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Supervised learning with two classes: the truth table and its
consequences
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Presentation of the problem

Consider the simple classification problem affecting a label
y ∈ Y = {−1, 1} for points x ∈ X = Rd. One wants to determine
the label ±1 for each x ∈ X , using a supervised learning method,
that is based on a training set (i.i.d sample)1 S of dimension n,
S = {(xi, yi) ∈ X × Y, 1 ≤ i ≤ n}.
A classifier is a function h : X → Y. A weak classifier satisfies
]{i, h(xi) = yi} > n

2 .
Each classifier is characterized by the list of signs sign(yih(xi)).
Likelihood (risk of false decision) of h: LP(h) = EP1Y h(X)<0.
Empirical estimate:

LP̂n
(h) = EP̂n

1Y h(X)<0 = n−1
n∑
i=1

1yih(xi)<0.

1Law of xi is not known. Method should hold for all law P.
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Construction of a new classifier from weak classifiers
Example of the traditional work with a mixing of points of R2,
(green and red). Use straight lines as classifiers. Example of a
combination:
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Brute force technique

With M weak classifiers G1, ..., GM , space of study
H = V ect(G1, ..., GM ).
Optimal result, for β ∈ RM : minimum of

R1•<0(β,S) := LP̂n
(sign(βTG)).

One has

Lemma

The minimum of R1•<0(β,S), which is piecewise constant, is
obtained on a convex set

Drawback: does not construct a value of the set β1, ...βM .
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Adaboost (historical)

• Algorithmic technique: Boosting (Freund and Shapire 1990,
1995).
Idea: add a ponderation on the correctly classified examples. At
the beginning, all examples are equal D1(xi) =

1
n . The

ponderation of the correctly classified examples is of the form
εm

1−εm , where εm =
∑

yi 6=hm(xi)
Dm(xi), only if εm ≤ 1

2 .
New values Zm+1Dm+1(xi) = Dm(xi)

εm
1−εm if yi = hm(xi) and

Dm(xi) if not, with
∑

iDm+1(xi) = 1.
Call to weaklearn at each step.
• Interpretation (1997-) as the minimization of a convexified cost.
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Adaboost (newer: greedy algorithm: 1998)

Assume at each step that one considers the classifier with the least
(ponderated) errors.

Ensure: wi = 1/n — Algorithme ADABOOST —
for m = 1 · · · k do
Gjm ← argminGj

∑n
i=1 w

(m−1)
i 1yiGj(xi)<0

εm ←
(∑n

i=1 w
(m−1)
i 1yiGjm (xi)<0

)
/
(∑n

i=1 w
(m−1)
i

)
αm ← log ((1− εm) /εm)
for i = 1 · · ·n do
wi ← wi exp

(
αm1yiGjm (xi)<0

)
end for

end for

Many studies on convergence of this algorithm since then.
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A very old algorithm: relaxation (Jacobi in the case of
matrices)

Assume at each main step that one goes through all the classifiers.

Ensure: wi = 1/n — RELAXATION —
for m = 1 · · · k, j = 1 · · ·M do

εm,j ←
(∑n

i=1 w
m,j−1
i 1yiGj(xi)<0

)
/
(∑n

i=1 w
m,j−1
i

)
(wm,0

i := wm−1,M
i )

αm,j ← log ((1− εm,j) /εm,j)
for i = 1 · · ·n do
wi ← wi exp

(
− 1

2αm,jsign(yiGj(xi)))
)

end for
end for

Convergence ensured under mild conditions.
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A new structuration of S, G1, ..., GM : the truth table
• For a given set of classifiers, it is a structuration of the training
set S (through a binary tree). It segments S in 2M classes:
]{i, sign(yiG1(xi)) = sign(yiG2(xi))... = sign(yiGM (xi)) = 1}: all classifiers

correctly label these points,

]{i, sign(yiG1(xi)) = sign(yiG2(xi))... = sign(yiGM (xi)) = −1}: all classifiers

uncorrectly label these points,

]{i, sign(yiG2(xi)) = sign(yiG3(xi))... = sign(yiGM (xi)) = −1, sign(yiG1(xi) =

1}: all classifiers but G1 uncorrectly label these points,

]{i, sign(yiG2(xi)) = sign(yiG3(xi))... = sign(yiGM (xi)) = 1, sign(yiG1(xi) =

−1}: all classifiers correctly label these points except G1,

...
]{i, sign(yiG3(xi)) = sign(yiG4(xi))... = sign(yiGM (xi)) = 1, sign(yiG1(xi) =

sign(yiG2(xi)) = −1}: all classifiers correctly label these points except G1 and G2,

The elements of one class are not distinguable for G1, ..., GM .
• Classes are arranged by pairs (label l), corresponding to all
opposite signs.
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The minimum of the empirical cost

Each pair is associated to Xl,−Xl: l label of the class,
Xl =

∑
Vljβj , Vlj = ±1.

For β such that all Xl 6= 0 (not being on a boundary),
nR1•<0(β,S) is an integer in a list of 2M elements.
The minimum value of this list defines a convex set in RM .



Truth table Application for three classifiers

Convexification of the cost function

Replace 1•<0 by ϕ(•), satisfying ϕ(x) ≥ 1x<0 for all x).
Convexified empirical risk:

Rϕ(β,S) = n−1
n∑
i=1

ϕ
(
yiβ

TG(xi)
)

(1)
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Existence and uniqueness of the minimum of the cost
function

Theorem

• If 2M > n, at least 2M − n slots are empty,
• If at least M pairs are full (the two elements are non zero), the
convexified cost function has a unique point of minimum.
• In this case, the relaxation algorithm converges to its unique
minimum.

For the second item, M pairs are independent, the function
θϕ(x) + (1− θ)ϕ(−x) is α−convex (θ ∈ (0, 1))
The third item is a consequence of the second item.
The relaxation algorithm has the same cost as ADABOOST.
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Hypotheses on ϕ and properties

Hypothèse

ϕ(0) = 1, ϕ′(0) < 0, ϕ of class C1, ϕ strictly positive, strictly
convex, decreasing, and there exists α0 > 0 such that the even
part of ϕ is α−convexe.

In particular, ϕ is ’classification calibrated’ (Bartlett). Remark:
convexified cost function n−1

∑
j∈J(nj +mj)Cηj (Xj) where

ηj =
mj

nj+mj
, with notation Cη(x) = ηϕ(x) + (1− η)ϕ(−x):

Lemma

For all η ∈ (0, 1) Cη is 2min(η, 1− η) α−convex and has a unique
point of minimum, denoted by x(η), where x(η) > 0⇔ η > 1

2 .

Under these conditions, the relaxation algorithm defined above
converges to the unique point of minimum of Rϕ(β,S), one has
explicit equations, and a calculation of κϕ.
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Margins

Definition

For a given S, G1, ..., GM (with existence and uniqueness of a point
of minimum through M pairs), one calls margin κϕ(S, G1, ..., GM )
the smallest coefficient κ such that, for any set S ′, G′1, ..., G′M ,

with max{sp}|
]{i,sign(yiGp(xi))=sp}

]S − ]{i,sign(y′iG′p(x′i))=sp}
]S′ | ≤ κ, the

sign of the resulting classifier is identical.

Theorem

The real κϕ(S, G1, ..., GM ) is well defined and is strictly positive.

The theorem is a consequence of the C1 behavior of the point of
minimum of

∑
{sp} αspϕ(Xsp) for

∑
{sp} αsp = 1 positive

coefficients with M pairs non zero with respect to the parameters
(αsp).
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The truth table for three classifiers

n0 m0 n1 m1 n2 m2 n3 m3

G1 −1 +1 +1 −1 −1 +1 −1 +1
G2 −1 +1 −1 +1 +1 −1 −1 +1
G3 −1 +1 −1 +1 −1 +1 +1 −1
βTG−X0 X0 −X1 X1 −X2 X2 −X3 X3

X0 = β1 + β2 + β3, X1 = −β1 + β2 + β3, X2 = β1 − β2 + β3, X3 = β1 + β2 − β3.

β1 = 1
2
(X1 +X2), β2 = 1

2
(X1 +X3), β3 = 1

2
(X1 +X2) .

Three classifiers nRϕ(β,S) =
n0ϕ(−X0) +m0ϕ(X0) + n1ϕ(−X1) +m1ϕ(X1)+
n2ϕ(−X2) +m2ϕ(X2) + n3ϕ(−X3) +m3ϕ(X3).
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New adaboost is a decision tree.

Assume ]G1 ≤ ]G2 ≤ ]G3 (it is an ordering of the classifiers)

]G1 < ]G2 ]G1 = ]G2 < ]G3 ]G1 = ]G2 = ]G3

j1 = 1 j1 = 1 j1 = 1

Update the coefficients and consider β11 = −1
2 ln

]G1

n−]G1
. Update by

considering n1j ,m
1
j multiplied by e±β

1
1 . One obtains

]G1
1 =

1
2(
∑
n1j +mj

1) =
n1

2 . The next step reads as

]G1
2 < n1

2
≤ ]G1

3 ]G1
2 = n1

2
< ]G1

3
n1

2
< ]G1

3 < ]G1
2

n1

2
< ]G1

3 = ]G1
2 ]G1

3 < n1

2
< ]G1

2 ]G1
3 = n1

2
< ]G1

2 ]G1
3 < n1

2
= ]G1

2
j2 = 2 stop stop stop j2 = 3
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Decision tree

min(]G
(1)
2 , ]G

(1)
3 ) ≥ n(1)

2

STOP

j2 ∈ {2, 3}
{j21 , j2, j23} = {1, 2, 3}

min(]G
(2)

j22
, ]G

(2)

j23
) ≥ n(2)

2

STOP

j2 ∈ {2, 3}
{j21 , j2, j23} = {1, 2, 3}

The value of the cost function decreases,
but βm does not converge to its unique point of minimum.
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Conclusion
• A novel method for combining weak classifiers in supervised

learning is described, which fully characterizes the set of weak
classifiers by a truth table.
• Convexification of the risk function with any calibrated C2

classification function ϕ, yields a minimization problem in
RM , whose unique solution is easily studied using a classical
minimization algorithm that amounts to iteratively solving
equations in R with a Newton method.
• The complexity of this method depends only linearly on the

number M of weak classifiers (no dependency on n and d).
• In the case of two well-known ϕ’s, the Boosting function (for

all M) or the Logistic function.
• This framework is then used to study the quality of the

training set, thus setting criteria for the stability of the results
under such operations.
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