open science

Analytic solutions of two problems of Biology and Physics using the Jacobi elliptic functions

François Dubois, Olivier Lafitte, Clair Poignard

To cite this version:

François Dubois, Olivier Lafitte, Clair Poignard. Analytic solutions of two problems of Biology and Physics using the Jacobi elliptic functions. 16th International Symposium on Orthogonal Polynomials, Special Functions and Applications, Centre de recherches Mathématiques, Jun 2022, Montréal, Canada. hal-04004709

HAL Id: hal-04004709
https://hal.science/hal-04004709
Submitted on 25 Feb 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Analytic solutions of two problems of Biology and Physics using the Jacobi elliptic functions

Francois Dubois, Olivier Lafitte, Clair Poignard

LE CNAM-Université Sorbonne Paris Nord (LAGA)-IRL-CRM-CNRS, Centre de Recherches Mathématiques (U de Montréal)-Inria Bordeaux Sud Ouest

$$
\text { June 17th, } 2022
$$

Potential in a cell generated by a density of ions (O.L.-C. Poignard)

Coupling thermohydraulics and neutronics (O.L., F. Dubois et al)

Why it is interesting to have analytic formulae and special functions?

Potential in a cell generated by a density of ions (O.L.-C. Poignard)

Coupling thermohydraulics and neutronics (O.L., F. Dubois et al)

Why it is interesting to have analytic formulae and special functions?

Potential in a cell generated by a density of ions (O.L.-C. Poignard)

Coupling thermohydraulics and neutronics (O.L., F. Dubois et al)

Why it is interesting to have analytic formulae and special functions?

Special functions in this presentation

Jacobi elliptic function

$$
F_{m}(\varphi)=\int_{0}^{\varphi} \frac{d \theta}{\sqrt{1-m \sin ^{2} \theta}}
$$

Modified Jacobi elliptic function

$$
K_{m}(\varphi)=\int_{0}^{\varphi} \sqrt{1-m \sin ^{2} \theta} d \theta
$$

Solutions of $\left(y^{\prime}\right)^{2}=R(y), R$ rational function.

Contents

Potential in a cell generated by a density of ions (O.L.-C. Poignard)

Coupling thermohydraulics and neutronics (O.L., F. Dubois et al)

Why it is interesting to have analytic formulae and special functions?

Model coupling the electrostatic potential and the distribution of ions

In Ω : ρ_{k} is the concentration of ions of species k, of valence z_{k}, ψ is the electrostatic potential, e is the charge of the proton, ε_{s} is the dielectric constant of the cell, k_{b} is the Boltzmann constant and T is the temperature:

$$
\left\{\begin{array}{l}
-\nabla_{x} \cdot\left(D_{k}\left(\nabla_{x} \rho_{k}+\frac{e z_{k}}{k_{b} T} \rho_{k} \nabla_{x} \psi\right)\right)=0 \\
-\nabla_{x} \cdot\left(\varepsilon_{s} \nabla_{x} \psi\right)=e \sum_{k} z_{k} \rho_{k}
\end{array}\right.
$$

Inhomogeneous Dirichlet boundary condition for the potential on $\partial \Omega$ and no flux condition for each species of ions.
Reduction to a $1 D$ model: $\Omega=[-L, L]$. Boundary conditions

- for the potential: $\psi(\pm L)= \pm \psi_{D}$
- for the concentration of ions: $\left(\rho_{k}^{\prime}+\frac{e z_{k}}{k_{b} T} \rho_{k} \psi^{\prime}\right)(\pm L)=0$.

Reduction of the model to a single ODE

For ion concentrations $\rho_{k}(x)=\rho_{k}(-L) e^{-\frac{e z_{k}}{k_{b} T} \psi(x)}$.
Electrostatic equation:

$$
-\psi^{\prime \prime}=\frac{e}{\varepsilon_{s}} \sum_{k} z_{k} \rho_{k}(-L) e^{-\frac{e z_{k}}{k_{b} T} \psi(x)}
$$

Notation $\varphi(X)=\frac{e}{k_{b} T} \psi(X L), X \in[-1,1]$. Equation

$$
-\varphi^{\prime \prime}=\frac{e^{2} L^{2}}{k_{b} T \varepsilon_{s}} \sum_{k} z_{k} \rho_{k}(-L) e^{-z_{k} \varphi}
$$

Number of ions of each species given

$$
n_{k}=\int_{-L}^{L} \rho_{k}(-L) e^{-\frac{e z_{k}}{k_{b} T} \psi(x)} d x \Leftrightarrow \rho_{k}(-L)=\frac{n_{k}}{\int_{-L}^{L} e^{-\frac{e z_{k} k}{k_{b} T} \psi(x)} d x}
$$

Reduction to a elliptic equation

Equation: $-\varphi^{\prime \prime}=\frac{e^{2} L}{k_{b} T \varepsilon_{s}} \sum_{k} n_{k} z_{k} \frac{e^{-z_{k} \varphi}}{\int_{-1}^{1} e^{-z_{k} \varphi(X)} d X}$. Boundary conditions $\varphi(\pm 1)= \pm \varphi_{D}$.

Lemma

This problem has a unique solution in $H^{1}([-1,1])$.
Proof: one observes that it is the Euler equation for $J(\varphi)=\int_{-1}^{1} \frac{1}{2}\left[\left(\varphi^{\prime}(X)\right)^{2}+\frac{e^{2} L}{k_{b} T \varepsilon_{s}} \sum_{k} n_{k} \ln \left(\int_{-1}^{1} e^{-z_{k} \varphi(X)} d X\right)\right] d X$.

$$
\begin{equation*}
\frac{1}{2}\left(\varphi^{\prime}\right)^{2}-\frac{1}{2}\left(\varphi^{\prime}\left(X_{0}\right)\right)^{2}=\frac{e^{2} L}{k_{b} T \varepsilon_{s}} \sum_{k} n_{k} \frac{e^{-z_{k} \varphi}-e^{-z_{k} \varphi\left(X_{0}\right)}}{\int_{-1}^{1} e^{-z_{k} \varphi(X)} d X} \tag{1}
\end{equation*}
$$

$f(X)=e^{-\varphi(X)}$ yields $\left(f^{\prime}\right)^{2}=\left(\varphi^{\prime}\right)^{2} f^{2} \Rightarrow\left(f^{\prime}\right)^{2}=R(f)$, where R is a rational fraction \Rightarrow elliptic equation.

First application: the electroneutral case for two species of

 ions $z_{k}= \pm 1$Notation $n_{+}=n_{-}=n$ and introduce $\alpha=\frac{e^{2} L n}{k_{b} T \varepsilon_{s}}$. Equation

$$
-\varphi^{\prime \prime}=\alpha\left[\frac{e^{-\varphi}}{\int_{-1}^{1} e^{-\varphi(X)} d X}-\frac{e^{\varphi}}{\int_{-1}^{1} e^{\varphi}(X) d X}\right] .
$$

One proves φ odd. Thanks to
$\int_{-1}^{1} e^{-\varphi(X)} d X=\int_{-1}^{1} e^{\varphi(X)} d X=2 \int_{0}^{1} e^{-\varphi(X)} d X$, reduce the equation on (0,1) to

$$
\begin{gather*}
\left(f^{\prime}\right)^{2}=2 f^{2} \alpha \frac{f+f^{-1}-2 K}{\int_{-1}^{1} e^{-\varphi(X) d X}}=\beta f\left(f^{2}-2 K f+1\right), \\
\beta=\frac{2 \alpha}{\int_{-1}^{1} e^{-\varphi(X)} d X}, K=1-\frac{\left(\varphi^{\prime}(0)\right)^{2}}{2 \beta}<1, f(0)=1, f(1)=e^{-\varphi_{D}} . \\
\int_{1}^{e^{-\varphi(X)}} \frac{d f}{\sqrt{f\left(f^{2}-2 K f+1\right)}}=\sqrt{\beta} X . \tag{2}
\end{gather*}
$$

Equations for determining β and K :

$$
\int_{1}^{e^{-\varphi_{D}}} \frac{d f}{\sqrt{f\left(f^{2}-2 K f+1\right)}}=\sqrt{\beta}, \int_{1}^{e^{-\varphi_{D}}} \frac{f d f}{\sqrt{f\left(f^{2}-2 K f+1\right)}}=\frac{\alpha}{\sqrt{\beta}} .
$$

Expression of the solution

Case $K<-1$. Polynomial $f(f+q)\left(f+\frac{1}{q}\right), q>1$. New unknown $\sin ^{2} \varphi=\frac{e^{-\varphi(X)}}{e^{-\varphi(X)+\frac{1}{q}}}$, new variable $\sin ^{2} \theta=\frac{f}{f+\frac{1}{q}}=1-\frac{1}{q} \frac{1}{f+\frac{1}{q}}$, $2 \sin \theta \cos \theta d \theta=\frac{1}{q} \frac{d f}{\left(f+\frac{1}{q}\right)^{2}}, \cos ^{2} \theta=\frac{1}{q} \frac{1}{\left(f+\frac{1}{q}\right)^{2}}$,

$$
f(f+q)\left(f+\frac{1}{q}\right)=\frac{1}{q^{2}} \frac{\sin ^{2} \theta}{\cos ^{6} \theta}\left(q+\left(\frac{1}{q}-q\right) \sin ^{2} \theta\right)
$$

With $m=1-\frac{1}{q^{2}}$

$$
\begin{gather*}
\frac{d f}{\sqrt{f(f+q)\left(f+\frac{1}{q}\right)}}=\frac{2}{\sqrt{q}} \frac{d \theta}{\sqrt{1-m \sin ^{2} \theta}}, \\
F_{m}\left(\arcsin \sqrt{\frac{e^{-\varphi(X)}}{e^{-\varphi(X)}+\frac{1}{q}}}\right)-F_{m}\left(\arcsin \sqrt{\frac{1}{1+\frac{1}{q}}}\right)=\sqrt{\beta} X \tag{3}
\end{gather*}
$$

Plot of the potential ϕ with $\alpha=500$

Piot of the relative potential ϕ / ϕ_{0} with $\alpha=500$

Boundary layer on the potential near the charged interface.
The potential in the Gouy-Chapman-Stern is described exactly.

Second application: the non electroneutral case for two species of ions $z_{k}= \pm 1$

With $\varphi_{D}=0, n_{+} \neq n_{-}$, one proves that the function φ is even, has its maximum (or its minimum) at $X=0$ according to the sign of $n_{+}-n_{-}$. Equation $\left(f_{0}=e^{-\varphi(0)}:=e^{-\varphi_{0}}\right)$

$$
\left(f^{\prime}\right)^{2}=2 \alpha f^{2}\left[\beta_{-}\left(\frac{1}{f}-\frac{1}{f_{0}}\right)+\beta_{+}\left(f-f_{0}\right)\right],
$$

with $\beta_{-}=\frac{n_{-}}{\int_{-1}^{1} f(X) d X}, \beta_{+}=\frac{n_{+}}{\int_{-1}^{1} f^{-1}(X) d X}$. Need three equations fo
$f_{0}, \beta_{-}, \beta_{+}$. Introduce $f_{1}=\frac{\beta_{+}}{\beta_{-} f_{0}}$. Equation
$\left(f^{\prime}\right)^{2}=2 \alpha \beta_{+} f_{0}^{-1} f\left(f-f_{0}\right)\left(f-f_{1}\right)=K^{2} f\left(f-f_{0}\right)\left(f-f_{1}\right)$.
Two cases: $f_{1}<f_{0}$ (f_{0} is the point of minimum of f) or $f_{1}>f_{0}\left(f_{0}\right.$ is the point of maximum of $\left.f\right)$.

Solution $\left(0<f_{1}<f_{0}, m_{0} f_{0}=f_{1}\right)$

$$
K|X|=\int_{f_{0}}^{e^{-\varphi(X)}} \frac{d f}{\sqrt{f\left(f-f_{0}\right)\left(f-m_{0} f_{0}\right)}}
$$

Conditions for the three constants ($K^{2} f_{0}=2 \alpha \beta_{+}$):

$$
\left\{\begin{array}{l}
K=\int_{f_{0}}^{1} \frac{d f}{\sqrt{f\left(f-f_{0}\right)\left(f-m_{0} f_{0}\right)}}, \\
K n_{+}=2 \beta_{+} \int_{f_{0}}^{1} \frac{f d f}{\sqrt{f\left(f-f_{0}\right)\left(f-m_{0} f_{0}\right)}}, \\
K n_{-}=2 \beta_{-} \int_{f_{0}}^{1} \frac{d f}{f \sqrt{f\left(f-f_{0}\right)\left(f-m_{0} f_{0}\right)}}
\end{array}\right.
$$

Change of variable in the integral $\sin ^{2} \varphi=\frac{f-f_{0}}{f-m_{0} f_{0}}$

$$
\begin{equation*}
K|X|=2\left(1-m_{0}\right) f_{0}^{\frac{1}{2}} F_{m_{0}}\left(\arcsin \sqrt{\frac{e^{-\varphi(X)}-f_{0}}{e^{-\varphi(X)}-m_{0} f_{0}}}\right) . \tag{4}
\end{equation*}
$$

Contents

Potential in a cell generated by a density of ions (O.L.-C. Poignard)

Coupling thermohydraulics and neutronics (O.L., F. Dubois et al)

Why it is interesting to have analytic formulae and special functions?

The coupled 1d model

Diffusion equation for the neutrons: density of probability $\Phi(z, t)$ of neutrons in $[0, L]$ at time t (h : enthalpy (temperature), V : velocity of neutrons)

$$
\frac{1}{V} \partial_{t} \Phi-\partial_{z}\left(D(h) \partial_{z} \Phi\right)+\Sigma_{a}(h) \Phi=\Sigma_{f}(h) \Phi
$$

Boundary conditions: $\Phi(0, t)=0, \Phi(L, t)=0$. Condition on the density $\int_{0}^{L} \Phi(z, 0) d z=1$.
Classical analysis: $\Phi(z, t)=e^{t \tau} \varphi(z)$. Sign of τ important.
Equation on φ

$$
-\frac{d}{d z}\left(D(h) \frac{d \varphi}{d z}\right)+\Sigma_{a}(h) \varphi=\left(\Sigma_{f}(h)-\frac{\tau}{V}\right) \varphi
$$

Definition $k_{\text {eff }}=\frac{\Sigma_{f}(h)}{\Sigma_{f}(h)-\frac{\tau}{V}}$. Eigenvalue problem:
$\left\{\begin{array}{l}-\frac{d}{d z}\left(D(h) \frac{d \varphi}{d z}\right)+\Sigma_{a}(h) \varphi=\frac{\Sigma_{f}(h)}{k_{e f f}} \varphi, \\ \varphi(0)=\varphi(L)=0 .\end{array}\right.$
Coupled with the production of enthalpy $h^{\prime}=\mathcal{Q} \Sigma_{f}(h) \varphi$.

Coupled problem and its integration

Nonlinear system $\left\{\begin{array}{l}-\frac{d}{d z}\left(D(h) \frac{d \varphi}{d z}\right)+\Sigma_{a}(h) \varphi=\frac{\Sigma_{f}(h)}{k_{e f f}} \varphi, \\ h^{\prime}=\mathcal{Q} \Sigma_{f}(h) \varphi, \\ \varphi(0)=\varphi(L)=0, \\ h(0)=h_{e}, h(L)=h_{s} .\end{array}\right.$
Four boundary conditions, problem of order $3:$ yields $k_{\text {eff }}:=\lambda^{-1}$ Exact integration

When Σ_{a}, Σ_{f} and D are known only at given points $h_{i}, 1 \leq i \leq p, R$ is a rational fraction: elliptic integrals again.

Coupled problem and its integration

Nonlinear system $\left\{\begin{array}{l}-\frac{d}{d z}\left(D(h) \frac{d \varphi}{d z}\right)+\Sigma_{a}(h) \varphi=\frac{\Sigma_{f}(h)}{k_{e f f}} \varphi, \\ h^{\prime}=\mathcal{Q} \Sigma_{f}(h) \varphi, \\ \varphi(0)=\varphi(L)=0, \\ h(0)=h_{e}, h(L)=h_{s} .\end{array}\right.$
Four boundary conditions, problem of order 3: yields $k_{\text {eff }}:=\lambda^{-1}$.

Coupled problem and its integration

Nonlinear system $\left\{\begin{array}{l}-\frac{d}{d z}\left(D(h) \frac{d \varphi}{d z}\right)+\Sigma_{a}(h) \varphi=\frac{\Sigma_{f}(h)}{k_{e f f}} \varphi, \\ h^{\prime}=\mathcal{Q} \Sigma_{f}(h) \varphi, \\ \varphi(0)=\varphi(L)=0, \\ h(0)=h_{e}, h(L)=h_{s} .\end{array}\right.$
Four boundary conditions, problem of order 3: yields $k_{e f f}:=\lambda^{-1}$. Exact integration

$$
-\frac{d}{d z}\left(D(h) \frac{d \varphi}{d z}\right)+\left(\frac{\Sigma_{a}(h)}{\Sigma_{f}(h)}-\lambda\right) \frac{h^{\prime}}{\mathcal{Q}}=0
$$

Finally (with $\left.X\left(h_{e}\right)=X\left(h_{s}\right)=Y\left(h_{e}\right)=Y\left(h_{s}\right)=0\right)$

Coupled problem and its integration

Nonlinear system $\left\{\begin{array}{l}-\frac{d}{d z}\left(D(h) \frac{d \varphi}{d z}\right)+\Sigma_{a}(h) \varphi=\frac{\Sigma_{f}(h)}{k_{e f f}} \varphi, \\ h^{\prime}=\mathcal{Q} \Sigma_{f}(h) \varphi, \\ \varphi(0)=\varphi(L)=0, \\ h(0)=h_{e}, h(L)=h_{s} .\end{array}\right.$
Four boundary conditions, problem of order 3: yields $k_{e f f}:=\lambda^{-1}$. Exact integration

$$
\begin{gathered}
-\frac{d}{d z}\left(D(h) \frac{d \varphi}{d z}\right)+\left(\frac{\Sigma_{a}(h)}{\Sigma_{f}(h)}-\lambda\right) \frac{h^{\prime}}{\mathcal{Q}}=0 \\
-D(h) \frac{d \varphi}{d z}+\frac{F(h)-\lambda h+C_{0}}{\mathcal{Q}}=0
\end{gathered}
$$

Finally (with $\left.X\left(h_{e}\right)=X\left(h_{s}\right)=Y\left(h_{e}\right)=Y\left(h_{s}\right)=0\right)$

Coupled problem and its integration

Nonlinear system $\left\{\begin{array}{l}-\frac{d}{d z}\left(D(h) \frac{d \varphi}{d z}\right)+\Sigma_{a}(h) \varphi=\frac{\Sigma_{f}(h)}{k_{e f f}} \varphi, \\ h^{\prime}=\mathcal{Q} \Sigma_{f}(h) \varphi, \\ \varphi(0)=\varphi(L)=0, \\ h(0)=h_{e}, h(L)=h_{s} .\end{array}\right.$
Four boundary conditions, problem of order 3: yields $k_{e f f}:=\lambda^{-1}$. Exact integration

$$
\begin{gathered}
-\frac{d}{d z}\left(D(h) \frac{d \varphi}{d z}\right)+\left(\frac{\Sigma_{a}(h)}{\Sigma_{f}(h)}-\lambda\right) \frac{h^{\prime}}{Q}=0 \\
-D(h) \frac{d \varphi}{d z}+\frac{F h)-\lambda h+C_{0}}{Q}=0 \\
-\frac{d \varphi}{d z} \varphi+\frac{F(h)-\lambda h+C_{0}}{\Sigma_{f}(h) D(h) Q^{2}} h^{\prime}=0
\end{gathered}
$$

Finally (with $X\left(h_{\mathrm{e}}\right)=X\left(h_{\mathrm{s}}\right)=Y\left(h_{\mathrm{e}}\right)=Y\left(h_{\mathrm{s}}\right)=0$)

Coupled problem and its integration
Nonlinear system $\left\{\begin{array}{l}-\frac{d}{d z}\left(D(h) \frac{d \varphi}{d z}\right)+\Sigma_{a}(h) \varphi=\frac{\Sigma_{f}(h)}{k_{e f f}} \varphi, \\ h^{\prime}=\mathcal{Q} \Sigma_{f}(h) \varphi, \\ \varphi(0)=\varphi(L)=0, \\ h(0)=h_{e}, h(L)=h_{s} .\end{array}\right.$
Four boundary conditions, problem of order 3: yields $k_{e f f}:=\lambda^{-1}$. Exact integration

$$
\begin{gathered}
-\frac{d}{d z}\left(D(h) \frac{d \varphi}{d z}\right)+\left(\frac{\Sigma_{a}(h)}{\Sigma_{f}(h)}-\lambda\right) \frac{h^{\prime}}{Q}=0 \\
-D(h) \frac{d \varphi}{d z}+\frac{F(h)-\lambda h+C_{0}}{Q}=0 \\
-\frac{d \varphi}{d z} \varphi+\frac{F(h)-\lambda h+C_{0}}{\Sigma_{f}(h) D(h) \mathcal{Q}^{2}} h^{\prime}=0
\end{gathered}
$$

Finally (with $\left.X\left(h_{e}\right)=X\left(h_{s}\right)=Y\left(h_{e}\right)=Y\left(h_{s}\right)=0\right)$

$$
\begin{equation*}
-\mathcal{Q}^{2} \frac{\varphi^{2}}{2}+X(h)-\lambda Y(h)=0 \Rightarrow\left(h^{\prime}\right)^{2}=R(h) \tag{5}
\end{equation*}
$$

When Σ_{a}, Σ_{f} and D are known only at given points $h_{i}, 1 \leq i \leq p, R$ is a rational fraction: elliptic integrals again.

First example: $X(h) \simeq\left(h-h_{e}\right)\left(h_{s}-h\right)\left(a_{X} h+b_{X}\right)$,

$$
Y(h) \simeq\left(h-h_{e}\right)\left(h_{s}-h\right)\left(a_{Y} h+b_{Y}\right) .
$$

Obtain $a_{X}, a_{Y}, b_{X}, b_{Y}$ by projection of solutions of certain ODEs.

$$
\left(h^{\prime}\right)^{2}=\mu^{2}\left(h-h_{e}\right)\left(h_{s}-h\right)\left(\left(a_{X}-\lambda a_{Y}\right) h+\left(b_{X}-\lambda b_{Y}\right)\right) .
$$

New unknown $h(z)=h_{e}+\left(h_{s}-h_{e}\right) \sin ^{2} \theta(z), \theta(0)=0, \theta(L)=\frac{\pi}{2}$

Equation for determining λ :

First example: $X(h) \simeq\left(h-h_{e}\right)\left(h_{s}-h\right)\left(a_{X} h+b_{X}\right)$,

$$
Y(h) \simeq\left(h-h_{e}\right)\left(h_{s}-h\right)\left(a_{Y} h+b_{Y}\right) .
$$

Obtain $a_{X}, a_{Y}, b_{X}, b_{Y}$ by projection of solutions of certain ODEs.

$$
\left(h^{\prime}\right)^{2}=\mu^{2}\left(h-h_{e}\right)\left(h_{s}-h\right)\left(\left(a_{X}-\lambda a_{Y}\right) h+\left(b_{X}-\lambda b_{Y}\right)\right) .
$$

New unknown $h(z)=h_{e}+\left(h_{s}-h_{e}\right) \sin ^{2} \theta(z), \theta(0)=0, \theta(L)=\frac{\pi}{2}$:
$\left(\theta^{\prime}(z)\right)^{2}=\frac{\mu^{2}}{4}\left[\left(a_{X}-\lambda a_{Y}\right) h_{e}+\left(b_{X}-\lambda b_{Y}\right)+\left(a_{X}-\lambda a_{Y}\right)\left(h_{s}-h_{e}\right) \sin ^{2} \theta(z)\right)$.

Equality

First example: $X(h) \simeq\left(h-h_{e}\right)\left(h_{s}-h\right)\left(a_{X} h+b_{X}\right)$,

$$
Y(h) \simeq\left(h-h_{e}\right)\left(h_{s}-h\right)\left(a_{Y} h+b_{Y}\right) .
$$

Obtain $a_{X}, a_{Y}, b_{X}, b_{Y}$ by projection of solutions of certain ODEs.

$$
\left(h^{\prime}\right)^{2}=\mu^{2}\left(h-h_{e}\right)\left(h_{s}-h\right)\left(\left(a_{X}-\lambda a_{Y}\right) h+\left(b_{X}-\lambda b_{Y}\right)\right) .
$$

New unknown $h(z)=h_{e}+\left(h_{s}-h_{e}\right) \sin ^{2} \theta(z), \theta(0)=0, \theta(L)=\frac{\pi}{2}$:
$\left(\theta^{\prime}(z)\right)^{2}=\frac{\mu^{2}}{4}\left[\left(a_{X}-\lambda a_{Y}\right) h_{e}+\left(b_{X}-\lambda b_{Y}\right)+\left(a_{X}-\lambda a_{Y}\right)\left(h_{s}-h_{e}\right) \sin ^{2} \theta(z)\right)$.
Define $m(\lambda)=-\frac{\left(a_{X}-\lambda a_{Y}\right)\left(h_{s}-h_{e}\right)}{\left(a_{X}-\lambda a_{Y}\right) h_{e}+\left(b_{X}-\lambda b_{Y}\right)}$. Equality

$$
\begin{equation*}
\int_{0}^{\theta(z)} \frac{d \theta}{\sqrt{1-m \sin ^{2} \theta}}=\frac{\mu}{2} \sqrt{\left(a_{X}-\lambda a_{Y}\right) h_{e}+\left(b_{X}-\lambda b_{Y}\right)} z . \tag{6}
\end{equation*}
$$

First example: $X(h) \simeq\left(h-h_{e}\right)\left(h_{s}-h\right)\left(a_{X} h+b_{X}\right)$,

$$
Y(h) \simeq\left(h-h_{e}\right)\left(h_{s}-h\right)\left(a_{Y} h+b_{Y}\right) .
$$

Obtain $a_{X}, a_{Y}, b_{X}, b_{Y}$ by projection of solutions of certain ODEs.

$$
\left(h^{\prime}\right)^{2}=\mu^{2}\left(h-h_{e}\right)\left(h_{s}-h\right)\left(\left(a_{X}-\lambda a_{Y}\right) h+\left(b_{X}-\lambda b_{Y}\right)\right) .
$$

New unknown $h(z)=h_{e}+\left(h_{s}-h_{e}\right) \sin ^{2} \theta(z), \theta(0)=0, \theta(L)=\frac{\pi}{2}$:
$\left(\theta^{\prime}(z)\right)^{2}=\frac{\mu^{2}}{4}\left[\left(a_{X}-\lambda a_{Y}\right) h_{e}+\left(b_{X}-\lambda b_{Y}\right)+\left(a_{X}-\lambda a_{Y}\right)\left(h_{s}-h_{e}\right) \sin ^{2} \theta(z)\right)$.
Define $m(\lambda)=-\frac{\left(a_{X}-\lambda a_{Y}\right)\left(h_{s}-h_{e}\right)}{\left(a_{X}-\lambda a_{Y}\right) h_{e}+\left(b_{X}-\lambda b_{Y}\right)}$. Equality

$$
\begin{equation*}
\int_{0}^{\theta(z)} \frac{d \theta}{\sqrt{1-m \sin ^{2} \theta}}=\frac{\mu}{2} \sqrt{\left(a_{X}-\lambda a_{Y}\right) h_{e}+\left(b_{X}-\lambda b_{Y}\right)} z . \tag{6}
\end{equation*}
$$

Equation for determining λ :

$$
F_{m(\lambda)}\left(\frac{\pi}{2}\right)=\frac{\mu}{2} \sqrt{\left(a_{X}-\lambda a_{Y}\right) h_{e}+\left(b_{X}-\lambda b_{Y}\right)} L
$$

Possible choice of solutions for the coupled problem

1. Σ_{f} interpolation polynomial of degree $2 \rightarrow Y$ polynomial of degree four \rightarrow elliptic function as solutions (see A-S formulae 17.4.41 to 17.4.57), after transformation of the polynomial to $\left(t^{2}-a^{2}\right)\left(b^{2}-t^{2}\right)$ or $\left(a^{2}-t^{2}\right)\left(t^{2}+b^{2}\right)$ by homographic transform of the roots of Y into $\pm a, \pm b$ or $\pm a, \pm i b$.
2. Σ_{f} continuous, piecewise linear on intervals
$\left[h_{e}, h_{1}\right],\left[h_{1}, h_{2}\right],\left[h_{2}, h_{3}\right],\left[h_{3}, h_{s}\right] \rightarrow Y \in C^{1}$ piecewise cubic polynomial h piecewise an inverse incomplete elliptic function.
In the first case, equation on λ of the form $F_{m(\lambda)}(g(\lambda))=L$.
Main result for applications: the values of λ are quite different, though the solutions are extremely similar.

Possible choice of solutions for the coupled problem

1. Σ_{f} interpolation polynomial of degree $2 \rightarrow Y$ polynomial of degree four \rightarrow elliptic function as solutions (see A-S formulae 17.4.41 to 17.4.57), after transformation of the polynomial to $\left(t^{2}-a^{2}\right)\left(b^{2}-t^{2}\right)$ or $\left(a^{2}-t^{2}\right)\left(t^{2}+b^{2}\right)$ by homographic transform of the roots of Y into $\pm a, \pm b$ or $\pm a, \pm i b$.
2. Σ_{f} continuous, piecewise linear on intervals
$\left[h_{e}, h_{1}\right],\left[h_{1}, h_{2}\right],\left[h_{2}, h_{3}\right],\left[h_{3}, h_{s}\right] \rightarrow Y \in C^{1}$ piecewise cubic polynomial h piecewise an inverse incomplete elliptic function.
In the first case, equation on λ of the form $F_{m(\lambda)}(g(\lambda))=L$. In the second case, one has a more complicated equation.

Possible choice of solutions for the coupled problem

1. Σ_{f} interpolation polynomial of degree $2 \rightarrow Y$ polynomial of degree four \rightarrow elliptic function as solutions (see A-S formulae 17.4.41 to 17.4.57), after transformation of the polynomial to $\left(t^{2}-a^{2}\right)\left(b^{2}-t^{2}\right)$ or $\left(a^{2}-t^{2}\right)\left(t^{2}+b^{2}\right)$ by homographic transform of the roots of Y into $\pm a, \pm b$ or $\pm a, \pm i b$.
2. Σ_{f} continuous, piecewise linear on intervals
$\left[h_{e}, h_{1}\right],\left[h_{1}, h_{2}\right],\left[h_{2}, h_{3}\right],\left[h_{3}, h_{s}\right] \rightarrow Y \in C^{1}$ piecewise cubic polynomial h piecewise an inverse incomplete elliptic function.
In the first case, equation on λ of the form $F_{m(\lambda)}(g(\lambda))=L$.
In the second case, one has a more complicated equation.
Main result for applications: the values of λ are quite different, though the solutions are extremely similar.

Figure: Function $h \longmapsto \Sigma(h)$.

φ and λ

Figure: Functions $z \mapsto \varphi(z): \lambda$:
1.01722, 1.07373, 1.0043, 1.01991, 1, 01507.

Contents

Potential in a cell generated by a density of ions (O.L.-C. Poignard)

Coupling thermohydraulics and neutronics (O.L., F. Dubois et al)

Why it is interesting to have analytic formulae and special functions?

Why does one need analytic formulae?

- Quick and accurate calculations and graphical representation thanks to the presence of the special functions in packages.
- In the study of the potential inside a cell: link with models of exchanges of ions: dependency in terms of L and of φ_{D} or of number of ions.
- Uncertainty and sensitivity analysis (one has a dependency on parameters, n and L in the case of the first problem, n_{-}, n_{+}, L in the case of the second problem, given values of $D(h), \Sigma_{a}(h), \Sigma_{f}(h)$ in the third problem)

