq≤3|0|

∨
e0,f0,e1,...,fq−1,eq,fq∈O

e0=1O∧∀j∈[1,q]:ej=ej−1◦fj−1
e=eq◦fq

∃x1 . . . xq+1∃x′0 . . . x′q∃y1 . . . yq+1∃y′1 . . . y′0 x′0 ≤ x1 < x′1 < x2 < · · · < x′q < y′q < yq < · · · < y′1 < y1 ≤ y′0 ∧

x′0 = x ∧ y′0 = y ∧ x′q = x′ ∧ y′q = y′ ∧
q∧
p=1

(
θep(xp + 1, x′p, y

′
p, yp − 1)

)
∧

q∧
p=0

αdp,fp(x
′
p + 1, xp+1, yp+1, y

′
p − 1)

 .

The inductive definition of η↑d,r is completely analogous to the definition of ηd,r in Section 5.3.5:
we simply replace every occurrence of ηd−1,r by ηd−1,r and every occurrence of χd,e by χd,e

The inductive definition of ηd,r is completely analogous to the definition of ηd,r in Section 5.3.5:
we access the horizontal evaluation languages EφL,r for all φL(L)-reachable r ∈ RL by making use
of the sentence νφ,r and the already defined η↑d,r.

5.4.2 Computation of k, l

The following proposition implies the computability of k, l ∈ N such that Lk,l ≤cd L already when
VPL L is weakly length-synchronous but not length-synchronous.

Proposition 5.24. If a VPL L is weakly length-synchronous but not length-synchronous, one can
effectively compute k, l ∈ N>0 with k ̸= l such that Lk,l ≤cd L .

Proof. Let L ⊆ Σ△ be a weakly length-synchronous VPL that is not length-synchronous. According
to Point 2 (b) of Proposition 5.1 one can effectively compute a quadruple (k0, l0, k

′
0, l

′
0) ∈ N4

>0 for
which there exist extu,v, extu′,v′ ∈ O(Σ△) such that

• |u| = k0, |v| = l0, |u′| = k′0, |v′| = l′0,

• ψL(extu,v) = ψL(extu′,v′) is a φL(L)-reachable idempotent,

• ∆(u),∆(u′) > 0, and

• k0
l0

= |u|
|v| ̸=

|u′|
|v′| =

k′0
l′0

.

We can explicitly compute such extu,v and extu′,v′ by just doing an exhaustive search. This enables
us to assume without loss of generality while maintaining effective computability that ∆(u) =
∆(u′): indeed, in case ∆(u) ̸= ∆(u′), we can consider extu1,v1 = extu∆(u′),v∆(u′) and extu2,v2 =
ext(u′)∆(u),(v′)∆(u) satisfying the desired properties.

Let us now define Green’s relations on OL (see [26, Chapter 3, Section 1]). Let us consider two
elements x, y of OL.
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• We write x ≤J y whenever there are elements e, f of OL such that x = e ◦ y ◦ f . We write
x J y if x ≤J y and y ≤J x. We finally write x <J y if x ≤J y and x ̸J y.

• We write x ≤R y whenever there is an element e of OL such that x = y ◦ e. We write x R y
if x ≤R y and y ≤R x.

• We write x ≤L y whenever there is an element e of OL such that x = e ◦ y. We write x L y if
x ≤L y and y ≤L x.

• We write x H y if x R y and x L y.

Observe that because ∆(u) = ∆(u′), we have that uv′ ∈ Σ△ and u′v ∈ Σ△, so that we can
consider the elements extuuu,vv′v = extu,v ◦ extu,v′ ◦ extu,v and extuu′u,vvv = extu,v ◦ extu′,v ◦ extu,v
in O(Σ△). These elements satisfy ψL(extuuu,vv′v) ≤J ψL(extu,v) and ψL(extuu′u,vvv) ≤J ψL(extu,v).
We claim that we actually have ψL(extuuu,vv′v) <J ψL(extu,v) and ψL(extuu′u,vvv) <J ψL(extu,v).
Indeed, assume we would have ψL(extuu′u,vvv) J ψL(extu,v). Set x = ψL(extu,v) and y = ψL(extu′,v).
By a classical property of Green’s relations (see [26, Chapter 3, Proposition 1.4]), since it would
hold that x ◦ y ◦ x ≤R x and x ◦ y ◦ x J x, we would have x ◦ y ◦ x R x and dually, since it
would hold that x ◦ y ◦ x ≤L x and x ◦ y ◦ x J x, we would have x ◦ y ◦ x L x. Therefore,
we would have x ◦ y ◦ x H x. By another classical result on Green’s relations [26, Chapter 3,
Corollary 1.7], as x is an idempotent, its H-class is a group, hence for ω ∈ N>0 the idempotent
power of OL, we would have (x ◦ y ◦ x)ω = xω = x (as the only idempotent element in a group is
the identity). This would finally entail that ψL(ext(uu′u)ω ,(vvv)ω) = ψL(ext(uuu)ω ,(vvv)ω) is a φL(L)-
reachable idempotent and ∆((uu′u)ω) = ∆((uuu)ω) > 0 but |(uu′u)ω| ≠ |(uuu)ω|, a contradiction
to the fact that (φL, ψL) is φL(L)-weakly-length-synchronous. Symmetrically, we can prove that if
we had ψL(extuuu,vv′v) J ψL(extu,v), this would contradict the fact that (φL, ψL) is φL(L)-weakly-
length-synchronous.

We distinguish three cases. In each of these we prove that there exist k, l ∈ N>0, k ̸= l such that
Lk,l ≤cd LψL(extu,v), so that since LψL(extu,v) ≤cd L (by Lemma 5.3) and by transitivity of ≤cd we
have Lk,l ≤cd L.

Case |v| = |v′|. In that case, we necessarily have |u| ≠ |u′|. Then, we can exploit the fact that
matching u3 with vv′v or uu′u with v3 makes us fall down to a smaller J-class to reduce L3|u|,2|u|+|u′|
to LψL(extu,v). The constant-depth reduction works as follows on input w ∈ Σ∗:

1. check if w = xy with x ∈ (ac3|u|−1 + ac2|u|+|u′|−1)∗ and y ∈ (b1 + b2)
∗, reject if it’s not the

case;

2. build x′ by sending ac3|u|−1 to u3, ac2|u|+|u′|−1 to uu′u and y′ by sending b1 to v3 and b2 to
vv′v;

3. accept whenever x′#y′ ∈ LψL(extu,v).

This forms a valid reduction. Indeed, take a word w = xy with x ∈ (ac3|u|−1+ac2|u|+|u′|−1)n for n ∈
N and y ∈ (b1+b2)

m for m ∈ N and consider x′#y′ produced by the reduction with x′ ∈ (u3+uu′u)n

and y′ ∈ (v3+vv′v)m. If w ∈ L3|u|,2|u|+|u′|, then it easily follows that x′#y′ ∈ LψL(extu,v). Otherwise,
if w /∈ L3|u|,2|u|+|u′|, then either n ̸= m and thus x′y′ is not well-matched because ∆(x′) = n ·3 ·∆(u)
and ∆(y′) = m · 3 ·∆(v), or n = m and thus x′y′ is well-matched, so extx′,y′ = extz′1,t′1 ◦ · · · ◦ extz′n,t′n
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with z′1, . . . , z
′
n ∈ {u3, uu′u} and t′1, . . . , t

′
n ∈ {v3, vv′v} such that there exists i ∈ [1, n] satisfying

extz′i,t′i ∈ {extu3,vv′v, extuu′u,v3}, thereby implying

ψL(extx′,y′) ≤J ψL(extz′i,t′i) <J ψL(extu,v) .

Our algorithm therefore outputs the pair (k, l) = (3k0, 2k0 + k′0).

Case |u| = |u′|. This case is symmetric to the previous case. Our algorithm outputs the pair
(k, l) = (2l0 + l′0, 3l0).

Case |u| ≠ |u′| and |v| ≠ |v′|. Then, we can again exploit the fact that matching u3 with vv′v
or uu′u with v3 makes us fall down to a smaller J-class to reduce LA·B′,A′·B where A = 3|u| = 3k0,
A′ = 2|u|+ |u′| = 2k0 + k′0, B = 3|v| = 3l0 and B′ = 2|v|+ |v′| = 2l0 + l′0 to LψL(extu,v). Indeed, we
have A ·B′ ̸= A′ ·B because otherwise we would have

3|u| · (2|v|+
∣∣v′∣∣) = (2|u|+

∣∣u′∣∣) · 3|v|
6|u||v|+ 3|u|

∣∣v′∣∣ = 6|u||v|+ 3
∣∣u′∣∣|v|

|u|
∣∣v′∣∣ = ∣∣u′∣∣|v| .

The constant-depth reduction works as follows on input w ∈ Σ∗:

1. check if w = xy with x ∈ (acA·B
′−1 + acA

′·B−1)∗ and y ∈ (b1 + b2)
∗, reject if it is not the case;

2. build x′ by sending acA·B′−1 to (u3)B
′ , acA′·B−1 to (uu′u)B and y′ by sending b1 to (v3)B

′ and
b2 to (vv′v)B;

3. accept whenever x′#y′ ∈ LψL(extu,v).

This forms a valid reduction. Indeed, take a word w = xy with x = z1 · · · zn where n ∈ N and
z1, . . . , zn ∈ {acA·B′−1, acA

′·B−1} and y = t1 · · · tm where m ∈ N and t1, . . . , tm ∈ {b1, b2}. Consider
x′#y′ produced by the reduction with x′ = z′1 · · · z′n where z′1, . . . , z

′
n ∈ {(u3)B′

, (uu′u)B} and
y′ = t′1 · · · t′m where t′1, . . . , t′m ∈ {(v3)B′

, (vv′v)B}. If w ∈ LA·B′,A′·B, then it easily follows that
x′#y′ ∈ LψL(extu,v). Otherwise, if w /∈ LA·B′,A′·B, three situations can occur.

• There exists i ∈ [1,min{n,m}] such that z1 · · · zi−1ti−1 · · · t1 ∈ LA·B′,A′·B but it holds that
(zi, ti) ∈ {(acA·B′−1, b2), (ac

A′·B−1, b1)}. Assume first (zi, ti) = (acA
′·B−1, b1). In this case, let

x̃′ = (uu′u)B−1z′i+1 · · · z′n and ỹ′ = t′n · · · t′i+1(v
3)B

′−1. If ∆(x̃′ỹ′) ̸= 0, then

∆(x′y′) = ∆(z′1 · · · z′i−1(uu
′u)v3t′i−1 · · · t′1) + ∆(x̃′ỹ′) = ∆(x̃′ỹ′) ̸= 0 ,

thus x′y′ is not well-matched. Otherwise, if ∆(x̃′ỹ′) = 0, we can show that x̃′ỹ′ is well-matched.
Indeed, since uv ∈ Σ△, for all j ∈ [1, |u|], we have ∆(u1 · · ·uj) ≥ 0 and for all j ∈ [1, |v|], we
have ∆(vj · · · v|v|) = −∆(uv1 · · · vj−1) ≤ 0. Similarly, since u′v′ ∈ Σ△, for all j ∈ [1, |u′|], we
have ∆(u′1 · · ·u′j) ≥ 0 and for all j ∈ [1, |v′|], we have ∆(v′j · · · v′|v′|) = −∆(u′v′1 · · · v′j−1) ≤ 0.
This implies that for all j ∈ [1, |x̃′|], we have ∆(x̃′1 · · · x̃′j) ≥ 0 and for all j ∈ [1, |ỹ′|], we have
∆(x̃′ỹ′1 · · · ỹ′j−1) = −∆(ỹ′j · · · ỹ′|ỹ′|) ≥ 0. Therefore, x̃′ỹ′ ∈ Σ△. Hence x′y′ is well-matched and

extx′,y′ = extz′1···z′i−1,t
′
i−1···t′1 ◦ extz′i,t′i ◦ extx̃′,ỹ′ ,

so that
ψL(extx′,y′) ≤J ψL(extz′i,t′i) <J ψL(extu,v) .
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If we assume that (zi, ti) = (acA·B
′−1, b2), then we prove in the same way that either x′y′ is

not well-matched or it is well-matched and ψL(extx′,y′) <J ψL(extu,v).

• It holds that n < m and z1 · · · zntn · · · t1 ∈ LA·B′,A′·B. This entails that ∆(x′t′n · · · t′1) =
∆(z′1 · · · z′nt′n · · · t′1) = 0, so that

∆(x′y′) = ∆(x′t′n · · · t′1) + ∆(t′m · · · t′n+1) = ∆(t′m · · · t′n+1) < 0

because m > n and ∆(v) < 0 as well as ∆(v′) < 0. Therefore, x′y′ is not well-matched.

• It holds that n > m and z1 · · · zmtm · · · t1 ∈ LA·B′,A′·B. Symmetrically to the previous case,
we can also show that then, x′y′ is not well-matched.

Hence, our algorithm outputs the pair (k, l) = (A ·B′, A′ ·B) = (3k0(2l0 + l′0), (2k0 + k′0)3l0) in this
last case.

5.5 Proof of Corollary 2.11

Let A = (Q,Σ, q0, F, δ0, . . . , δm) be a m-VCA and let L = L(A). One easily computes from A′ a
DVPA such that L(A′) = L. Details of this standard translation are omitted. It will be sufficient
to prove that L is weakly length-synchronous if, and only if, L is length-synchronous: indeed, one
can simply perform the case distinction of Section 5.1 and observe that, under the assumption that
weak length-synchronicity and length synchronicity coincide, the algorithm for Theorem 2.9 will
either output that L is in AC0 or some m ≥ 2 such that MODm ≤cd L.

It thus suffices to prove that if L is not length-synchronous, then L is not weakly length-
synchronous. Let (RL, OL) be the syntactic Ext-algebra of L along with with its syntactic morphism
(φL, ψL) : (Σ

△,O(Σ△)) → (RL, OL).
Let M = [0,m]×(QQ)[0,m]×(QQ)[0,m]. The behavior of the m-VCA can be described as follows.

To each extu,v ∈ O(Σ△) we assign the triple ζ(extu,v) = (j, (fi)i∈[0,m], (gi)i∈[0,m]) ∈ M, where

• j = min(∆(u),m) ∈ [0,m],

• fi(q) = q′ where q′ ∈ Q is the unique state such that q(i) u−→A q′(i + j) for all q ∈ Q and all
i ∈ [0,m], and

• gi(q) = q′, where q′ ∈ Q is the unique state such that q′(i+ j)
v−→A q

′(i) for all q ∈ Q and all
i ∈ [0,m].

Over M we define the product

(j, (fi)i∈[0,m], (gi)i∈[0,m])⊙M (j′, (f ′i)i∈[0,m], (g
′
i)i∈[0,m])

as
(min(j + j′,m), (f ′min(i+j,m) ◦ fi)i∈[0,m], (gmin(i+j,m) ◦ g′min(i+j+j′,m))i∈[0,m]).

We claim ⊙M is associative. For this, let us fix

• m = (j, (fi)i∈[0,m], (gi)i∈[0,m]) ∈ M,

• m′ = (j′, (f ′i)i∈[0,m], (g
′
i)i∈[0,m]) ∈ M, and

• m′′ = (j′′, (f ′′i )i∈[0,m], (g
′′
i )i∈[0,m]) ∈ M.
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Let m̃ = m⊙M m′ = (j̃, (f̃i)i∈[0,m], (g̃i)i∈[0,m]) and m = m′ ⊙M m′′ = (j, (fi)i∈[0,m], (gi)i∈[0,m]). We
need to prove m̃⊙M m′′ = m⊙M m.

Since j, j′, j′′,m ≥ 0 we have min(j̃+j′′,m) = min(min(j+j′,m)+j′′,m) = min(j+j′+j′′,m) =
min(j +min(j′ + j′′,m),m)) = min(j + j,m) associativity holds on the first component. For each
i ∈ [0,m] the ith component of the second component of m̃⊙M m′′ is

f ′′
min(i+j̃,m)

◦ f̃i = f ′′
min(i+j̃,m)

◦
(
f ′min(i+j,m) ◦ fi

)
= f ′′min(i+min(j+j′,m),m) ◦

(
f ′min(i+j,m) ◦ fi

)
= f ′′min(i+j+j′,m) ◦

(
f ′min(i+j,m) ◦ fi

)
=

(
f ′′min(i+j′+j′′,m) ◦ f

′
min(i+j,m)

)
◦ fi

=
(
f ′′min(min(i+j,m)+j′,m) ◦ f

′
min(i+j,m)

)
◦ fi

= fmin(i+j,m) ◦ fi

the latter of which is the ith component of the second component of m⊙Mm, as required. For each
i ∈ [0,m] the ith component of the third component of m⊙M m is

gmin(i+j,m) ◦ gmin(i+j+j,m)) = gmin(i+j,m) ◦ gmin(i+j+j′+j′′,m)

= gmin(i+j,m) ◦ gmin(min(i+j,m)+j′+j′′,m)

= gmin(i+j,m) ◦
(
g′min(min(i+j,m)+j′) ◦ g

′′
min(min(i+j,m),j′+j′′,m)

)
=

(
gmin(i+j,m) ◦ g′min(min(i+j,m)+j′)

)
◦ g′′min(min(i+j,m),j′+j′′,m)

=
(
gmin(i+j,m) ◦ g′min(i+j+j′,m)

)
◦ g′′min(i+min(j+j′,m)+j′′,m)

= g̃i ◦ g′′min(i+j̃+j′′,m)

the latter of which is the ith component of the third component of m̃⊙M m′′, as required. Clearly
(0, (idQ)

[0,m], (idQ)
[0,m]) is the identity of M with respect to ⊙M, hence (M,⊙M) is a monoid. The

following points can easily be verified.

1. The function ζ : O(Σ△) → M is a monoid morphism.

2. For all extu,v, extu′,v′ ∈ O(Σ△) with ∆(u) = ∆(u′) we have

ζ(extu,v) = ζ(extu′,v′) =⇒ ζ(extu,v) = ζ(extu′,v) = ζ(extu,v′) = ζ(extu′,v′).

3. For all extu,v, extu′,v′ ∈ O(Σ△) we have

ζ(extu,v) = ζ(extu′,v′) =⇒ ψL(extu,v) = ψL(extu′,v′).

Now assume that L is not length-synchronous. We will prove that L is not length-synchronous.
By assumption there exist a φL(L)-reachable idempotent e ∈ OL and extu,v, extu′,v′ ∈ O(Σ△) such
that ∆(u),∆(u′) > 0, |u|

|v| ̸=
|u′|
|v′| , and ψL(extu,v) = ψL(extu′,v′) = e. Without loss of generality we

may assume ∆(u) = ∆(u′). Let ω denote the idempotent power of M. Consider the elements

extx,y = (ext2ωu,v ◦ extωu′,v′)ω and extx′,y′ = (extωu,v ◦ ext2ωu′,v′)ω.
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By definition we have ζ(extx,y) = ζ(extx′,y′), and since ∆(x) = ∆(x′) we obtain ζ(extx,y) =
ζ(extx′,y) = ζ(extx,y′) = ζ(extx′,y′) by Point 2. Hence,

ψL(extx,y) = ψL(extx′,y) = ψL(extx,y′) = ψL(extx′,y′) = e

by Point 3.
We finally make a case distinction on whether |u| = |u′| or not.
First, assume |u| ̸= |u′|. Then |x| ̸= |x′| by construction. Since ψL(extx,y) = ψL(extx′,y) = e,

which is an idempotent of OL, we obtain that L is not weakly length-synchronous.
Now assume |u| = |u′|. Since |u|

|v| ̸= |u′|
|v′| by assumption, we conclude that |v| ̸= |v′|. By

construction, the latter implies |y| ̸= |y′|. Since ψL(extx,y) = ψL(extx,y′) = e, again we obtain that
L is not weakly length-synchronous.

6 Proof of Proposition 5.1

We will prove the different statements appearing in Proposition 5.1 in the following subsections.

Computability of the syntactic Ext-algebra. This paragraph will be devoted to proving
Point 1 of Proposition 5.1, rephrased in the following proposition.

Proposition 6.1. Given a DVPA A with L = L(A), one can compute the syntactic Ext-algebra
(RL, OL) of L, its syntactic morphism (φL, ψL) and φL(L).

We require a bit of notation. For each visibly pushdown alphabet Σ and each finite Ext-algebra
(R,O) it follows from Proposition 3.7 that each morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) has a
unique finite presentation: it is given by the tuples

(φ(c))c∈Σint and (ψ(exta,b))(a,b)∈Σcall×Σret .

The syntactic Ext-algebra (RL, OL) of a VPL L over a visibly pushdown alphabet Σ can be repre-
sented by any Ext-algebra (R,O) such that R has [1, |RL|] as base set and such that there exists a
bijective morphism (α, β) : (R,O) → (RL, OL). Indeed, in that case we have

1. xy = z ⇔ α(x)α(y) = α(z) for all x, y, z ∈ R;

2. x′y′ = z′ ⇔ α−1(x′)α−1(y′) = α−1(z′) for all x′, y′, z′ ∈ RL;

3. f(x) = y ⇔ β(f)(α(x)) = α(y) for all f ∈ O and all x, y ∈ R; and

4. f ′(x′) = y′ ⇔ β−1(f ′)(α−1(x′)) = α−1(y′) for all f ′ ∈ OL and all x′, y′ ∈ RL.

For the following claim we avoid the tedious standard algebraic constructions on Ext-algebras
to show decidability of the equivalence problem, since the latter decidability has already been
established in [2].

Claim 6.2. There is an algorithm that decides, given two morphisms into finite Ext-algebras
(φ1, ψ1) : (Σ

△,O(Σ△)) → (R1, O1) and (φ2, ψ2) : (Σ
△,O(Σ△)) → (R1, O1) for Σ a visibly push-

down alphabet and subsets F1 ⊆ R1 and F2 ⊆ R2, whether φ−1
1 (F1) = φ−1

2 (F2).

Proof of the Claim. The proof of Theorem 3.18 shows that one can effectively compute DVPAs A1

and A2 such that L(A1) = φ−1
1 (F1) and L(A2) = φ−1

2 (F2). By [2] one can effectively decide if
L(A1) = L(A2) by deciding L(A1) ⊆ L(A2) and L(A2) ⊆ L(A1).
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Proof of Proposition 6.1. By Theorem 3.18 we first compute from our DVPA A on the visibly push-
down alphabet Σ an Ext-algebra (RA, OA), a morphism (φA, ψA) : (Σ

△,O(Σ△)) → (RA, OA), and a
subset FA ⊆ RA such that L(A) = φ−1

A (FA). For an Ext-algebra (R,O) define #(R,O) = (|R| , |O|).
Let ≺⊆ (N×N)2 be the lexicographic order on N×N, i.e. (i, j) ≺ (k, l) if, and only if either i < k,
or i = k and j < l.

Observe that since (RA, OA) recognizes L, we have that the syntactic Ext-algebra (RL, OL) of L
divides (RA, OA) by Proposition 3.17, so that #(RL, OL) ≤ #(RA, OA). In fact, we have that any
Ext-algebra (R,O) having [1, i] for i ∈ [1, |RL|] as base set, satisfying #(R,O) ≤ #(RL, OL) and
recognizing L via a morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) is a presentation of (RL, OL) with
(φ,ψ) and F presentations of, respectively, (φL, ψL) and φL(L). Indeed, since such an Ext-algebra
recognizes L, by Proposition 3.17 it is divided by (RL, OL): this implies that #(RL, OL) ≤ #(R,O),
but as also #(R,O) ≤ #(RL, OL), we have #(R,O) = #(RL, OL). The morphism (φ,ψ) must
be surjective, otherwise, by Lemma 3.15,

(
φ(Σ△), ψ(O(Σ△))|φ(Σ△)

)
would be a sub-Ext-algebra

of (R,O) recognizing L such that #
(
φ(Σ△), ψ(O(Σ△))|φ(Σ△)

)
< #(R,O) = #(RL, OL) while

(RL, OL) divides
(
φ(Σ△), ψ(O(Σ△))|φ(Σ△)

)
, which is contradictory. Therefore, by Lemma 3.16,

there is a surjective morphism (α, β) : (R,O) → (RL, OL), that must be bijective, such that φL =
α ◦φ, so that (R,O) is a presentation of (RL, OL) with (φ,ψ) and F presentations of, respectively,
(φL, ψL) and φL(L).

Under the assumption that such an Ext-algebra exists, we compute (RL, OL), (φL, ψL) and
φL(L) by enumerating all the finitely many triples made of a finite Ext-algebra (R,O), a morphism
(φ,ψ) : (Σ△,O(Σ△)) → (R,O) and a subset F ⊆ R such that R has [1, i] for i ∈ [1, |RA|] as base
set and #(R,O) ≤ #(RA, OA). For each of these we test whether φ−1(F ) = φ−1

A (FA), which is
possible by the above claim and take (R,O), (φ,ψ) and F from a triple validating this test with
#(R,O) minimal with respect to ≺.

It remains to prove that an Ext-algebra (R,O) having [1, i] for i ∈ [1, |RL|] as base set, satisfying
#(R,O) ≤ #(RL, OL) and recognizing L exists. Take any bijection α : RL → [1, |RL|]. We define
R to be the monoid with base set [1, |RL|] and operation defined by x · y = α

(
α−1(x)α−1(y)

)
for all

x, y ∈ [1, |RL|]. This is a monoid because

• x · α(1R) = α
(
α−1(x)α−1(α(1R))

)
= α(α−1(x)) = α

(
α−1(α(1R))α

−1(x)
)
= α(1R) · x for all

x ∈ R; and

• for all x, y, z ∈ R, we have

x · (y · z) = α

(
α−1(x)α−1

(
α
(
α−1(y)α−1(z)

)))
= α

(
α−1(x)α−1(y)α−1(z)

)
= α

(
α−1

(
α
(
α−1(x)α−1(y)

))
α−1(z)

)
= (x · y) · z .

Define the function β : OL → RR by β(f ′)(x) = α
(
f ′(α−1(x))

)
for all f ′ ∈ OL and x ∈ R. Set O to

be the monoid with base set β(OL) and with composition as operation. This is a monoid because

• β(1O)(x) = α
(
1O(α

−1(x))
)
= x = idR(x) for all x ∈ R; and
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• for all f ′, g′ ∈ OL,

β(f ′) ◦ β(g′)(x) = α

(
f ′
(
α−1

(
α
(
g′(α−1(x))

))))
= α

(
f ′ ◦ g′(α−1(x))

)
= β(f ′ ◦ g′)(x)

for all x ∈ R, so that β(f ′) ◦ β(g′) ∈ O.

Then (R,O) is an Ext-algebra, because for all r′ ∈ RL, we have

β(leftr′)(x) = α
(
leftr′(α

−1(x))
)
= α

(
α−1(α(r′))α−1(x)

)
= α(r′) · x = leftα(r′)(x)

for all x ∈ R and β(rightr′)(x) = rightα(r′)(x) for all x ∈ R, so that leftr, rightr ∈ O for all r ∈ R
by surjectivity of α.

We now define (φ,ψ) : (Σ△,O(Σ△)) → (R,O) as the unique morphism satisfying φ(c) =
α(φL(c)) for all c ∈ Σint and ψ(exta,b) = β(ψL(exta,b)) for all a ∈ Σcall, b ∈ Σret given by Proposi-
tion 3.7. It is easy to show that then, φ(w) = α(φL(w)) for all w ∈ Σ△ by structural induction on
w. Hence, by injectivity of α, we have

φ−1
(
α(φL(L))

)
= {w ∈ Σ△ | α(φL(w)) ∈ α(φL(L))}
= {w ∈ Σ△ | φL(w) ∈ φL(L)} = φ−1

L (φL(L)) = L ,

thus (R,O) recognizes L.

Decidability of quasi-aperiodicity. This paragraph is devoted to proving Point 2 (a) of
Proposition 5.1, rephrased in the following proposition.

Proposition 6.3. Given a morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) for Σ a visibly pushdown
alphabet and (R,O) a finite Ext-algebra, it is decidable if (φ,ψ) is quasi-aperiodic. If (φ,ψ) is not
quasi-aperiodic, one can effectively compute k, l ∈ N such that ψ(O(Σ△)k,l) is not aperiodic.

For the rest of this paragraph, let us fix a morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O), where Σ is
a visibly pushdown alphabet and (R,O) is some finite Ext-algebra that is the input to our problem.
We first have the following lemma.

Lemma 6.4. For all e ∈ O one can effectively compute a finite Ext-algebra recognizing Le = {u#v |
uv ∈ Σ△ : ψ(extu,v) = e}, where # is a fresh internal letter that does not appear in Σ, along with
an associated morphism and subset.

Proof. Let Σ′ be the alphabet that emerges from Σ by additionally declaring # as an internal letter.
We will construct an Ext-algebra (R′, O′) and a morphism (φ′, ψ′) : (Σ′△,O(Σ′)△) → (R′, O′) such
that for some element r′ ∈ R′ we have Le = φ′−1(r′).

We define R′ = R∪O ∪ {⊥}, for some fresh zero ⊥, where multiplication between two elements
in R′ is defined as follows:

• multiplication between two elements in R is inherited from the monoid R;

• r · f = leftr ◦ f and f · r = rightr ◦ f for all r ∈ R and all f ∈ O;

• ⊥ acts as a zero, i.e. ⊥ · r′ = r′ · ⊥ = ⊥ for all r′ ∈ R′;

• f · g = ⊥ for all f, g ∈ O.
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Clearly the identity of R is the identity of R′. Associativity is immediate except for products of the
form r1 · f · r2, r1 · r2 · f , and f · r1 · r2, where f ∈ O and r1, r2 ∈ R. In the first case we have

(r1 · f) · r2 = (leftr1 ◦ f) · r2 = rightr2 ◦ (leftr1 ◦ f) = (rightr2 ◦ leftr1) ◦ f
= (leftr1 ◦ rightr2) ◦ f = r1 · (rightr2 ◦ f) = r1 · (f · r2) .

In the second case we have

(r1 · r2) · f = leftr1r2 ◦ f = (leftr1 ◦ leftr2) ◦ f = leftr1 ◦ (leftr2 ◦ f) = r1 · (r2 · f)

and in the third case we have

f · (r1 · r2) = rightr1r2 ◦ f = (rightr2 ◦ rightr1) ◦ f = rightr2 ◦ (rightr1 ◦ f) = (f · r1) · r2 .

We define O′ = (R′)R
′ which is clearly a monoid for composition and thus directly get that (R′, O′)

is an Ext-algebra. Applying Proposition 3.7, we define the morphism (φ′, ψ′) : (Σ′△,O(Σ′)△) →
(R′, O′) as the unique one satisfying φ′(c) = φ(c) for all c ∈ Σint, φ′(#) = idO and where for all
a ∈ Σcall, b ∈ Σret, we have

ψ′(exta,b)(x) =


ψ(exta,b)(x) if x ∈ R

ψ(exta,b) ◦ x if x ∈ O

⊥ otherwise (i.e. if x = ⊥)

for all x ∈ R′. It suffices to prove the following claim, which directly implies the desired equality
φ′−1(e) = {u#v | uv ∈ Σ△ s.t. ψ(extu,v) = e}. For all w ∈ Σ′△ we have

φ′(w) =


φ(w) if w ∈ Σ△

ψ(extu,v) if w = u#v for some uv ∈ Σ△

⊥ otherwise.

We prove it by structural induction on w. The cases when w = ε or w = c ∈ Σint follow immediately
from the definition of φ′. In case w = # = ε#ε, we have φ′(w) = idO = ψ(extε,ε).

For the inductive step first assume w = aw′b for some w′ ∈ Σ′△. If w′ is neither in Σ△ nor
of the form u#v with uv ∈ Σ△, then φ′(w′) = ⊥ by induction hypothesis and thus φ′(w) =
ψ′(exta,b)(φ

′(w′)) = ψ′(exta,b)(⊥) = ⊥ as required. If w′ ∈ Σ△, then φ′(w′) = φ(w′) ∈ R by in-
duction hypothesis, and hence φ′(w) = ψ′(exta,b)(φ

′(w′)) = ψ′(exta,b)(φ(w
′)) = ψ(exta,b)(φ(w

′)) =
φ(w) as required. If w′ = u#v with uv ∈ Σ△, i.e. w = au#vb, then φ′(w′) = ψ(extu,v) ∈ O
by induction hypothesis. Hence, we have φ′(w) = ψ′(exta,b)(φ

′(w′)) = ψ′(exta,b)(ψ(extu,v)) =
ψ(exta,b) ◦ ψ(extu,v) = ψ(extau,vb).

Finally assume w = xy for some x, y ∈ Σ′△ \ {ε}. The case when x or y is neither in Σ△ nor of
the form u#v with uv ∈ Σ△ is easily handled by applying the induction hypothesis and observing
that ⊥ is a zero in R′. Two other immediate cases are when both x and y are in Σ△ and when
both x and y are of the form u#v with uv ∈ Σ△. Consider the case when x ∈ Σ△ \ {ε} and
y = u#v with uv ∈ Σ△, hence w = xu#v. The induction hypothesis yields φ′(x) = φ(x) ∈ R and
φ′(y) = ψ(extu,v) ∈ O. We obtain

φ′(xy) = φ′(x) · φ′(y) = φ(x) · ψ(extu,v) = leftφ(x) ◦ ψ(extu,v) = ψ(extxu,v)
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as required. Finally, let us treat the case when x = u#v with uv ∈ Σ△ and y ∈ Σ△ \ {ε}, i.e.
w = u#vy. The induction hypothesis yields φ′(x) = ψ(extu,v) ∈ O and φ′(y) = φ(y) ∈ R. We
obtain

φ′(xy) = φ′(x) · φ′(y) = ψ(extu,v) · φ(y) = rightφ(y) ◦ ψ(extu,v) = ψ(extu,vy)

as required.

The next goal will be to prove that the set of pairs of word lengths (|u|, |v|) of words u#v ∈ Le
is effectively semilinear for each e ∈ O.

A (realtime) pushdown automaton (PDA for short) is a tuple A = (Q,Σ,Γ,Ω, q0, F,⊥), where Q
is a finite set of states, Σ is a finite input alphabet, Γ is a finite stack alphabet, q0 ∈ Q is an initial state,
F ⊆ Q is the set of final states, ⊥ ∈ Γ\Σ is the bottom-of-stack symbol, and Ω ⊆ Q×Σ×Γ×Q×Γ∗

is a finite transition relation such that for all (p, a,X, q, α) ∈ Ω we have α ∈ Γ∗⊥ if X = ⊥ and
α ∈ (Γ\{⊥})∗ otherwise. The relation Ω is naturally extended to the relation Ω∗ ⊆ Q×Σ∗×Γ∗⊥×
Q × Γ∗⊥, namely as the smallest relation containing the set {(p, ε, α, p, α) | p ∈ Q,α ∈ Γ∗⊥} and
such that moreover, if (p, a,X, q, α) ∈ Ω and (q, w, αβ, r, γ) ∈ Ω∗, then (p, aw,Xβ, r, γ) ∈ Ω∗. The
language of A is L(A) = {w ∈ Σ∗ | ∃α ∈ Γ∗⊥, ∃q ∈ F : (q0, w,⊥, q, α) ∈ Ω∗}. Hence it is clear that
one can compute a PDA A′ such that L(A′) = L(A).

Lemma 6.5. Let A be a DVPA that accepts a language over a visibly pushdown alphabet Σ′ such
that L(A) ⊆ {u#v | uv ∈ Σ′△ \ Σ′∗#Σ′∗} and # ∈ Σ′

int. Then the set

P (L(A)) = {(k, l) ∈ N× N | ∃u ∈ (Σ′ \ {#})k, v ∈ (Σ′ \ {#})l : u#v ∈ L(A)}

is effectively semilinear.

Proof. We first compute a PDA A′ accepting the same language as A, i.e. L(A′) = L(A). Let us
assume without loss of generality that 0, 1 ̸∈ Σ′. We claim that from A′ = (Q,Σ′,Γ,Ω, q0, F,⊥) one
can compute a PDA A′′ such that

L(A′′) = {0|u|#1|v| | u#v ∈ L(A′)} .

Indeed, the PDA A′′ can simply be computed as follows: we set

A′′ = (Q× {0, 1}, {0, 1,#},Γ,Ω′, ⟨q0, 0⟩, F × {1},⊥) ,

where Ω′ is the union of {(⟨p, i⟩, i,X, ⟨q, i⟩, α) | i ∈ {0, 1}, ∃c ∈ Σ′ \ {#} : (p, c,X, q, α) ∈ Ω}
and {(⟨p, 0⟩,#, X, ⟨q, 1⟩, α) | (p,#, X, q, α) ∈ Ω}. Finally, we apply Parikh’s Theorem, cf. [14,
Section 3], which implies that the set {(m,n) ∈ N× N | 0m#1n ∈ L(A′′)} = P (L(A)) is effectively
semilinear.

We are now ready to prove Proposition 6.3.

Proof of Proposition 6.3. Let e ∈ O. By Lemma 6.4 we first compute a finite Ext-algebra recoginiz-
ing Le, along with an associated morphism and subset. From the latter we can compute (by
Theorem 3.18) a DVPA Ae accepting Le. We then use Lemma 6.5 to conclude that the set

P (Le) = {(k, l) ∈ N× N | ∃u ∈ Σk, v ∈ Σl : uv ∈ Σ△, ψ(extu,v) = e}

is effectively semilinear, and this holds for all e ∈ O.
We make use of the folklore fact that semilinear sets are effectively closed under Boolean op-

erations, cf. [9] for a recent study. To decide whether (φ,ψ) is quasi-aperiodic, we go through all
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possible subsets U ⊆ O: if it is a subsemigroup of O that is a non-trivial group, we compute the set⋂
e∈U P (Le) and reject if it is non-empty (which is easy to check given a semilinear presentation of

the set), otherwise we continue. If we were able to go through all those subsets without rejecting,
we accept.

Thus, if (φ,ψ) is not quasi-aperiodic we can find a subset U ⊆ O that contains a non-trivial
group and output a pair (k, l) ∈

⋂
e∈U P (Le); it witnesses that ψ(O(Σ△)k,l) is not aperiodic.

Decidability of length-synchronicity. This paragraph is devoted to proving Point 2 (b) of
Proposition 5.1, rephrased in the following proposition.

Proposition 6.6. Given a morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O), for Σ a visibly pushdown
alphabet and (R,O) a finite Ext-algebra, and some F ⊆ R, it is decidable if (φ,ψ) is F -length-
synchronous. If (φ,ψ) is not length-synchronous, one can effectively compute a tuple (k, l, k′, l′) ∈
N4
>0 such that that there exist uv, u′v′ ∈ Σ△ and some F -reachable idempotent e ∈ O such that

ψ(extu,v) = ψ(extu′,v′) = e, k = |u|, l = |v|, k′ = |u′|, l′ = |v′| and k
l ̸=

k′

l′ .

Before proving the proposition we need a technical lemma characterizing when a two-dimensional
semilinear set contains only vectors with the same slope. We say two vectors x⃗, y⃗ ∈ N2 are collinear
if y⃗ = α · x⃗ for some α ∈ Q>0

Lemma 6.7. Let S =
⋃
i∈I

(
x⃗i,0 +

∑ti
j=1Nx⃗i,j

)
⊆ N2

>0 be a non-empty semilinear set, where
x⃗i,j ̸= (0, 0) for all i ∈ I and all j ∈ [0, ti]. Then,∣∣∣∣{kl ∣∣∣(k, l) ∈ S

}∣∣∣∣ = 1 ⇐⇒ ∀i, i′ ∈ I ∀j ∈ [0, ti] ∀j′ ∈ [0, ti′ ] : x⃗i,j and x⃗i′,j′ are collinear.

Proof. First assume that x⃗i,j and x⃗i′,j′ are collinear for all i, i′ ∈ I, j ∈ [0, ti], and j′ ∈ [0, ti′ ]. Let
(k, l), (k′, l′) ∈ S. That is, (k, l) = x⃗i,0+n1x⃗i,1+· · ·+nti x⃗i,ti and (k′, l′) = x⃗i′,0+n

′
1x⃗i′,1+· · ·+n′ti′ x⃗i′,ti′

for some i, i′ ∈ I and some n1, . . . , nti , n′1, . . . , n′ti′ ∈ N. But due to pairwise collinearity there exist
α, α′ ∈ Q>0 such that (k, l) = αx⃗i,0 and (k′, l′) = α′x⃗i,0, thus implying k

l =
k′

l′ .
Conversely assume that there exist two vectors (k, l) = x⃗i,j and (k′, l′) = x⃗i′,j′ that are not

collinear. In case this is possible when i ̸= i′ and j = j′ = 0 we are done, since then (k, l), (k′, l′) ∈ S
and thus k

l ̸=
k′

l′ . Otherwise x⃗i,0 and x⃗i′,0 are collinear for all i, i′ ∈ I, so there must exist i ∈ I and
j ∈ [0, ti] such that x⃗i,0 and x⃗i,j are not collinear. Then x⃗i,0 and x⃗i,0 + x⃗i,j are in S but also not
collinear: indeed, if αx⃗i,0 = x⃗i,0 + x⃗i,j for some α ∈ Q>0, then x⃗i,j = (α − 1)x⃗i,0 with α − 1 > 0
due to x⃗i,0, x⃗i,j ∈ N2 \ {(0, 0)}, a contradiction. Hence there exist (k, l), (k′, l′) ∈ S that are not
collinear, and therefore k

l ̸=
k′

l′ .

Proof of Proposition 6.6. Let us fix the Ext-algebra morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O),
where (R,O) is a finite Ext-algebra and where F ⊆ R.

Recall that over the alphabet Σ′, obtained from Σ by declaring a fresh letter # as internal, the
language

Le↑ = {u#v | uv ∈ Σ△ : ∆(u) > 0, ψ(extu,v) = e} = Le ∩ {u#v | uv ∈ Σ△ : ∆(u) > 0}

is given for all e ∈ O. The language {u#v | uv ∈ Σ△ : ∆(u) > 0} is a clearly a VPL. Thus, for all
e ∈ O, we have that the set

P (Le↑) =
{
(k, l) ∈ N× N | ∃u ∈ Σk, v ∈ Σl : uv ∈ Σ△,∆(u) > 0, ψ(extu,v) = e

}
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is effectively semilinear: indeed, given e ∈ O, using Lemma 6.4 and Theorem 3.18, we can as in
the proof of Point 2 (a) of Proposition 5.1 compute a DVPA Ae accepting Le; we then compute a
DVPA Ae↑ accepting Le↑ = L(Ae)∩L(A) by using the effective construction given in [2] and finally
use Lemma 6.5 to conclude.

Observe that (φ,ψ) is F -length-synchronous if, and only if, for each F -reachable idempotent
e ∈ O for which P (Le↑) is non-empty we have |{kl | (k, l) ∈ P (Le↑)}| = 1. The latter condition is
easily seen to be decidable by the characterization provided in Lemma 6.7. Hence, for deciding if
(φ,ψ) is length-synchronous our algorithm verifies if for all F -reachable e ∈ O for which P (Le↑) is
non-empty we have |{kl | (k, l) ∈ P (Le↑)}| = 1. On the other hand, if this verification fails, i.e. in
case (φ,ψ) is not F -length-synchronous, our algorithm outputs, again using the characterization of
Lemma 6.7, a quadruple (k, l, k′, l′) ∈ N4

>0 such that for some F -reachable idempotent e ∈ O we
have (k, l), (k′, l′) ∈ P (Le↑) and k

l ̸=
k′

l′ .

Decidability of weak length-synchronicity. This paragraph is devoted to proving Point 2
(c) of Proposition 5.1, rephrased in the following proposition.

Proposition 6.8. Given a morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O), for Σ a visibly pushdown
alphabet and (R,O) a finite Ext-algebra, and some F ⊆ R, it is decidable if (φ,ψ) is F -weakly-
length-synchronous.

Let us fix the morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O), for Σ a visibly pushdown alphabet and
(R,O) a finite Ext-algebra, and some F ⊆ R.

Define the new visibly pushdown alphabet Σ by Σcall = {b | b ∈ Σret}, Σint = {c | c ∈ Σint} and
Σret = {a | a ∈ Σcall}. For all w ∈ Σ∗, we define

w =

{
ε if w = ε

wn · · ·w1 if w = w1 · · ·wn for n ∈ N>0 and w1, . . . wn ∈ Σ .

We have the following lemma, that we prove later on.

Lemma 6.9. For all e ∈ O one can effectively compute a finite Ext-algebra recognizing the language
of well-matched words Ke = {u#u′ | u, u′ ∈ Σ∗,∃v ∈ Σ∗ : uv ∈ Σ△, u′v ∈ Σ△, ψ(extu,v) =
ψ(extu′,v) = e}, where # is a fresh internal letter that does not appear in Σ ∪ Σ, along with an
associated morphism and subset.

Over the alphabet Σ′ obtained from Σ∪Σ by declaring the fresh letter # as internal, we define

Ke↑ =

{
u#u′

∣∣∣∣ u, u′ ∈ Σ∗, ∃v ∈ Σ∗ :

uv ∈ Σ△, u′v ∈ Σ△,∆(u) > 0, ψ(extu,v) = ψ(extu′,v) = e

}
= Ke ∩ {u#u′ | uu′ ∈ (Σ ∪ Σ)△ : ∆(u) > 0}

for all e ∈ O. As in the proof of Point (2) of the second statement of Proposition 5.1, we can prove
that the language {u#u′ | uu′ ∈ (Σ ∪ Σ)△ : ∆(u) > 0} is a VPL and thus conclude that for all
e ∈ O, the set

P (Ke↑) =

{
(k, l) ∈ N× N

∣∣∣∣ ∃u ∈ Σk, u′ ∈ Σl, v ∈ Σ∗ :

uv ∈ Σ△, u′v ∈ Σ△,∆(u) > 0, ψ(extu,v) = ψ(extu′,v) = e

}
is effectively semilinear.
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It is clear that (φ,ψ) is F -weakly-length-synchronous if and only if for each idempotent e ∈ O
that is F -reachable, there does not exist any (x1, x2) ∈ P (Ke↑) such that x1 ̸= x2. Therefore, to
decide whether (φ,ψ) is F -weakly-length-synchronous, we go through all e ∈ O: if e is an idempotent
that is F -reachable, we compute the set P (Ke↑) and reject if it contains a vector (x1, x2) such that
x1 ̸= x2 (which is easy to check given a semilinear presentation of the set), otherwise we continue.
Finally, if we were able to go through all those elements without rejecting, we accept.

Proof of Lemma 6.9. Let Σ′ be the alphabet that emerges from Σ ∪ Σ by additionally declaring
# as an internal letter. We will construct an Ext-algebra (R′, O′) and a morphism (φ′, ψ′) from
(Σ′△,O(Σ′)△) to (R′, O′) such that for some subset F ⊆ R′ we have Ke = φ′−1(F ).

Let R = {r | r ∈ R}. We define R′ = R ∪ R ∪ P(O2) \ ∅ ∪ {⊥, 1}, for some fresh zero ⊥ and
identity 1, where multiplication between two elements in R′ is defined as follows:

• for all r1, r2 ∈ R,

r1 · r2 = r1r2 r1 · r2 = ⊥
r1 · r2 = r2r1 r1 · r2 = ⊥ ;

• for all r ∈ R and E ∈ P(O2) \ ∅,

r · E = {(leftr ◦ e1, e2) | (e1, e2) ∈ E} E · r = ⊥
E · r = {(e1, leftr ◦ e2) | (e1, e2) ∈ E} r · E = ⊥ ;

• for all E1, E2 ∈ P(O2) \ ∅, we have E1 · E2 = ⊥;

• ⊥ acts as a zero, i.e. ⊥ · r′ = r′ · ⊥ = ⊥ for all r′ ∈ R′;

• 1 acts as an identity, i.e. 1 · r′ = r′ · 1 = r′ for all r′ ∈ R′.

Associativity is immediate except for products of the form r1 · r2 · r3, r1 · E · r2, r1 · r2 · E and
E · r1 · r2, where E ∈ P(O2) \ ∅ and r1, r2, r3 ∈ R. In the first case we have

(r1 · r2) · r3 = r2r1 · r3 = r3r2r1 = r1 · r3r2 = r1 · (r2 · r3) .

In the second case we have

(r1 · E) · r2 = {(leftr1 ◦ e1, e2) | (e1, e2) ∈ E} · r2
= {(leftr1 ◦ e1, leftr2 ◦ e2) | (e1, e2) ∈ E}
= r1 · {(e1, leftr2 ◦ e2) | (e1, e2) ∈ E} = r1 · (E · r2) .

In the third case we have

(r1 · r2) · E = {(leftr1r2 ◦ e1, e2) | (e1, e2) ∈ E}
= {(leftr1 ◦ leftr2 ◦ e1, e2) | (e1, e2) ∈ E}
= r1 · {(leftr2 ◦ e1, e2) | (e1, e2) ∈ E} = r1 · (r2 · E)
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and in the fourth case we have

E · (r1 · r2) = {(e1, leftr2r1 ◦ e2) | (e1, e2) ∈ E}
= {(e1, leftr2 ◦ leftr1 ◦ e2) | (e1, e2) ∈ E}
= {(e1, rightr1 ◦ e2) | (e1, e2) ∈ E} · r2 = (E · r1) · r2 .

We define O′ = (R′)R
′ which is clearly a monoid for composition and thus directly get that (R′, O′) is

a finite Ext-algebra. Applying Proposition 3.7, we define the morphism (φ′, ψ′) : (Σ′△,O(Σ′)△) →
(R′, O′) as the unique one satisfying φ′(c) = φ(c) and φ′(c) = φ(c) for all c ∈ Σint, φ′(#) =
{(ψ(extε,v), ψ(extε,v)) | v ∈ Σ△} and where for all a, a′ ∈ Σcall, b, b′ ∈ Σret, we have

ψ′(exta,b)(x) =


ψ(exta,b)(1R) if x = 1

ψ(exta,b)(x) if x ∈ R

⊥ otherwise

ψ′(extb′,a′)(x) =


ψ(exta′,b′)(1R) if x = 1

ψ(exta′,b′)(x′) if x = x′ for x′ ∈ R

⊥ otherwise

ψ′(exta,a′)(x) =


⋃

b∈Σret
z∈Σ△

(e1,e2)∈x

{(ψ(exta,bz) ◦ e1, ψ(exta′,bz) ◦ e2)} if x ∈ P(O2) \ ∅

⊥ otherwise

ψ′(extb′,b)(x) = ⊥

for all x ∈ R′. Note that (φ′, ψ′) is computable because

{(ψ(extε,v), ψ(extε,v)) | v ∈ Σ△} = {(rightφ(v), rightφ(v)) | v ∈ Σ△}
= {(rightr, rightr) | r ∈ R}

and ⋃
b∈Σret
z∈Σ△

(e1,e2)∈x

{(ψ(exta,bz) ◦ e1, ψ(exta′,bz) ◦ e2)}

=
⋃

b∈Σret
z∈Σ△

(e1,e2)∈x

{(rightφ(z) ◦ ψ(exta,b) ◦ e1, rightφ(z) ◦ ψ(exta′,b) ◦ e2)}

=
⋃

b∈Σret
r∈R

(e1,e2)∈x

{(rightr ◦ ψ(exta,b) ◦ e1, rightr ◦ ψ(exta′,b) ◦ e2)}

for all x ∈ P(O2) \ ∅ and a, a′ ∈ Σcall.
Now define the set of pairs P = {(u, u′) ∈ Σ∗ × Σ∗ | ∃v ∈ Σ∗ : uv ∈ Σ△, u′v ∈ Σ△}; it is not

difficult to check that for all w ∈ Σ′∗, w ∈ Σ′△ ∩ Σ∗#Σ
∗ if and only if w = u#u′ for (u, u′) ∈ P . It
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suffices to prove the following claim, which directly implies the desired equality

φ′−1({E ∈ P(O2) \ ∅ | (e, e) ∈ E})
={u#u′ | (u, u′) ∈ P,∃v ∈ Σ∗ : uv ∈ Σ△, u′v ∈ Σ△, ψ(extu,v) = ψ(extu′,v) = e}
={u#u′ | u, u′ ∈ Σ∗, ∃v ∈ Σ∗ : uv ∈ Σ△, u′v ∈ Σ△, ψ(extu,v) = ψ(extu′,v) = e} .

For all w ∈ Σ′△ we have

φ′(w) =



1 if w = ε

φ(w) if w ∈ Σ△ \ {ε}
φ(w′) if w = w′ for w′ ∈ Σ△ \ {ε}
{(ψ(extu,v), ψ(extu′,v)) | v ∈ Σ∗, uv, u′v ∈ Σ△} if w = u#u′ for (u, u′) ∈ P

⊥ otherwise.

We prove it by structural induction on w. The cases when w = ε or w = c ∈ Σint or w = c ∈ Σint
follow immediately from the definition of φ′. In case w = # = ε#ε, we have

φ′(w) = {(ψ(extε,v), ψ(extε,v)) | v ∈ Σ△} = {(ψ(extε,v), ψ(extε,v)) | v ∈ Σ∗, εv ∈ Σ△}

as required.
For the inductive step first assume w = αw′β for w′ ∈ Σ′△, α ∈ Σcall ∪Σcall and β ∈ Σret ∪Σret.

If w′ is neither in Σ△ ∪ Σ
△ nor of the form u#u′ with (u, u′) ∈ P , then φ′(w′) = ⊥ by induction

hypothesis and thus φ′(w) = ψ′(extα,β)(φ
′(w′)) = ψ′(extα,β)(⊥) = ⊥ as required, since w is also

neither in Σ△ ∪ Σ
△ nor of the form u#u′ with (u, u′) ∈ P . If w′ = ε, then φ′(w′) = 1 and hence

φ′(w) = ψ′(extα,β)(φ
′(w′))

= ψ′(extα,β)(1)

=


ψ(extα,β)(1R) = φ(w) if α ∈ Σcall and β ∈ Σret

ψ(exta,b)(1R) = φ(ab) if α = b ∈ Σcall and β = a ∈ Σret

⊥ otherwise

as required, because w = b a = ab in the second case. If w′ ∈ Σ△ \ {ε}, then φ′(w′) = φ(w′) ∈ R by
induction hypothesis, and hence

φ′(w) = ψ′(extα,β)(φ
′(w′)) = ψ′(extα,β)(φ(w

′))

=

{
ψ(extα,β)(φ(w

′)) = φ(w) if α ∈ Σcall and β ∈ Σret

⊥ otherwise

as required. If w′ ∈ Σ
△ \ {ε}, then w′ = w′′ for w′′ ∈ Σ△ \ {ε}, so φ′(w′) = φ(w′′) ∈ R by induction
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hypothesis, and hence

φ′(w) = ψ′(extα,β)(φ
′(w′))

= ψ′(extα,β)(φ(w′′))

=

{
ψ(exta,b)(φ(w′′)) = φ(aw′′b) if α = b ∈ Σcall and β = a ∈ Σret

⊥ otherwise

as required, because w = bw′′ a = aw′′b in the first case. If w′ = u#u′ with (u, u′) ∈ P , i.e.
w = αu#u′β, then

φ′(w′) = {(ψ(extu,v′), ψ(extu′,v′)) | v′ ∈ Σ∗, uv′, u′v′ ∈ Σ△} ∈ P(O2) \ ∅

by induction hypothesis. Hence, we have

φ′(w) = ψ′(extα,β)(φ
′(w′))

= ψ′(extα,β)({(ψ(extu,v′), ψ(extu′,v′)) | v′ ∈ Σ∗, uv′, u′v′ ∈ Σ△})

=
⋃

b∈Σret
z∈Σ△

{(ψ(extau,v′bz), ψ(exta′u′,v′bz)) | v′ ∈ Σ∗, uv′, u′v′ ∈ Σ△}

= {(ψ(extau,v), ψ(exta′u′,v)) | v ∈ Σ∗, auv, a′u′v ∈ Σ△}

if α = a ∈ Σcall and β = a′ ∈ Σret (where the last inclusion from right to left follows by considering
the unique stair factorizations given by Lemma 3.6 for the elements of each pair) and φ′(w) = ⊥
otherwise, as required.

Finally assume w = xy for some x, y ∈ Σ′△ \ {ε}. The case when x or y is neither in Σ△ ∪ Σ
△

nor of the form u#u′ with (u, u′) ∈ P is easily handled by applying the induction hypothesis and
observing that ⊥ is a zero in R′. Four other immediate cases are when both x and y are in Σ△,
when x is in Σ△ and y in Σ

△, when x is in Σ
△ and y in Σ△ and when both x and y are of the form

u#u′ with (u, u′) ∈ P . For the case when both x and y are in Σ
△, we have that x = x′ and y = y′

for x′, y′ ∈ Σ△, so that φ′(x) = φ(x′) ∈ R and φ′(y) = φ(y′) ∈ R by induction hypothesis, hence

φ′(xy) = φ′(x) · φ′(y) = φ(x′) · φ(y′) = φ(y′)φ(x′) = φ(y′x′)

as required, because xy = x′ y′ = y′x′. Consider the case when x ∈ (Σ△ ∪ Σ
△
) \ {ε} and y = u#u′

with (u, u′) ∈ P , hence w = xu#u′. The induction hypothesis yields

φ′(x) =

{
φ(x) ∈ R if x ∈ Σ△ \ {ε}
φ(x′) ∈ R if x = x′ for x′ ∈ Σ△ \ {ε}

and φ′(y) = {(ψ(extu,v), ψ(extu′,v)) | v ∈ Σ∗, uv, u′v ∈ Σ△} ∈ P(O2) \ ∅. We obtain

φ′(w) = φ′(x) · φ′(y)

= φ(x) · {(ψ(extu,v), ψ(extu′,v)) | v ∈ Σ∗, uv, u′v ∈ Σ△}
= {(leftφ(x) ◦ ψ(extu,v), ψ(extu′,v)) | v ∈ Σ∗, uv, u′v ∈ Σ△}
= {(ψ(extxu,v), ψ(extu′,v)) | v ∈ Σ∗, xuv, u′v ∈ Σ△}
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if x ∈ Σ△ \ {ε} and φ′(w) = φ(x′) · {(ψ(extu,v), ψ(extu′,v)) | v ∈ Σ∗, uv, u′v ∈ Σ△} = ⊥ if x = x′ for
x′ ∈ Σ△ \{ε}, as required. Eventually, let us treat the case when x = u#u′ with (u, u′) ∈ P and y ∈
(Σ△∪Σ△

)\{ε}, hence w = u#u′y. The induction hypothesis yields φ′(x) = {(ψ(extu,v), ψ(extu′,v)) |

v ∈ Σ∗, uv, u′v ∈ Σ△} ∈ P(O2)\∅ and φ′(y) =

{
φ(y) ∈ R if y ∈ Σ△ \ {ε}
φ(y′) ∈ R if y = y′ for y′ ∈ Σ△ \ {ε}

. We obtain

φ′(w) = φ′(x) · φ′(y)

= {(ψ(extu,v), ψ(extu′,v)) | v ∈ Σ∗, uv, u′v ∈ Σ△} · φ(y′)
= {(ψ(extu,v), leftφ(y′) ◦ ψ(extu′,v)) | v ∈ Σ∗, uv, u′v ∈ Σ△}
= {(ψ(extu,v), ψ(exty′u′,v)) | v ∈ Σ∗, uv, y′u′v ∈ Σ△}

if y = y′ for y′ ∈ Σ△ \ {ε} and φ′(w) = {(ψ(extu,v), ψ(extu′,v)) | v ∈ Σ∗, uv, u′v ∈ Σ△} ·φ(y) = ⊥ if
x ∈ Σ△ \ {ε}, as required, because y′u′ = u′ y′ in the first case.

7 Conclusion

In this paper we have studied the question which visibly pushdown languages lie in the complexity
class AC0.

We have introduced the notions of length-synchronicity, weak length-synchronicity and quasi-
counterfreeness. We have introduced intermediate VPLs: these are quasi-counterfree VPLs gen-
erated by context-free grammars G involving the production S →G ε for the start nonterminal
S and whose further productions are all of the form T →G uT ′v, where uv is well-matched,
u ∈ (Σ∗

intΣcallΣ
∗
int)

+, v ∈ (Σ∗
intΣretΣ

∗
int)

+, and the set of contexts {(u, v) ∈ Con(Σ) | S ⇒∗
G uSv}

weakly-length synchronous but not length-synchronous. To the best of our knowledge our commu-
nity is unaware of whether at all there is an intermediate VPL that is provably in AC0 (even in
ACC0) or provably not in AC0. We conjecture that none of the intermediate VPLs are in ACC0 nor
TC0-hard.

Our main result states that there is an algorithm that, given a visibly pushdown language L,
outputs if L surely lies in AC0, surely does not lie in AC0 (by providing some m > 1 such that MODm

is constant-depth reducible to L), or outputs a disjoint finite union of intermediate VPLs that L is
constant-depth equivalant to. In the latter case one can moreover compute distinct k, l ∈ N>0 such
that already Lk,l = L(S → ε | ack−1Sb1 | acl−1Sb2) is constant-depth reducible to L.

We conjecture that due to the particular nature of intermediate VPLs, either all of them are
in AC0 or all are not: this conjecture together with our main result indeed implies that there is an
algorithm that decides if a given visibly pushdown language is in AC0.

As main tools we carefully revisited Ext-algebras, introduced by Czarnetzki et al. [10], being
closely related to forest algebras, introduced by Bojańczyk and Walukiewicz [7]. For the reductions
from Lk,l we made use of Green’s relations.

Natural questions arise. Is there any concrete intermediate VPL that is provably in ACC0, prov-
ably not in AC0, or hard for TC0? Another exciting question is whether one can effectively compute
those visibly pushdown languages that lie in the complexity class TC0. Is there is a TC0/NC1 com-
plexity dichotomy? For these questions new techniques seem to be necessary. In this context it is
already interesting to mention there is an NC1-complete visibly pushdown language whose syntactic
Ext-algebra is aperiodic. Another exciting question is to give an algebraic characterization of the
visibly counter languages.
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8 Some errata in previous work

The following section summarizes some crucial errata in [24].

1. On page 176 line 8 it is written

if a VPL has SHB there exist unique rationals ∆↑
m and ∆↓

m such that for (u, v) ∈
η−1
L (m) we unambiguously have ∆(u)

|u| = ∆↑
m and ∆(v)

|v| = ∆↓
m

The following language is a counter-example to this claim: consider the VPL generated by the
context-free grammar S → aSb | a′cSb′ | ε, where a, a′ are call letters, b, b′ are return letters
and c is an internal letter. This rest of the section makes use of the above.

2. The previous point leads to problems, for instance the last two sentences on page 176 are
problematic. By definition, it does not follow that for each m there is a unique slope γ such
that for all (u, v) ∈ η−1(m) we have γ = ∆(u)

|u| .

3. The reduction in Proposition 135 has some problems. Firstly, one cannot assume that αuβvγ
is necessarily in L. It can be assumed without loss of generality though. Secondly, if p > 2,
then w 7→ αϕ(w)βψ(wR)γ could possibly be mapped to an element i ∈ Zp, where i ̸∈ {0, 1}:
in this case it is not clear if αϕ(w)βψ(wR)γ is in L or not.

4. Top of page 182: The quotient n↑v/d↑v ∈ Q. As mentioned in Point 1 its existence does not
follow from the definition of bounded corridor. The construction of the approximate matching
(proof of Proposition 126 relies on this).

5. Page 184: The relation ⇝L is not well-defined. Proposition 126 essentially states a property
that⇝L should satisfy, but the relation⇝L is defined by the formula appearing in Proposition
126. Yet, the formulas appearing already rely on the wrong observation that unique slopes
exist (Point 1 from above). This has consequences for Lemma 127, Conjecture 128, Corollary
129, Conjecture 130, Conjecture 132, and Proposition 137.

6. Conjecture 128: If one were to interpret⇝L it as “the matching relation”, then the Conjecture
128 is easily seen to be wrong. The VPL generated by the grammar S → acbc | aSb | ε does
not satisfy SHB, but its matching relation is definable in FO[arb].

7. Page 177, line -6. It is written

If such an m exists, we also find such an element that is idempotent.

The language generated by the grammar S → aSb | a1cb1 | a2ccb2 is a counter-example.

8. The statement of Proposition 131 is wrong. The language {anbn | n ≥ 0}∗ is a counter-
example.

9. Proposition 131: the proof has problems since the morphism is not length-multiplying.

10. Page 181: In the characterization the first bullet point is incorrect.

11. The statement of Lemma 125 is wrong. Counter-example: L = {anbn | n ≥ 0}∗. Clearly,
cancel|HL|(w) = Σ∗

int for all w ∈ L but L does not have the WSHB.
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12. The statement of Proposition 144 is wrong. Consider the language generated by the grammar
S → aSb | a1cb1 | a2ccb2 which is a visibly counter language that does not have the SHB
property. However, it is in AC0.

13. Corollary 145 is wrong due to the previous point.

14. In the proof on page 192 in line 3 one cannot assume that an idempotent m′ ∈ V exists for
which η−1

L (m′) is also a witness.

15. Statement of Lemma 146 is unclear since ⇝L is not clearly defined.

16. Lemma 147 is unclear since ⇝L is not clearly defined. There is no proof given.
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