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Special functions in this presentation

Jacobi elliptic function

Fm(ϕ) =

∫ ϕ

0

dθ√
1−m sin2 θ

Modified Jacobi elliptic function

Km(ϕ) =

∫ ϕ

0

√
1−m sin2 θdθ.

Solutions of (y′)2 = R(y), R rational function.
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Model coupling the electrostatic potential and the
distribution of ions

In Ω: ρk is the concentration of ions of species k, of valence zk, ψ
is the electrostatic potential, e is the charge of the proton, εs is
the dielectric constant of the cell, kb is the Boltzmann constant
and T is the temperature:{

−∇x ·
(
Dk

(
∇xρk + ezk

kbT
ρk∇xψ

))
= 0

−∇x · (εs∇xψ) = e
∑

k zkρk

Inhomogeneous Dirichlet boundary condition for the potential on
∂Ω and no flux condition for each species of ions.
Reduction to a 1D model: Ω = [−L,L]. Boundary conditions
• for the potential: ψ(±L) = ±ψD
• for the concentration of ions: (ρ′k + ezk

kbT
ρkψ

′)(±L) = 0.
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Reduction of the model to a single ODE

For ion concentrations ρk(x) = ρk(−L)e
− ezk
kbT

ψ(x)
.

Electrostatic equation:

−ψ′′ = e

εs

∑
k

zkρk(−L)e
− ezk
kbT

ψ(x)
.

Notation ϕ(X) = e
kbT

ψ(XL), X ∈ [−1, 1]. Equation

−ϕ′′ = e2L2

kbTεs

∑
k

zkρk(−L)e−zkϕ.

Number of ions of each species given

nk =

∫ L

−L
ρk(−L)e

− ezk
kbT

ψ(x)
dx⇔ ρk(−L) =

nk∫ L
−L e

− ezk
kbT

ψ(x)
dx
.
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Reduction to a elliptic equation

Equation: −ϕ′′ = e2L
kbTεs

∑
k nkzk

e−zkϕ∫ 1
−1 e

−zkϕ(X)dX
. Boundary

conditions ϕ(±1) = ±ϕD.

Lemma

This problem has a unique solution in H1([−1, 1]).

Proof: one observes that it is the Euler equation for
J(ϕ) =

∫ 1
−1

1
2 [(ϕ′(X))2 + e2L

kbTεs

∑
k nk ln(

∫ 1
−1 e

−zkϕ(X)dX)]dX.

1

2
(ϕ′)2 − 1

2
(ϕ′(X0))2 =

e2L

kbTεs

∑
k

nk
e−zkϕ − e−zkϕ(X0)∫ 1
−1 e

−zkϕ(X)dX
. (1)

f(X) = e−ϕ(X) yields (f ′)2 = (ϕ′)2f2 ⇒ (f ′)2 = R(f), where R
is a rational fraction ⇒ elliptic equation.
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First application: the electroneutral case for two species of
ions zk = ±1

Notation n+ = n− = n and introduce α = e2Ln
kbTεs

. Equation

−ϕ′′ = α[ e−ϕ∫ 1
−1 e

−ϕ(X)dX
− eϕ∫ 1

−1 e
ϕ(X)dX

].

One proves ϕ odd. Thanks to∫ 1
−1 e

−ϕ(X)dX =
∫ 1
−1 e

ϕ(X)dX = 2
∫ 1

0 e
−ϕ(X)dX, reduce the

equation on (0, 1) to

(f ′)2 = 2f2α f+f−1−2K∫ 1
−1 e

−ϕ(X)dX
= βf(f2 − 2Kf + 1),

β = 2α∫ 1
−1 e

−ϕ(X)dX
, K = 1− (ϕ′(0))2

2β < 1, f(0) = 1, f(1) = e−ϕD .

∫ e−ϕ(X)

1

df√
f(f2 − 2Kf + 1)

=
√
βX. (2)

Equations for determining β and K:∫ e−ϕD
1

df√
f(f2−2Kf+1)

=
√
β,
∫ e−ϕD

1
fdf√

f(f2−2Kf+1)
= α√

β
.
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Expression of the solution
Case K < −1. Polynomial f(f + q)(f + 1

q ), q > 1. New unknown

sin2 ϕ = e−ϕ(X)

e−ϕ(X)+ 1
q

, new variable sin2 θ = f

f+ 1
q

= 1− 1
q

1
f+ 1

q

,

2 sin θ cos θdθ = 1
q

df

(f+ 1
q

)2
, cos2 θ = 1

q
1

(f+ 1
q

)2
,

f(f + q)(f +
1

q
) =

1

q2

sin2 θ

cos6 θ
(q + (

1

q
− q) sin2 θ).

With m = 1− 1
q2

df√
f(f + q)(f + 1

q )
=

2√
q

dθ√
1−m sin2 θ

,

Fm(arcsin

√
e−ϕ(X)

e−ϕ(X) + 1
q

)− Fm(arcsin

√
1

1 + 1
q

) =
√
βX (3)
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Boundary layer on the potential near the charged interface. 

The potential in the Gouy-Chapman-Stern is described exactly. 
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Second application: the non electroneutral case for two
species of ions zk = ±1

With ϕD = 0, n+ 6= n−, one proves that the function ϕ is even,
has its maximum (or its minimum) at X = 0 according to the sign
of n+ − n−. Equation (f0 = e−ϕ(0) := e−ϕ0)

(f ′)2 = 2αf2[β−( 1
f − 1

f0
) + β+(f − f0)],

with β− = n−∫ 1
−1 f(X)dX

, β+ = n+∫ 1
−1 f

−1(X)dX
. Need three equations fo

f0, β−, β+. Introduce f1 = β+
β−f0

. Equation

(f ′)2 = 2αβ+f
−1
0 f(f − f0)(f − f1) = K2f(f − f0)(f − f1).

Two cases: f1 < f0 (f0 is the point of minimum of f) or
f1 > f0 (f0 is the point of maximum of f).
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Solution (0 < f1 < f0, m0f0 = f1)

K|X| =
∫ e−ϕ(X)

f0

df√
f(f − f0)(f −m0f0)

Conditions for the three constants (K2f0 = 2αβ+):
K =

∫ 1
f0

df√
f(f−f0)(f−m0f0)

,

Kn+ = 2β+

∫ 1
f0

fdf√
f(f−f0)(f−m0f0)

,

Kn− = 2β−
∫ 1
f0

df

f
√
f(f−f0)(f−m0f0)

.

Change of variable in the integral sin2 ϕ = f−f0
f−m0f0

K|X| = 2(1−m0)f
1
2

0 Fm0(arcsin

√
e−ϕ(X) − f0

e−ϕ(X) −m0f0
). (4)
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The coupled 1d model

Diffusion equation for the neutrons: density of probability Φ(z, t)
of neutrons in [0, L] at time t (h: enthalpy (temperature), V :
velocity of neutrons)

1
V ∂tΦ− ∂z(D(h)∂zΦ) + Σa(h)Φ = Σf (h)Φ

Boundary conditions: Φ(0, t) = 0,Φ(L, t) = 0. Condition on the

density
∫ L

0 Φ(z, 0)dz = 1.
Classical analysis: Φ(z, t) = etτϕ(z). Sign of τ important.
Equation on ϕ

− d
dz (D(h)dϕdz ) + Σa(h)ϕ = (Σf (h)− τ

V )ϕ

Definition keff =
Σf (h)

Σf (h)− τ
V

. Eigenvalue problem:{
− d
dz (D(h)dϕdz ) + Σa(h)ϕ =

Σf (h)
keff

ϕ,

ϕ(0) = ϕ(L) = 0.

Coupled with the production of enthalpy h′ = QΣf (h)ϕ.
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Coupled problem and its integration

Nonlinear system


− d
dz (D(h)dϕdz ) + Σa(h)ϕ =

Σf (h)
keff

ϕ,

h′ = QΣf (h)ϕ,
ϕ(0) = ϕ(L) = 0,
h(0) = he, h(L) = hs.

Four boundary conditions, problem of order 3: yields keff := λ−1.
Exact integration

− d
dz (D(h)dϕdz ) + (Σa(h)

Σf (h) − λ)h
′

Q = 0

−D(h)dϕdz + F (h)−λh+C0

Q = 0

−dϕ
dz ϕ+ F (h)−λh+C0

Σf (h)D(h)Q2h
′ = 0

Finally (with X(he) = X(hs) = Y (he) = Y (hs) = 0)

−Q2ϕ
2

2
+X(h)− λY (h) = 0⇒ (h′)2 = R(h). (5)

When Σa,Σf and D are known only at given points
hi, 1 ≤ i ≤ p, R is a rational fraction: elliptic integrals again.
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First example: X(h) ' (h− he)(hs − h)(aXh+ bX),
Y (h) ' (h− he)(hs − h)(aY h+ bY ).

Obtain aX , aY , bX , bY by projection of solutions of certain ODEs.

(h′)2 = µ2(h− he)(hs − h)((aX − λaY )h+ (bX − λbY )).

New unknown h(z) = he + (hs− he) sin2 θ(z), θ(0) = 0, θ(L) = π
2 :

(θ′(z))2 =
µ2

4
[(aX−λaY )he+(bX−λbY )+(aX−λaY )(hs−he) sin2 θ(z)).

Define m(λ) = − (aX−λaY )(hs−he)
(aX−λaY )he+(bX−λbY ) . Equality∫ θ(z)

0

dθ√
1−m sin2 θ

=
µ

2

√
(aX − λaY )he + (bX − λbY )z. (6)

Equation for determining λ:

Fm(λ)(
π

2
) =

µ

2

√
(aX − λaY )he + (bX − λbY )L.
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First example: X(h) ' (h− he)(hs − h)(aXh+ bX),
Y (h) ' (h− he)(hs − h)(aY h+ bY ).

Obtain aX , aY , bX , bY by projection of solutions of certain ODEs.

(h′)2 = µ2(h− he)(hs − h)((aX − λaY )h+ (bX − λbY )).

New unknown h(z) = he + (hs− he) sin2 θ(z), θ(0) = 0, θ(L) = π
2 :

(θ′(z))2 =
µ2

4
[(aX−λaY )he+(bX−λbY )+(aX−λaY )(hs−he) sin2 θ(z)).

Define m(λ) = − (aX−λaY )(hs−he)
(aX−λaY )he+(bX−λbY ) . Equality∫ θ(z)

0

dθ√
1−m sin2 θ

=
µ

2

√
(aX − λaY )he + (bX − λbY )z. (6)

Equation for determining λ:

Fm(λ)(
π

2
) =

µ

2

√
(aX − λaY )he + (bX − λbY )L.
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Second example (joint work with F. Dubois):
D = 1,Σa = 1, Σf known at three values h1, h2, h3

Possible choice of solutions for the coupled problem

1. Σf interpolation polynomial of degree 2 → Y polynomial of
degree four → elliptic function as solutions (see A-S formulae
17.4.41 to 17.4.57), after transformation of the polynomial to
(t2 − a2)(b2 − t2) or (a2 − t2)(t2 + b2) by homographic
transform of the roots of Y into ±a,±b or ±a,±ib.

2. Σf continuous, piecewise linear on intervals
[he, h1], [h1, h2], [h2, h3], [h3, hs] → Y ∈ C1 piecewise cubic
polynomial h piecewise an inverse incomplete elliptic function.

In the first case, equation on λ of the form Fm(λ)(g(λ)) = L.
In the second case, one has a more complicated equation.
Main result for applications: the values of λ are quite
different, though the solutions are extremely similar.
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Figure: Function h 7−→ Σ(h) .
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ϕ and λ

mean value

affine interpolation

piecewise affine

piecewise affine approximated by an affine function

parabolic

parabolic approximated by an affine function

Figure: Functions z 7→ ϕ(z) : λ:
1.01722, 1.07373, 1.0043, 1.01991, 1, 01507.
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Why does one need analytic formulae?

• Quick and accurate calculations and graphical representation
thanks to the presence of the special functions in packages.

• In the study of the potential inside a cell: link with models of
exchanges of ions: dependency in terms of L and of ϕD or of
number of ions.

• Uncertainty and sensitivity analysis (one has a dependency on
parameters, n and L in the case of the first problem,
n−, n+, L in the case of the second problem, given values of
D(h),Σa(h),Σf (h) in the third problem)
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