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Abstract10

Climate variability in the Tropical Atlantic is complex with strong11

ocean-atmosphere coupling, where the sea surface temperature (SST)12

variability impacts the hydroclimate of the surrounding continents. We13

observe a decrease in the variability of the Tropical Atlantic after 197014

in both CMIP6 models and observations. Most of the Tropical Atlantic15

interannual variability is explained by its equatorial (Atlantic Zonal16

Mode, AZM) and meridional (Atlantic Meridional Mode, AMM) modes17

of variability. The observed wind relaxation after 1970 in both the equa-18

torial and Tropical North Atlantic (TNA) plays a role in the decreased19

variability. Concerning the AZM, a widespread warming trend is observed20

in the equatorial Atlantic accompanied by a weakening trend of the21

trade winds. This drives a weakening in the Bjerknes Feedback by deep-22

ening the thermocline in the eastern equatorial Atlantic and increasing23

the thermal damping. Even though individually the TNA and Tropical24

South Atlantic (TSA) show increased variability, the observed asym-25

metric warming in the Tropical Atlantic and relaxed northeast trade26

winds after the 70s play a role in decreasing the AMM variability. This27

configuration leads to positive Wind-Evaporation-SST (WES) feedback,28

increasing further the TNA SST, preventing AMM from changing phases29

as before 1970. Associated with it, the African Sahel shows a positive30

precipitation trend and the Intertropical Convergence Zone tends to31

shift northward, which acts on maintaining the increased precipitation.32

Keywords: Atlantic Zonal Mode, Atlantic Meridional Mode, hydroclimate,33

ITCZ, Tropical Atlantic Variability, CMIP634
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1 Introduction35

Climate variability in the Tropical Atlantic region is complex and significantly36

different from that in the Pacific. It is not dominated by a single mode of vari-37

ability like the El Niño-Southern Oscillation (ENSO) in the tropical Pacific,38

but instead different mechanisms with similar importance are at play (Sut-39

ton et al, 2000). Sea surface temperature (SST) variability in this region has40

important impacts on the climate of the surrounding continents (Lübbecke41

et al, 2018), influencing the meridional displacement of the Intertropical Con-42

vergence Zone (ITCZ) and the hydrological cycle (Carton et al, 1996; Giannini43

et al, 2003; Back and Bretherton, 2009; Tokinaga and Xie, 2011), hurricane44

activity (Vimont and Kossin, 2007; Patricola et al, 2014; Zhang et al, 2017) as45

well as impacting the marine ecosystems and fish availability (Binet et al, 2001;46

Subramaniam et al, 2013). A strong ocean-atmosphere coupling is present,47

where ocean currents, upwelling, and SST patterns are linked to pressure sys-48

tems and the onset of the West African Monsoon (Cabos et al, 2019) and49

Northeast Brazil (NEB) precipitation (Nobre and Shukla, 1996).50

The main modes of interannual variability in the Tropical Atlantic are the51

equatorial (zonal) and meridional modes, represented by the first two empirical52

orthogonal functions (EOFs) of detrended SST anomalies (Deser et al, 2010).53

The Atlantic Zonal Mode (AZM) or Atlantic Niño is an equatorial zonal mode54

akin to the Pacific El Niño, which is characterized by an equatorial cold tongue55

with typical SST amplitude of approximately 0.5oC, frequency of 2-3 years and56

the strongest amplitude during June, July and August (JJA) (Zebiak, 1993;57

Deser et al, 2010). However, unlike its Pacific counterpart, this mode has been58

suggested to be a modulation of the seasonal cycle (Burls et al, 2012), as well59

as being more concentrated around the equator and in the eastern side of the60

basin than the ENSO (Zebiak, 1993).61

The dynamics underlying the Atlantic Zonal Mode is in parts similar to62

that of the Pacific El Niño (Ding et al, 2010), so that the Bjerknes Feedback63

(Bjerknes, 1969) observed in the Tropical Pacific is also present in the Trop-64

ical Atlantic (Keenlyside and Latif, 2007). In its positive phase, anomalous65

warming in the eastern Atlantic coupled with weaker trade winds is associated66

with anomalous eastward currents bringing warmer waters from the west as67

well as weaker upwelling in the eastern equatorial region and deeper thermo-68

cline, which combined act to enhance the initial positive anomaly, closing the69

feedback cycle (Bjerknes, 1969; Chang et al, 2006; Keenlyside and Latif, 2007;70

Deppenmeier et al, 2016; Dippe et al, 2019; Silva et al, 2021). The opposite71

happens in its negative phase.72

On the other hand, although ocean dynamics is essential to explain the73

equatorial SST variations, air-sea fluxes control the off-equatorial SST anoma-74

lies for the AZM (Mart́ın-Rey et al, 2019). Other mechanisms have also been75

discussed to generate the equatorial Atlantic SST variability, besides the Bjerk-76

nes Feedback, for example, the role of equatorward advection of north tropical77

Atlantic subsurface temperature anomalies (Richter et al, 2013) and equato-78

rial deep jets (Brandt et al, 2011). It has also been discussed that a large part79
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of the variability of this mode is due to thermodynamic processes (68±23%80

of the variance) (Nnamchi et al, 2015), but other studies (e.g. Lübbecke et al,81

2018, and references therein) conclude that despite the significant contribu-82

tion of thermodynamics to the variability, the dynamics and in particular the83

Bjerknes Feedback plays the main role.84

The AZM is tightly coupled to West African rainfall variability. The leading85

EOF of precipitation during JJA displays an anomaly pattern that is the86

strongest along the northern coast of the Gulf of Guinea (Chang et al, 2006).87

A warming in the equatorial Atlantic in this season leads to a weaker West88

African Monsoon by decreasing the sea level pressure gradient between the89

equator and the Saharan heat low (Losada et al, 2010). A decrease in rainfall90

variability over the coast of Guinea has also been associated with a weakening91

of the zonal mode (Tokinaga and Xie, 2011).92

The second mode of Atlantic SST variability is known as the Atlantic93

Meridional Mode (AMM). It is represented by an interhemispheric dipole pat-94

tern characterized by cross-equatorial SST anomaly gradient, whose nodal line95

is displaced slightly north of the equator (Servain, 1991; Xie and Carton, 2004;96

Chang et al, 2006; Doi et al, 2009; Cabos et al, 2019). Its strongest amplitude97

occurs during the equatorial warm season (March, April and May, MAM) with98

SST anomalies of 0.3 to 0.5oC in the subtropics (Carton et al, 1996; Xie and99

Carton, 2004; Deser et al, 2010; Cabos et al, 2019). This mode show variabil-100

ity from interannual to decadal scales (Carton et al, 1996; Chang et al, 1997;101

Amaya et al, 2017). The meridional SST gradient is also connected to the ITCZ102

displacement into the warmer hemisphere, therefore affecting the precipitation103

pattern over South America, in particular in NEB (Nobre and Shukla, 1996;104

Xie and Carton, 2004; Chang et al, 2006; Deser et al, 2010).105

The AMM shows pronounced coupling of the ocean-atmosphere through106

thermodynamic feedbacks (Carton et al, 1996). An anomalous cross-equatorial107

SST gradient pointing north drives a southwesterly surface wind anomaly108

reducing the predominant trade winds over the warmer region (the north-109

ern Tropical Atlantic). This decreases the evaporative cooling at the surface,110

causing it to warmer further (Chang et al, 1997; Chiang and Vimont, 2004;111

Mahajan et al, 2010; Amaya et al, 2017). In contrast, the other pole shows sur-112

face cooling, related to trade winds intensification. The SST changes are linked113

to changes in surface heat fluxes, characterizing a positive wind-evaporation-114

SST (WES) feedback (Xie and Philander, 1994; Chang et al, 1997, 2006;115

Amaya et al, 2017) that acts to reinforce the anomalous cross-equatorial SST116

gradient. In addition, results from satellite analysis during a strong AMM event117

in 2009 point to the importance of the wind-induced upwelling that could also118

act as positive feedback by further increasing the SST gradient (Foltz et al,119

2012). While the WES positive feedback preferentially amplifies the meridional120

SST gradient, the Bjerknes Feedback is the dynamical mechanism counter-121

acting the thermodynamic air-sea feedback (Chang et al, 2006; Deser et al,122

2010).123
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Some studies have addressed changes in Atlantic SST variability that could124

be related to mean state changes and weakening of the feedback mechanisms.125

It has been shown that the interannual variability of Atlantic SST zonal gra-126

dient has decreased by 48+/-13(11)% in variance for 1960-1999 (Tokinaga and127

Xie, 2011). This indicates a significant weakening of the AZM due to a weaker128

Bjerknes Feedback related to mean state changes. A decrease in variability of129

the AZM after 2000 has also been linked to a weakening in the Bjerknes Feed-130

back due to weaker thermocline feedback and stronger thermal damping (Silva131

et al, 2021). Results presented in (Prigent et al, 2020) agree with the AZM132

weakening by showing a decrease of more than 30% in the eastern equatorial133

Atlantic SST variability during March, June and July between 1982-1999 and134

2000-2017. The Bjerknes Feedback is also pointed to have weakened after 2000135

together with an increased net heat flux damping (Prigent et al, 2020).136

It has been suggested that changes in the equatorial Atlantic SST vari-137

ability might be related to changes in the Atlantic Meridional Overturning138

Circulation (AMOC) associated with the Atlantic Multidecadal Oscillation139

(AMO) (Prigent et al, 2020). An increase in the equatorial Atlantic SST vari-140

ability has been shown during AMO negative phase, related to an increase in141

the AZM amplitude of about 120% compared to positive AMO (Mart́ın-Rey142

et al, 2018). It is hypothesized (Prigent et al, 2020) that the change in AMO143

phase at the beginning of 1990 from negative to positive might have played144

a role in the AZM variance decrease after the 2000s. Conversely, it has also145

been argued that there is no significant correlation between AMO and SST146

equatorial variability, at least from 1900 to 2000 (Tokinaga and Xie, 2011).147

The authors suggest instead a relation to the hemisphere asymmetric cooling148

effect from anthropogenic aerosols that causes weakening in the meridional149

and zonal SST gradients. It is also discussed that changes in the amplitude150

and strength of the surface wind associated with the AMM development could151

modulate the equatorial SST, which would also affect the AZM (Mart́ın-Rey152

and Lazar, 2019).153

Mean state changes in the Tropical Atlantic could play an important role in154

the variability modes. It has been shown that the Tropical Atlantic SST posi-155

tive trend since the 1950s plays a role in the decrease in the AZM variability156

(Tokinaga and Xie, 2011). On the other hand, recently a lack of surface warm-157

ing has been identified in the Atlantic cold tongue from 1979 to 2018, which158

has been linked to decreased wind stress forcing and subsequent thermocline159

shoaling (Nnamchi et al, 2020). This agrees with results shown in (Prigent160

et al, 2020) that also observe significant warming from 1982-1999 to 2000-2017161

mainly north of the equator, but not in the eastern equatorial Atlantic. In this162

study, we aim to understand how the Tropical Atlantic SST leading modes of163

variability changed since the beginning of XX century and the related changes164

in the precipitation over South America and Africa in the CMIP6 models and165

observations.166
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2 Methods167

2.1 Observations and reanalysis168

As reference data sets for SST, we use the NOAA Extended Reconstruction169

Sea Surface Temperature version 5 (ERSSTTv5) (Huang et al, 2017), available170

from 1854-2014. We also use the monthly precipitation analysis of the Global171

Precipitation Climatology Project (GPCP) (Adler et al, 2018) (1979-2014)172

and surface wind stress from the NCEP Climate Forecast System Reanalysis173

(CFSR) (Saha et al, 2010).174

2.2 Models175

We use monthly single-member historical simulations from 37 models of the176

Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al, 2016),177

that were available to us at the time of this analysis, for the period ranging178

from 1900 to 2015. These simulations are forced with common data sets that179

are largely based on observations. These include evolving, externally imposed180

forcings such as solar variability, volcanic aerosols, and changes in atmospheric181

composition (greenhouse gases and aerosols) caused by human activities. The182

data is available in the Earth System Grid Federation (ESGF) website.183

In this study, a multimodel framework is used in which one ensemble mem-184

ber from each of 37 models is chosen. The models and ensemble members185

used are summarized in Table 1. All model outputs were remapped to a 1ox1o186

horizontal resolution before the analyses.187

2.3 Data Analysis188

We estimate the Tropical Atlantic variability modes AZM and AMM based on189

index-driven metrics, that assumes the pole of variability does not change its190

position. As in (Tokinaga and Xie, 2011) the AZM is represented by an equato-191

rial zonal SST difference index defined as the difference between the averaged192

SST anomaly over the ATL3 region (3°N-3°S, 20°W-0°, (Zebiak, 1993)) and193

WATL region (3°N-3°S, 25°W-45°W), defined in Fig. 1a. This index, hereafter194

referred to as AZM, is highly correlated (r=+0.93) with the Atlantic Niño195

index defined by the ATL3 region (Tokinaga and Xie, 2011). The AMM is196

defined as the difference between the SST anomaly average of Tropical North197

Atlantic (TNA, 15°N-5°N and 50°W-20°W) and Tropical South Atlantic (TSA,198

5°S-15°S and 20°W-10°E) as defined in (Doi et al, 2009), illustrated in Fig. 1b.199

The spatial patterns of both modes are acquired by regressing the index into200

SST anomaly field. To evaluate changes in the mode’s long-term variability,201

we compute a 31-year moving standard deviation of the index series.202

The ITCZ position proxy is estimated as in (Pontes et al, 2020b). It is a203

position index based on weighted mean latitude where precipitation is greater204

than 50% of its maximum in the zonal mean. Double-ITCZ biases may be205

included if the associated precipitation is greater than 50% of the considered206
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maximum (Pontes et al, 2020b). We considered the ITCZ position over the207

Tropical Atlantic for the average from 40°W to 20°W.208

All CMIP6 results are shown for the multimodel mean (MMM) of the209

37 models (Table 1) with 90% confidence interval. We consider at least 60%210

agreement among CMIP models. For the linear trends, we consider the MMM211

significant where at least 60% of the models are significant, at least at the 90%212

level.213

Models Ens. Member Institution Reference

ACCESS-CM2 r1i1p1f1 CSIRO-ARCCSS Kiss et al (2020)
ACCESS-ESM1-5 r1i1p1f1 CSIRO Ziehn et al (2020)
AWI-CM-1-1-MR r1i1p1f1 AWI Semmler et al (2018)
AWI-ESM-1-1-LR r1i1p1f1 AWI Contzen et al (2021)
BCC-CSM2-MR r1i1p1f1 BCC Wu et al (2019)

BCC-ESM1 r1i1p1f1 BCC Xiao-Ge et al (2019)
CESM2 r1i1p1f1 NCAR Lauritzen et al (2018)

CESM2-WACCM r1i1p1f1 NCAR Liu et al (2018)
CIESM r1i1p1f1 THU Lin et al (2020)

CMCC-CM2-HR4 r1i1p1f1 CMCC Cherchi et al (2019)
CMCC-CM2-SR5 r1i1p1f1 CMCC Cherchi et al (2019)
CMCC-ESM2 r1i1p1f1 CMCC Cherchi et al (2019)
CNRM-CM6-1 r1i1p1f2 CNRM-CERFACS Voldoire et al (2019)

CNRM-CM6-1-HR r1i1p1f2 CNRM-CERFACS Voldoire et al (2019)
CNRM-ESM2-1 r1i1p1f2 CNRM-CERFACS Séférian et al (2019)

CanESM5 r1i1p1f1 CCCma Swart et al (2019)
CanESM5-CanOE r1i1p2f1 CCCma Swart et al (2019)

E3SM-1-0 r1i1p1f1 E3SM-Project Golaz et al (2019)
E3SM-1-1 r1i1p1f1 E3SM-Project Golaz et al (2019)

E3SM-1-1-ECA r1i1p1f1 E3SM-Project Burrows et al (2020)
EC-Earth3 r1i1p1f1 EC-Earth-Consortium Wyser et al (2020)

EC-Earth3-AerChem r1i1p1f1 EC-Earth-Consortium Döscher et al (2021)
EC-Earth3-CC r1i1p1f1 EC-Earth-Consortium Döscher et al (2021)
EC-Earth3-Veg r1i1p1f1 EC-Earth-Consortium Wyser et al (2020)

EC-Earth3-Veg-LR r1i1p1f1 EC-Earth-Consortium Döscher et al (2021)
FGOALS-g3 r1i1p1f1 CAS Li et al (2020)
GISS-E2-1-G r1i1p1f1 NASA-GISS Kelley et al (2020)
GISS-E2-1-H r1i1p1f1 NASA-GISS Kelley et al (2020)
INM-CM5-0 r1i1p1f1 INM Volodin et al (2019)

IPSL-CM6A-LR r1i1p1f1 IPSL Boucher et al (2020)
IPSL-CM6A-LR-INCA r1i1p1f1 IPSL Boucher et al (2020)
MPI-ESM-1-2-HAM r1i1p1f1 HAMMOZ-Consortium Tegen et al (2019)
MPI-ESM1-2-HR r1i1p1f1 DKRZ Müller et al (2018)

NorCPM1 r1i1p1f1 NCC Bethke et al (2021)
NorESM2-LM r1i1p1f1 NCC Seland et al (2020)
NorESM2-MM r1i1p1f1 NCC Seland et al (2020)
UKESM1-0-LL r1i1p1f2 MOHC Sellar et al (2019)

Table 1 Models and the respective ensemble members used. The letters r,i,p and f stand
for realization, initialization method, physics and forcing, respectively.

3 Results214

The majority of the CMIP6 models represent the Tropical Atlantic variability215

modes pattern, as shown by the map of significant correlations at the 95%216
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level for at least 60% of the models (Fig. 1a and b). The AZM is defined by the217

characteristic warm region on the eastern equatorial Atlantic (Xie and Carton,218

2004; Deser et al, 2010). It also shows a negative SST anomaly that surrounds219

the equatorial warm tongue. The AMM typical pattern is also represented220

by the CMIP6 MMM, which shows a positive SST gradient pointing to the221

Northern Hemisphere (Xie and Carton, 2004; Amaya et al, 2017; Deser et al,222

2010). The wind pattern points to the warmer region for both modes. This223

means a wind relaxation in the equatorial region for the positive phase of the224

AZM and over the warm pole of the AMM (Xie and Carton, 2004; Deser et al,225

2010; Amaya et al, 2017; Silva et al, 2021).226

Although some equatorial Atlantic SST and wind biases still show the227

same pattern as in previous model generations (Richter and Xie, 2008), results228

from Richter and Tokinaga (2020) show a slight improvement in the Tropical229

Atlantic SST representation from CMIP5 to CMIP6 models. Despite the little230

improvement in the model’s mean state, many CMIP6 models reproduce well231

the Tropical Atlantic SST variability, correctly capturing the amplitude and232

seasonality of both AZM and AMM (Richter and Tokinaga, 2020). In addition,233

it is suggested that there is a relatively weak link between mean state biases234

and the quality of the simulated variability (Prodhomme et al, 2019).235

The precipitation pattern associated with each mode is also represented in236

Fig. 1a and b. For both modes the precipitation is associated with the warmer237

regions, this characterizes the precipitation pattern in the African Sahel for238

the AZM (Chang et al, 2006; Deser et al, 2010). The AMM is mostly related to239

the precipitation pattern in the NEB and Amazon (Nobre and Shukla, 1996;240

Deser et al, 2010). The resultant precipitation pattern is connected also to241

the ITCZ displacement into the warmer hemisphere (Nobre and Shukla, 1996;242

Chiang et al, 2002).243

After 1970, the AZM and AMM present a decrease in variability, shown by244

the 31-year moving standard deviation in Fig. 1c and d. The CMIP6 MMM245

agrees with ERSSTv5 data set. The reduction in variability for the AZM has246

already been identified for observations from 1960 to 1999 (Tokinaga and Xie,247

2011). Furthermore, the AZM weakening has also been shown after the 2000s248

in observations and reanalyses (Prigent et al, 2020) and for an ensemble of249

7 reanalyses products (Silva et al, 2021). The AZM variability reduction is250

related to the Bjerkens Feedback weakening due to weaker thermocline feed-251

back (Tokinaga and Xie, 2011) and stronger thermal damping (Silva et al,252

2021), with the main contribution from the increased latent heat flux (Pri-253

gent et al, 2020). There is a strong coupling between the wind pattern and the254

Tropical Atlantic SST gradients. The weakened Bjerknes Feedback is identified255

to be responsible for the decrease in the AZM variability, in connection to a256

relaxation of the trade winds (Tokinaga and Xie, 2011), as well as its changes257

in response to the SST anomalies (Prigent et al, 2020).258
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Fig. 1 Spatial pattern of the Tropical Atlantic variability modes (a) AZM for JJA and (b)
AMM for MAM from 1900 to 2015. Shading represents the index correlation for the SST
anomaly (°C °C−1) and the contour lines represent the index regressed against precipitation
anomaly (mm day−1

°C−1), both only shown for regions where correlations are significant
at the 95% for at least 60% of the models. Vectors represent wind stress anomaly regressed
against each mode index (N m−2

°C−1), only shown where at least one of the wind com-
ponents present significant correlation at 95% for at least 60% of the models. The black
delimited boxes represent regions used for the index calculation (see Section 2). (c) and
(d) 31-year running standard deviation for each mode for ERSSTv5 and for CMIP6 MMM.
Shading indicates the 90% confidence interval for the MMM. Dots indicate where at least
60% of the models agree on the sign of the 1st derivative

To better understand the annual variability of each mode for the SST and259

the related wind stress pattern, we compute the annual cycle of the regression260

of surface wind stress and SST anomalies against the AZM index in JJA (in261

the zonal section between 40°W-10°E averaged over 4°N-4°S, box a in Fig. 2d)262

and the AMM index in MAM (in the meridional section between 15°S-15°N263

averaged over 25°W-15°W, box b in Fig. 2d). The results are shown in Figs.264

2a and b, respectively.265

The mode’s annual variability is well represented by the CMIP6 MMM,266

as shown in Fig. 2. As it is observed in Fig. 2a, the AZM pattern in the SST267

becomes evident in JJA, with a zonal dipole with high positive correlations268

in the east and negative in the west. The AZM for the CMIP6 MMM shows269

greater variability during JJA, a delay of one month compared to the ERSSTv5270

data set that represents the greatest AZM variability during MJJ (Fig. 2c).271

Deser et al (2010) show AZM the highest variability during MJJ obtained272

from the first empirical orthogonal function based on HadISST data set during273

1900–2008. For the CMIP6 and CMIP5 data sets, Richter and Tokinaga (2020)274
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also show a small delay in the variability of the zonal mode compared to ERA-275

5 reanalysis. As the ERSSTv5, the ERA-5 standard deviation peaks in June,276

while for the CMIP6 and CMIP5 MMM the peak occurs one month later, as277

shown here, during July. As observed in Fig. 2c, there is a large similarity278

between the magnitude of the zonal mode’s variability represented by the279

CMIP6 MMM and ERSSTv5.280

A strong positive correlation with zonal wind stress is observed in the281

preceding season (MAM), which suggests that the variability of the AZM is282

influenced by the variability of surface winds in the western side of the basin283

one season before. This is consistent with the observed positive correlation284

between MAM wind stress in the western equatorial Atlantic and SST vari-285

ability in JJA in the eastern side (Richter et al, 2013). This peak in wind286

variability is delayed by one month in the CMIP6 models (peak in May Fig.287

2c) when compared to the ERA-5 reanalysis (peak in April), although this288

does not change the peak in variability in MAM (Richter and Tokinaga, 2020).289

For the AMM (Fig. 2c) the greatest variability in ERSSTv5 occurs during290

MAM, agreeing with Deser et al (2010). However, this peak is not as clear291

as that observed for the AZM in JJA. The CMIP6 does not represent as well292

the climatological change in monthly variability for the AMM. The standard293

deviation from January to June is almost the same, after that there is a slight294

decrease in variability. The spatial SST pattern of the AMM appears in MAM295

for the CMIP6 MMM (Fig. 2b). Richter and Xie (2008) point that the zonal296

wind variability peaks one month earlier (January) than the SST (February),297

which is consistent with the forcing of AMM variability by trade wind vari-298

ations. There is not a clear lag between the wind and the SST pattern in299

the northern Tropical Atlantic in our results; however, a region of negative300

correlations starts to develop in JJA between 0o and 5oS, which could be301

explained by the WES feedback, being a result of the wind forcing observed302

in the preceding season.303

The AMM is dominated by the TNA variability (Amaya et al, 2017), thus304

looking only at the northern pole, the AMM variability in ERA-5 is highest305

from February through May (Richter and Tokinaga, 2020), similar to that306

represented by ERSSTv5 (Fig. 2c). However, as shown in Fig. 2c, the CMIP6307

AMM variability underestimates that of ERRSSTv5. Similarly, it has also been308

found that AMM variability represented by CMIP6 underestimates that of309

ERA-5 (Richter and Tokinaga, 2020). The authors suggest this to be related310

to biases in the mixed layer depth in CMIP models.311
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Fig. 2 (a) Regression of annual Tropical Atlantic variability modes index against SST and
wind stress anomalies for each calendar month. Stippling indicates regions where correlations
are significant at the 95% level for at least 60% of the models. Vectors are shown only where
the correlations are significant at the 95% for at least 60% of the models, for at least one of
the wind components. In (a) AZM (JJA) we use the meridional mean in 4°N-4°S and in (b)
AMM (MAM) we use the zonal mean in 25°W-15°W. Vector units in (a) and (b) are N m−2

oC−1. (c) Monthly standard deviations of the AZM and AMM modes for ERSSTv5 and for
CMIP6 MMM with 90% confidence interval. All results are for the period of 1900 to 2015.
(d) Boxes used in (a) and (b)

Given the clear relation between wind stress and the Tropical Atlantic312

SST pattern shown in Fig. 2a and b, we look for changes that could explain313

the decrease in the variability of the modes. For the wind pattern related to314

the AZM we use box 1 in Fig. 3a that presents winds from the southeast in315

the climatology. In the anomaly time series (Fig. 3b) we observe wind stress316

anomalies that are typically from the southeast up to 1970, then the anomalies317

reverse to the northwest from 1970 to 2000, and after that, the anomalies318

start to rotate to the south again. This period from 1970 to 2000 where the319

wind over the AZM region relaxes (northwest anomalies) is consistent with320

the period that we observe the reduction in the long-term variability (Fig.321

1c). The weakening of the trade winds has been suggested to be related to322

the AZM decrease in variability in connection with deepening of thermocline323

and intensified warming in the eastern equatorial Atlantic (Tokinaga and Xie,324

2011), weaker thermocline feedback, and stronger thermal damping (Silva et al,325

2021). The increase in the thermal damping seems to lead the Tropical Atlantic326

SST changes (Prigent et al, 2020).327
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The same behavior is observed for the AMM, where the climatological wind328

pattern is from the northeast (Fig. 3a box 2), in the time series the anomalies329

agree with this predominant direction up to 1980. After 1980, the wind stress330

anomaly over the TNA also shows relaxation up to 2015, with wind stress331

anomalies from the southwest (Fig. 3c), the same period in which we observe332

a decrease in AMM variability (Fig. 1d). The wind relaxation over the TNA333

normally is associated with an increase in SST anomalies via positive WES334

feedback (Chang et al, 1997; Amaya et al, 2017). This may account for the335

AMM decreased variability after 1980, especially related to AMM negative336

phases. During these phases, the TNA shows negative SST anomalies (opposite337

in the TSA), the wind relaxation in this region acts in the opposite direction338

of the positive WES feedback. Therefore, the wind anomaly would imply a339

decrease in the interhemispheric SST gradient during negative phases.340

The associated precipitation also changes its behavior during 1900 to 2015341

for the African Sahel (Fig. 3a box 3) and NEB (Fig. 3a box 4), in agreement342

with the observational data set (Fig. 3d and e). The precipitation over the Sahel343

increases significantly after the 1970s at the 90% level for at least 60% of the344

CMIP6 models. Both data sets agree on the positive trend since 1970 and 1980,345

respectively 0.0037 mm day−1 year−1 for CMIP6 and 0.0087 mm day−1 year−1
346

for observations. The NEB time series shows a larger amplitude compared347

to the Sahel precipitation and presents a decrease in precipitation over time,348

enhanced after the 1970s. The CMIP6 models agree in the direction of the349

change over NEB (shown by the dots that represent the agreement in the sign350

of the first derivative); however, only 7 of the 37 models present a significant351

negative trend at the 90% level. Conversely, a decrease in precipitation over the352

Sahel accompanied by an increase in the equatorial West Africa and Amazon353

are reported in Tokinaga and Xie (2011), with similar trends observed for354

2000-2017 in Prigent et al (2020).355
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Fig. 3 (a) CMIP6 MMM wind stress annual average for 1900 to 2015. (b) and (c) Vector
time series of wind stress anomaly from 1900 to 2015 for each predominant season for the
Tropical Atlantic variability modes at the black delimited boxes in (a), for AZM average
between 4°N-4°S, 40°W-10°E (box 1) and for AMM mean between 5°N-15°N, 50°W-15°W
(box 2). The black vectors show where 60% or more models agree on the sign for at least
one of the wind stress components, for the gray arrows there is no agreement among models.
The precipitation time series over (d) Sahel (box 3) and (e) NEB (box 4) for 1900 to 2015
for the CMIP6 MMM and GPCP data set. Shading indicates the 90% confidence interval
for the MMM. Dots indicate where at least 60% of the models agree on the sign of the 1st

derivative. In (d) the continuous line indicate the trend from 1970 (for CMIP6 MMM) and
from 1980 (for GPCP) to 2015

Thus, the decrease in the variability of the modes appears to be related to356

the long-term wind relaxation after the 1970s, which impacts the hydroclimate357

associated with the South America and African continents, in particular the358

NEB and Sahel regions. To investigate further, we examine the monthly spatial359

long-term trends from 1970 to 2015 for the Tropical Atlantic SST, wind stress,360

and precipitation over land (Fig. 4).361

We show that there is a relative agreement between CMIP6 MMM and362

observations trends. For both data sets, a similar pattern emerges from the363

SST trend, the northern Tropical Atlantic presents a larger positive trend364

(∼ 2×10−2
°C year−1) while for the southern Atlantic the SST trend is smaller365
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(∼ 0.9 × 10−2
°C year−1). This trend after the 1970s is probably related to366

the regime shift around the 1980s, but with slightly different times around367

the world, that can represent a major change in the Earth’s biophysical sys-368

tems (Reid et al, 2016). From the mid-1970s onward, increased warming over369

the Northern Hemisphere (1.0°C) compared to 0.6°C in the southern basin is370

observed (Servain et al, 2014). The Northern Hemisphere warming also cor-371

roborates previous results that show significant MJJ warming for 2000-2017372

(Prigent et al, 2020). The SST positive trend over the equatorial region con-373

tributes to the observed weakening of the AZM variability by decreasing its374

zonal gradient.375

The increase in the Tropical Atlantic SST is associated with the increase in376

the variability for each pole of the AMM (TNA and TSA, Supplementary Fig.377

1). The TNA warming results in its increased variability under global warming,378

which is influenced by an increase in ENSO variability and teleconnections379

(Yang et al, 2021). It is worth noting, however, that other studies (Hu et al,380

2013; Lübbecke and McPhaden, 2014) identify a decrease in ENSO variability381

after 2000, so the link between the increase in TNA variability and ENSO is382

not clear. We observe warming also in the TSA after 1970, slightly smaller than383

the TNA (Fig. 4a,b and Supplementary Fig. 2), in association with increased384

variability in this region. Even though individually each pole of the AMM385

shows an increase in variability, the meridional asymmetric warming in the386

Tropical Atlantic (Fig. 4a and b) plays a role in decreasing AMM long-term387

variability (Fig. 1d).388

The warming is associated with the southwest wind stress trend (Fig. 4a389

and b) located mostly over the equatorial region of the Northern Hemisphere390

(TNA box in Fig. 1b) for the CMIP6 MMM, which characterizes a relax-391

ation of the northeast trade winds. Approximately the same pattern of wind392

relaxation is shown by the CFSR trends; however, the observational data set393

presents a westward trend farther north (∼15°N) as well as a small trend in394

the Southern Hemisphere (∼5°S). The long-term relaxation of the winds in395

the Northern Hemisphere is probably coupled with the increased warming in396

this region (Tokinaga and Xie, 2011). The intensified interhemispheric SST397

gradient together with the wind relaxation in the equatorial Northern Hemi-398

sphere contribute to the decrease in AMM long-term variability. The SST399

positive trend is reinforced by the positive WES feedback resultant from the400

wind relaxation, which acts on reducing the surface latent heat flux, increasing401

further the SST (Xie and Carton, 2004; Amaya et al, 2017). Considering the402

1970-2015 trends, the configuration of increased SST and weakened winds in403

TNA is maintained, therefore decreasing AMM variability. The same pattern404

of increased SST over the Northern Hemisphere and weakening of the north-405

east trade winds was identified to be related to decreased AMM variability for406

the mid-Pliocene (Pontes et al, 2020a).407

Both SST and wind stress trends can modify the precipitation in the Tropi-408

cal region. CMIP6 MMM and GPCP show a positive trend in the precipitation409

over the Sahel. We suggest that the increased precipitation over the Sahel is410
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connected with the strong SST warming in the Northern Hemisphere, con-411

sidering the positive correlation between SST and precipitation found in the412

Tropical Atlantic, also apparent over the subtropical North Pacific (Xie et al,413

2010). In contrast, a positive trend in the precipitation over West Africa and414

Guinea coast and a negative trend over the Sahel has been shown (Tokinaga415

and Xie, 2011). These differences are probably related to the stronger SST416

positive trend over the Atlantic cold tongue region, which is not observed here.417

There is a positive trend for the precipitation over the Amazon only shown by418

the GPCP data set, which corroborates with previous results (Tokinaga and419

Xie, 2011). However, the CMIP6 MMM does not present any consistent trend420

over South America, which has been pointed to as a region of precipitation421

biases in CMIP models (Richter and Xie, 2008; Tian and Dong, 2020).422

We observe a positive trend in the ITCZ position proxy based on the423

related precipitation pattern (Pontes et al, 2020b) of 0.022° year−1 that is sig-424

nificant at the 90% level for the observations (Fig. 4c). The CMIP6 MMM425

also shows a significant positive trend of 0.010° year−1 that is represented by426

46% of the models (17/37). It is consistent with the increased SST positive427

trend over the Northern Hemisphere that serves as an attractor for the ITCZ428

shift to the warmer region (Schneider et al, 2014; Mamalakis et al, 2021). The429

ITCZ northward trend explains the observed positive trend in the precipita-430

tion over the Sahel (Fig. 4a,b and 3d). It was expected a negative trend in the431

NEB precipitation, however, it was neither consistent among CMIP6 models432

nor for the observational data set (Fig. 3e and 4). The precipitation trend and433

ITCZ northward shift are also consistent with the AMM reduced variability.434

Given the constant anomalous warming and wind relaxation in the Northern435

Hemisphere related to the decreased AMM variability, the ITCZ shifts north-436

ward following the increased SST (Fig. 4c). As consequence, the precipitation437

pattern is also displaced northward, resulting in increased precipitation over438

the African Sahel (Fig. 4a) and decreased precipitation over the NEB (not439

consistent among CMIP6 models).440

The ITCZ tends to follow the warmer oceanic region, but the results change441

when considering different periods and different ITCZ position proxies. A442

southward displacement of the ITCZ because of the intensified SST warming in443

the eastern equatorial Atlantic has been suggested (Tokinaga and Xie, 2011),444

based on the increased cloud cover over this region from 1960 to 2000. Differ-445

ently, using as a proxy of the ITCZ position the latitude where the meridional446

component of the wind stress along 30°W equals zero, no significant long-term447

change in the ITCZ position from 1964 to 2012 has been observed (Servain448

et al, 2014). From 2000 to 2017, an increase in precipitation over the western449

African coast, northeastern Brazil, and north of the equator has been detected450

(Prigent et al, 2020), related to the northward shift of the ITCZ position. The451

ITCZ trend shown here by observations and the CMIP6 MMM is consistent452

with the SST positive long-term trend intensified over the northern basin and453

the increase in Sahel precipitation.454
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The changes in Tropical Atlantic variability may be modulated by the455

AMO behavior during the last 50 years (Prigent et al, 2020). After the 1970s,456

the AMO index changes its phase from negative to positive (Frajka-Williams457

et al, 2017), which matches the period of decreased modes variability. During458

positive AMO, the AZM displays smaller amplitudes when compared to its459

amplitude during negative AMO (Mart́ın-Rey et al, 2018). It is also pointed460

that AMO may show causal influence on the AMM on decadal time scales461

(Vimont and Kossin, 2007; Veiga et al, 2020). Moreno-Chamarro et al (2020)462

observed a link between AMOC, AMO, and ITCZ variability. The authors463

identified a change in AMOC’s cross-equatorial heat transport that induces464

AMO phase change (from negative to positive). This leads to a northward465

ITCZ shift, as observed in our results, to compensate the energy imbalance466

across the hemispheres. Therefore, changes in AMOC and AMO phasing could467

modify AMM variability.468
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Fig. 4 Trends for SST, wind stress and precipitation for (a) ERSSTv5, CFSR and GPCP
respectively of monthly series from 1979 to 2010 and for (b) CMIP6 MMM. Trends are only
shown where significant at the 95% level for observations and reanalysis and where at least
60% of the models show significant trends at the 95% level for the CMIP6 MMM. Note that
(a) and (b) present different scales for precipitation and vectors. (c) ITCZ position proxy
based on annual precipitation for CMIP6 MMM (dark blue) and GPCP (light blue). Shading
indicates the 90% confidence interval for the CMIP6 MMM. Dots indicate where at least
60% of the models agree on the sign of the 1st derivative

4 Summary and conclusions469

We rely on monthly historical simulations from 37 CMIP6 models (Eyring470

et al, 2016) as well as reconstructions and reanalyses for SST, precipitation,471
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and surface wind stress to investigate changes in the Tropical Atlantic modes472

of variability in 1900-2015 and their connection with precipitation in the sur-473

rounding continents. Both the AZM and AMM show a decrease in variability474

after 1970.475

In agreement with Richter et al (2013), our results show a strong positive476

correlation between MAM zonal winds stress and the JJA time series of the477

AZM, suggesting that changes in wind stress variability in the preceding season478

could influence variability in SST in the eastern equatorial Atlantic, which479

peaks in JJA (Zebiak, 1993; Deser et al, 2010). For the AMM, on the other480

hand, we do not observe a clear lag with respect to wind stress, with the largest481

correlation between the mode and the wind occurring in MAM, the season482

when the mode peaks (Deser et al, 2010).483

Considering the coupling of the modes with the surface wind, we observe484

a relaxation in both the equatorial Atlantic region and the northern Tropi-485

cal Atlantic after 1970. Concerning the AZM, a widespread warming trend is486

observed in the equatorial Atlantic, accompanied by the weakening trend of the487

trade winds. This resonates with other studies that discuss the weaker trades488

and warmer equatorial Atlantic driving a weakening in the Bjerknes Feedback489

by deepening the thermocline in the eastern equatorial Atlantic (Tokinaga and490

Xie, 2011; Silva et al, 2021). The warmer sea surface also leads to stronger491

thermal damping (Prigent et al, 2020; Silva et al, 2021), further weakening the492

Bjerknes Feedback and reducing the AZM variability.493

Regarding the AMM, the relaxation of the northeastern trade winds con-494

tributes to a decrease in the amplitude of AMM negative phases by weakening495

the WES feedback. We identified a warming trend and increased variability496

for each pole, TNA and TSA, of the AMM. Yang et al (2021) suggest TNA497

variability is associated with global warming and increased ENSO variabil-498

ity, although this contrasts with other studies (e.g., Hu et al, 2013; Lübbecke499

and McPhaden, 2014) that show a decrease in ENSO variability after 2000.500

The TNA and TSA show increased variability individually, but the asymmet-501

ric warming associated with the northeast trade winds relaxation after 1970502

maintains the positive WES feedback, thus leading to weakened AMM vari-503

ability. This was also identified for the mid-Pliocene (Pontes et al, 2020a), an504

important parallel given it was a period of significantly warmer climate than505

at present, with similar atmospheric carbon dioxide concentrations.506

Associated with SST and trade wind, a positive precipitation trend over the507

Sahel is also observed in both the simulations and the observations. Positive508

precipitation trends over the Amazon and negative over central South America509

are also present in the observations but are not significant in the CMIP6510

multimodel mean. The results suggest that the southwest wind anomaly in the511

TNA (relaxation of the northeasterly trade winds) carries more humidity into512

the Sahel region, resulting in positive precipitation trends. Consistent with the513

decreased variability in the AMM, the ITCZ tends to shift northward, which514

helps to maintain the increased precipitation over the African Sahel (Chiang515

et al, 2002; Deser et al, 2010).516
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These variability changes may be modulated by the AMO phase changing,517

from negative to positive, after the 1970s (Prigent et al, 2020; Frajka-518

Williams et al, 2017). The AMO phase change induced by AMOC’s change in519

cross-equatorial heat transport also leads to ITCZ northward shift (Moreno-520

Chamarro et al, 2020), which is consistent with our results for AMM and521

AZM decreased variability. Further studies are needed to investigate the role522

of AMO or other remote mechanisms that could modulate the observed and523

simulated shift in Tropical Atlantic Variability in the last decades.524

Acknowledgments. This study was supported in part by the Grants525
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