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C2QoS: Network QoS Guarantee in vSwitch
through CPU-cycle Management

Ye Yang, Haiyang Jiang, Yulei Wu, Chunjing Han, Yilong Lv, Xing Li, Bowen Yang, Serge Fdida, Gaogang Xie

Abstract—Cyber-Physical-Social-System (CPSS) relies on
cloud and edge computing for service deployment and accelera-
tion. As an enabling technology of CPSS, network virtualization
allows different services to be deployed on a single physical server
and provides them with differentiated network performance
based on service-level-agreement (SLA). Unfortunately, current
virtual switches (vSwitches) cannot guarantee this functionality
due to the common resource competition and unpredictable
processing capacity. As a software on the server, vSwitch is
allocated limited dedicated CPU cores to implement traffic
forwarding for all services. But the QoS strategy inheriting from
the hardware switch, does not consider the forwarding tasks’
competition for CPU cores in terms of utilization and timing, thus
cannot guarantee the SLA. To solve this critical issue, we propose
a CPU-Cycle based QoS (C2QoS) strategy to realize the isolation
and guarantee of service network performance by managing
the usage and scheduling of the I0-dedicated CPU cores in
vSwitch. C2QoS includes a CPU-Cycle based token bucket
mechanism to strictly limit service’s network bandwidth and a
hierarchical batch scheduling mechanism to achieve hierarchical
latency. Experimental results show that, compared with existing
strategies, C2QoS can strictly guarantee the network bandwidth
of the services and reduce the service latency by up to 80%.

Index Terms—QoS, vSwitch, CPU resource competition,
scheduling, cloud computing.

I. INTRODUCTION

Cyber-Physical-Social-System (CPSS) relies on cloud com-
puting and edge computing to accelerate service deployment
for a series of emerging technologies, such as the Internet
of Things (IoT), smart cities, smart healthcare etc [1]-[6].
As the foundation of cloud/edge computing, virtualization
technology allows services to flexibly run on the edge clouds
in the form of virtual machines (VMs) [7]. In the cloud
virtualization environment, the deployment density of VMs is
usually sufficiently high, and the VMs belonging to different
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tenants or different services will be deployed on the same
physical server. These VMs share various physical resources
of the host, including CPU, memory and network. Therefore,
how to design a strategy for allocating these resources and
providing differentiated services is the foremost issue for
Cloud Service Providers (CSPs).

On the server of a cloud platform, VM network resources
are provided by a software vSwitch. The vSwitch connecting
Network Interface Controller (NIC) to the VMs provides all
VMs’ network connectivity. All packets sent from the VMs
need to go through steps such as classification and forwarding
in vSwitch before they can be sent out via the NIC. Therefore,
the upper limit of bandwidth and latency these VMs can
achieve are determined by the processing capabilities of the
vSwitch [8], [9]. But for a CSP, it is a common practice to
increase the share of CPU resources with VMs, and thus very
limited CPU resources are left for vSwitch’s forwarding tasks,
e.g., the Google cloud uses no more than two 10-dedicated
physical cores to perform forwarding tasks [10]. As a result,
all the VMs compete with each other for the limited processing
capacity of the vSwitch, essentially for the CPU resources
occupied by the vSwitch.

Meanwhile, the CPU resources that are needed to maintain
particular network performance is hard to predict in vSwitch.
Different from the hardware switch that has a constant for-
warding capacity, the vSwitch’s processing capacity with these
[0-dedicated CPU cores is variable when being used to
forward traffic with different characteristics. For example, at
the same Bits-Per-Second (BPS) rate, compared to forwarding
the traffic with 1518 byte packet size, forwarding the traffic
with 64 byte packet size consumes 10 times more CPU cycles
[11]. As a result, the vSwitch can hardly guarantee all tenants’
network SLA performance in all situations.

Existing network Quality-of-Service (QoS) strategies in
software vSwitch are inherited from the interface-based so-
lutions of hardware switches, and do not consider the issues
of CPU resources competition among tenants, as well as the
variable vSwitch forwarding capacity. As a result, they cannot
ensure VMs’ SLA performance targets. Our experimental
results on a multi-tenant cloud platform in Section II, show that
the innocent VM bandwidth can be decreased by up to 20%
due to the competition of 10-dedicated CPU usage. In terms
of latency, all VM’s latency increase hundreds of times, since
all VMs’ forwarding tasks compete for the limited CPU cores
in terms of timing and are not processed in a differentiated
manner. Some works [11], [12] have noticed the resources
competition issue, and they added a module for CPU resources
isolation before the QoS module. The effects of these works
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were limited because they are still interface-based and the
variable vSwitch forwarding capacity is still ignored.

Different from existing solutions, in this paper we propose
a new CPU-Cycle based QoS strategy (C2QoS) to completely
solve this issue. As the “virtual” network resources are realized
by the 10-dedicated CPU cores, we guarantee VM’s network
SLA performance by directly apportioning these CPU cycles
to VMs. The challenges of achieving this goal include: 1)
How to establish a correspondence between VM’s bandwidth
and CPU usage. 2) How to assign CPU cycles to VM to
strictly guarantee its bandwidth. 3) How to ensure the SLA
latency, especially for the delay-sensitive applications (e.g.,
the web and video servers require lower response latency than
file system servers).

To address these challenges, this paper makes the following
main contributions:

o We propose a modeling methodology to build the cor-
respondence between forwarding capacity and CPU re-
sources in vSwitch. The model characterizes the effect
of different working conditions over the vSwitch forward-
ing capacity. These conditions include the tenant traffic
characteristics, as well as the deployment configurations.

« Based on the model, we propose the C2QoS strategy, con-
taining a CPU-Cycle based Token Bucket (C2TB) mecha-
nism for performing isolation enhanced rate limiting and
a Hierarchical Batch Scheduling (HBS) mechanism for
providing latency guarantee.

« We implement the C2QoS strategy on DPDK accelerated
open vSwitch (OVS-DPDK) [13], [14] platform. The
experiments on a multi-tenant cloud platform show that
compared with existing strategies, the influence of CPU
resource congestion on bandwidth is eliminated and that
on latency is reduced by 80%.

The rest of this paper is organized as follows. Section II
introduces the background and motivation. Section III presents
the model between network performance and CPU usage.
Section IV shows the design of C2QoS, and its implementation
on OVS-DPDK is shown in Section V. Section VI carries
out performance evaluation. Section VII discusses the issue
to deploy C2QoS in real-world environment, and Section VIII
concludes this paper.

II. BACKGROUND AND MOTIVATION
A. Network QoS in vSwitch

Network QoS strategy is a well-studied topic in hardware
switch, and a lot of works have been proposed. According
to the implementation and function, the QoS strategies can
be divided into two types: the token bucket mechanisms, and
the fair queuing mechanisms. The token bucket mechanisms
are used to limit the bandwidth sharing with little overhead,
but it cannot ensure the latency [15]-[17]. In contrast, the
fair queuing and traffic scheduling mechanisms represented
by GPS, WFQ, and DDR, are proposed to guarantee SLA
bandwidth and latency more finely, while bringing relatively
high complexity [18]-[20].

When realizing these two kinds of QoS strategies in the
hardware switch, the sufficient processing capacity inside the

switch brings significant advantages. The main reasons are
argued in [21]: the overhead of processing each packet is
fixed; the token buckets and queues are implemented by
hardware and they can complete the corresponding functions
without compromising the performance; high-precision clock
and hardware feedback support [22], [23].

Unfortunately, none of the above advantages exists in soft-
ware vSwitch. As mentioned in Section I, the CPU cores
left for vSwitch are limited, and meanwhile their processing
capacity is variable when being used to forward traffic with
different characteristics. For example, in Google’s experi-
ments, forwarding a flow with 64-byte packets at a speed of
512 Mbps will consume more CPU cycles than forwarding a
flow with 1518-byte packets at a speed of 2.4 Gbps [11]. On
the other hand, as a software based process, the vSwitch has
particular bottleneck and resource competition points, which
are completely different from hardware switch. These differ-
ences make that the QoS strategies inherited from hardware
switches cannot work well in the vSwitch. We will further
demonstrate in this section that, existing QoS solutions can
cause performance issues in both bandwidth and latency.

B. Bandwidth issue

The existing rate limiting methods in the vSwitch of cloud
servers usually use the light-loaded token bucket for efficiency,
e.g. the MBFQ rate limiting method used by Microsoft is im-
plemented with a token bucket algorithm [21]. These existing
token bucket mechanisms are all based on BPS or Packets-
Per-Second (PPS), and directly limit the number or bits of
packets that can be forwarded to guarantee tenants’ SLA
bandwidth. As the 10-dedicated CPU resources are limited
and the processing capacity is variable when being used to
forward different traffic, one tenant may legally squeeze the
CPU resources and harm the bandwidth of others.

In this section, we adopt the best-performing three color
marker (TCM) rate limiting algorithm [17], [24], [25] in OVS-
DPDK platform to demonstrate the issue. On one server, we
launch two VMs to connect to the OVS-DPDK as sender,
and then use another directly connected server with the same
hardware configurations as receiver. We use pkt-gen from
netmap [26] inside the two VMs as packet generators. It
should be noted that all experiments in this paper use the same
platform configurations: Intel Xeon CPU E5-4603 v2 2.20GHz
(32 logical cores on 4 NUMA nodes), 64GB DDR3 memory
at 1333MHz, one Intel 82599ES 10-Gigabit Dual Port NICs
and Ubuntu 16.04.1 (kernel 4.8.0) as operation system. The
cloud platform is built on QEMU 2.10, DPDK 17.11.2 and
OVS 2.9.2. Every VM is assigned with 2 GB memory and 1
logical CPU core.

In the Fig. 1(a)-(b), we show how the BPS-based token
bucket mechanism fails to ensure VM bandwidth. The VM1
and VM2 share one dedicated CPU core in OVS-DPDK for
forwarding, and their bandwidths are limited to 2 Gbps and
8 Gbps respectively. Within the first 10 seconds, they send 512-
byte packets and their BPS bandwidths are precisely limited.
Starting from the 10th second, VM1 sends small packets
(changing the packet size to 64-byte). In order to achieve the
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Fig. 1. Bandwidth isolation issue in the existing token bucket algorithms. The
results of BPS-based method are shown in (a) and (b), while the PPS-based
method results are shown in (c) and (d).

same BPS throughput (2 Gbps) as before, VM1’s forwarding
tasks in vSwitch consume 20% more CPU resources as shown
in Fig. 1(b). This leads to a drop in the CPU consumption of
VM2’s forwarding tasks, which in turn reduces VM2’s avail-
able bandwidth. Eventually, the innocent VM2 was affected
by the tenant behavior inside VM1, resulting in approximately
20% decrease in VM2’s bandwidth.

The same situation also occurs in the PPS-based token
bucket mechanism. In the Fig. 1 (c)-(d), VM1 and VM2 also
share one CPU core in OVS-DPDK for forwarding, and their
bandwidths are limited to 0.6 Mpps and 2.4 Mpps respectively.
Within the first 10 seconds, they behave well and both send a
single flow. The VMI starts to send multiple flows from the
10th second (change configurations in pkt-gen), which makes
it require more CPU resources as the packet classification in
OVS-DPDK gets slower. Similarly, in order to achieve the
previous PPS bandwidth, VM1 preempts part of the CPU
resources belonging to VM2 as shown in Fig. 1(d), which
leads to a 16% decrease in VM2 bandwidth.

These two experiments demonstrate that, even the tenant
behavior inside a small weight VM can influence the other in-
nocent VMs’ bandwidth. The reason is that the VM forwarding
tasks compete for the 10-dedicated CPU cores in vSwitch,
which is ignored in the existing rate limiting mechanisms.
By exploiting this flaw, greedy tenants can obtain more CPU
resources, or an attacker can construct specific traffic to harm
the network performance of all tenants on the server. In either
case, CSPs cannot provide the well-behaved tenants a stable
network performance.

C. Latency issue

In addition to the bandwidth issue, the existing traffic
scheduling mechanisms inherited from the hardware switch
also cause latency issues in vSwitch. As processing engine
and logic are very different between the hardware switch
and the vSwitch, the resource competition occurs at different
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(a) hardware switch. (b) software vSwitch.

Fig. 2. The difference of resource competition points in hardware switch and
software vSwitch.

stages. Simply applying the previous strategy cannot solve the
competition problem on a different platform.

As shown in Fig. 2, we present the abstract of packet
processing logic in the hardware switch and the software
vSwitch to analyze the different requirements of scheduling in
the two architectures. In the hardware switch, the circuits with
powerful processing capabilities make the resource contentions
mainly occur at the egress stage, where the traffic of multiple
in_ports is gathered for sending out on a particular port
(see port P6 in Fig. 2(a)). The existing traffic scheduling
mechanisms working at this stage [27]-[29] can queue up
packets of different in_ports so as to guarantee differentiated
latencies. However, in the software vSwitch, the packet pro-
cessing capacity of CPU cores is far inferior to the hardware
circuits that can achieve line speed. With the common practice
in the cloud platform that very limited CPU cores are used
for vSwitch, concurrent VMs compete for these CPU cores
to execute the expensive batch I/O processing' in the ingress
stage (see Fig. 2(b)). Due to the absence of task scheduling
at the ingress stage, VMs indiscriminately queue up for batch
1/O tasks to be completed, which causes mutual influence and
high latency. In the worst case, on a server running n VMs,
each VM will suffer from the additional latency caused by
n — 1 times of batch I/O processing.

We also use experiments to demonstrate this issue. To
simulate the multi-tenant scenario on the cloud, we increase
the number of VMs to 16 on one server and measure the TCP
latency. One CPU core is used to forward traffic in the OVS-
DPDK throughout. To measure TCP latency, we run gperf [30]
as a client-side program in all VMs simultaneously, while the
server-side program is run in another directly connected phys-
ical server. We measure 20 sets of data for each experiment
to avoid accidents.

The results are shown in Fig. 3, where the latency in each
case is shown in the form of a box diagram. It can be seen that
when there is only 1 VM running on the server, its TCP latency
is stable and maintained at 26 - 27 us. But with the number

Batch 1/O processing is the general running mode of existing vSwitches.
To achieve efficiency, the CPU core always receives a batch of packets on a
port for processing such as classification. After finally sending this batch of
packets to the destination ports, the CPU will turn to receive the packets on
the next port.
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Fig. 3. Average TCP latency with different number of VMs deployed. With
the number of VMs grows, the polling running mode in vSwitch causes all
VMs suffering from the unstable high latency.

of VMs grows, the TCP latencies become unstable and all
increase exponentially. When deploying up to 16 VMs on this
server, all VMs suffer from hundreds of times higher latency
indiscriminately due to waiting for the one 10-dedicated CPU
core to sequentially process other VMs’ batch I/O processing
at the ingress stage.

D. Motivation

The reason that VM’s bandwidth and latency cannot be
guaranteed is that the existing QoS strategies ignore the 10-
dedicated CPU resources competition inside the vSwitch. The
lack of management and apportionment of CPU resources
brings a series of flaws including bandwidth isolation and
undifferentiated high latency. Some previous works have men-
tioned this issue, and some solutions have been proposed,
e.g., Addanki et al. [12] considered separately apportioning
[O-dedicated CPU resources and bandwidth on the software
router, and Kumar et al. [11] proposed a method by using a
CPU-based weighted fair queue to isolate CPU competition
among VMs. But all of these works have limited effects
because they only add a CPU isolation module before or
after the existing interface-based QoS mechanisms, but fail
to consider the variable vSwitch forwarding capacity and the
different resource competition points in the software vSwitch
process.

Essentially, the network forwarding capacity of vSwitches
is not a kind of physical resources, but a kind of “virtual”
resources that are provided by 10-dedicated CPU resources in
the vSwitch. Starting from this point, the motivation of this
work is to adopt the CPU resources apportionment, that reflects
the network forwarding capacity more directly, in the VM
network QoS solution. In order to do that, we first propose a
modeling methodology to build the relationship between CPU
resources and network forwarding capacity in vSwitch. Based
on the vSwitch network performance model, we design and
implement a new VM network QoS strategy.

This paper is based on a conference version [31], and the
main improvements include: this paper contains more compre-
hensive investigation of the related works, and we strengthen
the motivation through new experiments; this paper describes
in more detail the modeling and design of C2QoS; we conduct
more useful experiments to verify C2QoS’s accuracy besides
proving the guarantee of network QoS of tenants.

III. BANDWIDTH-CPU MODEL

To guide the design of QoS strategy, we first need to
model the correspondence between forwarding capacity and
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Fig. 4. Detailed processing logic in OVS. The batch I/O processing of
sending packets from VM to NIC can be divided into three stages: (Dingress,
@classification and Qegress.

CPU utilization in vSwitch. Our modeling of the vSwitch
forwarding procedure is based on the OVS-DPDK platform,
which is the state-of-the-art implementation and has been
widely adopted by the industry. As the OVS-DPDK platform
represents a lot of vSwitches in terms of packet processing
logic, the modeling method can be easily applied to other
vSwitch platforms.

A. Packet forwarding procedure in vSwitch

In OVS-DPDK, several Polling Mode Driver (PMD) threads
are launched and bound to the limited 10-dedicated CPU
cores. For efficiency, these PMD threads use batch processing
mode to process tasks. As shown in Fig. 4, the batch I/O
processing procedure in the OVS-DPDK consists of three
stages delivering packets from the VM to the external network.
The first stage is ingress, the PMD thread copies a batch of
packets from the VM memory to the vSwitch’s buffer. Next,
in the classification stage, the PMD thread looks up their
destination port based on the five tuples. If the five tuple is
found in the Exact Match Cache (EMC), we go to the next
stage. But if it is missed, the PMD thread will use more CPU
cycles to look up in the more comprehensive classifiers (the
datapath classifier in Fig. 4) and then go to the next stage.
Finally, it is in the egress stage that the PMD thread writes
the packet descriptors to the NIC queue, and then the NIC
can send packets out. According to these three stages, we also
divide the CPU cycles consumed by the VM forwarding tasks
into three parts as shown in the equation below:

C= C’ing'ress + Cblassif’icatiun + Oegress (])

where Cipgress indicates the CPU cycles consumed in the
ingress stage, Ceiassification Tefers to that consumed in the
classification stage and Cegy.css corresponds to the CPU cycles
consumed in the egress stage.

It is worth noting that in the classification stage, the EMC
capacity is limited, e.g., it has only 8192 entries in OVS-
DPDK, so it can only store the most recently searched five-
tuples. The datapath classifier is the main body of the classifier
algorithm like tuple-search-space (TSS) [32] and contains all
the rules in the vSwitch. Each time a five-tuple search is hit in
EMC, the Cassification Only contains lookup cost in EMC.
But if a lookup is missed in EMC and hit in datapath classifier,
the hit entry needs to be added to EMC [9]. Therefore, the
Cllassification under this case contains lookup cost in EMC
and datapath classifier, and the update cost in EMC. Obviously
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Fig. 5. The impact of traffic characteristics on the relationship between CPU consumption and bandwidth. The “M cycles/s” in Figs means million cycles/s.

the latter is much larger than the former, and the specific value
will depend on the number and complexity of the rules.

During the whole packet forwarding procedure in vSwitch,
many factors can affect the CPU consumption in the three
stages, e.g. throughput, the number of flows, the number of
VMs, and so on. According to the main bodies that control
them, we divide these factors into two types: traffic character-
istics managed by tenants and VM deployment configurations
managed by CSPs. We will experiment to study how the three
parts of CPU consumption in Eq. (1) are affected by the
these factors, and then use measurement-based methodology
to model CPU consumption under different situations.

B. Impact of network traffic characteristics

The first factor we consider is the network traffic charac-
teristics, which can be changed by the tenant behavior inside
a VM: sending rate, packet size and the number of flows.
We launch one VM on the OVS-DPDK platform and assign
one CPU core as the 10-dedicated CPU resources on one
server. The impacts of the three traffic characteristics on CPU
usage for forwarding are shown in Fig. 5 (a)-(c). During each
experiment, we vary one characteristic and record the results,
while keeping the other two with a certain value.

Sending rate (PPS). We keep the packet size at 1500-byte
and keep the number of flows at 1 during this experiment.
In Fig. 5(a), we find the CPU cycles consumed in all the
three stages are proportional to the PPS. So this is the
basis and premise of all existing BPS/PPS-based rate limiting
methods: with no other traffic characteristics changed, the CPU
competition will not occur.

Packet size. In this experiment, we keep the PPS at 10° and
keep the number of flows at 1. The results of different packet
sizes are shown in Fig. 5(b), and it can be seen that increasing
the packet size will only increase Cj,g4ress and have nothing to
do with Ciassification and Cegress. The increase of Cipgress
is due to the fact that only the stage ingress contains packet
copying, so the larger packet requires more time to copy. For
example, the Cjy,gress under the case of forwarding 1500-byte
packets is more than twice that of forwarding 64-byte packets
at the same PPS rate.

Number of flows. We keep the PPS at 10° and keep the
packet size at 1500 byte during this experiment. The result
of concurrent flows is shown in Fig. 5(c). Comparing with
only sending one flow (“single” in the figure), sending a large
number of concurrent flows (“multiple” in the figure, we range

dst ip from 0.0.0.0 to 255.255.255.255 and at the same time
randomize the port number) will cause the packet classification
frequently misses in EMC lookup and the packet will enter the
longer search path, and thus Cejqssification 18 increased. In our
experiment, the Cciqssification in the worst case is 1.67 times
more than that in the best case. But it should be noted that,
the number and complexity of the rules in the flow table will
affect this ratio.

The existing QoS strategies adopted by CSPs only consider
one of the above three characteristics, i.e., PPS (BPS is
considered as PPS * average packet size). Unfortunately,
all existing strategies fail to guarantee the SLA as the other
two characteristics can easily undermine it via affecting CPU
consumption (see Fig. 5 (b)-(c)). From these experiments,
we can see that a certain bandwidth-CPU relationship for
a single VM can only be established with all the traffic
characteristics are determined. Based on this relationship, we
can allocate Cijng1e, Which indicates the CPU resources that a
single VM requires to achieve the purchased bandwidth under
specific traffic characteristics, to each VM. In this way, the 10-
dedicated CPU utilization among VMs can be isolated, which
will resolve the SLA issue.

It should be noted that besides the above three traffic
characteristics, traffic sent by the tenant VMs also contains
some other characteristics, e.g. flow duration. But these char-
acteristics do not affect the CPU utilization per unit time, so we
do not consider them in the modeling. But in practical scenar-
ios, the forwarding procedure is often more complicated. For
example, some packets need to be modified when executing
the actions after the classification stage, which consumes more
CPU resources. These additional operations are independent of
the stages we are modeling, and the CPU consumption can be
added separately.

C. Impact of deployment issues

When deploying multiple VMs on the same physical server,
some deployment configurations will influence the CPU con-
sumption in packet forwarding. These deployment issues in the
case of multi-tenancy scenario include: VM memory location
(on which NUMA nodes [33], [34] of the physical server),
the number of VMs on the same server and the number
of I0-dedicated CPU cores. As these factors are mainly
independent with each other, the influence can be expressed as
[T Ri * Csingie, where R; represents the growth rate of CPU
consumption under the influence of each factor.
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VM memory location. The influence of NUMA architec-
ture on memory access widely exists in today’s commercial
servers, so we need to evaluate it. We have described the CPU
information at the Section II-B, and there are 4 NUMA nodes
on our servers. In the experiment setting, the vSwitch’s 10-
dedicated CPU cores and memory are located on NUMA node
0. So the memory on node 1, 2 and 3 requires the CPU cores in
vSwitch to access memory across nodes, which is slower than
accessing to the memory on node 0. At the same forwarding
rate, the CPU cycles required by the forwarding task of VM
deployed on each NUMA node are shown in Fig. 6(a). It can
be seen the VMs on node 1, 2 and 3 need 40% more CPU
cycles than the VM on node 0 to complete the forwarding
task, and that is mainly due to the increase of Cipgress by
memory access across nodes. So for the VMs on node 1, 2
and 3, the coefficient R in this factor is 1.4.

Number of VMs. As the number of VMs grows, the
competition on memory bus and cache will increase the CPU
consumption of all VMs’ three forwarding steps. As shown
in Fig. 6(b), when the number of VMs is less than 8, the
additional CPU consumption caused by competition for cache
will greatly increase, while it will be almost the same after
VM grows more than 10. The maximum and minimum curves
in the figure show the CPU consumption increase ratio when
deploying VMs on the same NUMA node (the worst case) and
on different nodes (the best case). It is obvious that the former
situation will lead to higher competition. The coefficient in
this scenario is changeable and needs to be measured through
actual experiments. For example, according to Fig. 6(b), if
4 VMs are deployed on the same NUMA node, the CPU
resources consumed by each VM will be 1.14 times more than
that under the single VM case. But if the 4 VMs are deployed
on different NUMA nodes, the ratio changes to 1.07.

Number of CPU cores. Finally, we increase the number
of 10-dedicated CPU cores to 2 in vSwitch and the result is
shown in Fig. 6(c). Comparing Fig. 6(b) and Fig. 6(c), it can be
found that using 2 logical cores for forwarding will consume
about 1.47 times more CPU cycles than one logical core for
forwarding in any case. It is mainly due to competition for
locks in the code, e.g. the synchronization among multiple
PMD threads.

Therefore, when considering the CPU cycles assigned to a
particular VM in the practical environment, CSPs need to mul-
tiply the Clingie, the necessary CPU cycles measured under

the single-VM case, by all the increase coefficient recorded
in the above experiment results. For example, if 4 VMs
are deployed in NUMA node 1, and two 10-dedicated CPU
cores are assigned to forward traffic for them in vSwitch, the
coefficients to be multiplied under the above three deployment
configurations are 1.4, 1.14 and 1.47, respectively, according
to Figs.6 (a)-(c). Only when all these factors are considered,
the CPU cycles allocated to each VM can really ensure its
purchased bandwidth.

D. Modeling methodology

According to experiments and analysis, CSPs can build
their own bandwidth-CPU models in their vSwitch platforms.
When the tenant requirements and configuration information
are given, the CPU resources required for the tenant’s VM to
achieve SLA network performance can be calculated. In the
following, we will present the modeling procedure and the
required information to guide CSPs to implement in the real
environment.

Firstly, the CSPs need to perform measurements in advance
to establish a bandwidth-CPU model as described in Section
III-B and C. For the impact of traffic characteristics, some
preset values can be selected for measurement and the results
can be stored in a table. For example, the packet size can be
{64, 128, 256, 512, 1024, 1500}, and the number of flows can
be {single, multiple}. With this table, a particular input like
(PPS = 10000, packet size = 1024, number of flow = single)
will get a certain output Cgingre. Next, for the deployment
configurations, CSPs can also use the experiments to get the
corresponding configuration and its coefficient R;, and store
it in tables. As the example shown in Section III-B, given the
input (the number of VMs = 4), we will get a coefficient R;
as 1.14.

After the measurement-based model is built, in the second
step, the CSPs rely on two types of information to form
the inputs of the model when deploying VMs: the traffic
characteristic preference from the tenant’s choice and VM
deployment configurations. For the three traffic characteristics,
they can be included in the SLA and tenant can choose them
when purchasing the VM. As the iMIX traffic [35], [36]
represents an average level of all tenants’ traffic, and CSPs can
also set its characteristics as the default values to meet most
tenants’ requirements. For deployment configurations, CSPs
can easily detect them. But as they may change frequently



with the creation and deletion of VM instances, that requires
CSPs to change the inputs in real time. Then according to the
formula [] R; * Cyingie, the required CPU resources for each
VM to achieve SLA network performance can be calculated
based on the tables in the first step.

IV. C2QO0S DESIGN

Based on the bandwidth-CPU modeling methodology devel-
oped in Section III, we are able to design C2QoS strategy. The
premise of C2QoS is that the number of VMs to be deployed is
in accordance with the resources on physical servers and there
are no overprovision. As each VM’s required 10-dedicated
CPU resources can be calculated based on the model, we
define that under the C2QoS strategy, the deployment of VMs
should follow two rules: the sum of all VMs’ purchased
bandwidth should not be more than the NIC bandwidth; and
the sum of CPU resources that we calculate for each VM
according to the model should not exceed the 10-dedicated
CPU cores. Without these rules, the resource shortage will
occur all the time, and no strategy can work.

In C2QoS, we propose the C2TB mechanism and the
HBS mechanism to provide isolation enhanced rate limiting
and hierarchical latency respectively. In this section, we will
illustrate in detail the design.

A. CPU-cycle based token bucket mechanism

To guarantee VM bandwidth through the CPU resources
apportionment, C2TB needs two steps: allocating the 10-
dedicated CPU resources to particular VMs; using the allo-
cated CPU resources to strictly limit the forwarding rate.

1) CPU resources allocation: Firstly, we construct a new
kind of token bucket for each VM. Different from the tradi-
tional token bucket algorithms that use the bits or number of
packets as tokens, the tokens in C2TB represent the remaining
usable IO-dedicated CPU cycles of each VM. The token
generation rate of each VM is the 10-dedicated CPU cycles/s
allocated to it. We use Cyjoc to indicate the CPU cycles/s
required by each VM to achieve purchased bandwidth. Using
the modeling methodology in Section III, we can set the token
generation rate to the fit value of Cyj0c, and it can strictly
ensure tenants’ purchased bandwidth in practice.

Meanwhile, besides the Cyjioc, the idle part of the 10-
dedicated CPU resources also need to be entirely allocated
to VMs for MIN-MAX bandwidth allocation policy [21],
[37], which is widely used in industry. An example of the
MIN-MAX bandwidth guarantee under C2TB is shown in
Fig. 7. The MIN bandwidth (the purchased bandwidth) is
ensured by only assigning basic Cyjj0c to the particular VM,
while the MAX bandwidth is obtained by assigning the Cljjoc
plus Cigre, which means the idle CPU cycles of the 10-
dedicated CPU cores. In the example, we assume the CPU
resources required to achieve 1 Gbps and 2 Gbps bandwidth
are 0.2G cycles/s and 0.4G cycles/s, respectively. After their
purchased bandwidth are guaranteed, there are still 1G cycles/s
left idle on the 2.2GHz CPU core and it can be fully assigned.
For the 4 VMs, they can share the Cjg. of 1G cycles/s
according to their weights to achieve their MAX bandwidth.

Cc2TB
weight 1 1 2 2
E”mha.sed 1 Gbps 1 Gbps 2 Gbps 2 Gbps
andwidth
MIN(cycles/s) 0.26 0.26 0.4G 0.4G
MAX(cycles/s) | 0.2G + 0.16G | 0.2G + 0.16G | 0.4G + 0.32G | 0.4G + 0.32G

Fig. 7. C2TB bandwidth guarantee. C2TB guarantees the MIN and MAX
bandwidth for VMs by assigning basic and all idle CPU cycles/s, respectively.
In this example, 4 VMs share one 2.2Ghz CPU core for packet forwarding.

Therefore, the maximum CPU resources allocated to them are
0.36G cycles/s, 0.36G cycles/s, 0.72G cycles/s and 0.72G cy-
cles/s, respectively.

After we entirely allocate the 10-dedicated CPU resources
to VMs, another problem may occur that the allocated CPU
resources may overflow from token bucket and be wasted,
when VM'’s network load is light. In this condition, we also
need to reallocate these unused CPU resources. For example,
if one or two VMs in the Fig. 7 are sleeping and no traffic
is generated, their tokens will always overflow and this part
of the overflowed tokens can be redistributed to other VMs
according to their weights. We present this reallocation logic
in the token update function as shown in Algorithm 1. It will
be called at regular intervals (its value is invl in the function)
to count the number of tokens in the token buckets for all
VMs on this server. The variable loop_unused_cc is used to
collect all the overflowed CPU cycles in this loop and at last it
will be stored in sum_unused_cc for reallocation next time to
update tokens. In the loop, each VM will calculate the number
of tokens generated at the rate of Cyjjoc + Ciqre Within the inuvl
time. Then, each VM will get some overflowed CPU cycles
based on its weight. We should point out that the V M;.weight
in the algorithm is a ratio, calculated by dividing the VM’s
weight by the sum of all VMs’ weights. So at last the tokens
added into the token bucket contain two parts: the generated
tokens and overflowed tokens. The last step in the loop is to
check whether the number of tokens exceeds the bucket depth.
If yes, the overflowed part needs to be taken out and saved
for next token update.

Algorithm 1 C2TB token update function

1: function C2TB_UPDATE_CALLBACK

2 loop_unused_cc < 0

3 unused_cc < 0

4 for i =0 — VM_cnt do

5: gene_cc + invl x (VM;.Capioc + VM;.Ciare)
6: unused_cc < sum_unused_cc x V M;. weight
7 sum_unused_cc— = unused_cc

8: V M;.tokens + = gene_cc + unused_cc

9: if V M, .tokens > bucket_depth then
10: loop_unused_cc + = V M;.tokens —bucket_depth
11: V M;.tokens < bucket_depth
12: end if
13: end for

14: sum_unused_cc <— loop_unused_cc

15: end function
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hierarchical batch I/O scheduling.

2) rate limiting: The last part of C2TB is to use the
allocated CPU cycles in VMs’ token buckets to limit their
forwarding rates. In the traditional token bucket algorithm, the
number or bits of packets are calculated during the batch I/O
processing and the packets exceeding the available tokens will
be dropped exactly. But in C2TB, since it does not know how
many CPU cycles will be consumed, it is impossible to decide
how many packets should be dropped. For efficiency, we adopt
the following policy: we allow the number of tokens to be
negative, and whether the tokens are greater than O determines
whether this batch I/O processing task can be executed. For
each VM, only if its tokens are greater than 0, it can send out
a batch of packets, and the number of CPU cycles consumed
is subtracted from its token bucket after the batch processing
completes. As the CPU cycles used for each VM’s packet
forwarding tasks are reasonably assigned in C2TB, the VM
bandwidth can be guaranteed with good isolation.

B. Hierarchical batch scheduling mechanism

As the existing scheduling mechanisms only work at the
egress stage and cannot avoid the high latency of CPU
resources contention in the other stages, we turn to think
about scheduling the entire batch I/O processing procedure
(including ingress, classification and egress) for VMs. In the
field of CPU task scheduling, we find the batch task scheduling
model in vSwitch is much closer to the works in [38], [39].
These works schedule tasks on CPU cores to ensure that tasks
with light load will not be blocked too long by heavy load
tasks. Though these works still fail to make it flexible to meet
the hierarchical latency guarantee like HQoS [40], they inspire
us to propose the HBS to break the undifferentiated execution
in polling mode and schedule VMs’ batch I/O tasks on the
limited 10-dedicated CPU cores hierarchically.

The main goal of HBS is to achieve latency differentiation.
In the field of task scheduling, we have chosen a useful
scheduling mechanism — the priority queuing, which has
been widely used in operation systems and traffic control
in datacenter [41]-[46]. The batch processing task in our
environment is to forward packets from VM to NIC, so using
priority queue to reduce the waiting delay of high-priority

tasks is equivalent to reducing the delay of packets inside
them. Next we introduce the HBS design in detail.

1) class-based priority queues: The HBS design is shown
in Fig. 8. To achieve hierarchical latency guarantee in HBS, as
shown in Fig. 8(a), VMs are classified into 8 classes according
to their priorities. The priority of each VM is determined by
CSPs, e.g. the latency-sensitive services such as web or video
can be set higher priority. These priorities will affect the order
in which they are scheduled to perform batch I/O processing.
On the data path shown in Fig. 8(b), all VMs’ virtual structures
are placed in virtual queues, and there are two kinds of queues:
waiting queue and ready queue. As the C2TB allows CPU to
skip VMs with tokens less than 0, we put these VMs that
should be skipped into the waiting queue. The VMs with
tokens greater than O are queued in the corresponding ready
queues according to their classes. The 10-dedicated CPU cores
will only poll and dequeue the VM structures in the ready
queues and do batch I/O forwarding tasks.

In the ready queues, to ensure that VMs in higher priority
queues have lower latency, the higher priority queue has
absolute execution privileges than the lower priority queue. For
a queue with priority [V, it will be executed dequeue operations
only when there is no items in all NV — 1 queues with higher
priorities. So in this case, the PMD threads poll each queue
and perform batch execution according to the priority level.
For example, in the case shown in Fig. 8(b), although the
number of tokens in VM2 is the smallest among the VMs in
the ready queues, VM2 will be dequeued and forwarded one
batch of packets firstly because it has the highest priority. After
the batch processing, VM2 is placed into the waiting queue
for it has consumed 41000 tokens and its available tokens are
negative. To ensure fairness that VMs in the same queue have
similar latency, each virtual queue in the HBS follows first-
in-first-out (FIFO) policy.

2) worst latency: With hierarchical execution privileges,
the worst latency of VMs in each queue can be guaranteed
and calculated. Although it is almost impossible to guarantee a
specific value of the latency for each VM in software forward-
ing due to the uncertain hardware processing capacity, we still
can guarantee the worst latency of VMs in each queue under
HBS. We assume a case that the number of VMs in all 8 ready



queues is {Ny, Na, N3, - - -, Ng}, respectively. The time used
for one batch processing is c. So the worst-case latency of VMs
in these queues is { N7 ¢, (Nyxk1+Na)*e, (N1%k1+Noxko+
N3)xc, -+, (Nyxky+ Noxko+-+-+ Nyxkr+ Ng)xc}(k; > 1).
The variable k; we use in this formula means that when a
low-priority VM sends out one batch of packets, the higher-
priority VMs may send out several batches of packets. So
compared with original sequential execution that each VM
equally suffers the worst Y N; * ¢ latency, HBS can provide
hierarchical worst latency guarantee for VMs with different
requirements. That helps CSPs formulate more flexible SLA
policies based on the tenants’ latency sensitivities.

3) starvation avoidance: The last but most common prob-
lem in the HBS is how to avoid the tasks starvation, which is
the inherent problem in priority-based scheduling mechanisms.
In HBS, the starvation will occur in two situations: 1) The
first one is that the low-priority VMs cannot achieve their
purchased bandwidths when we prefer to use many resources
to forward traffic for VMs with higher priorities. But in fact,
when CPU resources are strictly allocated and isolated in
C2TB, there is no case that the bandwidth of low-priority VMs
is squeezed by others. 2) The second one will happen when
many high-priority VMs have no traffic, but the CPU will
still give priority to them and consume the allocated cycles.
In this case, the low-priority VMs can get better network
performance, but they still need to wait for CPU cores wasting
time on the idle VMs. To avoid this, we allow the HBS to hold
a dynamic priority for each VM. When a VM has no traffic
to send during several consecutive batch I/O processing loops,
the priority of this VM will be gradually dropped. But once
it is found that the VM sends traffic again, it will be directly
adjusted to the original priority.

V. IMPLEMENTATION

According to the design in Section IV, we implement the
C2QoS strategy in the OVS-DPDK platform. As shown in
Fig. 9, We modified the PMD thread’s main loop function
and the original port ingress policy, which are implemented by
Single-Rate-Three-Color-Marker (stTCM) in the ovs-vswitchd
module [17]. For each PMD thread, it has an independent
HBS module to manage several VMs that it needs to be
responsible for packet forwarding. Different PMD threads will
not have access to each other’s priority queues, so there is no
competition and lock issues. The original sequentially polling
running mode in the main loop of PMD threads is replaced by
HBS that finds VM with highest priority in the ready queues
to execute batch I/O processing. The batch 1/O processing
logic of PMD threads has not changed, but before each batch
processing, the rate limit strategies on VM ports are replaced
with C2TB.

In order to make it easier for the CSPs to configure the
VM'’s rate limiting and scheduling parameters on the command
line, we also add two new commands to the OVS-DPDK.
These commands realize our C2TB and HBS configurations
through ovs-vsctl module as shown in Fig. 9. For exam-
ple, we can use command “ovs-vsctl set interface vhost-
user-1 ingress_policing_cpucycles=10000” to allocate VM1,

(ovs-dpctl ] ovs-appctl (" ovs-vsctl ]( ovsdb-client ]

ovs-vswitchd ovsdb-server

Fig. 9. Modifications to original OVS-DPDK. We only add the C2QoS
strategy to the ovs-vswitchd module and use ovs-vsctl to control it. Less than
300 lines of code are added into ovs-vswitchd module.

connected to “vhost-user-1” port, with 10000 CPU cycles
per second for packet forwarding. The command “ovs-vsctl
set Interface vhost-user-1 options:priority=1" can set VM1’s
priority as 1 in HBS scheduling. It should be noted that the
C2QosS is a kind of general strategy, and in our implementation
it can be used on all kinds of virtual ports such as “vport” and
“dpdk” ports. All of these modifications require no more than
300 lines of code, which is easy to realize and meanwhile will
not affect the original functions.

The biggest challenge in realizing C2TB is that it requires
frequent measurement and calculation of CPU consumption in
packet forwarding procedure, which will cause great impact
on vSwitch’s forwarding performance without lightweight
implementation. We use the rdtsc instruction [47] to solve it.
The instruction rdtsc is to get CPU cycles from booting by
reading the value in registers, so it has almost no overhead
and can be widely used in data path. Another overhead comes
from maintaining queues in HBS, and is undertaken by another
manager thread. If it runs in busy polling mode, our strategy
will consume one more entitle CPU core than the native OVS-
DPDK, which is unacceptable. So we set the manager thread
to be woken up every 50us to update the token number of each
VM. The wake-up interval is a kind of trade-off that can be set
to meet different needs. For example, setting a longer interval
can reduce the additional CPU usage but will face a decrease
in scheduling accuracy, while a smaller interval will consume
more CPU resources. In our implementation here, we set it
as the average time used for one batch I/O processing task to
achieve the trade-off between accuracy and CPU consumption.
The effectiveness and overhead of C2QoS will be evaluated
in Section VI

VI. EVALUATION

The main contribution of C2QoS is to ensure the bandwidth
and latency of VMs on the physical server, so in this section,
we evaluate the VM network QoS guarantee under C2QoS and
the OVS-DPDK existing “ovs-ingress-policy” QoS strategy.
Our experiments include the following aspects:

o Bandwidth and latency guarantee tests: Comparing the
VM’s TCP bandwidth and latency guarantee of C2QoS
with that of ovs-ingress-policy.

o Accuracy: Measuring the accuracy of rate limiting in
C2TB, and the latency levels of different priority queues
in HBS.
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Fig. 10. TCP bandwidth and latency evaluation. (a)-(f) are the experimental results of TCP bandwidth tests, which are constructed by 4 VMs with 4 Gbps,
4 Gbps, 1 Gbps, and 1 Gbps purchased bandwidth respectively. (a)-(b) show TCP bandwidth and CPU usage under ovs-ingress-policy, while (c)-(d) depict
that of under C2TB-strict and (e)-(f) exhibit C2TB-MINMAX results. (g) shows VM1 latency under the three strategies.

« Application experiments: Comparing the throughput of
Ftp [48] server and response latency of Nginx [49] server
under the C2QoS and ovs-ingress-policy.

o CPU overhead: Measuring the additional CPU overhead
that C2QoS brings to OVS-DPDK.

The hardware and platform configurations are the same as
described at the Section II-B.

A. TCP bandwidth and latency

In this experiment, we use iperf [50] and gperf [30] tools
to evaluate VMs’ TCP bandwidth and latency. We launch 4
VMs with 4 Gbps, 4 Gbps, 1 Gbps, and 1 Gbps purchased
bandwidth, respectively, and use one dedicated CPU core in
OVS-DPDK for forwarding. The purchased bandwidths are
guaranteed based on the SLA that sets the preferred packet
size to 1024 byte and the number of flows to 1. According
to our pre-measured model (as described in Section III),
when deploying 4 VMs on NUMA node 1, the VMs with
(4 Gbps, 1024-byte packet size, single flow) need 0.792G
cycles/s (36%) CPU resources for packet forwarding, and the
VMs with (1 Gbps, 1024-byte packet size, single flow) need
0.198G cycles/s (9%) CPU resources.

In our benchmark setting, VM1 acts as a well-behaved
tenant and sends 1024-byte packets at the maximum rate
all the time while the other 3 VMs behave as malicious
users or noisy neighbors. In order to more clearly show the
difference between C2TB and the original rate limiting method
in OVS-DPDK, we design such a circumstance: 1) In the
first 10 seconds, VM1 and VM3 send traffic with 1024-byte
packets. The VM2 and VM4 are sleeping and generate no
traffic. 2) From 10th second to 20th second, VM1 and VM3
keep sending traffic with 1024-byte packets, while VM2 and
VM4 send traffic with 64-byte packets. 3) In the last 10
seconds, VM1 still sends traffic with 1024-byte packets, while
VM2, VM3 and VM4 send traffic with 64-byte packets at the
maximum speed. The TCP bandwidth and CPU consumption

of the 4 VMs under three strategies are shown in Figs. 10 (a)-
(). In these figures, “C2TB-strict” means we only assign each
VM the fixed Cyy0. for packet forwarding, and the “C2TB-
MINMAX” supports to entirely allocate Cq4. and unused
CPU resources to VMs for completing MIN-MAX bandwidth
allocation.

Figs. 10 (a)-(b) show the results under default ovs-ingress-
policy. It can be seen that VM1 and VM3 work well and keep
their purchased bandwidth within the first 10 seconds. But
from the 10th second, VM2 and VM4 start sending 64-byte
packets, and they both compete and occupy 20% of the CPU
resources. As shown in Fig. 10 (b), the behavior of VM2 and
VM4 severely squeezes the CPU resources that originally used
by VM1 and VM3. As a result, VM1 bandwidth drops by 12%.
But for VM3, although the available CPU resources of VM3
have been squeezed, they are still enough to support VM3’s
purchased bandwidth. In the last 10 seconds, an interesting
thing comes that the bandwidth and CPU usage of VMI
increase with the VM3 changes packet size from 1024 byte to
64 byte. But VM3 does not benefit from the change of traffic
characteristics. We print all the log information and find this is
caused by the running mode of OVS-DPDK. The sequential
execution in the PMD thread makes it equal in the number
of batch I/O processing loops performed for each VM per
second. As VM3 reduces the packet size, the number of batch
processing loops of each VM per second is increased. For the
VMI, the increase in the number of batch processing loops
per second means that more packets can be sent per second
(before the bandwidth reaches the rate limiting threshold),
which increases bandwidth and CPU consumption. So under
OVS default BPS-based rate limiting strategy, the behavior
of the tenants will cause unpredictable CPU allocation, and
cannot guarantee VM bandwidth.

The bandwidth and CPU consumption of each VM under the
C2TB-strict strategy are shown in Figs. 10 (c)-(d). According
to the modeling results, the CPU resources that we should
allocate to the 4 VMs are 36%, 36%, 9% and 9%, respectively.
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We analyze the bandwidth of each VM separately. For VM1,
since its behavior keeps unchanged, its bandwidth is stable
and keeps at 4 Gbps by using 36% of the CPU resources
for forwarding all the time. For VM3, changing the packet
size to 64 bytes in the last 10 seconds can only reduce its
own bandwidth. For the two attackers (i.e. VM2 and VM4),
in the event of sending 64-byte packets, the CPU resources
allocated to them can only achieve very low bandwidth, and
they cannot interfere with other VMs by competing for more
CPU resources. It should be noted that in the last 10 seconds,
VM3 and VM4 get extremely low bandwidth, and it seems
they face starvation. But in fact, that is exactly what we want
to achieve. The problem of bandwidth isolation is caused by
these VMs using special traffic characteristics, rather than
their preferences, to compete for more [O-dedicated CPU
resources. The solution in C2TB is to let these “noisy” VMs
only affect their own network performance through restricting
CPU consumption for each VM. Compared with the ovs-
ingress-policy, CBTB-strict can guarantee well-behaved VMs’
bandwidth and eliminate the CPU resources competition.

While providing good isolation, the C2TB-strict still causes
a waste of CPU resources in the vSwitch, as shown in Fig.
10(d), nearly 75% of CPU resources are wasted in the first 10
seconds. So the C2TB-MINMAX is used to solve this kind of
waste. The main difference with C2TB-strict results happen in
the first 10 seconds, in which VM1 and VM3 make full use
of all idle CPU resources on the server and achieve higher
bandwidth (6.3 Gbps and 2.1 Gbps) than the bandwidth they
purchased (4 Gbps and 1 Gbps). So this rate limiting method
also has good robustness while guaranteeing the network QoS
of VMs.

On the aspect of TCP latency, we separately use qperf
to measure the VM1 latency under the ovs-ingress-policy,
“C2TB only”, and C2TB+HBS strategies. The results are
shown in Fig. 10(g). Under the ovs-ingress-policy, in the first
10 seconds, only VM3 competes with VM1 for the CPU
core to do batch I/O processing tasks, which leads to a slight
increase in VM1 TCP latency. In the following 20 seconds, the
latency of VM1 becomes unstable and increases significantly
(more than 1ms in the worst case) due to the competition of
the other three VMs. Compared to ovs-ingress-policy, “C2TB
only” can reduce part of the additional latency of VM1 by
skipping ports with negative tokens. Another reason for the
lower latency under C2TB is that it keeps the packets not

being sent inside the VM, forming a “back-pressure” to the
senders and adjusting the sending rate of TCP protocol stack
in VMs. But the latency under “C2TB only” is still unstable.
With HBS, we set VM1 to be placed in Priority 1 queue which
ensures VM1’s forwarding tasks always to be executed firstly.
The results show that the VM1 latency under C2TB+HBS is
close to the native performance and is not affected by other
VMs.

Therefore, with these experiments, C2QoS can provide good
isolation from the CPU level. That enables C2QoS to provide
tenants with good network SLA performance guarantees under
the conditions of CPU resources competition and variable
processing capacity in vSwitch.

B. Accuracy

In addition to the advantages on isolation, we also need
to evaluate the accuracy of C2QoS. Based on the functions
of C2TB and HBS, the accuracy is reflected in two aspects:
the accuracy of rate limiting and the hierarchy of the worst
latency.

We first evaluate the deviations of C2TB under mixed-
size packets and its results are shown in Fig. 11(a). In this
experiment, we use pkt-gen in VM to send packets with mixed
sizes but keep a fixed average size. Then we set the average
packet size parameter for C2TB according to the modeling
methodology in Section III-D. We can see that the range of
the packet size has little effect on the accuracy. Most of the
results show that the deviation is greater than 0, which means
that in most cases, we can guarantee that the VM’s available
bandwidth is greater than or equal to its purchased bandwidth.
On average, the deviation of C2TB under mixed packet size
is between (-2%, 3%).

In Fig. 11(b), we increase the number of VMs and deploy
them on every NUMA node to compare their real bandwidth
with their purchased bandwidth. The increase in the number
of VMs did not have large impacts on the deviation. But it
can be concluded that the more variables introduced in the
modeling, the greater the deviations are. When using only one
CPU core for forwarding in vSwitch, the deviation is between
(-2%, 4%). But in the case of using two cores for forwarding,

2Back-pressure is a kind of congestion control. If the packets will be
dropped in some points of the forwarding path, the sender should be informed
to reduce the sending rate to avoid the waste of resources.



resource competition becomes even more unpredictable, so
the deviation has almost doubled to (-3%, 6%). Although the
accuracy of the C2TB is incomparable to the traditional precise
rate limiting methods, the CSPs believe the rate limiting
under software forwarding does not need to be so precise and
occupy much resources [21]. So the deviations of C2TB are
acceptable.

To evaluate what kind of latency levels can HBS provide,
we run 16 VMs belonging to 4 priorities on one dedicated
CPU core for forwarding, and evaluate their TCP latencies
under the case that all VMs are sending traffic concurrently.
The results are shown in Fig. 11(c). The “average” in this
figure is the average latency of all 16 VMs under the C2TB
mechanism only. In this case, since all VMs need to wait for
batch I/O processing, their latencies are high and unstable.
In HBS mechanism, we can see that although the latencies of
VMs in different priority queues have intersections, the latency
levels in most cases are obviously different. The latency of
VMs with priority 1 and 2 is less than average latency, while
the latency of VMs with priority 3 and 4 is much more worse
than the average. Another fact is that the latency distribution
of high-priority VMs is very concentrated. But as the VM
priority decreases, the frequency of these VMs’ batch 1/0
processing will be more uncertain, which contributes to the
high discreteness. The different latency levels brought by
HBS will be useful when providing differentiated services for
tenants.

C. Application results

To make it more practical, we consider some common
applications on the public cloud. For example, the latency-
sensitive VMs (such as website and video services) compete
with bandwidth-sensitive VMs (such as online disks) for
vSwitch forwarding resources on the same physical server. So
we evaluate the bandwidth of Ftp server and response latency
of Nginx server in this experiment. We choose Nginx not only
because it is a latency-sensitive service, but also because of its
special traffic characteristics. The traffic of Nginx is usually
composed of small packets, and the five-tuple segments of
these packets are discrete in the case of high concurrency.
That will cause the more CPU consumption in classification
stage (as described in Section III-B). For test configurations,
2 VMs with 4 Gbps bandwidth are deployed as Ftp servers
and 2 VMs with 1 Gbps are deployed as Nginx servers. The
Ftp servers keep sending traffic while the Nginx servers bear
pressure test during 30th-70th seconds using wrk [51] tool.

The Ftp bandwidth is shown in Fig. 12(a), the Nginx
servers’ traffic during 30th-70th seconds causes a bandwidth
drop of about 11% on the Ftp servers under ovs-ingress-policy,
while C2TB strictly guarantees the bandwidth of Ftp servers
all the time. For the latency in the Nginx pressure test, we
obtain the request response time distribution in Fig. 12(b).
Under ovs-ingress-policy, the response time of Nginx requests
is doubled compared to native performance. When only using
C2TB, 50% additional latency is reduced by skipping ports
with tokens less than 0. But with the C2QoS containing both
C2TB and HBS, the additional latency is reduced by more
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Fig. 12. Application performance results. Nginx latency and ftp bandwidth
are evaluated. 2 VMs with 4 Gbps are deployed as the Ftp server, and 2 VMs
with 1 Gbps are deployed as the Nginx server. We perform the pressure test
on Nginx VMs at 30-70s.

than 80% and these Nginx servers achieve almost the native
performance. Therefore, the C2QoS can ensure the network
performance of both latency-sensitive and bandwidth-sensitive
services while sharing the same physical resources in vSwitch.

D. Overhead

As we added a new module to vSwitch, it may bring new
overhead. The overhead mainly reflects on two aspects: the
performance decrease and the additional CPU overhead.

For the first concern, in the single-VM and multi-VM
experiments, the OVS-DPDK using C2QoS strategy has no
performance drop compared with the original version. This is
because we have not made big changes to the data path, and the
additional function added to PMD threads only contains CPU
cycles counting. The CPU cycles counting function is com-
posed of rdtsc instruction [47], which occupies only several
cycles and has very little effect on forwarding performance.

For the additional CPU overhead, we tested the CPU
consumption of C2QoS. On the 10-dedicated CPU cores, only
0.018% CPU usages are used for C2QoS. This part of CPU
usages will not go up with the increase in the number of VMs
because it is added in the batch I/O processing of all VMs’
ports. Besides the overhead on 10-dedicated CPU cores, the
manager thread’s CPU overhead also needs to be considered.
When deploying 28 VMs, 2.08% more CPU usages are used
for tokens counting and queues managing. Moreover, the CPU
usages of the manager thread can also be reduced by sacri-
ficing accuracy and extending the wake-up interval. Although
it is a trade-off, from our experimental results, the additional
CPU resources consumed by the manager thread will not be
too much (no more than 3%). So the additional CPU overhead
in C2QoS is also acceptable for cloud platforms.

VII. DISCUSSIONS

The evaluation shows that C2QoS achieves good results in
ensuring the stability of tenant’s network performance com-
pared to the traditional strategy, but there are still some issues
that need to be carefully addressed for real-world deployment.
In this section, we first discuss the applicable scenarios of
C2QoS, and under which scenarios it does not work well.
Then, we provide our own solution.

The C2QoS strategy is designed for the vSwitch of the cloud
platform. For cloud servers, if the forwarding capability of
the vSwitch needs to reach the NIC bandwidth all the time,
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dozens of CPU cores shall be used by the vSwitch. Therefore,
to maximize commercial benefits, the common practice is to
allocate only several dedicated CPU cores to the vSwitch and
ensure that the vSwitch’s forwarding capability can reach the
NIC bandwidth only in some usual cases. But on cloud, the
tenant VMs are deployed with services that have diverse traffic
characteristics. For example, many services like website and
data transmission for IoT devices always send small packets
and concurrent flows. That will consume most of the 10-
dedicated CPU resources and drop the maximum vSwitch
forwarding capacity. Thus the shortage and competition of the
I0-dedicated CPU resources will become the norm. That is
the problem that C2QoS can solve.

On the other hand, there is a potential extreme situation
that the bottleneck may come to the NIC rather than the
CPU cores. We assume that a VM is allocated 10-dedicated
CPU resources according to the preferred traffic characteristics
(512-byte packet size, multiple flows). But if it sends MTU
(1518-byte) packets with a single flow, its throughput will rise
and that may cause the vSwitch forwarding rate to exceed
the upper limit of the NIC bandwidth. The C2QoS fails in
such a condition, because it cannot solve the congestion and
competition on the NIC. This situation is not common on the
public cloud, so we can adopt a simple handler to deal with
it. We use the original monitoring module that is inside the
vSwitch to detect the forwarding rate of the vSwitch. If the
throughput of the vSwitch reaches the upper limit of the NIC
bandwidth, the vSwitch will be triggered to use the BPS/PPS-
based rate limiting mechanism to assist C2QoS strategy for
ensuring the performance of tenant networks.

We carry out an experiment to show this extreme situation.
As shown in Fig. 13, the traffic characteristic preference of
VML includes the factors of 2 Gbps, 128-bytes packet size,
and the single flow, while the preference of VM2 contains
the factors of 6 Gbps, 1024-byte packet size, and the single
flow. Under C2QoS only, the 2 VMs work well for the first 15
seconds as they follow their preferences. But starting from the
15th second, VM1 starts to send 1500-byte packets. We can
see that the throughput of VMI rises sharply and competes
with VM2 for the NIC bandwidth at the 16th second. This
causes an 8% reduction in the bandwidth of VM2 (see the
light-colored lines in Fig. 13). After adapting the handler,
under the combined effect of C2QoS and the traditional rate
limiting strategy, the bandwidth of the 2 VMs returns to normal
after the 17th second (see the dark-colored lines in Fig. 13).

From this experiment, we can conclude that C2QoS is not
the opposite of traditional QoS strategy. They can solve the
performance isolation breakage problem in different scenarios.
In practice, CSPs can flexibly choose the effective strategy
depending on where the bottleneck or competition point is. In
many cases, the two strategies can work together.

VIII. CONCLUSION

This paper focused on the VM network QoS on the cloud
platform and addressed the key issue of 10-dedicated CPU
resources management and apportionment in the vSwitch,
which has been ignored by the existing QoS strategies. The
competition among VMs for the 10-dedicated CPU resources
in vSwitch seriously affects the network performance. In order
to resolve the issue, this paper proposed C2QoS to apportion
and schedule 10-dedicated CPU resources to VMs for net-
work SLA guarantee. C2QoS consists of two mechanisms,
C2TB and HBS. In C2TB, according to a measurement-
driven bandwidth-CPU model, we limited VM’s bandwidth by
directly assigning CPU cycles to particular VM. To address the
high additional latency issue brought by the undifferentiated
execution, the HBS mechanism scheduled the VMs’ entire
batch I/O forwarding tasks on the 10-dedicated CPU cores,
which provided hierarchical latencies for VMs according to
sensitivities. The implementation on OVS-DPDK platform
showed that compared with existing strategies, C2QoS elimi-
nated the influence of CPU resource congestion on bandwidth
and reduced the effect on latency by 80%.
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Tenant's network performance is unpredictable due to resource competition in
vSwitch.

Building the relationship between network performance and resources.

Apportioning resources to tenants for isolated and stable network performance.
Providing stable network quality for tenants with only few additional resources used.
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