
HAL Id: hal-04004818
https://hal.science/hal-04004818v1

Submitted on 24 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

C2QoS: Network QoS guarantee in vSwitch through
CPU-cycle management

Ye Yang, Haiyang Jiang, Yulei Wu, Chunjing Han, Yilong Lv, Xing Li, Bowen
Yang, Serge Fdida, Gaogang Xie

To cite this version:
Ye Yang, Haiyang Jiang, Yulei Wu, Chunjing Han, Yilong Lv, et al.. C2QoS: Network QoS guarantee
in vSwitch through CPU-cycle management. Journal of Systems Architecture, 2021, 116, pp.102148.
�10.1016/j.sysarc.2021.102148�. �hal-04004818�

https://hal.science/hal-04004818v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Ye Y Xie

Ab
cloud
tion.
allow
and
based
virtua
due t
proce
alloca
forwa
the h
comp
canno
a CPU
and g
the u
vSwit
mech
hierar
latenc
strate
of the

Ind
sched

Cy
putin
for a
of Th
As th
techn
in th
virtua
usual

Y. Y
chitect
Beijing

Y.
ical S
y.l.wu@

C. H
of Info
China

Y. L
China
bowen

S. F
France

G.
Acade

Y. Y
Techno
China.

ame
rces

fore,
and
for

rces
cting
s all
VMs
ding
fore,
can

f the
e to
very
asks,
ated
sult,
sing
rces

ntain
itch.
for-

hese
d to
e, at
ding
affic
cles

ants’

s in
so-

sues
s the
nnot
ental
that

20%
erms
ince
ores

iated
rces
rces
orks

© 20
https

Version of Record: https://www.sciencedirect.com/science/article/pii/S1383762121001089
Manuscript_1c62824e32c2ea12158c51f39ffc1e33
C2QoS: Network QoS Guarantee in vSwitch
through CPU-cycle Management

ang, Haiyang Jiang, Yulei Wu, Chunjing Han, Yilong Lv, Xing Li, Bowen Yang, Serge Fdida, Gaogang

stract—Cyber-Physical-Social-System (CPSS) relies on
and edge computing for service deployment and accelera-

As an enabling technology of CPSS, network virtualization
s different services to be deployed on a single physical server
provides them with differentiated network performance

on service-level-agreement (SLA). Unfortunately, current
l switches (vSwitches) cannot guarantee this functionality
o the common resource competition and unpredictable
ssing capacity. As a software on the server, vSwitch is
ted limited dedicated CPU cores to implement traffic
rding for all services. But the QoS strategy inheriting from
ardware switch, does not consider the forwarding tasks’
etition for CPU cores in terms of utilization and timing, thus
t guarantee the SLA. To solve this critical issue, we propose
-Cycle based QoS (C2QoS) strategy to realize the isolation
uarantee of service network performance by managing
sage and scheduling of the IO-dedicated CPU cores in
ch. C2QoS includes a CPU-Cycle based token bucket
anism to strictly limit service’s network bandwidth and a
chical batch scheduling mechanism to achieve hierarchical
y. Experimental results show that, compared with existing
gies, C2QoS can strictly guarantee the network bandwidth
services and reduce the service latency by up to 80%.

ex Terms—QoS, vSwitch, CPU resource competition,
uling, cloud computing.

I. INTRODUCTION

ber-Physical-Social-System (CPSS) relies on cloud com-
g and edge computing to accelerate service deployment

series of emerging technologies, such as the Internet
ings (IoT), smart cities, smart healthcare etc [1]–[6].
e foundation of cloud/edge computing, virtualization

ology allows services to flexibly run on the edge clouds
e form of virtual machines (VMs) [7]. In the cloud
lization environment, the deployment density of VMs is
ly sufficiently high, and the VMs belonging to different

ang and H. Jiang are with the State Key Laboratory of Computer Ar-
ure, Institute of Computing Technology, Chinese Academy of Sciences,

100190, China (e-mail: yangye@ict.ac.cn; jianghaiyang@ict.ac.cn).
Wu is with the College of Engineering, Mathematics and Phys-
ciences, University of Exeter, Exeter EX4 4QF, U.K. (e-mail:

exeter.ac.uk).
an is with the State Key Laboratory of Information Security, Institute
rmation Engineering, Chinese Academy of Sciences, Beijing 100093,
(e-mail:hanchunjing@iie.ac.cn).
v, X. Li and B. Yang are with Alibaba Group, Hangzhou 311121,
(e-mail: lvyilong.lyl@alibaba-inc.com; lixing.lix@alibaba-inc.com;

.ybw@alibaba-inc.com).
dida is with the LIP6 Laboratory, Sorbonne University, 75006 Paris,
. (e-mail: serge.fdida@sorbonne-universite.fr).
Xie is with the Computer Network Information Center, Chinese
my of Sciences, Beijing 100190, China (e-mail: xie@cnic.cn).
ang and G. Xie are also with the School of Computer Science and
logy, University of Chinese Academy of Sciences, Beijing 100049,

tenants or different services will be deployed on the s
physical server. These VMs share various physical resou
of the host, including CPU, memory and network. There
how to design a strategy for allocating these resources
providing differentiated services is the foremost issue
Cloud Service Providers (CSPs).

On the server of a cloud platform, VM network resou
are provided by a software vSwitch. The vSwitch conne
Network Interface Controller (NIC) to the VMs provide
VMs’ network connectivity. All packets sent from the
need to go through steps such as classification and forwar
in vSwitch before they can be sent out via the NIC. There
the upper limit of bandwidth and latency these VMs
achieve are determined by the processing capabilities o
vSwitch [8], [9]. But for a CSP, it is a common practic
increase the share of CPU resources with VMs, and thus
limited CPU resources are left for vSwitch’s forwarding t
e.g., the Google cloud uses no more than two IO-dedic
physical cores to perform forwarding tasks [10]. As a re
all the VMs compete with each other for the limited proces
capacity of the vSwitch, essentially for the CPU resou
occupied by the vSwitch.

Meanwhile, the CPU resources that are needed to mai
particular network performance is hard to predict in vSw
Different from the hardware switch that has a constant
warding capacity, the vSwitch’s processing capacity with t
IO-dedicated CPU cores is variable when being use
forward traffic with different characteristics. For exampl
the same Bits-Per-Second (BPS) rate, compared to forwar
the traffic with 1518 byte packet size, forwarding the tr
with 64 byte packet size consumes 10 times more CPU cy
[11]. As a result, the vSwitch can hardly guarantee all ten
network SLA performance in all situations.

Existing network Quality-of-Service (QoS) strategie
software vSwitch are inherited from the interface-based
lutions of hardware switches, and do not consider the is
of CPU resources competition among tenants, as well a
variable vSwitch forwarding capacity. As a result, they ca
ensure VMs’ SLA performance targets. Our experim
results on a multi-tenant cloud platform in Section II, show
the innocent VM bandwidth can be decreased by up to
due to the competition of IO-dedicated CPU usage. In t
of latency, all VM’s latency increase hundreds of times, s
all VMs’ forwarding tasks compete for the limited CPU c
in terms of timing and are not processed in a different
manner. Some works [11], [12] have noticed the resou
competition issue, and they added a module for CPU resou
isolation before the QoS module. The effects of these w
21 published by Elsevier. This manuscript is made available under the CC BY NC user license
://creativecommons.org/licenses/by-nc/4.0/

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1383762121001089
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1383762121001089

2

were
variab

Dif
a new
solve
by th
SLA
to VM
How
and C
strictl
latenc
the w
file s

To
main

• W
r
s
o
i
c

• B
t
n
a
p

• W
o
e
c
r
o

Th
introd
the m
Sectio
on O
out p
to de
concl

A. N

Ne
switc
to th
be di
the fa
are u
but i
fair q
by G
bandw
high

Wh
hardw

are
et is

by
tions
lock

soft-
ores
sing
with
peri-
d of
ng a
. On
has

hich
ffer-
ware
rther
can

loud
ncy,
im-

sting
kets-
ts of
SLA
ited
d to

the

olor
VS-
, we
nder,
ame

from
s. It
ame
GHz

ory
ICs
The
and

nd 1

oken
M1
for

and
512-
ited.
kets
the
limited because they are still interface-based and the
le vSwitch forwarding capacity is still ignored.
ferent from existing solutions, in this paper we propose
CPU-Cycle based QoS strategy (C2QoS) to completely

this issue. As the “virtual” network resources are realized
e IO-dedicated CPU cores, we guarantee VM’s network
performance by directly apportioning these CPU cycles

s. The challenges of achieving this goal include: 1)
to establish a correspondence between VM’s bandwidth
PU usage. 2) How to assign CPU cycles to VM to

y guarantee its bandwidth. 3) How to ensure the SLA
y, especially for the delay-sensitive applications (e.g.,
eb and video servers require lower response latency than
ystem servers).
address these challenges, this paper makes the following
contributions:

e propose a modeling methodology to build the cor-
espondence between forwarding capacity and CPU re-
ources in vSwitch. The model characterizes the effect
f different working conditions over the vSwitch forward-
ng capacity. These conditions include the tenant traffic
haracteristics, as well as the deployment configurations.
ased on the model, we propose the C2QoS strategy, con-

aining a CPU-Cycle based Token Bucket (C2TB) mecha-
ism for performing isolation enhanced rate limiting and
Hierarchical Batch Scheduling (HBS) mechanism for

roviding latency guarantee.
e implement the C2QoS strategy on DPDK accelerated

pen vSwitch (OVS-DPDK) [13], [14] platform. The
xperiments on a multi-tenant cloud platform show that
ompared with existing strategies, the influence of CPU
esource congestion on bandwidth is eliminated and that
n latency is reduced by 80%.

e rest of this paper is organized as follows. Section II
uces the background and motivation. Section III presents
odel between network performance and CPU usage.
n IV shows the design of C2QoS, and its implementation

VS-DPDK is shown in Section V. Section VI carries
erformance evaluation. Section VII discusses the issue
ploy C2QoS in real-world environment, and Section VIII
udes this paper.

II. BACKGROUND AND MOTIVATION

etwork QoS in vSwitch

twork QoS strategy is a well-studied topic in hardware
h, and a lot of works have been proposed. According
e implementation and function, the QoS strategies can
vided into two types: the token bucket mechanisms, and
ir queuing mechanisms. The token bucket mechanisms

sed to limit the bandwidth sharing with little overhead,
t cannot ensure the latency [15]–[17]. In contrast, the
ueuing and traffic scheduling mechanisms represented
PS, WFQ, and DDR, are proposed to guarantee SLA
idth and latency more finely, while bringing relatively

complexity [18]–[20].
en realizing these two kinds of QoS strategies in the
are switch, the sufficient processing capacity inside the

switch brings significant advantages. The main reasons
argued in [21]: the overhead of processing each pack
fixed; the token buckets and queues are implemented
hardware and they can complete the corresponding func
without compromising the performance; high-precision c
and hardware feedback support [22], [23].

Unfortunately, none of the above advantages exists in
ware vSwitch. As mentioned in Section I, the CPU c
left for vSwitch are limited, and meanwhile their proces
capacity is variable when being used to forward traffic
different characteristics. For example, in Google’s ex
ments, forwarding a flow with 64-byte packets at a spee
512 Mbps will consume more CPU cycles than forwardi
flow with 1518-byte packets at a speed of 2.4 Gbps [11]
the other hand, as a software based process, the vSwitch
particular bottleneck and resource competition points, w
are completely different from hardware switch. These di
ences make that the QoS strategies inherited from hard
switches cannot work well in the vSwitch. We will fu
demonstrate in this section that, existing QoS solutions
cause performance issues in both bandwidth and latency.

B. Bandwidth issue

The existing rate limiting methods in the vSwitch of c
servers usually use the light-loaded token bucket for efficie
e.g. the MBFQ rate limiting method used by Microsoft is
plemented with a token bucket algorithm [21]. These exi
token bucket mechanisms are all based on BPS or Pac
Per-Second (PPS), and directly limit the number or bi
packets that can be forwarded to guarantee tenants’
bandwidth. As the IO-dedicated CPU resources are lim
and the processing capacity is variable when being use
forward different traffic, one tenant may legally squeeze
CPU resources and harm the bandwidth of others.

In this section, we adopt the best-performing three c
marker (TCM) rate limiting algorithm [17], [24], [25] in O
DPDK platform to demonstrate the issue. On one server
launch two VMs to connect to the OVS-DPDK as se
and then use another directly connected server with the s
hardware configurations as receiver. We use pkt-gen
netmap [26] inside the two VMs as packet generator
should be noted that all experiments in this paper use the s
platform configurations: Intel Xeon CPU E5-4603 v2 2.20
(32 logical cores on 4 NUMA nodes), 64GB DDR3 mem
at 1333MHz, one Intel 82599ES 10-Gigabit Dual Port N
and Ubuntu 16.04.1 (kernel 4.8.0) as operation system.
cloud platform is built on QEMU 2.10, DPDK 17.11.2
OVS 2.9.2. Every VM is assigned with 2 GB memory a
logical CPU core.

In the Fig. 1(a)-(b), we show how the BPS-based t
bucket mechanism fails to ensure VM bandwidth. The V
and VM2 share one dedicated CPU core in OVS-DPDK
forwarding, and their bandwidths are limited to 2 Gbps
8 Gbps respectively. Within the first 10 seconds, they send
byte packets and their BPS bandwidths are precisely lim
Starting from the 10th second, VM1 sends small pac
(changing the packet size to 64-byte). In order to achieve

3

0
0

2

4

6

8

10

B
a
n
d
w

id
th

 (
G

b
p
s
)

(a) B

0.0

0.6

1.2

1.8

2.4

3.0

B
a
n
d
w

id
th

 (
M

p
p
s
)

(c)

Fig. 1.
results
method

same
tasks
in Fig
VM2
able
by th
20%

Th
bucke
share
bandw
Withi
single
10th
it req
OVS-
previ
resou
leads

Th
behav
nocen
tasks
which
By ex
resou
the n
case,
netwo

C. La

In
sched
also
and
and t

ss

IC

h and

e the

cket
ware
g in
with
tions
tiple
port
ling

e up
iated
pro-

ware
ctice
used
ores
ress
ling
atch
and
Ms,

d by

. To
ease
TCP
VS-
[30]

e the
hys-

ment

each
that

ency
ber

tches.
on a

tch of
ets on
5 10 15 20
Time (s)

 VM1 VM2

PS bandwidth (BPS-based).

0 5 10 15 20
0

20

40

60

80

100

C
P

U
 u

s
a
g
e
 (

%
)

Time (s)
 VM1 VM2

(b) CPU consumption (BPS-based).

0 5 10 15 20
Time (s)

 VM1 VM2

PPS bandwidth (PPS-based).

0 5 10 15 20
0

20

40

60

80

100

C
P

U
 u

s
a
g
e
 (

%
)

Time (s)
 VM1 VM2

(d) CPU consumption (PPS-based).

Bandwidth isolation issue in the existing token bucket algorithms. The
of BPS-based method are shown in (a) and (b), while the PPS-based
results are shown in (c) and (d).

BPS throughput (2 Gbps) as before, VM1’s forwarding
in vSwitch consume 20% more CPU resources as shown
. 1(b). This leads to a drop in the CPU consumption of

’s forwarding tasks, which in turn reduces VM2’s avail-
bandwidth. Eventually, the innocent VM2 was affected
e tenant behavior inside VM1, resulting in approximately
decrease in VM2’s bandwidth.
e same situation also occurs in the PPS-based token
t mechanism. In the Fig. 1 (c)-(d), VM1 and VM2 also
one CPU core in OVS-DPDK for forwarding, and their
idths are limited to 0.6 Mpps and 2.4 Mpps respectively.

n the first 10 seconds, they behave well and both send a
flow. The VM1 starts to send multiple flows from the

second (change configurations in pkt-gen), which makes
uire more CPU resources as the packet classification in
DPDK gets slower. Similarly, in order to achieve the

ous PPS bandwidth, VM1 preempts part of the CPU
rces belonging to VM2 as shown in Fig. 1(d), which
to a 16% decrease in VM2 bandwidth.

ese two experiments demonstrate that, even the tenant
ior inside a small weight VM can influence the other in-
t VMs’ bandwidth. The reason is that the VM forwarding
compete for the IO-dedicated CPU cores in vSwitch,
is ignored in the existing rate limiting mechanisms.

ploiting this flaw, greedy tenants can obtain more CPU
rces, or an attacker can construct specific traffic to harm
etwork performance of all tenants on the server. In either
CSPs cannot provide the well-behaved tenants a stable
rk performance.

tency issue

addition to the bandwidth issue, the existing traffic
uling mechanisms inherited from the hardware switch
cause latency issues in vSwitch. As processing engine
logic are very different between the hardware switch
he vSwitch, the resource competition occurs at different

ingress egress

Hardware
circuits

P1

P2

P3

P4

P5

P6

P7

P8

Packets queuing

(a) hardware switch.

ingress

egreVM1

VM2

VM3

VM4

N

Batch I/O
processing

CPU

Tasks
queuing

(b) software vSwitch.

Fig. 2. The difference of resource competition points in hardware switc
software vSwitch.

stages. Simply applying the previous strategy cannot solv
competition problem on a different platform.

As shown in Fig. 2, we present the abstract of pa
processing logic in the hardware switch and the soft
vSwitch to analyze the different requirements of schedulin
the two architectures. In the hardware switch, the circuits
powerful processing capabilities make the resource conten
mainly occur at the egress stage, where the traffic of mul
in ports is gathered for sending out on a particular
(see port P6 in Fig. 2(a)). The existing traffic schedu
mechanisms working at this stage [27]–[29] can queu
packets of different in ports so as to guarantee different
latencies. However, in the software vSwitch, the packet
cessing capacity of CPU cores is far inferior to the hard
circuits that can achieve line speed. With the common pra
in the cloud platform that very limited CPU cores are
for vSwitch, concurrent VMs compete for these CPU c
to execute the expensive batch I/O processing1 in the ing
stage (see Fig. 2(b)). Due to the absence of task schedu
at the ingress stage, VMs indiscriminately queue up for b
I/O tasks to be completed, which causes mutual influence
high latency. In the worst case, on a server running n V
each VM will suffer from the additional latency cause
n− 1 times of batch I/O processing.

We also use experiments to demonstrate this issue
simulate the multi-tenant scenario on the cloud, we incr
the number of VMs to 16 on one server and measure the
latency. One CPU core is used to forward traffic in the O
DPDK throughout. To measure TCP latency, we run qperf
as a client-side program in all VMs simultaneously, whil
server-side program is run in another directly connected p
ical server. We measure 20 sets of data for each experi
to avoid accidents.

The results are shown in Fig. 3, where the latency in
case is shown in the form of a box diagram. It can be seen
when there is only 1 VM running on the server, its TCP lat
is stable and maintained at 26 - 27 us. But with the num

1Batch I/O processing is the general running mode of existing vSwi
To achieve efficiency, the CPU core always receives a batch of packets
port for processing such as classification. After finally sending this ba
packets to the destination ports, the CPU will turn to receive the pack
the next port.

4

Fig. 3.
the nu
VMs s

of V
increa
serve
indisc
core
at the

D. M

Th
guara
dedic
lack
bring
undif
tioned
e.g.,
IO-de
route
CPU-
amon
becau
after
to co
differ
proce

Ess
is no
resou
the v
work
the n
netwo
mode
resou
on th
imple

Th
main
hensi
the m
in mo
more
provi

To
mode

N
IC

Tx

ng of
gress,

itch
orm,
been
form
sing
ther

eads
CPU
sing
I/O

three
ork.
h of
ext,

their
le is
next
CPU
(the

tage.
rites
NIC
also

tasks

the
the

cles

MC
VS-
five-
sifier
s all
it in
MC.
ifier,
, the
MC
usly
1 VM 4 VMs 8 VMs 16 VMs
101

102

103

104

L
a
te

n
c
y
 (

u
s
)

Average TCP latency with different number of VMs deployed. With
mber of VMs grows, the polling running mode in vSwitch causes all
uffering from the unstable high latency.

Ms grows, the TCP latencies become unstable and all
se exponentially. When deploying up to 16 VMs on this

r, all VMs suffer from hundreds of times higher latency
riminately due to waiting for the one IO-dedicated CPU

to sequentially process other VMs’ batch I/O processing
ingress stage.

otivation

e reason that VM’s bandwidth and latency cannot be
nteed is that the existing QoS strategies ignore the IO-
ated CPU resources competition inside the vSwitch. The
of management and apportionment of CPU resources
s a series of flaws including bandwidth isolation and
ferentiated high latency. Some previous works have men-

this issue, and some solutions have been proposed,
Addanki et al. [12] considered separately apportioning
dicated CPU resources and bandwidth on the software

r, and Kumar et al. [11] proposed a method by using a
based weighted fair queue to isolate CPU competition
g VMs. But all of these works have limited effects
se they only add a CPU isolation module before or
the existing interface-based QoS mechanisms, but fail
nsider the variable vSwitch forwarding capacity and the
ent resource competition points in the software vSwitch
ss.
entially, the network forwarding capacity of vSwitches

t a kind of physical resources, but a kind of “virtual”
rces that are provided by IO-dedicated CPU resources in
Switch. Starting from this point, the motivation of this
is to adopt the CPU resources apportionment, that reflects
etwork forwarding capacity more directly, in the VM
rk QoS solution. In order to do that, we first propose a
ling methodology to build the relationship between CPU
rces and network forwarding capacity in vSwitch. Based
e vSwitch network performance model, we design and
ment a new VM network QoS strategy.
is paper is based on a conference version [31], and the
improvements include: this paper contains more compre-
ve investigation of the related works, and we strengthen
otivation through new experiments; this paper describes
re detail the modeling and design of C2QoS; we conduct
useful experiments to verify C2QoS’s accuracy besides

ng the guarantee of network QoS of tenants.

III. BANDWIDTH-CPU MODEL

guide the design of QoS strategy, we first need to
l the correspondence between forwarding capacity and

VM

slow path

fast path

Datapath
classifier

EMC
lookup

Poll
&

copy

VM queue

VM queue

Batch I/O processing
(PMD threads)

Host OS

①
②

③

VM

hit

miss

Fig. 4. Detailed processing logic in OVS. The batch I/O processi
sending packets from VM to NIC can be divided into three stages: 1©in
2©classification and 3©egress.

CPU utilization in vSwitch. Our modeling of the vSw
forwarding procedure is based on the OVS-DPDK platf
which is the state-of-the-art implementation and has
widely adopted by the industry. As the OVS-DPDK plat
represents a lot of vSwitches in terms of packet proces
logic, the modeling method can be easily applied to o
vSwitch platforms.

A. Packet forwarding procedure in vSwitch

In OVS-DPDK, several Polling Mode Driver (PMD) thr
are launched and bound to the limited IO-dedicated
cores. For efficiency, these PMD threads use batch proces
mode to process tasks. As shown in Fig. 4, the batch
processing procedure in the OVS-DPDK consists of
stages delivering packets from the VM to the external netw
The first stage is ingress, the PMD thread copies a batc
packets from the VM memory to the vSwitch’s buffer. N
in the classification stage, the PMD thread looks up
destination port based on the five tuples. If the five tup
found in the Exact Match Cache (EMC), we go to the
stage. But if it is missed, the PMD thread will use more
cycles to look up in the more comprehensive classifiers
datapath classifier in Fig. 4) and then go to the next s
Finally, it is in the egress stage that the PMD thread w
the packet descriptors to the NIC queue, and then the
can send packets out. According to these three stages, we
divide the CPU cycles consumed by the VM forwarding
into three parts as shown in the equation below:

C = Cingress + Cclassification + Cegress (1)

where Cingress indicates the CPU cycles consumed in
ingress stage, Cclassification refers to that consumed in
classification stage and Cegress corresponds to the CPU cy
consumed in the egress stage.

It is worth noting that in the classification stage, the E
capacity is limited, e.g., it has only 8192 entries in O
DPDK, so it can only store the most recently searched
tuples. The datapath classifier is the main body of the clas
algorithm like tuple-search-space (TSS) [32] and contain
the rules in the vSwitch. Each time a five-tuple search is h
EMC, the Cclassification only contains lookup cost in E
But if a lookup is missed in EMC and hit in datapath class
the hit entry needs to be added to EMC [9]. Therefore
Cclassification under this case contains lookup cost in E
and datapath classifier, and the update cost in EMC. Obvio

5
C

P
U

 u
s
a
g
e
 (

M
 c

y
c
le

s
/s

)

ltiple

Fig. 5. cles/s.

the la
will d

Du
many
stage
VMs,
them,
istics
mana
parts
these
to mo

B. Im

Th
teristi
a VM
We la
one C
serve
usage
exper
while

Sen
and k
In Fi
three
basis
metho
comp

Pa
keep
sizes
the pa
do w
is du
copyi
exam
packe
at the

Nu
packe
of co
only
numb

time
ation
r the
our

imes
that,
will

sider
S is
tely,
ther

CPU
ents,

for
affic
, we
hat a
nder
IO-

hich

affic
tains
har-

o we
nar-

. For
ting
ore

nt of
n be

rver,
con-
n the
ation
ver),

ber
ainly
d as

CPU
101 102 103 104 105 106
10-3

10-2

10-1

100

101

102

throughput (PPS)

 egress

 classification

 ingress

(a) CPU usage - PPS.

64 128 256 512 1024 1500
0

50

100

150

200

250

C
P

U
 u

s
a
g
e
 (

M
 c

y
c
le

s
/s

)

packet size (Byte)

 egress

 classification

 ingress

(b) CPU usage - packet size.

0

50

100

150

200

250

multiplesingle

1500512

C
P

U
 u

s
a
g
e
 (

M
 c

y
c
le

s
/s

)

packet size (Byte)

 egress

 classification

 ingress

64
single multiple single mu

(c) CPU usage - multiple flows.

The impact of traffic characteristics on the relationship between CPU consumption and bandwidth. The “M cycles/s” in Figs means million cy

tter is much larger than the former, and the specific value
epend on the number and complexity of the rules.
ring the whole packet forwarding procedure in vSwitch,
factors can affect the CPU consumption in the three

s, e.g. throughput, the number of flows, the number of
and so on. According to the main bodies that control
we divide these factors into two types: traffic character-
managed by tenants and VM deployment configurations
ged by CSPs. We will experiment to study how the three
of CPU consumption in Eq. (1) are affected by the
factors, and then use measurement-based methodology
del CPU consumption under different situations.

pact of network traffic characteristics

e first factor we consider is the network traffic charac-
cs, which can be changed by the tenant behavior inside
: sending rate, packet size and the number of flows.
unch one VM on the OVS-DPDK platform and assign
PU core as the IO-dedicated CPU resources on one

r. The impacts of the three traffic characteristics on CPU
for forwarding are shown in Fig. 5 (a)-(c). During each

iment, we vary one characteristic and record the results,
keeping the other two with a certain value.
ding rate (PPS). We keep the packet size at 1500-byte
eep the number of flows at 1 during this experiment.
g. 5(a), we find the CPU cycles consumed in all the
stages are proportional to the PPS. So this is the

and premise of all existing BPS/PPS-based rate limiting
ds: with no other traffic characteristics changed, the CPU

etition will not occur.
cket size. In this experiment, we keep the PPS at 105 and
the number of flows at 1. The results of different packet
are shown in Fig. 5(b), and it can be seen that increasing
cket size will only increase Cingress and have nothing to

ith Cclassification and Cegress. The increase of Cingress

e to the fact that only the stage ingress contains packet
ng, so the larger packet requires more time to copy. For
ple, the Cingress under the case of forwarding 1500-byte
ts is more than twice that of forwarding 64-byte packets
same PPS rate.

mber of flows. We keep the PPS at 105 and keep the
t size at 1500 byte during this experiment. The result
ncurrent flows is shown in Fig. 5(c). Comparing with
sending one flow (“single” in the figure), sending a large
er of concurrent flows (“multiple” in the figure, we range

dst ip from 0.0.0.0 to 255.255.255.255 and at the same
randomize the port number) will cause the packet classific
frequently misses in EMC lookup and the packet will ente
longer search path, and thus Cclassification is increased. In
experiment, the Cclassification in the worst case is 1.67 t
more than that in the best case. But it should be noted
the number and complexity of the rules in the flow table
affect this ratio.

The existing QoS strategies adopted by CSPs only con
one of the above three characteristics, i.e., PPS (BP
considered as PPS ∗ average packet size). Unfortuna
all existing strategies fail to guarantee the SLA as the o
two characteristics can easily undermine it via affecting
consumption (see Fig. 5 (b)-(c)). From these experim
we can see that a certain bandwidth-CPU relationship
a single VM can only be established with all the tr
characteristics are determined. Based on this relationship
can allocate Csingle, which indicates the CPU resources t
single VM requires to achieve the purchased bandwidth u
specific traffic characteristics, to each VM. In this way, the
dedicated CPU utilization among VMs can be isolated, w
will resolve the SLA issue.

It should be noted that besides the above three tr
characteristics, traffic sent by the tenant VMs also con
some other characteristics, e.g. flow duration. But these c
acteristics do not affect the CPU utilization per unit time, s
do not consider them in the modeling. But in practical sce
ios, the forwarding procedure is often more complicated
example, some packets need to be modified when execu
the actions after the classification stage, which consumes m
CPU resources. These additional operations are independe
the stages we are modeling, and the CPU consumption ca
added separately.

C. Impact of deployment issues

When deploying multiple VMs on the same physical se
some deployment configurations will influence the CPU
sumption in packet forwarding. These deployment issues i
case of multi-tenancy scenario include: VM memory loc
(on which NUMA nodes [33], [34] of the physical ser
the number of VMs on the same server and the num
of IO-dedicated CPU cores. As these factors are m
independent with each other, the influence can be expresse∏

Ri ∗ Csingle, where Ri represents the growth rate of
consumption under the influence of each factor.

6

3

6

9

12

15

C
P

U
 u

s
a
g
e
 (

M
 c

y
c
le

s
/s

)

16

s.

Fig. 6. illion
cycles/

VM
ture o
serve
inform
on ou
dedic
0. So
vSwi
acces
rate,
deplo
be se
cycle
task,
memo
and 3

Nu
comp
consu
in Fi
additi
will g
VM g
in the
deplo
on di
situat
this s
actua
4 VM
resou
that u
on di

Nu
of IO
show
found
about
forwa
locks
PMD

Th
partic
tiply

rded
VMs
CPU
, the
ment
ding
ered,
e its

uild
rms.
ation
M to

the
the

real

ance
ction
ome
sults
n be
can
like
gle)

ment
t the
store

the
t Ri

cond
form
affic
VM
tics,

them
[36]
can

most
SPs

ently
node0 node1 node2 node3
0

0

0

0

0

0

NUMA node

 egress

 classification

 ingress

(a) CPU usage - VM location.

2 4 6 8 10 12 14 16
1.0

1.1

1.2

1.3

1.4

1.5

1.6

in
c
re

a
s
e
 r

a
ti
o

VMs

 MAX

 MIN

(b) CPU usage increase ratios - one core.

2 4 6 8 10 12 14
1.0

1.2

1.4

1.6

1.8

2.0

2.2

in
c
re

a
s
e
 r

a
ti
o

VMs

 MAX

 MIN

(c) CPU usage increase ratios - two core

The impact of different deployment situations on the relationship between CPU consumption and bandwidth. The “M cycles/s” in Figs means m
s.

memory location. The influence of NUMA architec-
n memory access widely exists in today’s commercial

rs, so we need to evaluate it. We have described the CPU
ation at the Section II-B, and there are 4 NUMA nodes

r servers. In the experiment setting, the vSwitch’s IO-
ated CPU cores and memory are located on NUMA node
the memory on node 1, 2 and 3 requires the CPU cores in
tch to access memory across nodes, which is slower than
sing to the memory on node 0. At the same forwarding
the CPU cycles required by the forwarding task of VM
yed on each NUMA node are shown in Fig. 6(a). It can
en the VMs on node 1, 2 and 3 need 40% more CPU
s than the VM on node 0 to complete the forwarding
and that is mainly due to the increase of Cingress by
ry access across nodes. So for the VMs on node 1, 2
, the coefficient R in this factor is 1.4.
mber of VMs. As the number of VMs grows, the
etition on memory bus and cache will increase the CPU
mption of all VMs’ three forwarding steps. As shown
g. 6(b), when the number of VMs is less than 8, the
onal CPU consumption caused by competition for cache
reatly increase, while it will be almost the same after
rows more than 10. The maximum and minimum curves
figure show the CPU consumption increase ratio when

ying VMs on the same NUMA node (the worst case) and
fferent nodes (the best case). It is obvious that the former
ion will lead to higher competition. The coefficient in
cenario is changeable and needs to be measured through
l experiments. For example, according to Fig. 6(b), if

s are deployed on the same NUMA node, the CPU
rces consumed by each VM will be 1.14 times more than
nder the single VM case. But if the 4 VMs are deployed
fferent NUMA nodes, the ratio changes to 1.07.
mber of CPU cores. Finally, we increase the number
-dedicated CPU cores to 2 in vSwitch and the result is
n in Fig. 6(c). Comparing Fig. 6(b) and Fig. 6(c), it can be

that using 2 logical cores for forwarding will consume
1.47 times more CPU cycles than one logical core for

rding in any case. It is mainly due to competition for
in the code, e.g. the synchronization among multiple
threads.

erefore, when considering the CPU cycles assigned to a
ular VM in the practical environment, CSPs need to mul-
the Csingle, the necessary CPU cycles measured under

the single-VM case, by all the increase coefficient reco
in the above experiment results. For example, if 4
are deployed in NUMA node 1, and two IO-dedicated
cores are assigned to forward traffic for them in vSwitch
coefficients to be multiplied under the above three deploy
configurations are 1.4, 1.14 and 1.47, respectively, accor
to Figs.6 (a)-(c). Only when all these factors are consid
the CPU cycles allocated to each VM can really ensur
purchased bandwidth.

D. Modeling methodology

According to experiments and analysis, CSPs can b
their own bandwidth-CPU models in their vSwitch platfo
When the tenant requirements and configuration inform
are given, the CPU resources required for the tenant’s V
achieve SLA network performance can be calculated. In
following, we will present the modeling procedure and
required information to guide CSPs to implement in the
environment.

Firstly, the CSPs need to perform measurements in adv
to establish a bandwidth-CPU model as described in Se
III-B and C. For the impact of traffic characteristics, s
preset values can be selected for measurement and the re
can be stored in a table. For example, the packet size ca
{64, 128, 256, 512, 1024, 1500}, and the number of flows
be {single, multiple}. With this table, a particular input
(PPS = 10000, packet size = 1024, number of flow = sin
will get a certain output Csingle. Next, for the deploy
configurations, CSPs can also use the experiments to ge
corresponding configuration and its coefficient Ri, and
it in tables. As the example shown in Section III-B, given
input (the number of VMs = 4), we will get a coefficien
as 1.14.

After the measurement-based model is built, in the se
step, the CSPs rely on two types of information to
the inputs of the model when deploying VMs: the tr
characteristic preference from the tenant’s choice and
deployment configurations. For the three traffic characteris
they can be included in the SLA and tenant can choose
when purchasing the VM. As the iMIX traffic [35],
represents an average level of all tenants’ traffic, and CSPs
also set its characteristics as the default values to meet
tenants’ requirements. For deployment configurations, C
can easily detect them. But as they may change frequ

7

with
CSPs
formu
VM
based

Ba
oped
prem
in acc
are n
CPU
define
shoul
bandw
the s
accor
CPU
occur

In
HBS
and h
illustr

A. C

To
appor
dedic
cated

1)
kind
tional
packe
usabl
gener
alloca
requi
the m
gener
ensur

Me
dedic
to V
[37],
MIN-
Fig.
ensur
while
plus
dedic
resou
are 0
purch
left id
For t
accor

2G

s

MAX
tively.
ding.

are
cy-

rces
CPU
sted,
also
ple,

affic
part

VMs
logic
will

tion)
r all
d to

ast it
e to
ber

invl
cles
ight
M’s

kens
rated
is to
epth.
aved

epth
the creation and deletion of VM instances, that requires
to change the inputs in real time. Then according to the
la

∏
Ri ∗Csingle, the required CPU resources for each

to achieve SLA network performance can be calculated
on the tables in the first step.

IV. C2QOS DESIGN

sed on the bandwidth-CPU modeling methodology devel-
in Section III, we are able to design C2QoS strategy. The
ise of C2QoS is that the number of VMs to be deployed is
ordance with the resources on physical servers and there
o overprovision. As each VM’s required IO-dedicated
resources can be calculated based on the model, we
that under the C2QoS strategy, the deployment of VMs

d follow two rules: the sum of all VMs’ purchased
idth should not be more than the NIC bandwidth; and

um of CPU resources that we calculate for each VM
ding to the model should not exceed the IO-dedicated
cores. Without these rules, the resource shortage will
all the time, and no strategy can work.
C2QoS, we propose the C2TB mechanism and the
mechanism to provide isolation enhanced rate limiting
ierarchical latency respectively. In this section, we will
ate in detail the design.

PU-cycle based token bucket mechanism

guarantee VM bandwidth through the CPU resources
tionment, C2TB needs two steps: allocating the IO-
ated CPU resources to particular VMs; using the allo-
CPU resources to strictly limit the forwarding rate.
CPU resources allocation: Firstly, we construct a new
of token bucket for each VM. Different from the tradi-
token bucket algorithms that use the bits or number of

ts as tokens, the tokens in C2TB represent the remaining
e IO-dedicated CPU cycles of each VM. The token
ation rate of each VM is the IO-dedicated CPU cycles/s
ted to it. We use Calloc to indicate the CPU cycles/s

red by each VM to achieve purchased bandwidth. Using
odeling methodology in Section III, we can set the token
ation rate to the fit value of Calloc, and it can strictly
e tenants’ purchased bandwidth in practice.
anwhile, besides the Calloc, the idle part of the IO-
ated CPU resources also need to be entirely allocated
Ms for MIN-MAX bandwidth allocation policy [21],
which is widely used in industry. An example of the
MAX bandwidth guarantee under C2TB is shown in
7. The MIN bandwidth (the purchased bandwidth) is
ed by only assigning basic Calloc to the particular VM,
the MAX bandwidth is obtained by assigning the Calloc

Cidle, which means the idle CPU cycles of the IO-
ated CPU cores. In the example, we assume the CPU
rces required to achieve 1 Gbps and 2 Gbps bandwidth
.2G cycles/s and 0.4G cycles/s, respectively. After their
ased bandwidth are guaranteed, there are still 1G cycles/s
le on the 2.2GHz CPU core and it can be fully assigned.
he 4 VMs, they can share the Cidle of 1G cycles/s
ding to their weights to achieve their MAX bandwidth.

1 1 2 2weight

0.2G 0.2G 0.4G 0.4GMIN(cycles/s)

1 Gbps
purchased
bandwidth 1 Gbps 2 Gbps

0.2G + 0.16G 0.2G + 0.16G 0.4G + 0.32G 0.4G + 0.3MAX(cycles/s)

VM1C2TB

2 Gbp

VM2 VM3 VM4

Fig. 7. C2TB bandwidth guarantee. C2TB guarantees the MIN and
bandwidth for VMs by assigning basic and all idle CPU cycles/s, respec
In this example, 4 VMs share one 2.2Ghz CPU core for packet forwar

Therefore, the maximum CPU resources allocated to them
0.36G cycles/s, 0.36G cycles/s, 0.72G cycles/s and 0.72G
cles/s, respectively.

After we entirely allocate the IO-dedicated CPU resou
to VMs, another problem may occur that the allocated
resources may overflow from token bucket and be wa
when VM’s network load is light. In this condition, we
need to reallocate these unused CPU resources. For exam
if one or two VMs in the Fig. 7 are sleeping and no tr
is generated, their tokens will always overflow and this
of the overflowed tokens can be redistributed to other
according to their weights. We present this reallocation
in the token update function as shown in Algorithm 1. It
be called at regular intervals (its value is invl in the func
to count the number of tokens in the token buckets fo
VMs on this server. The variable loop unused cc is use
collect all the overflowed CPU cycles in this loop and at l
will be stored in sum unused cc for reallocation next tim
update tokens. In the loop, each VM will calculate the num
of tokens generated at the rate of Calloc + Cidle within the
time. Then, each VM will get some overflowed CPU cy
based on its weight. We should point out that the VMi.we
in the algorithm is a ratio, calculated by dividing the V
weight by the sum of all VMs’ weights. So at last the to
added into the token bucket contain two parts: the gene
tokens and overflowed tokens. The last step in the loop
check whether the number of tokens exceeds the bucket d
If yes, the overflowed part needs to be taken out and s
for next token update.

Algorithm 1 C2TB token update function
1: function C2TB UPDATE CALLBACK
2: loop unused cc← 0
3: unused cc← 0
4: for i = 0→ VM cnt do
5: gene cc← invl ∗ (VMi.Calloc + VMi.Cidle)
6: unused cc← sum unused cc ∗ VMi.weight
7: sum unused cc− = unused cc
8: VMi.tokens + = gene cc+ unused cc
9: if VMi.tokens > bucket depth then

10: loop unused cc + = VMi.tokens−bucket d
11: VMi.tokens← bucket depth
12: end if
13: end for
14: sum unused cc ← loop unused cc
15: end function

8

ro

(a

es

ch

Fig. 8. riority
in the smart
hierarc

2)
alloca
forwa
numb
proce
be dr
many
how m
the f
negat
wheth
each
a bat
is sub
comp
forwa
bandw

B. H

As
egres
resou
about
(inclu
field
mode
These
with
tasks.
the hi
us to
in po
limite

Th
In th
sched
been
in da
envir
priori

side

own
S, as
ding
d by
ideo
rder

sing.
tures
ues:
U to
that

with
eady
ores
eady

ority
has

. For
tions
gher
ueue
evel.

the
s in
one
fter

ueue
s are
have
first-

ges,
teed
tee a
ard-
still

nder
eady
1

2

3

8

Priority 1

Priority 2

Priority 3

Priority 8

……

ot

) Class-based architecture in HBS.

VM2

VM3

VM6 VM5 VM1VM4

Ready queues

Priority 1

Priority 2

Waiting queue

1000
cycles

VM2

……
Priority 3

-41000 cycl

10000
cycles

2000
cycles

5000
cycles

6000
cycles

-3000
cycles

-40000
cycles

1000
cycles

CPU

Execute
one bat

(b) The IO-dedicated CPU core processing logic under HBS.

HBS design. The VMs are classified according to their priorities. Then the IO-dedicated CPU cores always pick up VM with the highest p
virtual “ready queues” to process batch I/O task. So the traditional undifferentiated execution in the polling running mode is replaced by the
hical batch I/O scheduling.

rate limiting: The last part of C2TB is to use the
ted CPU cycles in VMs’ token buckets to limit their
rding rates. In the traditional token bucket algorithm, the
er or bits of packets are calculated during the batch I/O
ssing and the packets exceeding the available tokens will
opped exactly. But in C2TB, since it does not know how
CPU cycles will be consumed, it is impossible to decide
any packets should be dropped. For efficiency, we adopt

ollowing policy: we allow the number of tokens to be
ive, and whether the tokens are greater than 0 determines
er this batch I/O processing task can be executed. For

VM, only if its tokens are greater than 0, it can send out
ch of packets, and the number of CPU cycles consumed
tracted from its token bucket after the batch processing
letes. As the CPU cycles used for each VM’s packet
rding tasks are reasonably assigned in C2TB, the VM
idth can be guaranteed with good isolation.

ierarchical batch scheduling mechanism

the existing scheduling mechanisms only work at the
s stage and cannot avoid the high latency of CPU
rces contention in the other stages, we turn to think

scheduling the entire batch I/O processing procedure
ding ingress, classification and egress) for VMs. In the

of CPU task scheduling, we find the batch task scheduling
l in vSwitch is much closer to the works in [38], [39].
works schedule tasks on CPU cores to ensure that tasks

light load will not be blocked too long by heavy load
Though these works still fail to make it flexible to meet

erarchical latency guarantee like HQoS [40], they inspire
propose the HBS to break the undifferentiated execution
lling mode and schedule VMs’ batch I/O tasks on the
d IO-dedicated CPU cores hierarchically.
e main goal of HBS is to achieve latency differentiation.
e field of task scheduling, we have chosen a useful
uling mechanism — the priority queuing, which has
widely used in operation systems and traffic control
tacenter [41]–[46]. The batch processing task in our

onment is to forward packets from VM to NIC, so using
ty queue to reduce the waiting delay of high-priority

tasks is equivalent to reducing the delay of packets in
them. Next we introduce the HBS design in detail.

1) class-based priority queues: The HBS design is sh
in Fig. 8. To achieve hierarchical latency guarantee in HB
shown in Fig. 8(a), VMs are classified into 8 classes accor
to their priorities. The priority of each VM is determine
CSPs, e.g. the latency-sensitive services such as web or v
can be set higher priority. These priorities will affect the o
in which they are scheduled to perform batch I/O proces
On the data path shown in Fig. 8(b), all VMs’ virtual struc
are placed in virtual queues, and there are two kinds of que
waiting queue and ready queue. As the C2TB allows CP
skip VMs with tokens less than 0, we put these VMs
should be skipped into the waiting queue. The VMs
tokens greater than 0 are queued in the corresponding r
queues according to their classes. The IO-dedicated CPU c
will only poll and dequeue the VM structures in the r
queues and do batch I/O forwarding tasks.

In the ready queues, to ensure that VMs in higher pri
queues have lower latency, the higher priority queue
absolute execution privileges than the lower priority queue
a queue with priority N , it will be executed dequeue opera
only when there is no items in all N − 1 queues with hi
priorities. So in this case, the PMD threads poll each q
and perform batch execution according to the priority l
For example, in the case shown in Fig. 8(b), although
number of tokens in VM2 is the smallest among the VM
the ready queues, VM2 will be dequeued and forwarded
batch of packets firstly because it has the highest priority. A
the batch processing, VM2 is placed into the waiting q
for it has consumed 41000 tokens and its available token
negative. To ensure fairness that VMs in the same queue
similar latency, each virtual queue in the HBS follows
in-first-out (FIFO) policy.

2) worst latency: With hierarchical execution privile
the worst latency of VMs in each queue can be guaran
and calculated. Although it is almost impossible to guaran
specific value of the latency for each VM in software forw
ing due to the uncertain hardware processing capacity, we
can guarantee the worst latency of VMs in each queue u
HBS. We assume a case that the number of VMs in all 8 r

9

queue
for on
in the
N3)∗
The
low-p
priori
comp
equal
hierar
requi
polici

3)
lem i
the in
In H
first
purch
to for
when
C2TB
is squ
many
still g
In th
perfo
time
a dyn
to sen
the p
it is f
adjus

Ac
C2Qo
Fig.
and th
Singl
modu
HBS
respo
not h
comp
runni
HBS
to ex
logic
proce
with

In
VM’s
line,
These
throu
ple,
user-

2QoS
s than

cles
vsctl

1’s
t the
ation

and
than
will

uires
n in
pact

eight
e it.

g by
head
mes
ther
tegy
VS-
read
each
e set
erval
ease
ume
et it

sk to
tion.
ated

idth
tion,
and

tegy.

the
QoS

g in
eues
s is {N1, N2, N3, · · ·, N8}, respectively. The time used
e batch processing is c. So the worst-case latency of VMs
se queues is {N1∗c, (N1∗k1+N2)∗c, (N1∗k1+N2∗k2+
c, ···, (N1∗k1+N2∗k2+···+N7∗k7+N8)∗c}(ki ≥ 1).

variable ki we use in this formula means that when a
riority VM sends out one batch of packets, the higher-
ty VMs may send out several batches of packets. So
ared with original sequential execution that each VM
ly suffers the worst

∑
Ni ∗ c latency, HBS can provide

chical worst latency guarantee for VMs with different
rements. That helps CSPs formulate more flexible SLA
es based on the tenants’ latency sensitivities.
starvation avoidance: The last but most common prob-
n the HBS is how to avoid the tasks starvation, which is
herent problem in priority-based scheduling mechanisms.
BS, the starvation will occur in two situations: 1) The
one is that the low-priority VMs cannot achieve their
ased bandwidths when we prefer to use many resources
ward traffic for VMs with higher priorities. But in fact,
CPU resources are strictly allocated and isolated in

, there is no case that the bandwidth of low-priority VMs
eezed by others. 2) The second one will happen when
high-priority VMs have no traffic, but the CPU will

ive priority to them and consume the allocated cycles.
is case, the low-priority VMs can get better network
rmance, but they still need to wait for CPU cores wasting
on the idle VMs. To avoid this, we allow the HBS to hold
amic priority for each VM. When a VM has no traffic
d during several consecutive batch I/O processing loops,

riority of this VM will be gradually dropped. But once
ound that the VM sends traffic again, it will be directly
ted to the original priority.

V. IMPLEMENTATION

cording to the design in Section IV, we implement the
S strategy in the OVS-DPDK platform. As shown in

9, We modified the PMD thread’s main loop function
e original port ingress policy, which are implemented by

e-Rate-Three-Color-Marker (srTCM) in the ovs-vswitchd
le [17]. For each PMD thread, it has an independent
module to manage several VMs that it needs to be

nsible for packet forwarding. Different PMD threads will
ave access to each other’s priority queues, so there is no
etition and lock issues. The original sequentially polling
ng mode in the main loop of PMD threads is replaced by
that finds VM with highest priority in the ready queues
ecute batch I/O processing. The batch I/O processing
of PMD threads has not changed, but before each batch
ssing, the rate limit strategies on VM ports are replaced
C2TB.
order to make it easier for the CSPs to configure the
rate limiting and scheduling parameters on the command

we also add two new commands to the OVS-DPDK.
commands realize our C2TB and HBS configurations

gh ovs-vsctl module as shown in Fig. 9. For exam-
we can use command “ovs-vsctl set interface vhost-
1 ingress policing cpucycles=10000” to allocate VM1,

Fig. 9. Modifications to original OVS-DPDK. We only add the C
strategy to the ovs-vswitchd module and use ovs-vsctl to control it. Les
300 lines of code are added into ovs-vswitchd module.

connected to “vhost-user-1” port, with 10000 CPU cy
per second for packet forwarding. The command “ovs-
set Interface vhost-user-1 options:priority=1” can set VM
priority as 1 in HBS scheduling. It should be noted tha
C2QoS is a kind of general strategy, and in our implement
it can be used on all kinds of virtual ports such as “vport”
“dpdk” ports. All of these modifications require no more
300 lines of code, which is easy to realize and meanwhile
not affect the original functions.

The biggest challenge in realizing C2TB is that it req
frequent measurement and calculation of CPU consumptio
packet forwarding procedure, which will cause great im
on vSwitch’s forwarding performance without lightw
implementation. We use the rdtsc instruction [47] to solv
The instruction rdtsc is to get CPU cycles from bootin
reading the value in registers, so it has almost no over
and can be widely used in data path. Another overhead co
from maintaining queues in HBS, and is undertaken by ano
manager thread. If it runs in busy polling mode, our stra
will consume one more entitle CPU core than the native O
DPDK, which is unacceptable. So we set the manager th
to be woken up every 50us to update the token number of
VM. The wake-up interval is a kind of trade-off that can b
to meet different needs. For example, setting a longer int
can reduce the additional CPU usage but will face a decr
in scheduling accuracy, while a smaller interval will cons
more CPU resources. In our implementation here, we s
as the average time used for one batch I/O processing ta
achieve the trade-off between accuracy and CPU consump
The effectiveness and overhead of C2QoS will be evalu
in Section VI.

VI. EVALUATION

The main contribution of C2QoS is to ensure the bandw
and latency of VMs on the physical server, so in this sec
we evaluate the VM network QoS guarantee under C2QoS
the OVS-DPDK existing “ovs-ingress-policy” QoS stra
Our experiments include the following aspects:

• Bandwidth and latency guarantee tests: Comparing
VM’s TCP bandwidth and latency guarantee of C2
with that of ovs-ingress-policy.

• Accuracy: Measuring the accuracy of rate limitin
C2TB, and the latency levels of different priority qu
in HBS.

10

0
0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

(a) B

30

 VM4

t).

0
0

2

4

6

8

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

(e) B

30

Fig. 10 Gbps,
4 Gbp depict
that of

• A
F
u

• C
t

Th
descr

A. TC

In
to ev
VMs
bandw
OVS-
guara
size t
to ou
when
(4 G
cycle
VMs
0.198

In
tenan
all th
users
differ
in OV
first 1
packe
traffic
keep
VM4
secon
VM2
maxim

(a)-
each
TB-
used
idth

ress-
keep
But

byte
CPU

and
used
2%.
M3
3’s

sting
M1

te to
affic
is is
ntial

ber
per

atch
r the
oops
cond
old),
nder
vior
and

r the
ding
ould
vely.
10 20 30
time (s)

 VM1 VM2 VM3 VM4

andwidth (ovs-ingress-policy).

0 10 20 30
0

20

40

60

80

100

C
P

U
 u

s
a
g
e
 (

%
)

time (s)
 VM1 VM2 VM3 VM4

(b) CPU usage (ovs-ingress-policy).

0 10 20 30
0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

time (s)
 VM1 VM2 VM3 VM4

(c) Bandwidth (C2TB-strict).

0 10 20
0

20

40

60

80

100

C
P

U
 u

s
a
g
e
 (

%
)

time (s)
 VM1 VM2 VM3

(d) CPU usage (C2TB-stric

10 20 30
time (s)

 VM1 VM2 VM3 VM4

andwidth (C2TB-MINMAX).

0 10 20 30
0

20

40

60

80

100

C
P

U
 u

s
a
g
e
 (

%
)

time (s)
 VM1 VM2 VM3 VM4

(f) CPU usage (C2TB-MINMAX).

0 10 20
101

102

103

104

V
M

1
 l
a
te

n
c
y
 (

u
s
)

time (s)

 ovs_ingress_plocy C2TB only C2TB+HBS

(g) VM1 latency under ovs-ingress-policy, C2TB and C2TB+HBS

. TCP bandwidth and latency evaluation. (a)-(f) are the experimental results of TCP bandwidth tests, which are constructed by 4 VMs with 4
s, 1 Gbps, and 1 Gbps purchased bandwidth respectively. (a)-(b) show TCP bandwidth and CPU usage under ovs-ingress-policy, while (c)-(d)
under C2TB-strict and (e)-(f) exhibit C2TB-MINMAX results. (g) shows VM1 latency under the three strategies.

pplication experiments: Comparing the throughput of
tp [48] server and response latency of Nginx [49] server
nder the C2QoS and ovs-ingress-policy.
PU overhead: Measuring the additional CPU overhead

hat C2QoS brings to OVS-DPDK.
e hardware and platform configurations are the same as
ibed at the Section II-B.

P bandwidth and latency

this experiment, we use iperf [50] and qperf [30] tools
aluate VMs’ TCP bandwidth and latency. We launch 4
with 4 Gbps, 4 Gbps, 1 Gbps, and 1 Gbps purchased
idth, respectively, and use one dedicated CPU core in

DPDK for forwarding. The purchased bandwidths are
nteed based on the SLA that sets the preferred packet
o 1024 byte and the number of flows to 1. According
r pre-measured model (as described in Section III),
deploying 4 VMs on NUMA node 1, the VMs with

bps, 1024-byte packet size, single flow) need 0.792G
s/s (36%) CPU resources for packet forwarding, and the
with (1 Gbps, 1024-byte packet size, single flow) need
G cycles/s (9%) CPU resources.
our benchmark setting, VM1 acts as a well-behaved
t and sends 1024-byte packets at the maximum rate
e time while the other 3 VMs behave as malicious
or noisy neighbors. In order to more clearly show the

ence between C2TB and the original rate limiting method
S-DPDK, we design such a circumstance: 1) In the
0 seconds, VM1 and VM3 send traffic with 1024-byte
ts. The VM2 and VM4 are sleeping and generate no
. 2) From 10th second to 20th second, VM1 and VM3
sending traffic with 1024-byte packets, while VM2 and
send traffic with 64-byte packets. 3) In the last 10

ds, VM1 still sends traffic with 1024-byte packets, while
, VM3 and VM4 send traffic with 64-byte packets at the

um speed. The TCP bandwidth and CPU consumption

of the 4 VMs under three strategies are shown in Figs. 10
(f). In these figures, “C2TB-strict” means we only assign
VM the fixed Calloc for packet forwarding, and the “C2
MINMAX” supports to entirely allocate Cidle and un
CPU resources to VMs for completing MIN-MAX bandw
allocation.

Figs. 10 (a)-(b) show the results under default ovs-ing
policy. It can be seen that VM1 and VM3 work well and
their purchased bandwidth within the first 10 seconds.
from the 10th second, VM2 and VM4 start sending 64-
packets, and they both compete and occupy 20% of the
resources. As shown in Fig. 10 (b), the behavior of VM2
VM4 severely squeezes the CPU resources that originally
by VM1 and VM3. As a result, VM1 bandwidth drops by 1
But for VM3, although the available CPU resources of V
have been squeezed, they are still enough to support VM
purchased bandwidth. In the last 10 seconds, an intere
thing comes that the bandwidth and CPU usage of V
increase with the VM3 changes packet size from 1024 by
64 byte. But VM3 does not benefit from the change of tr
characteristics. We print all the log information and find th
caused by the running mode of OVS-DPDK. The seque
execution in the PMD thread makes it equal in the num
of batch I/O processing loops performed for each VM
second. As VM3 reduces the packet size, the number of b
processing loops of each VM per second is increased. Fo
VM1, the increase in the number of batch processing l
per second means that more packets can be sent per se
(before the bandwidth reaches the rate limiting thresh
which increases bandwidth and CPU consumption. So u
OVS default BPS-based rate limiting strategy, the beha
of the tenants will cause unpredictable CPU allocation,
cannot guarantee VM bandwidth.

The bandwidth and CPU consumption of each VM unde
C2TB-strict strategy are shown in Figs. 10 (c)-(d). Accor
to the modeling results, the CPU resources that we sh
allocate to the 4 VMs are 36%, 36%, 9% and 9%, respecti

11

-6

-4

-2

0

2

4

6

d
e
v
ia

ti
o
n
 (

%
)

Fig. 11 level
of late

We a
since
and k
for fo
size
own
in the
alloca
they
CPU
VM3
they
to ac
these
their
resou
only
CPU
ingre
bandw

Wh
a wa
10(d)
secon
waste
the fi
of all
bandw
purch
also h
of VM

On
to m
“C2T
show
10 se
core
increa
latenc
(more
the o
only”
skipp
lower

the
tack

able.
hich
rstly.
S is
ther

good
vide
nder
iable

need
tions
ects:
orst

xed-
this

ixed
rage

eling
e of

f the
eans
lable
idth.
size

ploy
idth
ber

ut it
the
one
een
ing,

ill be
rmed
100 200 400 800 1400
packet size range

(a) Mixed-size packets impacts.

2 4 8 16
-6

-3

0

3

6

 1 core forwarding
 2 cores forwarding

number of VMs

de
vi

at
io

n
(%

)

(b) Deployment impacts.

average 1 2 3 4
101

102

103

104

different priorities

la
te

n
c
y
 (

u
s
)

(c) Hierarchical latency.

. Accuracy evaluation. (a)-(b) show the deviations of the rate limiting mechanism in C2QoS under different situations. (c) shows the different
ncy guarantee in HBS.

nalyze the bandwidth of each VM separately. For VM1,
its behavior keeps unchanged, its bandwidth is stable
eeps at 4 Gbps by using 36% of the CPU resources
rwarding all the time. For VM3, changing the packet

to 64 bytes in the last 10 seconds can only reduce its
bandwidth. For the two attackers (i.e. VM2 and VM4),

event of sending 64-byte packets, the CPU resources
ted to them can only achieve very low bandwidth, and

cannot interfere with other VMs by competing for more
resources. It should be noted that in the last 10 seconds,
and VM4 get extremely low bandwidth, and it seems

face starvation. But in fact, that is exactly what we want
hieve. The problem of bandwidth isolation is caused by

VMs using special traffic characteristics, rather than
preferences, to compete for more IO-dedicated CPU
rces. The solution in C2TB is to let these “noisy” VMs
affect their own network performance through restricting
consumption for each VM. Compared with the ovs-

ss-policy, CBTB-strict can guarantee well-behaved VMs’
idth and eliminate the CPU resources competition.
ile providing good isolation, the C2TB-strict still causes

ste of CPU resources in the vSwitch, as shown in Fig.
, nearly 75% of CPU resources are wasted in the first 10
ds. So the C2TB-MINMAX is used to solve this kind of
. The main difference with C2TB-strict results happen in
rst 10 seconds, in which VM1 and VM3 make full use

idle CPU resources on the server and achieve higher
idth (6.3 Gbps and 2.1 Gbps) than the bandwidth they

ased (4 Gbps and 1 Gbps). So this rate limiting method
as good robustness while guaranteeing the network QoS
s.
the aspect of TCP latency, we separately use qperf

easure the VM1 latency under the ovs-ingress-policy,
B only”, and C2TB+HBS strategies. The results are
n in Fig. 10(g). Under the ovs-ingress-policy, in the first
conds, only VM3 competes with VM1 for the CPU

to do batch I/O processing tasks, which leads to a slight
se in VM1 TCP latency. In the following 20 seconds, the
y of VM1 becomes unstable and increases significantly
than 1ms in the worst case) due to the competition of

ther three VMs. Compared to ovs-ingress-policy, “C2TB
can reduce part of the additional latency of VM1 by

ing ports with negative tokens. Another reason for the
latency under C2TB is that it keeps the packets not

being sent inside the VM, forming a “back-pressure”2 to
senders and adjusting the sending rate of TCP protocol s
in VMs. But the latency under “C2TB only” is still unst
With HBS, we set VM1 to be placed in Priority 1 queue w
ensures VM1’s forwarding tasks always to be executed fi
The results show that the VM1 latency under C2TB+HB
close to the native performance and is not affected by o
VMs.

Therefore, with these experiments, C2QoS can provide
isolation from the CPU level. That enables C2QoS to pro
tenants with good network SLA performance guarantees u
the conditions of CPU resources competition and var
processing capacity in vSwitch.

B. Accuracy

In addition to the advantages on isolation, we also
to evaluate the accuracy of C2QoS. Based on the func
of C2TB and HBS, the accuracy is reflected in two asp
the accuracy of rate limiting and the hierarchy of the w
latency.

We first evaluate the deviations of C2TB under mi
size packets and its results are shown in Fig. 11(a). In
experiment, we use pkt-gen in VM to send packets with m
sizes but keep a fixed average size. Then we set the ave
packet size parameter for C2TB according to the mod
methodology in Section III-D. We can see that the rang
the packet size has little effect on the accuracy. Most o
results show that the deviation is greater than 0, which m
that in most cases, we can guarantee that the VM’s avai
bandwidth is greater than or equal to its purchased bandw
On average, the deviation of C2TB under mixed packet
is between (-2%, 3%).

In Fig. 11(b), we increase the number of VMs and de
them on every NUMA node to compare their real bandw
with their purchased bandwidth. The increase in the num
of VMs did not have large impacts on the deviation. B
can be concluded that the more variables introduced in
modeling, the greater the deviations are. When using only
CPU core for forwarding in vSwitch, the deviation is betw
(-2%, 4%). But in the case of using two cores for forward

2Back-pressure is a kind of congestion control. If the packets w
dropped in some points of the forwarding path, the sender should be info
to reduce the sending rate to avoid the waste of resources.

12

resou
the d
accur
rate
under
occup
accep

To
we ru
CPU
under
The
figure
mech
batch
In HB
VMs
levels
VMs
the la
than
of hi
priori
proce
high
HBS
tenan

C. A

To
applic
sensit
with
vSwi
we ev
of Ng
becau
speci
comp
these
That
stage
2 VM
and 2
Ftp s
press

Th
serve
drop
while
all th
obtain
Unde
is dou
C2TB
with
C2TB

1000

width
VMs
e test

ative
ork

itive
itch.

new
: the

-VM
s no
is is

d the
CPU
om-

veral
ce.

CPU
only
CPU
VMs
Ms’

, the
ered.
used
CPU
acri-
ough
ional
t be

head

ts in
om-
sues
ent.
s of

well.

loud
y of
ime,
rce competition becomes even more unpredictable, so
eviation has almost doubled to (-3%, 6%). Although the
acy of the C2TB is incomparable to the traditional precise
limiting methods, the CSPs believe the rate limiting
software forwarding does not need to be so precise and
y much resources [21]. So the deviations of C2TB are
table.
evaluate what kind of latency levels can HBS provide,
n 16 VMs belonging to 4 priorities on one dedicated
core for forwarding, and evaluate their TCP latencies
the case that all VMs are sending traffic concurrently.

results are shown in Fig. 11(c). The “average” in this
is the average latency of all 16 VMs under the C2TB

anism only. In this case, since all VMs need to wait for
I/O processing, their latencies are high and unstable.
S mechanism, we can see that although the latencies of

in different priority queues have intersections, the latency
in most cases are obviously different. The latency of

with priority 1 and 2 is less than average latency, while
tency of VMs with priority 3 and 4 is much more worse
the average. Another fact is that the latency distribution
gh-priority VMs is very concentrated. But as the VM
ty decreases, the frequency of these VMs’ batch I/O
ssing will be more uncertain, which contributes to the
discreteness. The different latency levels brought by
will be useful when providing differentiated services for
ts.

pplication results

make it more practical, we consider some common
ations on the public cloud. For example, the latency-
ive VMs (such as website and video services) compete
bandwidth-sensitive VMs (such as online disks) for

tch forwarding resources on the same physical server. So
aluate the bandwidth of Ftp server and response latency
inx server in this experiment. We choose Nginx not only
se it is a latency-sensitive service, but also because of its

al traffic characteristics. The traffic of Nginx is usually
osed of small packets, and the five-tuple segments of
packets are discrete in the case of high concurrency.

will cause the more CPU consumption in classification
(as described in Section III-B). For test configurations,
s with 4 Gbps bandwidth are deployed as Ftp servers
VMs with 1 Gbps are deployed as Nginx servers. The

ervers keep sending traffic while the Nginx servers bear
ure test during 30th-70th seconds using wrk [51] tool.
e Ftp bandwidth is shown in Fig. 12(a), the Nginx
rs’ traffic during 30th-70th seconds causes a bandwidth
of about 11% on the Ftp servers under ovs-ingress-policy,

C2TB strictly guarantees the bandwidth of Ftp servers
e time. For the latency in the Nginx pressure test, we

the request response time distribution in Fig. 12(b).
r ovs-ingress-policy, the response time of Nginx requests
bled compared to native performance. When only using
, 50% additional latency is reduced by skipping ports

tokens less than 0. But with the C2QoS containing both
and HBS, the additional latency is reduced by more

0 20 40 60 80 100
0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

time (s)
 ovs_ingress_policy C2TB

(a) Ftp bandwidth.

1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Latency (ms)
 Native ovs_ingress_policy

 C2TB C2TB+HBS

(b) Nginx response time.

Fig. 12. Application performance results. Nginx latency and ftp band
are evaluated. 2 VMs with 4 Gbps are deployed as the Ftp server, and 2
with 1 Gbps are deployed as the Nginx server. We perform the pressur
on Nginx VMs at 30-70s.

than 80% and these Nginx servers achieve almost the n
performance. Therefore, the C2QoS can ensure the netw
performance of both latency-sensitive and bandwidth-sens
services while sharing the same physical resources in vSw

D. Overhead

As we added a new module to vSwitch, it may bring
overhead. The overhead mainly reflects on two aspects
performance decrease and the additional CPU overhead.

For the first concern, in the single-VM and multi
experiments, the OVS-DPDK using C2QoS strategy ha
performance drop compared with the original version. Th
because we have not made big changes to the data path, an
additional function added to PMD threads only contains
cycles counting. The CPU cycles counting function is c
posed of rdtsc instruction [47], which occupies only se
cycles and has very little effect on forwarding performan

For the additional CPU overhead, we tested the
consumption of C2QoS. On the IO-dedicated CPU cores,
0.018% CPU usages are used for C2QoS. This part of
usages will not go up with the increase in the number of
because it is added in the batch I/O processing of all V
ports. Besides the overhead on IO-dedicated CPU cores
manager thread’s CPU overhead also needs to be consid
When deploying 28 VMs, 2.08% more CPU usages are
for tokens counting and queues managing. Moreover, the
usages of the manager thread can also be reduced by s
ficing accuracy and extending the wake-up interval. Alth
it is a trade-off, from our experimental results, the addit
CPU resources consumed by the manager thread will no
too much (no more than 3%). So the additional CPU over
in C2QoS is also acceptable for cloud platforms.

VII. DISCUSSIONS

The evaluation shows that C2QoS achieves good resul
ensuring the stability of tenant’s network performance c
pared to the traditional strategy, but there are still some is
that need to be carefully addressed for real-world deploym
In this section, we first discuss the applicable scenario
C2QoS, and under which scenarios it does not work
Then, we provide our own solution.

The C2QoS strategy is designed for the vSwitch of the c
platform. For cloud servers, if the forwarding capabilit
the vSwitch needs to reach the NIC bandwidth all the t

13

Fig. 13
light-c
guaran
make

dozen
to ma
alloca
ensur
NIC
tenan
chara
data
and c
dedic
forwa
IO-de
the p

On
that
CPU
CPU
(512-
(1518
and t
the u
such
comp
publi
it. W
vSwi
throu
bandw
based
ensur

We
As sh
VM1
and t
the fa
flow.
secon
15th
see th
with
cause
light-
under
limiti
after

not
the

rios.
tegy
s. In

loud
CPU
itch,
The
rces
rder

rtion
net-

sms,
ent-
h by
s the
iated
ntire
ores,
g to
form
limi-
idth

tensor
data,”
326–

e task
ns on
2020.
ential

yment
3605,

yment
ks on
1808,

, “An
ysical
–280,

gging
h and
r and
tions;
gence
2015,

Devi,
ts: Its
l. 82,

public
ation,

esign
stems
 VM2 under C2QoS

. The scenario where C2QoS fails and the effect of the handler. The
olored lines show that when bottleneck comes to NIC, C2QoS fails to
tee SLA. The dark-colored lines show that the traditional strategy can
up for the shortcomings of C2QoS in this case.

s of CPU cores shall be used by the vSwitch. Therefore,
ximize commercial benefits, the common practice is to
te only several dedicated CPU cores to the vSwitch and
e that the vSwitch’s forwarding capability can reach the
bandwidth only in some usual cases. But on cloud, the
t VMs are deployed with services that have diverse traffic
cteristics. For example, many services like website and
transmission for IoT devices always send small packets
oncurrent flows. That will consume most of the IO-
ated CPU resources and drop the maximum vSwitch
rding capacity. Thus the shortage and competition of the
dicated CPU resources will become the norm. That is

roblem that C2QoS can solve.
the other hand, there is a potential extreme situation

the bottleneck may come to the NIC rather than the
cores. We assume that a VM is allocated IO-dedicated
resources according to the preferred traffic characteristics
byte packet size, multiple flows). But if it sends MTU
-byte) packets with a single flow, its throughput will rise
hat may cause the vSwitch forwarding rate to exceed
pper limit of the NIC bandwidth. The C2QoS fails in
a condition, because it cannot solve the congestion and
etition on the NIC. This situation is not common on the
c cloud, so we can adopt a simple handler to deal with
e use the original monitoring module that is inside the
tch to detect the forwarding rate of the vSwitch. If the
ghput of the vSwitch reaches the upper limit of the NIC

idth, the vSwitch will be triggered to use the BPS/PPS-
rate limiting mechanism to assist C2QoS strategy for

ing the performance of tenant networks.
carry out an experiment to show this extreme situation.
own in Fig. 13, the traffic characteristic preference of
includes the factors of 2 Gbps, 128-bytes packet size,

he single flow, while the preference of VM2 contains
ctors of 6 Gbps, 1024-byte packet size, and the single
Under C2QoS only, the 2 VMs work well for the first 15
ds as they follow their preferences. But starting from the
second, VM1 starts to send 1500-byte packets. We can
at the throughput of VM1 rises sharply and competes

VM2 for the NIC bandwidth at the 16th second. This
s an 8% reduction in the bandwidth of VM2 (see the
colored lines in Fig. 13). After adapting the handler,
the combined effect of C2QoS and the traditional rate

ng strategy, the bandwidth of the 2 VMs returns to normal
the 17th second (see the dark-colored lines in Fig. 13).

From this experiment, we can conclude that C2QoS is
the opposite of traditional QoS strategy. They can solve
performance isolation breakage problem in different scena
In practice, CSPs can flexibly choose the effective stra
depending on where the bottleneck or competition point i
many cases, the two strategies can work together.

VIII. CONCLUSION

This paper focused on the VM network QoS on the c
platform and addressed the key issue of IO-dedicated
resources management and apportionment in the vSw
which has been ignored by the existing QoS strategies.
competition among VMs for the IO-dedicated CPU resou
in vSwitch seriously affects the network performance. In o
to resolve the issue, this paper proposed C2QoS to appo
and schedule IO-dedicated CPU resources to VMs for
work SLA guarantee. C2QoS consists of two mechani
C2TB and HBS. In C2TB, according to a measurem
driven bandwidth-CPU model, we limited VM’s bandwidt
directly assigning CPU cycles to particular VM. To addres
high additional latency issue brought by the undifferent
execution, the HBS mechanism scheduled the VMs’ e
batch I/O forwarding tasks on the IO-dedicated CPU c
which provided hierarchical latencies for VMs accordin
sensitivities. The implementation on OVS-DPDK plat
showed that compared with existing strategies, C2QoS e
nated the influence of CPU resource congestion on bandw
and reduced the effect on latency by 80%.

REFERENCES

[1] X. Wang, L. T. Yang, X. Chen, J. Han, and J. Feng, “A
computation and optimization model for cyber-physical-social big
IEEE Transactions on Sustainable Computing, vol. 4, no. 4, pp.
339, 2019.

[2] L. Ren, Y. Laili, X. Li, and X. Wang, “Coding-based large-scal
assignment for industrial edge intelligence,” IEEE Transactio
Network Science and Engineering, vol. 7, no. 4, pp. 2286–2297,

[3] B. Cao, X. Kang, J. Zhao, P. Yang, Z. Lv, and X. Liu, “Differ
evolution-based 3-d directional wireless sensor network deplo
optimization,” IEEE Internet Things J., vol. 5, no. 5, pp. 3594–
2018.

[4] B. Cao, J. Zhao, P. Yang, P. Yang, X. Liu, and Y. Zhang, “3-d deplo
optimization for heterogeneous wireless directional sensor networ
smart city,” IEEE Trans. Ind. Informatics, vol. 15, no. 3, pp. 1798–
2019.

[5] J. Qi, P. Yang, L. Newcombe, X. Peng, Y. Yang, and Z. Zhao
overview of data fusion techniques for internet of things enabled ph
activity recognition and measure,” Inf. Fusion, vol. 55, pp. 269
2020.

[6] Z. Deng, P. Yang, Y. Zhao, X. Zhao, and F. Dong, “Life-lo
data aggregation solution for interdisciplinary healthcare researc
collaboration,” in 15th IEEE International Conference on Compute
Information Technology; Ubiquitous Computing and Communica
Dependable, Autonomic and Secure Computing; Pervasive Intelli
and Computing, Liverpool, United Kingdom, October 26-28,
pp. 2315–2320, IEEE, 2015.

[7] A. K. S. Rajan, A. Feucht, L. Gamer, I. Smaili, and M. N.
“Hypervisor for consolidating real-time automotive control uni
procedure, implications and hidden pitfalls,” J. Syst. Archit., vo
pp. 37–48, 2018.

[8] D. Firestone, “Vfp: A virtual switch platform for host sdn in the
cloud,” in Conf. on Networked Systems Design and Implement
2017.

[9] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, et al., “The d
and implementation of open vswitch.,” in Conf. on Networked Sy
Design and Implementation, 2015.

14

[10] M
P
a
2

[11] P
n
t

[12] V
s
N

[13] “
[14] “
[15] P

b
[16] “

m
[17] “

m
[18] J

a
o

[19] J
f

[20] M
r
C

[21] K
f
H

[22] F
w
n

[23] A
g
I

[24] “
[25] “
[26] L

A
[27] “
[28] A

s
D

[29] A
fl
D

[30] “
[31] Y

“
c
M

[32] V
t
D

[33] “
[34] “

m
[35] T

o
M

[36] “
t

[37] N
a
i
o

[38] W
“
i

[39] J
q
I

[40] I
a
t

[41] T
O

ers &

with
muni-

ation-
f. on

Exact
oradic

alysis
Syst.

nual,
. Dalton, D. Schultz, J. Adriaens, A. Arefin, et al., “Andromeda:
erformance, isolation, and velocity at scale in cloud network virtu-
lization,” in Conf. on Networked Systems Design and Implementation,
018.
. Kumar, N. Dukkipati, N. Lewis, et al., “Picnic: predictable virtualized
ic,” in Conf. of the ACM Special Interest Group on Data Communica-
ion, 2019.
. Addanki, L. Linguaglossa, J. Roberts, and D. Rossi, “Controlling
oftware router resource sharing by fair packet dropping,” in IFIP
etworking Conference and Workshops, 2018.
Data plane development kit.” https://www.dpdk.org.
Open vswitch.” http://www.openvswitch.org/.
. P. Tang and T. . C. Tai, “Network traffic characterization using token
ucket model,” in IEEE Conf. on Computer Communications, 1999.
Hierarchy token bucket in linux kernel.” https://www.man7.org/linux/
an-pages/man8/tc-htb.8.html.

Dpdk traffic metering.” http://doc.dpdk.org/guides/prog guide/traffic
etering and policing.html.

. R. Davin and A. T. Heybey, “A simulation study of fair queueing
nd policy enforcement,” in Conf. of the ACM Special Interest Group
n Data Communication, 1990.
. C. R. Bennett and Hui Zhang, “Wf/sup 2/q: worst-case fair weighted
air queueing,” in IEEE Conf. on Computer Communications, 1996.

. Shreedhar and G. Varghese, “Efficient fair queueing using deficit
ound robin,” in Conf. of the ACM Special Interest Group on Data
ommunication, 1995.
. To, D. Firestone, G. Varghese, and J. Padhye, “Measurement based

air queuing for allocating bandwidth to virtual machines,” in work. on
ot topics in Middleboxes and Network Function Virtualization, 2016.
. Checconi, L. Rizzo, and P. Valente, “Qfq: Efficient packet scheduling
ith tight guarantees,” IEEE/ACM Transactions on Networking, vol. 21,
o. 3, 2012.
. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, et al., “Pro-
rammable packet scheduling at line rate,” in Conf. of the ACM Special
nterest Group on Data Communication, 2016.
Rfc2697(srtcm).” https://www.rfc-editor.org/rfc/rfc2697.html.
Rfc2698(trtcm).” https://www.rfc-editor.org/rfc/rfc2698.html.
. Rizzo, “netmap: A novel framework for fast packet I/O,” in USENIX
nnual Technical Conference, 2012.
qdisc.” https://lwn.net/Articles/564978/.
. Saeed, N. Dukkipati, V. Valancius, et al., “Carousel: Scalable traffic

haping at end hosts,” in Conf. of the ACM Special Interest Group on
ata Communication, 2017.
. Saeed, Y. Zhao, N. Dukkipati, E. Zegura, et al., “Eiffel: efficient and
exible software packet scheduling,” in Conf. on Networked Systems
esign and Implementation, 2019.

qperf.” https://linux.die.net/man/1/qperf.
. Ye, J. Haiyang, W. Yulei, L. Yilong, L. Xing, and X. Gaogang,
C2qos: Cpu-cycle based network qos strategyin vswitch of public
loud,” in IFIP/IEEE International Symposium on Integrated Network
anagement (IM), 2021.
. Srinivasan, S. Suri, and G. Varghese, “Packet classification using

uple space search,” in Conf. of the ACM Special Interest Group on
ata Communication, 1999.

What is numa.” https://www.kernel.org/doc/html/latest/vm/numa.html.
Numa locality.” https://www.kernel.org/doc/html/latest/admin-guide/
m/numaperf.html.
. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
f data centers in the wild,” in ACM SIGCOMM Conference on Internet
easurement, 2010.

Imix genome: Specification of variable packet sizes for additional
esting.” https://tools.ietf.org/html/rfc6985.
. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan,

nd J. E. van der Merive, “A flexible model for resource management
n virtual private networks,” in Conf. of the ACM Special Interest Group
n Data Communication, 1999.
. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, and T. Wood,

Flurries: Countless fine-grained nfs for flexible per-flow customization,”
n Conf. on emerging Networking EXperiments and Technologies, 2016.
. Mace, P. Bodik, M. Musuvathi, et al., “2dfq: Two-dimensional fair
ueuing for multi-tenant cloud services,” in Conf. of the ACM Special
nterest Group on Data Communication, 2016.
. Stoica, H. Zhang, and T. S. E. Ng, “A hierarchical fair service curve
lgorithm for link-sharing, real-time and priority services,” in Conf. of
he ACM Special Interest Group on Data Communication, 2016.
. K. Wignall, “Priority queuing systems with and without feedback,”
perations Research, vol. 21, no. 3, pp. 764–776, 1973.

[42] A. Derbala, “Priority queuing in an operating system,” Comput
Operations Research, vol. 32, pp. 229–238, 2005.

[43] P. Chuprikov, S. Nikolenko, and K. Kogan, “Priority queueing
multiple packet characteristics,” in IEEE Conf. on Computer Com
cations, 2015.

[44] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Inform
agnostic flow scheduling for commodity data centers,” in Con
Networked Systems Design and Implementation, 2015.

[45] J. Martinez, D. Dasari, A. Hamann, I. Sañudo, and M. Bertogna, “
response time analysis of fixed priority systems based on sp
servers,” J. Syst. Archit., vol. 110, p. 101836, 2020.

[46] N. Guan, W. Yi, Q. Deng, Z. Gu, and G. Yu, “Schedulability an
for non-preemptive fixed-priority multiprocessor scheduling,” J.
Archit., vol. 57, no. 5, pp. 536–546, 2011.

[47] Intel, Intel 64 and IA-32 Architectures Software Developer’s Ma
2019.

[48] “vsftpd.” https://security.appspot.com/vsftpd.html.
[49] “Nginx.” http://nginx.org/.
[50] “iperf.” https://iperf.fr/.
[51] “wrk.” https://github.com/wg/wrk.

Ye Yang is currently a Ph.D. student of Network Technology Research Center at Institute

of Computing Technology, Chinese Academy of Sciences since 2016. His main research

topics are virtualized network and high-performance packet processing.

Haiyang Jiang received the Ph.D. degree from the Institute of Computing Technology,

Chinese Academy of Sciences (ICT, CAS), in 2014. He is currently an Associate

Researcher at ICT, CAS. His research interests include NFV/SDN, high-performance

packet processing and network security.

Yulei Wu (Senior Member, IEEE) is a Senior Lecturer with the Department of Computer

Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter,

United Kingdom. He received the B.Sc. degree (First Class Honours) in Computer Science

and the Ph.D. degree in Computing and Mathematics from the University of Bradford,

United Kingdom, in 2006 and 2010, respectively. His expertise is on intelligent networking,

and his main research interests include computer networks, networked systems, software

defined networks and systems, network management, and network security and privacy.

He is an Editor of IEEE Transactions on Network and Service Management, IEEE

Transactions on Network Science and Engineering, IEEE Access, and Computer Networks

(Elsevier) and. He is a Senior Member of the IEEE, and a Fellow of the HEA (Higher

Education Academy).

Chunjing Han received the Ph.D. degree from the Institute of Computing Technology,

Chinese Academy of Sciences, in 2018. She is a Senior Engineer at Institute of Information

Engineering, Chinese academy of sciences. Her main research interests are network

measurement and behavior analysis, cyberspace security and network big data.

Yilong Lv received the M.S. degree in computer science and technology from Wuhan

University, in 2015. He is currently a Research and Development (R&D) Expert in Alibaba

Cloud. His research area is concentrated on cloud network, vSwitch and network

virtualization.

Xing Li received the M.S. degree in computer science and technology from Zhejiang

University, in 2012. He is currently the Leader of Research and Development (R&D) team

in Virtual Private Cloud (VPC) department of Alibaba Cloud. He has been deeply involved

in the cloud computing industry for years, and focusing on network virtualization

technologies in data centers. He is now actively seeking cooperation with academia to

solve the complex problems encountered in practical and production environments.

Bowen Yang received the M.S. degree in communication and information systems from

the University of Electronic Science and Technology, in 2015. He is currently a Research

and Development (R&D) expert in Alibaba Cloud. His research area includes computer

network, cloud network and virtualization technologies.

Serge Fdida is a Professor with Sorbonne University since 1995. He has been leading

many research projects in High Performance Networking in France and Europe, notably

pioneering the European activity on federated Internet testbeds. Currently, he is

coordinating the French National Research Instrument FIT and the OneLab facility, two

large test platforms on Future Internet technologies. He is a Distinguished ACM Member

and an IEEE Senior member. He was one of the founders of the ACM Conext conference,

general chair of ACM Mobicom 2015 and IEEE Infocom 2019. Serge Fdida has also

developed a strong experience related to innovation and industry transfer, - he was the co-

founder of the Qosmos company, - one of the active contributors to the creation of the Cap

Digital cluster in Paris, and the President of the EIT Health French community.

Gaogang Xie (Member, IEEE) received the B.S. degree in physics and the M.S. and Ph.D.

degrees in computer science from Hunan University in 1996, 1999, and 2002, respectively.

He is currently a Professor with the Computer Network Information Center (CNIC), Chinese

Academy of Sciences (CAS), and the University of Chinese Academy of Sciences (UCAS),

and the Vice President of CNIC. His research interests include Internet architecture, packet

processing and forwarding, and Internet measurement.

Ye Yang

Haiyang Jiang

Yulei Wu

Chunjing Han

Yilong Lv

Xing Li

Bowen Yang

Serge Fdida

Gaogang Xie

 Tenant’s network performance is unpredictable due to resource competition in

vSwitch.

 Building the relationship between network performance and resources.

 Apportioning resources to tenants for isolated and stable network performance.

 Providing stable network quality for tenants with only few additional resources used.

Ready qu

Priority 1

Priority 2

Waiting q

Priority 3

1000 cycles

1000
cycles

rward
e batch
 packets
VM2

VM3

VM6 VM5 VM1VM4

eues

ueue

1000
cycles

VM2

……
-4

10000
cycles

2000
cycles

5000
cycles

6000
cycles

-3000
cycles

-40000
cycles

CPU

Fo
on
of

Declaratio if ioterettt

☒ The authors declare that they have no known competng fnancial interests or personal relatonships
that could have appeared to infuence the work reported in this paper.

☐The authors declare the following fnancial interestsppersonal relatonships which may be considered
as potental competng interests:

