Reduction of the model to a single ODE

For ion concentrations ρ k (x) = ρ k (-L)e -ez k k b T ψ(x) . Electrostatic equation:

-ψ = e ε s k z k ρ k (-L)e - ez k k b T ψ(x) . Notation ϕ(X) = e k b T ψ(XL), X ∈ [-1, 1]. Equation -ϕ = e 2 L 2 k b T ε s k z k ρ k (-L)e -z k ϕ .
Number of ions of each species given

n k = L -L ρ k (-L)e - ez k k b T ψ(x) dx ⇔ ρ k (-L) = n k L -L e - ez k k b T ψ(x) dx .
Reduction to a elliptic equation

Equation: -ϕ = e 2 L k b T εs k n k z k e -z k ϕ 1 -1 e -z k ϕ(X) dX
. Boundary conditions ϕ(±1) = ±ϕ D .

Lemma

This problem has a unique solution in H 1 ([-1, 1]).

Proof: one observes that it is the Euler equation for

J(ϕ) = 1 -1 1 2 [(ϕ (X)) 2 + e 2 L k b T εs k n k ln( 1 -1 e -z k ϕ(X) dX)]dX. 1 2 (ϕ ) 2 - 1 2 (ϕ (X 0 )) 2 = e 2 L k b T ε s k n k e -z k ϕ -e -z k ϕ(X 0 ) 1 -1 e -z k ϕ(X) dX . (1) f (X) = e -ϕ(X) yields (f ) 2 = (ϕ ) 2 f 2 ⇒ (f ) 2 = R(f ),
where R is a rational fraction ⇒ elliptic equation.

First application: the electroneutral case for two species of ions z k = ±1

Notation n + = n -= n and introduce α = e 2 Ln k b T εs . Equation -ϕ = α[ e -ϕ 1 -1 e -ϕ(X) dX - e ϕ 1 -1 e ϕ(X) dX ].
One proves ϕ odd. Thanks to

1 -1 e -ϕ(X) dX = 1 -1 e ϕ(X) dX = 2 1 0 e -ϕ(X) dX, reduce the equation on (0, 1) to (f ) 2 = 2f 2 α f +f -1 -2K 1 -1 e -ϕ(X) dX = βf (f 2 -2Kf + 1), β = 2α 1 -1 e -ϕ(X) dX , K = 1 -(ϕ (0)) 2 2β < 1, f (0) = 1, f (1) = e -ϕ D . e -ϕ(X) 1 df f (f 2 -2Kf + 1) = βX. (2) 
Equations for determining β and K:

e -ϕ D 1 df √ f (f 2 -2Kf +1) = √ β, e -ϕ D 1 f df √ f (f 2 -2Kf +1) = α √ β .
Expression of the solution Boundary layer on the potential near the charged interface. The potential in the Gouy-Chapman-Stern is described exactly.

Case K < -1. Polynomial f (f + q)(f + 1 q ), q > 1. New unknown sin 2 ϕ = e -ϕ(X) e -ϕ(X) + 1 q , new variable sin 2 θ = f f + 1 q = 1 -1 q 1 f + 1 q , 2 sin θ cos θdθ = 1 q df (f + 1 q ) 2 , cos 2 θ = 1 q 1 (f + 1 q ) 2 , f (f + q)(f + 1 q ) = 1 q 2 sin 2 θ cos 6 θ (q + ( 1 q -q) sin 2 θ). With m = 1 -1 q 2 df f (f + q)(f + 1 q ) = 2 √ q dθ 1 -m sin 2 θ , F m (arcsin e -ϕ(X) e -ϕ(X) + 1 q ) -F m (arcsin 1 1 + 1 q ) = βX (3)
Second application: the non electroneutral case for two species of ions z k = ±1

With ϕ D = 0, n + = n -, one proves that the function ϕ is even, has its maximum (or its minimum) at X = 0 according to the sign

of n + -n -. Equation (f 0 = e -ϕ(0) := e -ϕ 0 ) (f ) 2 = 2αf 2 [β -( 1 f -1 f 0 ) + β + (f -f 0 )], with β -= n - 1 -1 f (X)dX , β + = n + 1 -1 f -1 (X)dX
. Need three equations fo

f 0 , β -, β + . Introduce f 1 = β + β -f 0 . Equation (f ) 2 = 2αβ + f -1 0 f (f -f 0 )(f -f 1 ) = K 2 f (f -f 0 )(f -f 1 ). Two cases: f 1 < f 0 (f 0 is the point of minimum of f ) or f 1 > f 0 (f 0 is the point of maximum of f ). Solution (0 < f 1 < f 0 , m 0 f 0 = f 1 ) K|X| = e -ϕ(X) f 0 df f (f -f 0 )(f -m 0 f 0 ) Conditions for the three constants (K 2 f 0 = 2αβ + ):          K = 1 f 0 df √ f (f -f 0 )(f -m 0 f 0 ) , Kn + = 2β + 1 f 0 f df √ f (f -f 0 )(f -m 0 f 0 ) , Kn -= 2β - 1 f 0 df f √ f (f -f 0 )(f -m 0 f 0 ) . Change of variable in the integral sin 2 ϕ = f -f 0 f -m 0 f 0 K|X| = 2(1 -m 0 )f 1 2 0 F m 0 (arcsin e -ϕ(X) -f 0 e -ϕ(X) -m 0 f 0 ). (4) 
The coupled 1d model

Diffusion equation for the neutrons: density of probability Φ(z, t) of neutrons in [0, L] at time t (h: enthalpy (temperature), V : velocity of neutrons)

1 V ∂ t Φ -∂ z (D(h)∂ z Φ) + Σ a (h)Φ = Σ f (h)Φ Boundary conditions: Φ(0, t) = 0, Φ(L, t) = 0. Condition on the density L 0 Φ(z, 0)dz = 1. Classical analysis: Φ(z, t) = e tτ ϕ(z). Sign of τ important. Equation on ϕ -d dz (D(h) dϕ dz ) + Σ a (h)ϕ = (Σ f (h) -τ V )ϕ Definition k ef f = Σ f (h) Σ f (h)-τ V . Eigenvalue problem: -d dz (D(h) dϕ dz ) + Σ a (h)ϕ = Σ f (h) k ef f ϕ, ϕ(0) = ϕ(L) = 0.
Coupled with the production of enthalpy h = QΣ f (h)ϕ.

Coupled problem and its integration

Nonlinear system

         -d dz (D(h) dϕ dz ) + Σ a (h)ϕ = Σ f (h) k ef f ϕ, h = QΣ f (h)ϕ, ϕ(0) = ϕ(L) = 0, h(0) = h e , h(L) = h s .
Four boundary conditions, problem of order 3: yields

k ef f := λ -1 . Exact integration -d dz (D(h) dϕ dz ) + ( Σa(h) Σ f (h) -λ) h Q = 0 -D(h) dϕ dz + F (h)-λh+C 0 Q = 0 -dϕ dz ϕ + F (h)-λh+C 0 Σ f (h)D(h)Q 2 h = 0 Finally (with X(h e ) = X(h s ) = Y (h e ) = Y (h s ) = 0) -Q 2 ϕ 2 2 + X(h) -λY (h) = 0 ⇒ (h ) 2 = R(h). (5) 
When Σ a , Σ f and D are known only at given points h i , 1 ≤ i ≤ p, R is a rational fraction: elliptic integrals again.
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 : Figure: Function h -→ Σ(h) .
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 : Figure: Functions z → ϕ(z) : λ: 1.01722, 1.07373, 1.0043, 1.01991, 1, 01507.
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Second example (joint work with F. Dubois): D = 1, Σ a = 1, Σ f known at three values h 1 , h 2 , h 3 Possible choice of solutions for the coupled problem 1. Σ f interpolation polynomial of degree 2 → Y polynomial of degree four → elliptic function as solutions (see A-S formulae 17.4.41 to 17.4.57), after transformation of the polynomial to

) by homographic transform of the roots of Y into ±a, ±b or ±a, ±ib.

Σ f continuous, piecewise linear on intervals

In the first case, equation on λ of the form F m(λ) (g(λ)) = L.

In the second case, one has a more complicated equation.

Main result for applications: the values of λ are quite different, though the solutions are extremely similar.
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Main result for applications: the values of λ are quite different, though the solutions are extremely similar. Why does one need analytic formulae?
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