
HAL Id: hal-04004595
https://hal.science/hal-04004595v2

Preprint submitted on 25 Jul 2023 (v2), last revised 18 Nov 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Affine Disjunctive Invariant Generation with Farkas’
Lemma

Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, Guoqiang Li

To cite this version:
Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, Guoqiang Li. Affine Disjunctive Invariant Gen-
eration with Farkas’ Lemma. 2023. �hal-04004595v2�

https://hal.science/hal-04004595v2
https://hal.archives-ouvertes.fr

1

Affine Disjunctive Invariant Generation with Farkas’ Lemma
HONGMING LIU, Shanghai Jiao Tong University, China

JINGYU KE, Shanghai Jiao Tong University, China

HONGFEI FU∗, Shanghai Jiao Tong University, China

LIQIAN CHEN, National University of Defense Technology, China

GUOQIANG LI, Shanghai Jiao Tong University, China

Invariant generation is the classical problem that aims at automated generation of assertions that over-

approximates the set of reachable program states in a program. We consider the problem of generating affine

invariants over affine while loops (i.e., loops with affine loop guards, conditional branches and assignment

statements), and explore the automated generation of disjunctive affine invariants. Disjunctive invariants

are an important class of invariants that capture disjunctive features in programs such as multiple phases,

transitions between different modes, etc., and are typically more precise than conjunctive invariants over

programs with these features. To generate tight affine invariants, existing constraint-solving approaches have

investigated the application of Farkas’ Lemma to conjunctive affine invariant generation, but none of them

considers disjunctive affine invariants.

In this work, we propose a novel approach to generate affine disjunctive invariants via Farkas’ Lemma.

By observing that disjunctive invariants often arise from the conditional branches in the loop body, our

approach first pushes all the conditional branches in a loop body to the top level so that every top-level

branch appears at the entry point of the loop body, and treats each top-level branch as a standalone branch

location. Then our approach constructs an affine transition system that describes the transitions between

the branch locations, and solves the conjunctive affine invariants at each branch by existing approaches via

Farkas’ Lemma. The final disjunctive invariant is the disjunction of the conjunctive invariants generated over

these branch locations. Furthermore, we explore the following improvements to our approach: (a) an invariant

propagation technique on the affine transition system that first generates an invariant only at the initial branch

location and then propagates this invariant to other branch locations in a breadth-first fashion to improve the

time efficiency of invariant generation; (b) an extension of our approach to generate affine disjunctive loop

summary, and (c) the use of loop summary to generate affine disjunctive invariants over nested affine while

loops. Experimental results over a wide range of benchmarks demonstrate that our approach can (i) generate

affine disjunctive invariants that are capable of proving safety properties of while loops beyond previous

approaches and state-of-the-art software verifiers with even a considerable advantage in time efficiency,

and (ii) derive substantially more accurate affine loop summaries than existing approaches. Moreover, the

improvement of invariant propagation can indeed speed up the invariant generation, and that of using loop

summary to handle nested loops can indeed generate tight disjunctive invariants for nested loops.

1 INTRODUCTION
Invariant generation is the classical problem that targets the automated generation of invariants

which can be used to aid the verification of critical program properties. An invariant at a program

location is an assertion that over-approximates the set of program states reachable to that location,

i.e., every reachable program state to the location is guaranteed to satisfy the assertion. Since

invariants provide an over-approximation for reachable program states, they play a fundamental

role in program verification and can be used for safety [Albarghouthi et al. 2012; Manna and

Pnueli 1995; Padon et al. 2016], reachability [Alias et al. 2010; Asadi et al. 2021; Bradley et al. 2005;

∗
Corresponding Author

Authors’ addresses: Hongming Liu, Shanghai Jiao Tong University, Shanghai, China, hm-liu@sjtu.edu.cn; Jingyu Ke,

Shanghai Jiao Tong University, Shanghai, China, windocotber@gmail.com; Hongfei Fu, Shanghai Jiao Tong University,

Shanghai, China, jt002845@sjtu.edu.cn; Liqian Chen, National University of Defense Technology, Changsha, China, lqchen@

nudt.edu.cn; Guoqiang Li, Shanghai Jiao Tong University, Shanghai, China, li.g@sjtu.edu.cn.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:2 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

Chen et al. 2007; Colón and Sipma 2001; David et al. 2016; Podelski and Rybalchenko 2004] and

time-complexity [Chatterjee et al. 2019] analysis in program verification.

Automated approaches for invariant generation have been studied over decades and there have

been an abundance of literature along this line of research. From different types of program objects,

invariant generation targets numerical values (e.g., integers or real numbers) [Bagnara et al. 2003;

Boutonnet and Halbwachs 2019; Chatterjee et al. 2020; Colón et al. 2003; Rodríguez-Carbonell

and Kapur 2004a; Singh et al. 2017], arrays [Larraz et al. 2013; Srivastava and Gulwani 2009],

pointers [Calcagno et al. 2011; Le et al. 2019], algebraic data types [K. et al. 2022], etc. By the

different methodologies in existing approaches, invariant generation can be solved by abstract

interpretation [Boutonnet and Halbwachs 2019; Cousot and Cousot 1977; Cousot and Halbwachs

1978; Gopan and Reps 2007], constraint solving [Chatterjee et al. 2020; Colón et al. 2003; Cousot

2005; Gulwani et al. 2008], inference [Calcagno et al. 2011; Dillig et al. 2013; Donaldson et al. 2011;

Gan et al. 2020; Garg et al. 2014; McMillan 2008; Sharma and Aiken 2016; Somenzi and Bradley

2011; Xu et al. 2020], recurrence analysis [Farzan and Kincaid 2015; Kincaid et al. 2017, 2018],

machine learning [Garg et al. 2016; He et al. 2020; Ryan et al. 2020; Yao et al. 2020], data-driven

approaches [Chen et al. 2015; Csallner et al. 2008; Le et al. 2019; Nguyen et al. 2012; Riley and

Fedyukovich 2022; Sharma et al. 2013], etc. Most results in the literature consider a strengthened

version of invariants, called inductive invariants, that requires the inductive condition that the

invariant at a program location is preserved upon every program execution back and forth to the

location (i.e., under the assumption that the invariant holds at the location, it continues to hold

whenever the program execution goes back to the location).

An important criterion on the quality of invariants is the accuracy against the exact set of

reachable program states. Invariants that have too much accuracy loss (i.e., including too many

program states that actually are not reachable) may be not precise enough to verify a target program

property, while invariants with better accuracy can verify more program properties. Thus, ensuring

the accuracy of the generated invariants is an important subject in invariant generation. In this

work, we consider the automated generation of disjunctive invariants, i.e., invariants that are in the

form of a disjunction of assertions. Compared with conjunctive invariants, disjunctive invariants

are capable of capturing disjunctive features such as multiple phases and mode transitions in while

loops, and thus can be substantially more accurate than conjunctive ones.

We consider the automated generation of numerical invariants (i.e., invariants over the numerical

values of program variables). Numerical invariants are an important subclass of invariants that is

closely related to numerical program failures such as array out-of-bound and division by zero.

We focus on affine disjunctive invariants over affine while loops. An affine while loop is a while

loop in which every conditional branch and loop guard is specified by affine inequalities, and every

assignment statement is in the form of an affine expression that specifies an affine update on the

current program state. Moreover, we consider the method of constraint solving that usually leads to

accurate invariants. A typical constraint-solving method is via Farkas’ Lemma [Colón et al. 2003; Ji

et al. 2022; Liu et al. 2022; Sankaranarayanan et al. 2004b]. that provides a complete characterization

for affine inequalities. However, as Farkas’ Lemma only concerns conjunction of affine inequalities,

its application is limited to conjunctive affine invariant generation. The question on how to apply

Farkas’ Lemma to disjunctive affine invariant generation remains to be a challenge.

To address this challenge, we explore a succinct disjunctive pattern from the conditional branches

in an unnested loop, show how this disjunctive pattern can be integrated with Farkas’ Lemma, and

further explore algorithmic improvements and extensions to loop summary and nested loop. Our

detailed contributions are as follows.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:3

• First, for an unnested while loop, we consider disjunctive invariants that arise from the condi-

tional branches in the loop body. To utilize the disjunctive information from the conditional

branches, our approach first pushes all the conditional branches in a loop body to the top level

so that every top-level branch appears at the entry point of the loop body. The motivation

behind the top-level branches is that each top-level branch refers to a branch location with

a standalone conjunctive invariant for the location, and the final invariant is an overall

disjunction of the conjunctive invariants at the top-level branches. Taking one step further,

our approach constructs an affine transition system that describes the transitions between

the current and the next branch locations in a loop iteration, and solves the conjunctive affine

invariants over at the branch locations of the affine transition system by existing approaches

via Farkas’ Lemma.

• Second, under a mild non-crossing assumption for an affine transition system, we improve the

constraint solving algorithm by a novel invariant propagation technique that first generates

the invariant only at the initial branch location and then obtains the invariants at other

branch locations by a breadth-first propagation from the initial branch location. The invariant

propagation technique improves the overall time efficiency by having the involved invariant

computation only at the initial branch location and obtaining the invariants at other locations

by a lightweight propagation process.

• Third, we extend our approach to generate affine disjunctive loop summary of affine while

loops. Loop summary is the classical problem of the automated derivation of the input-

output relationship for a while loop. In our extension, we follow the standard paradigm (see

e.g. Boutonnet and Halbwachs [2019]) that incorporates fresh variables to represent the initial

values of the program variables in the loop and generate the invariants for both the original

program variables and the fresh variables through our approach to derive the loop summary.

• Fourth, to derive the disjunctive affine invariants and loop summaries of a nested loop, we

extend our approach to nested while loops by integrating the loop summaries of the inner

loops into the construction of the affine transition system for the outer loop.

• Finally, we implement our approach as a prototype tool built upon the Clang Static Ana-

lyzer [Clang Static Analyzer 2022].

Experimental results over a wide range of benchmarks (including SV-COMP and WCET) demon-

strate that our approach can prove safety properties that are related to various disjunctive features

in affine loops and beyond previous approaches and state-of-the-art software verifiers, and derive

substantially more accurate affine disjunctive loop summary than previous approaches. Moreover,

our approach is more time efficient compared with previous approaches.

2 PRELIMINARIES
Below we recall the model of affine transition systems [Sankaranarayanan et al. 2004b] and affine

invariant generation over such model via Farkas’ Lemma. In our invariant generation algorithm,

we use affine transition systems as the abstract model for programs with affine conditions and

updates. We first present the necessary definitions for affine transition systems and invariants,

and then the application of Farkas’ Lemma to affine invariant generation. We relegate a detailed

example to the next section.

2.1 Affine Transition Systems and Invariants
To present affine transition systems, we first define several basic concepts related to affine inequali-

ties as follows. An affine inequality (resp. affine equality) over a set 𝑉 = {𝑥1, . . . , 𝑥𝑛} of real-valued
variables is of the form 𝑎1𝑥1 + · · · +𝑎𝑛𝑥𝑛 +𝑏 Z 0, where 𝑎𝑖 ’s and 𝑏 are real coefficients, and Z ∈ {≥}

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:4 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

(resp. Z ∈ {=}), respectively. An affine assertion over 𝑉 is a conjunction of affine inequalities and

equalities over 𝑉 . Moreover, a propositional affine predicate (PAP) over 𝑉 is a propositional formula

whose atomic propositions are affine inequalities and equalities over 𝑉 . A PAP is in disjunctive

(resp. conjunctive) normal form (DNF) (resp. CNF) if it is a finite disjunction of affine assertions

(resp. a finite conjunction of finite disjunctions of affine assertions), respectively. Note that we

only consider non-strict no-smaller-than operator ≥ for affine inequalities, and the no-greater-than

inequalities 𝛼 ≤ 𝛽 could be equivalently transformed into −𝛼 ≥ −𝛽 . Moreover, although an affine

equality 𝛼 = 𝛽 could be equivalently expressed by the conjunction of the two inequalities 𝛼 ≤ 𝛽
and 𝛼 ≥ 𝛽 , we handle each affine equality directly since one can apply algorithmic optimizations

to affine equalities. Below we present the definition of affine transition systems.

Definition 1 (Affine Transition Systems [Sankaranarayanan et al. 2004b]). An affine

transition system (ATS) is a tuple Γ = ⟨𝑋,𝑋 ′, 𝐿, T, ℓ∗, 𝜃⟩ where we have:

• 𝑋 is a finite set of real-valued variables and 𝑋 ′ = {𝑥 ′ | 𝑥 ∈ 𝑋 } is the set of primed variables
from 𝑋 . Throughout the work, we abuse the notations so that (i) each variable 𝑥 ∈ 𝑋 also
represents its value in the current execution step of the system and (ii) each primed variable
𝑥 ′ ∈ 𝑋 ′ represents the value of the unprimed counterpart 𝑥 ∈ 𝑋 in the next execution step.
• 𝐿 is a finite set of locations and ℓ∗ ∈ 𝐿 is the initial location.
• T is a finite set of transitions such that each transition 𝜏 is a triple ⟨ℓ, ℓ ′, 𝜌⟩ that specifies the
jump from the current location ℓ to the next location ℓ ′ with the guard condition 𝜌 as a PAP over
𝑋 ∪ 𝑋 ′.
• 𝜃 is a PAP in DNF over the variables 𝑋 . Informally, each disjunctive clause of the PAP 𝜃 specifies
an independent initial condition at the initial location ℓ∗.

We define the directed graph DG(Γ) of an ATS Γ as the graph in which the vertices are the

locations of Γ and there is an edge (ℓ, ℓ ′) iff there is a transition ⟨ℓ, ℓ ′, 𝜌⟩ with source location ℓ and

target location ℓ ′. To describe the semantics of an ATS, we further define the notions of valuations,

configurations and their associated satisfaction relation as follows.

A valuation over a finite set 𝑉 of variables is a function 𝜎 : 𝑉 → R that assigns to each variable

𝑥 ∈ 𝑉 a real value 𝜎 (𝑥) ∈ R. In this work, we mainly consider valuations over the variables 𝑋 of

an ATS and simply abbreviate “valuation over 𝑋 ” as “valuation” (i.e., omitting 𝑋). Given an ATS, a

configuration is a pair (ℓ, 𝜎) with the intuition that ℓ is the current location and 𝜎 is a valuation

that specifies the current values for the variables. For the sake of convenience, we always assume

an implicit linear order over the variable set 𝑉 and treat each valuation 𝜎 over 𝑉 equivalently as a

real vector so that its 𝑖th coordinate 𝜎 [𝑖] is the value for the 𝑖th variable in the linear order.

We introduce the following satisfaction relations. Given an affine assertion 𝜑 over a variable set

𝑉 and a valuation 𝜎 , we write 𝜎 |= 𝜑 to mean that 𝜎 satisfies 𝜑 , i.e., 𝜑 is true when one substitutes

the corresponding values 𝜎 (𝑥) to all the variables 𝑥 in 𝜑 . Given an ATS Γ, two valuations 𝜎, 𝜎 ′

(over 𝑋) and an affine assertion 𝜑 over 𝑋 ∪𝑋 ′, we write 𝜎, 𝜎 ′ |= 𝜑 to mean that 𝜑 is true when one

substitutes every variable 𝑥 ∈ 𝑋 by 𝜎 (𝑥) and every variable 𝑥 ′ ∈ 𝑋 ′ by 𝜎 ′ (𝑥) in 𝜑 . Moreover, given

two affine assertions 𝜑,𝜓 over a variable set 𝑉 , we write 𝜑 |= 𝜓 to mean that 𝜑 implies𝜓 , i.e., for

every valuation 𝜎 over 𝑉 we have that 𝜎 |= 𝜑 implies 𝜎 |= 𝜓 .
The semantics of an ATS Γ is specified by the notion of paths. A path 𝜋 of the ATS Γ is a finite

sequence of configurations (ℓ0, 𝜎0) . . . (ℓ𝑘 , 𝜎𝑘) such that

• (Initialization) ℓ0 = ℓ∗ and 𝜎0 |= 𝜃 , and
• (Consecution) for every 0 ≤ 𝑗 ≤ 𝑘 − 1, there exists a transition 𝜏 = ⟨ℓ, ℓ ′, 𝜌⟩ such that ℓ = ℓ𝑗 ,

ℓ ′ = ℓ𝑗+1 and 𝜎 𝑗 , 𝜎 𝑗+1 |= 𝜌 .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:5

We say that a configuration (ℓ, 𝜎) is reachable if there exists a path (ℓ0, 𝜎0) . . . (ℓ𝑘 , 𝜎𝑘) such that

(ℓ𝑘 , 𝜎𝑘) = (ℓ, 𝜎). Intuitively, a path starts with some legitimate initial configuration (as specified by

Initialization) and proceeds by repeatedly applying the transitions to the current configuration

(as described in Consecution). Thus, any path 𝜋 = (ℓ0, 𝜎0) . . . (ℓ𝑘 , 𝜎𝑘) corresponds to a possible

execution of the underlying ATS. Informally, an ATS starts at the initial location ℓ∗ with an arbitrary

initial valuation 𝜎∗ such that 𝜎∗ |= 𝜃 , constituting an initial configuration (ℓ0, 𝜎0); then at each

step 𝑗 (𝑗 ≥ 0), given the current configuration (ℓ𝑗 , 𝜎 𝑗), the ATS determines the next configuration

(ℓ𝑗+1, 𝜎 𝑗+1) by first selecting a transition 𝜏 = ⟨ℓ, ℓ ′, 𝜌⟩ such that ℓ = ℓ𝑗 and then choosing (ℓ𝑗+1, 𝜎 𝑗+1)
to be any configuration that satisfies ℓ𝑗+1 = ℓ ′ and 𝜎 𝑗 , 𝜎 𝑗+1 |= 𝜌 .
In the following, we assume that the guard condition 𝜌 of each transition in a ATS is an affine

assertion. This follows from the fact that one can always transform the guard condition into a

DNF and then split the transition into multiple sub-transitions where the guard condition of each

sub-transition is an affine assertion that is a disjunctive clause of the DNF. A small detail here is

that to handle strict inequalities such as 𝛼 < 𝛽 which arise from taking the negation of a non-strict

affine inequality, we either have the over-approximation 𝛼 ≤ 𝛽 or tighten it as 𝛼 ≤ 𝛽 − 1 in the

integer case (i.e., every variable is integer valued, and every coefficient is an integer).

Below we define invariants over affine transition systems. An invariant at a location ℓ of an ATS

is an assertion 𝜑 such that for every path 𝜋 = (ℓ0, 𝜎0) . . . (ℓ𝑘 , 𝜎𝑘) of the ATS and each 0 ≤ 𝑖 ≤ 𝑘 , it
holds that ℓ𝑖 = ℓ implies 𝜎𝑖 |= 𝜑 . An invariant 𝜑 is (conjunctively) affine if 𝜑 is an affine assertion

over the variable set 𝑋 , and is disjunctively affine if 𝜑 is a PAP in DNF. Intuitively, an invariant

𝜑 at a location ℓ is an assertion that over-approximates the set of reachable configurations at ℓ ;

the invariant is affine if it is in the form of an affine assertion, and disjunctively affine if it is a

disjunction of affine assertions.

To automatically generate invariants, one often investigates a strengthened notion called inductive
invariants. In this work, we present inductive affine invariants in the form of inductive affine

assertion maps [Colón et al. 2003; Liu et al. 2022; Sankaranarayanan et al. 2004b] as follows. We say

that an affine assertion map (AAM) over an ATS is a function 𝜂 that maps every location ℓ of the

ATS to an affine assertion 𝜂 (ℓ) over the variables 𝑋 . Then an AAM 𝜂 is inductive if the following
conditions hold:

• (Initialization) 𝜃 |= 𝜂 (ℓ∗);
• (Consecution) For every transition 𝜏 = ⟨ℓ, ℓ ′, 𝜌⟩, we have that 𝜂 (ℓ) ∧ 𝜌 |= 𝜂 (ℓ ′)′, where
𝜂 (ℓ ′)′ is the affine assertion obtained by replacing every variable 𝑥 ∈ 𝑋 in 𝜂 (ℓ ′) with its

next-value counterpart 𝑥 ′ ∈ 𝑋 ′.
Informally, an AAM is inductive if it is (i) implied by the initial condition given by 𝜃 at the initial

location ℓ∗ (i.e., Initialization) and (ii) preserved under the application of every transition (i.e.,

Consecution). By a straightforward induction on the length of a path under an ATS, one could

verify that every affine assertion in an inductive AAM is indeed an invariant. In the rest of the

work, we focus on the automated synthesis of inductive AAMs, and the disjunctive affine invariants

are obtained by taking a disjunction of relevant affine assertions in an AAM.

Sometimes we need to consider the ATS Γ [ℓ, 𝐾] derived from an ATS Γ, a location ℓ of Γ and a

subset 𝐾 of valuations. In detail, the ATS Γ [ℓ, 𝐾] is obtained by having the location ℓ as the only

location, the self-loop transitions at ℓ (i.e., transitions ⟨ℓ ′′, ℓ ′, 𝜌⟩ in Γ such that ℓ ′′ = ℓ ′ = ℓ) as the
only transitions, and the initial condition as the subset 𝐾 . Here we slightly abuse the type of the

initial condition so that the initial condition can also be a subset of valuations. This will not cause

any problem as we consider any initial condition equivalently as the set of valuations that satisfy it.

In this work, we also consider the problem of loop summary. Loop summary is the classical

subject to generate logical formulas that over-approximate the relationship between the input and

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:6 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

output of a while loop. Given an ATS that describes the execution of a while loop, we denote by

𝑋in := {𝑥in | 𝑥 ∈ 𝑋 } a copy of input variables from 𝑋 and 𝑋out := {𝑥out | 𝑥 ∈ 𝑋 } a copy of output

variables. We write xin (resp. xout) for the vector of input (resp. output) variables, respectively. With

the designated termination location ℓ𝑒 at the end of a while loop, a loop summary 𝑆 is a logical

formula 𝑆 (xin, xout) with free variables xin, xout such that for all paths 𝜋 = (ℓ0, 𝜎0) . . . (ℓ𝑘 , 𝜎𝑘) such
that ℓ𝑘 = ℓ𝑒 , we have 𝑆 (𝜎0, 𝜎𝑘).

2.2 Applying Farkas’ Lemma to Affine Invariant Generation
Farkas’ Lemma [Farkas 1894] is a classical theorem in the theory of affine inequalities and previous

results [Colón et al. 2003; Liu et al. 2022; Sankaranarayanan et al. 2004b] have applied the theorem

to affine invariant generation. In this work, we consider a variant form of Farkas’ Lemma [Schrijver

1999, Corollary 7.1h] as follows.

Theorem 2.1 (Farkas’ Lemma). Consider an affine assertion 𝜑 over a set 𝑉 = {𝑥1, . . . , 𝑥𝑛} of
real-valued variables as in Figure 1a. When 𝜑 is satisfiable (i.e., there is a valuation over𝑉 that satisfies
𝜑), it implies an affine inequality𝜓 as in Figure 1b (i.e., 𝜑 |= 𝜓) if and only if there exist non-negative
real numbers 𝜆0, 𝜆1, . . . , 𝜆𝑚 such that (i) 𝑐 𝑗 =

∑𝑚
𝑖=1 𝜆𝑖 ·𝑎𝑖 𝑗 for all 1 ≤ 𝑗 ≤ 𝑛, and (ii) 𝑑 = 𝜆0 +

∑𝑚
𝑖=1 𝜆𝑖 ·𝑏𝑖

as in Figure 1c. Moreover, 𝜑 is unsatisfiable if and only if the inequality −1 ≥ 0 (as𝜓) can be derived
from above.

𝜑 :

𝑎11 ·𝑥1+· · ·+𝑎1𝑛 ·𝑥𝑛+𝑏1 ≥0
.
.
.

.

.

.
.
.
.

𝑎𝑚1·𝑥1+· · ·+𝑎𝑚𝑛 ·𝑥𝑛+𝑏𝑚≥0

(a) 𝜑 in Farkas’ Lemma

𝜓 : 𝑐1·𝑥1+· · ·+𝑐𝑛 ·𝑥𝑛+𝑑≥0
(b)𝜓 in Farkas’ Lemma

𝜆0 1 ≥ 0

𝜆1 𝑎11 · 𝑥1+· · ·+ 𝑎1𝑛 · 𝑥𝑛+ 𝑏1 Z1 0
.
.
.

.

.

.
.
.
.

.

.

.

𝜆𝑚𝑎𝑚1 · 𝑥1+· · ·+𝑎𝑚𝑛 · 𝑥𝑛+𝑏𝑚Z𝑚0

𝑐1 · 𝑥1+· · ·+ 𝑐𝑛 · 𝑥𝑛+ 𝑑 ≥ 0

−1 ≥ 0

 𝜑

← 𝜓

←false

⇒

𝜆1𝑎11+· · ·+𝜆𝑚𝑎𝑚1=𝑐1
.
.
.

𝜆1𝑎1𝑛+· · ·+𝜆𝑚𝑎𝑚𝑛=𝑐𝑛
𝜆0+𝜆1𝑏1 +· · ·+𝜆𝑚𝑏𝑚 = 𝑑

.

.

.

(c) The Tabular Form for Farkas’ Lemma

Fig. 1. The 𝜑 ,𝜓 and Tabular Form for Farkas’ Lemma [Colón et al. 2003; Sankaranarayanan et al. 2004b]

One direction of Farkas’ Lemma is straightforward, as one easily sees that if we have a non-

negative affine combination of the inequalities in 𝜑 that can derive𝜓 , then it is guaranteed that𝜓

holds whenever 𝜑 is true. Farkas’ Lemma further establishes that the other direction is also valid.

In general, Farkas’ Lemma simplifies the inclusion of a polyhedron inside a halfspace into the

satisfiability of a system of affine inequalities.

Remark 1. In the statement of Farkas’ Lemma above, if we strengthen an affine inequality 𝑎 𝑗1𝑥1 +
· · · + 𝑎 𝑗𝑛𝑥𝑛 + 𝑏 𝑗 ≥ 0 in 𝜑 to equality (i.e., 𝑎 𝑗1𝑥1 + · · · + 𝑎 𝑗𝑛𝑥𝑛 + 𝑏 𝑗 = 0), then the theorem holds with
the relaxation that we do not require 𝜆 𝑗 ≥ 0. This could be observed by first replacing the equality
equivalent with both 𝑎 𝑗1𝑥1 + · · · + 𝑎 𝑗𝑛𝑥𝑛 +𝑏 𝑗 ≥ 0 and 𝑎 𝑗1𝑥1 + · · · + 𝑎 𝑗𝑛𝑥𝑛 +𝑏 𝑗 ≤ 0, and then applying
Farkas’ Lemma. By similar arguments, the theorem statement holds upon changing multiple affine
inequalities into equalities with the relaxation of non-negativity for their corresponding 𝜆 𝑗 ’s.

The application of Farkas’ Lemma can be visualized by the tabular form in Figure 1c (taken

from Colón et al. [2003]), where Z1, . . . ,Z𝑚∈ {=, ≥} and we multiply 𝜆0, 𝜆1, . . . , 𝜆𝑚 with their

inequalities in 𝜑 and sum up them together to get𝜓 . For 1 ≤ 𝑗 ≤ 𝑚, if Z𝑗 is ≥, we require 𝜆 𝑗 ≥ 0,

otherwise (i.e., Z𝑗 is =) we do not impose restriction on 𝜆 𝑗 .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:7

To illustrate the application of Farkas’ Lemma to invariant generation, we also recall several

concepts from polyhedra theory. A subset 𝑃 of R𝑛 is a polyhedron if 𝑃 = {x ∈ R𝑛 | A · x ≤ b} for
some real matrix 𝐴 ∈ R𝑚×𝑛 and real vector b ∈ R𝑚 , where x is treated as a column vector and the

comparisonA·x ≤ b is defined in the coordinate-wise fashion. A polyhedron 𝑃 is a polyhedral cone if
𝑃 = {x ∈ R𝑛 | A ·x ≤ 0} for some real matrix𝐴 ∈ R𝑚×𝑛 , where 0 is the𝑚-dimensional zero column

vector. It is well-known from the Farkas-Minkowski-Weyl Theorem [Schrijver 1999, Corollary 7.1a]

that any polyhedral cone 𝑃 can be represented as 𝑃 = {∑𝑘
𝑖=1 𝜆𝑖 · g𝑖 | 𝜆𝑖 ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑘} for

some real vectors g1, . . . , g𝑘 , where such vectors g𝑖 ’s are called a collection of generators for the
polyhedral cone 𝑃 .

The existing approaches [Colón et al. 2003; Liu et al. 2022; Sankaranarayanan et al. 2004b]

apply Farkas’ Lemma to (conjunctive) affine invariant generation. All these approaches follow the

template-based paradigm as follows:

• Establish an affine template with unknown coefficients over the input ATS that represents

the inductive AAM to be solved.

• Apply the initiation and consecution conditions to the template to obtain the constraints for

an AAM.

• Use Farkas’ Lemma to simplify the constraints obtained in the previous step.

• Solve the simplified constraints from the previous step to obtain concrete solutions to the

unknown coefficients in the template. Each solution corresponds to one inductive AAM for

the input ATS.

The technical details of the paradigm above are given as Step A1 – Step A4 below. We fix an

input ATS with variable set 𝑋 = {𝑥1, . . . , 𝑥𝑛}.
Step A1. In the first step, all the existing approaches establish a template for an inductive AAM. A

template 𝜂 involves an affine inequality 𝜂 (ℓ) = 𝑐ℓ,1 · 𝑥1 + · · · + 𝑐ℓ,𝑛 · 𝑥𝑛 + 𝑑 ≥ 0 at each location ℓ of

the ATS with the unknown coefficients 𝑐ℓ,1, . . . , 𝑐ℓ,𝑛, 𝑑 to be resolved. Note that, although there is

only one template at each location, the approaches can obtain a conjunctive affine invariant where

one solution of the unknown coefficients corresponds to one conjunctive affine inequality.

Step A2. In the second step, all the approaches establish constraints from the initialization and the

consecution conditions for an inductive invariant. Recall that the initialization condition specifies

that the affine inequality 𝜂 (ℓ∗) at the initial location ℓ∗ should be implied by the initial condition 𝜃 ,

i.e., 𝜃 |= 𝜂 (ℓ∗), and the consecution condition specifies that every transition preserves the affine

assertion map 𝜂, i.e., for every transition ⟨ℓ, ℓ ′, 𝜌⟩ we have that 𝜂 (ℓ) ∧ 𝜌 |= 𝜂 (ℓ ′)′.
Step A3. In the third step, all the approaches apply Farkas’ Lemma to the constraints collected

from the initialization condition 𝜃 |= 𝜂 (ℓ∗) and the consecution condition 𝜂 (ℓ) ∧ 𝜌 |= 𝜂 (ℓ ′)′ for
every transition ⟨ℓ, ℓ ′, 𝜌⟩. For initialization, we apply the tabular in Figure 1c to obtain Figure 2a

which results in an affine assertion over the unknown coefficients 𝑐ℓ∗,1, . . . , 𝑐ℓ∗,𝑛, 𝑑 and the fresh

variables 𝜆0, 𝜆1, . . . , 𝜆𝑚 . Similarly, the tabular applied to the consecution condition of a transition

⟨ℓ, ℓ ′, 𝜌⟩ gives Figure 2b where in addition to 𝜆 𝑗 , 𝑐ℓ, 𝑗 , 𝑑ℓ , 𝑐ℓ ′, 𝑗 , 𝑑ℓ ′ we have a fresh variable 𝜇 as the

non-negative multiplier for 𝜂 (ℓ). Note that for the consecution condition, the constraint obtained

is no longer affine since the fresh variable 𝜇 is multiplied to 𝜂 (ℓ) in the tabular.

Step A4. In the last step, the (non-affine) constraints from the previous step are solved to obtain

the concrete values for the unknown coefficients in 𝜂, so that a concrete inductive AAM would be

obtained. It is from this point on that the existing approaches become diverse:

• By Colón et al. [2003], the non-affine constraints were solved through the complete but costly

method of quantifier elimination;

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:8 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

𝜆0 1 ≥ 0

𝜆1 𝑎11𝑥1+· · ·+ 𝑎1𝑛𝑥𝑛+ 𝑏1Z1 0

...
...

...
...

𝜆𝑚 𝑎𝑚1𝑥1+· · ·+𝑎𝑚𝑛𝑥𝑛+𝑏𝑚Z𝑚0
𝑐ℓ∗,1𝑥1+· · ·+𝑐ℓ∗,𝑛𝑥𝑛+𝑑ℓ∗ ≥ 0

−1 ≥ 0

 𝜃

←𝜂 (ℓ∗)
← false

(a) Initialization Tabular

𝜇 𝑐ℓ,1𝑥1+· · ·+ 𝑐ℓ,𝑛𝑥𝑛 + 𝑑ℓ ≥ 0

𝜆0 1 ≥ 0

𝜆1 𝑎11𝑥1+· · ·+ 𝑎1𝑛𝑥𝑛+ 𝑎′
11
𝑥 ′
1
+· · ·+ 𝑎′

1𝑛
𝑥 ′𝑛+ 𝑏1 Z1 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

𝜆𝑚𝑎𝑚1𝑥1+· · ·+𝑎𝑚𝑛𝑥𝑛+𝑎′𝑚1
𝑥 ′
1
+· · ·+𝑎′𝑚𝑛𝑥

′
𝑛+𝑏𝑚Z𝑚0

𝑐ℓ ′,1𝑥
′
1
+· · ·+𝑐ℓ ′,𝑛𝑥 ′𝑛+𝑑ℓ ′ ≥ 0

−1 ≥ 0

← 𝜂 (ℓ)

 𝜌

←𝜂 (ℓ′)′
← false

(b) Consecution Tabular

Fig. 2. Tabular for Initialization and Consecution [Colón et al. 2003; Sankaranarayanan et al. 2004b]

• By Sankaranarayanan et al. [2004b], the non-affine constraints were solved through (i) several

reasonable heuristics to guess possible values for the key parameter 𝜇 in Figure 2b so as to

remove the non-linearity and obtain an affine under-approximation of the original non-affine

constraints, and (ii) the generator computation over polyhedral cones to obtain the invariants.

A major heuristic there is to guess possible values for 𝜇 through some practical rules such as

factorization and setting 𝜇 manually to 0, 1 (where 0 means an invariant local to the guard of

the transition and 1 means one incremental to the previous execution).

• By Liu et al. [2022], a substantial improvement on the scalability to the approach by Sankara-

narayanan et al. [2004b] is proposed by generating affine invariants one location at time. The

main advantage of this approach is that redundant invariants can be detected more efficiently

in the solving of the constraints.

3 OVERVIEW OF OUR APPROACH
In this section, we describe our our approach via a simple while loop with disjunctive feature. We

first take a look at the example below.

𝑥 = 0 ;

𝑦 = 50 ;

while (𝑥 < 100) {

𝑥 = 𝑥 + 1 ;
i f (𝑥 > 50)

𝑦 = 𝑦 + 1 ;
}

(a) An affine while loop

𝑥 = 0 ;

𝑦 = 50 ;

while (𝑥 < 100) {

switch {

case 𝑥 > 49 :

𝑥 = 𝑥 + 1 ;
𝑦 = 𝑦 + 1 ;

case 𝑥 ≤ 49 :

𝑥 = 𝑥 + 1 ;
}

}

(b) The transformed loop

Fig. 3. An affine while loop from Sharma et al. [2011] and its transformed loop

Example 1. Consider an affine while loop in Figure 3a taken from Sharma et al. [2011] with integer-
valued variables 𝑥,𝑦. Before the loop, the values of the variables 𝑥,𝑦 are initialized to 0, 50, respectively.
In each loop iteration, the value of 𝑥 is incremented by one, and if this value exceeds 50, then the value
of 𝑦 is incremented by one. The loop has a disjunctive feature from the if branch in the loop body that

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:9

when the value of 𝑥 is no greater than 50, then only the variable 𝑥 is incremented; when the value of 𝑥
reaches 51, then both the variables 𝑥,𝑦 are incremented (until the value of 𝑥 reaches 100). □

Our approach has three main steps. The first step to handle the loop is to transform the loop into

an equivalent canonical form where all the conditional branches appear at the entry point (i.e., top

level) of the loop body. Each top-level branch corresponds to a standalone conjunctive invariant at

the branch, and the overall invariant is meant to be a disjunction of the conjunctive invariants at

these top-level branches.

Example 2. We push the if branch if (𝑥 > 50) in Figure 3a to the front of the loop body, so that we
have two top-level branches 𝑥 > 49 and 𝑥 ≤ 49 in Figure 3b. Notice that if the value of 𝑥 is no greater
than 49 at the entry point of the original loop body, then the if branch is not executed and only the
variable 𝑥 is incremented. Otherwise (i.e., the value of 𝑥 is greater than 49), both the variables 𝑥,𝑦
are incremented in the loop iteration. Thus, in Figure 3b we have a special switch statement at the
top of the loop body, and two top-level branches 𝑥 > 49 and 𝑥 ≤ 49 to distinguish between the cases
of the increment of only 𝑥 or both 𝑥,𝑦. Our aim is to obtain independent invariants for the cases of
𝑥 > 49 and 𝑥 ≤ 49, say 𝜂1 for 𝑥 > 49 and 𝜂2 for 𝑥 ≤ 49, and the final invariant is the disjunction of
𝜂1 ∧ 𝑥 > 49 and 𝜂2 ∧ 𝑥 ≤ 49 (i.e., (𝜂1 ∧ 𝑥 > 49) ∨ (𝜂2 ∧ 𝑥 ≤ 49)). □

To obtain the invariants for the top-level branches, our second step is to construct an affine

transition system that includes every top-level branch as a standalone location (we shall refer to

such a location as a branch location) and every possible jump between the top-level branches (for

the current and next loop iteration) as a transition. The details are given as follows.

Example 3. To obtain an affine transition system that describes the jumps between the top-level
branches in Figure 3b, we treat the two branches 𝑥 > 49 and 𝑥 ≤ 49 as standalone branch locations,
and use ℓ1 and ℓ2 to denote the branch locations, respectively. Moreover, we have a special location ℓ𝑒
that represents the termination location of the loop. We further add transitions between the branch
locations that respect their entry conditions in the current and next loop iteration. For example, the
transition 𝜏5 : ⟨ℓ2, ℓ1, 𝜌5⟩ specifies the jump from the branch location ℓ2 to the branch location ℓ1 with
the guard condition 𝜌5 specified by 𝑥 ≤ 49, 50 ≤ 𝑥 ′ ≤ 99, 𝑥 ′ = 𝑥 + 1, 𝑦′ = 𝑦, where (i) 𝑥 ≤ 49 and
50 ≤ 𝑥 ′ ≤ 99 are derived from the entry condition 𝑥 ≤ 49 of the branch location ℓ2 (in the current
loop iteration) and the counterpart 𝑥 > 49 of ℓ1 (in the next loop iteration), both conjuncted with the
loop guard, and (ii) 𝑥 ′ = 𝑥 + 1, 𝑦′ = 𝑦 specify the update to the variables 𝑥,𝑦 under the current branch
location ℓ2. In the same way, one can derive transitions for other jumps. The whole affine transition
system is given in Figure 4, where ℓ2 is the initial location. Note that the transitions 𝜏2, 𝜏6 are infeasible
and hence can be removed. □

After the affine transition system is constructed, our third step applies existing approaches [Liu

et al. 2022; Sankaranarayanan et al. 2004b] via Farkas’ Lemma to obtain the invariants at each

branch location, and group these invariants disjunctively together to obtain the final invariant.

Below we give a detailed illustration.

Example 4. Consider to generate affine invariants over the ATS in Figure 4a. The approach [Sankara-
narayanan et al. 2004b] first establishes a template at each location by setting 𝜂 (ℓ𝑖) := 𝑐ℓ𝑖 ,1𝑥 + 𝑐ℓ𝑖 ,2𝑦 +
𝑑ℓ𝑖 ≥ 0 for 𝑖 ∈ {1, 2, 𝑒} (Step A1 in the previous section). Then, it generates the constraints from
the initialization and consecution conditions (Step A2) and simplifies the constraints by the Farkas’
tabular in Figure 2 (Step A3). For initialization, the tabular in Figure 5a gives the simplified constraints
[𝑐ℓ2,1 = 𝜆1, 𝑐ℓ2,2 = 𝜆2, 𝑑ℓ2 ≥ −50𝜆2] (recall Remark 1, where 𝜆0 ≥ 0 but we do not impose restriction on
𝜆1, 𝜆2) and generates the constraints [50𝑐ℓ2,2 + 𝑑ℓ2 ≥ 0] by projecting away the fresh variables 𝜆 𝑗 ’s. For
consecution, we present the application of the Farkas’ tabular to the transition 𝜏5 as in Figure 5b. The

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:10 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

𝑋 = {𝑥,𝑦}, 𝐿 = {ℓ1, ℓ∗
2
, ℓ𝑒 }, T = {𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝜏5, 𝜏6}, 𝜃 : 𝑥 = 0 ∧ 𝑦 = 50, 𝜏1 : ⟨ℓ1, ℓ1, 𝜌1⟩,

𝜏2 : ⟨ℓ1, ℓ2, 𝜌2⟩, 𝜏3 : ⟨ℓ1, ℓ𝑒 , 𝜌3⟩, 𝜏4 : ⟨ℓ2, ℓ2, 𝜌4⟩, 𝜏5 : ⟨ℓ2, ℓ1, 𝜌5⟩, 𝜏6 : ⟨ℓ2, ℓ𝑒 , 𝜌6⟩,

𝜌1 :


50 ≤ 𝑥 ≤ 99

50 ≤ 𝑥 ′ ≤ 99

𝑥 ′ = 𝑥 + 1
𝑦′ = 𝑦 + 1

 , 𝜌2 :

50 ≤ 𝑥 ≤ 99

𝑥 ′ ≤ 49

𝑥 ′ = 𝑥 + 1
𝑦′ = 𝑦 + 1

 , 𝜌3 :

50 ≤ 𝑥 ≤ 99

100 ≤ 𝑥 ′
𝑥 ′ = 𝑥 + 1
𝑦′ = 𝑦 + 1

 ,
𝜌4 :


𝑥 ≤ 49

𝑥 ′ ≤ 49

𝑥 ′ = 𝑥 + 1
𝑦′ = 𝑦

 , 𝜌5 :


𝑥 ≤ 49

50 ≤ 𝑥 ′ ≤ 99

𝑥 ′ = 𝑥 + 1
𝑦′ = 𝑦

 , 𝜌6 :


𝑥 ≤ 49

100 ≤ 𝑥 ′
𝑥 ′ = 𝑥 + 1

𝑦′ = 𝑦


(a) The ATS

Fig. 4. The corresponding ATS for Figure 3b

fresh variables 𝜆 𝑗 ’s are projected away and the fresh non-affine variable 𝜇 is eliminated by reason-
able heuristics that guesses its value through either practical rules such as factorization or setting 𝜇
manually to 0 or 1. Other transitions are treated in a similar way.

𝜆0 1 ≥ 0

𝜆1 𝑥 = 0

𝜆2 𝑦 −50 = 0

𝑐ℓ2,1𝑥 + 𝑐ℓ2,2𝑦 + 𝑑ℓ2 ≥ 0

}
𝜃

← 𝜂 (ℓ2)

(a) Initialization Farkas’ Tabular for Figure 4a

𝜇 𝑐ℓ
2
,1𝑥 + 𝑐ℓ

2
,2𝑦 + 𝑑ℓ

2
≥ 0

𝜆0 1 ≥ 0
𝜆1 −𝑥 + 49 ≥ 0
𝜆2 𝑥 ′ − 50 ≥ 0
𝜆3 −𝑥 ′ + 99 ≥ 0
𝜆4 −𝑥 + 𝑥 ′ − 1 = 0

𝜆5 −𝑦 + 𝑦′ = 0

𝑐ℓ
1
,1𝑥
′ + 𝑐ℓ

1
,2𝑦
′ + 𝑑ℓ

1
≥ 0

−1 ≥ 0

← 𝜂 (ℓ2)
𝜌5

←𝜂 (ℓ1)′
← false

(b) Consecution Farkas’ Tabular for 𝜏5 in Figure 4a

Fig. 5. Initialization and Consecution Farkas’ Tabulars for Figure 4a

The constraints obtained from the previous step constitutes a PAP Φ in CNF where each clause in the
conjunction is the constraint derived from either the initialization or the consecution of a transition,
and every disjunctive affine assertion in such a clause in the conjunction results from a distinct guessed
value for the non-affine 𝜇 parameter in the tabular for consecution. In the last step (Step A4), the
approach [Sankaranarayanan et al. 2004b] expands the PAP Φ equivalently into a DNF PAP (where
each clause in the disjunction is an affine assertion that defines a polyhedral cone) and obtains the affine
invariants by the generator computation of each polyhedral cone in the DNF PAP. For this example, one
clause in the disjunction (treated as a polyhedral cone) from the DNF formula is shown in Figure 6a
(where we abbreviate 𝑐ℓ𝑖 , 𝑗 , 𝑑ℓ𝑖 as 𝑐𝑖 𝑗 , 𝑑𝑖); further by computing the generators of the polyhedral cone in
Figure 6a, we obtain the corresponding generators and their invariants in Figure 6b, where in the left
part each row specifies a generator with a type (a point, a ray or a line generator) over the unknown
coefficients 𝑐𝑖 𝑗 ’s and 𝑑𝑖 ’s, and in the right part we instantiate the generator to the unknown coefficients
in the template 𝜂 to obtain the invariants at location ℓ1, ℓ2 and ℓ𝑒 .

The affine invariants obtained from the generator computation can be further minimized by removing
trivial invariants such as 0 ≥ 0 and redundant inequalities. After processing all the disjunctive clauses
of the DNF and grouping all the generated invariants together, the final disjunctive invariant at the
entry point of the loop body is𝜂 (ℓ1)∨𝜂 (ℓ2), which is (𝑥 = 𝑦∧50 ≤ 𝑥 ≤ 99)∨(𝑦 = 50∧0 ≤ 𝑥 ≤ 49), and
the invariant for the termination location ℓ𝑒 is derived from the invariants at ℓ1, ℓ2 and the transitions
to ℓ as 𝜂 (ℓ𝑒) = (𝑥 = 𝑦 = 100). The approach [Liu et al. 2022] improves the scalability by generating
the invariants one location at a time that allows to detect redundant invariants more efficiently. □

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:11


𝑐12 − 𝑐𝑒2 = 0, 𝑐12 − 𝑐22 = 0,

𝑐21 ≥ 0, 𝑐11 + 𝑐12 ≥ 0,

50𝑐12 + 𝑑2 ≥ 0,

−99𝑐11 + 𝑐12 − 𝑑1 + 100𝑐𝑒1 + 𝑑𝑒 ≥ 0,

50𝑐11 + 𝑑1 − 49𝑐21 − 𝑑2 ≥ 0


(a) A clause in the DNF

type 𝑐11 𝑐12 𝑑1 𝑐21 𝑐22 𝑑2 𝑐𝑒1 𝑐𝑒2 𝑑𝑒 𝜂 (ℓ1) 𝜂 (ℓ2) 𝜂 (ℓ𝑒)
point 0 0 0 0 0 0 0 0 0 0 ≥ 0 0 ≥ 0 0 ≥ 0

line 1 −1 0 0 −1 50 0 −1 100 𝑥 − 𝑦 = 0 −𝑦 + 50 = 0 −𝑦 + 100 = 0

line 0 0 0 0 0 0 1 0 −100 0 = 0 0 = 0 𝑥 − 100 = 0

ray 0 0 49 1 0 0 0 0 49 49 ≥ 0 𝑥 ≥ 0 49 ≥ 0

ray 0 0 0 0 0 0 0 0 1 0 ≥ 0 0 ≥ 0 1 ≥ 0

ray 0 0 1 0 0 0 0 0 1 1 ≥ 0 0 ≥ 0 1 ≥ 0

ray 1 0 −50 0 0 0 0 0 49 𝑥 − 50 ≥ 0 0 ≥ 0 49 ≥ 0

ray 0 0 1 0 0 1 0 0 1 1 ≥ 0 1 ≥ 0 1 ≥ 0

(b) generators (left) and their invariants (right) for Figure 6a

Fig. 6. Example of a disjunctive clause and its generators and invariants

In the third step, we observe that simply to apply existing approaches in Farkas’ Lemma incurs

extra computation overhead since all these approaches require to compute the invariant at every

location by an involved computation procedure. The overhead may be large if the number of branch

locations is considerable. Thus, we propose an invariant propagation technique that only computes

the invariant at the initial branch location (during which our approach does not compute the

invariant at other branch locations) and have a breadth-first propagation of this invariant to other

branch locations, when the affine transition system admits a depth-first search tree without cross

edges (i.e., edges that go back to a non-ancestor node). The following example illustrates this idea

over the ATS in Figure 4a.

Example 5. Consider the affine transition system in Figure 4a. Its underlying directed graph is
given in Figure 7 (here we ignore the termination location ℓ𝑒), for which we have a DFS tree that is
composed of the solid tree edges and the dashed edges are back edges (i.e., edges that go back to an
ancestor node). Notice that there is no cross edge in the DFS tree. Our invariant propagation technique
utilizes the absence of cross edges.

Fig. 7. Invariant Propagation through DFS tree

First, our approach computes the invariant at the initial branch location ℓ2 to be 𝜂 (ℓ2) = (𝑦 =

50 ∧ 0 ≤ 𝑥 ≤ 49). Then, our invariant propagation calculates a new initial condition 𝑥 = 50 ∧ 𝑦 = 50

for the branch location ℓ1 by propagating the invariant 𝜂 (ℓ2) along the transition 𝜌5. Next, with the
new initial condition, our approach solves the invariant at the branch location ℓ1 by considering only
the self-loop transition 𝜌1 to obtain 𝜂 (ℓ1) = (𝑥 = 𝑦 ∧ 50 ≤ 𝑥 ≤ 99). Note that the back edge from ℓ1 to
ℓ2 does not affect the invariant at ℓ1 (even if 𝜌2 was feasible). Finally, the invariant at the termination

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:12 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

location ℓ𝑒 is derived from 𝜂 (ℓ1) and 𝜂 (ℓ2). The key point of invariant propagation over this example is
that the invariant at the branch location ℓ1 is obtained by a propagation from that of ℓ2, rather than a
thorough invariant solving over the whole affine transition system. □

Loop Summaries and Nested Loops. Besides invariant generation over unnested affine while loops,

our approach also generates affine disjunctive loop summary by introducing fresh input variables

that represent the inputs of the programs and generating invariants over both the original program

variables and the fresh input variables. Furthermore, our approach tackles nested affine while loops

by computing the loop summaries of the inner loops and uses these summaries as the abstraction

of the inner loops to construct the affine transition system for the outer loop.

4 DISJUNCTIVE AFFINE INVARIANT GENERATION FOR UNNESTED LOOPS
In this section, we present our approach for generating affine disjunctive loop invariants over

unnested affine while loops. Throughout the section, we fix the set of program variables as 𝑋 =

{𝑥1, . . . , 𝑥𝑛} and identify the set 𝑋 as the set of variables in the ATS to be derived from the loop.

We consider the canonical form of an unnested affine while loop as in Figure 8, where we have:

• The PAP 𝐺 is the loop condition (or loop guard) for the while loop.

• The vector x = (𝑥1, . . . , 𝑥𝑛)T represents the column vector of program variables, and each

F𝑖 (1 ≤ 𝑖 ≤ 𝑚) is an affine function, i.e., F𝑖 (x) = Ax + b where A (resp. b) is an 𝑛 × 𝑛 square

matrices (resp. 𝑛-dimensional column vector) that specifies the affine update under the affine

assertion 𝜙𝑖 (as a conditional branch). The assignment x := F𝑖 (x) is considered simultaneously

for the variables in x so that in one execution step, the current valuation 𝜎 is updated to

F𝑖 (𝜎).
• The switch keyword represents a special conditional branching (i.e., different from its original

meaning in e.g. C programming language) that if the current values of the program variables

satisfy the condition 𝜙𝑖 , then the assignment at the 𝑖th conditional branch (i.e., x := F𝑖 (x)) is
executed. Note that the branch conditions 𝜙1, . . . , 𝜙𝑚 need not to be pairwise disjoint (i.e.,

there can be some valuation 𝜎 that satisfies both 𝜙𝑖 , 𝜙 𝑗 (𝑖 ≠ 𝑗)), so that our setting covers

nondeterminism in imperative programs.

• The statements 𝛿1, . . . , 𝛿𝑚 specify whether the loop continues after the affine update of the

conditional branches 𝜙1, . . . , 𝜙𝑚 . Each statement 𝛿𝑖 is either the skip statement that does

nothing (which means that the loop continues after the affine update of F𝑖) or the break
statement (which means that the loop exits after the affine update).

A major motivation behind Figure 8 is that we treat each top-level branch 𝜙𝑖 as a standalone branch

location and the overall invariant is a disjunction of the invariants at these branch locations.

while 𝐺 {

switch
case 𝜙1 : x := F1 (x) ; 𝛿1 ;
...

case 𝜙𝑚 : x := F𝑚 (x) ; 𝛿𝑚 ;

}

Fig. 8. The canonical form of an unnested affine while loop

Any unnested affine while loop with break statement can be transformed into the canonical

form in Figure 8 by recursively examining the substructures of the loop body of the loop. A detailed

transformation is provided in Appendix A. Note that although the transformation into our canonical

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:13

form may cause exponential blow up in the number of conditional branches in the loop body, in

practice a loop typically has a small number of conditional branches and further improvement can

be carried out by removing invalid branches (i.e., those whose branch condition is unsatisfiable).

Moreover, such a canonical form is often necessary to derive precise disjunctive information for a

while loop.

Below we illustrate our algorithm to generate disjunctive affine invariants on unnested affine

while loops. Informally, our algorithm applies the top-level branches and follows Farkas’ Lemma

for affine invariant generation as in Colón et al. [2003]; Liu et al. [2022]; Sankaranarayanan et al.

[2004b], and further proposes the improvement of invariant generation that is closely related to

the top-level branches and has not been considered in the existing approaches [Colón et al. 2003;

Liu et al. 2022; Sankaranarayanan et al. 2004b]. Here we first consider an unnested affine while

loop𝑊 . The workflow of our algorithm is demonstrated as follows (Step B1 – Step B3).
Step B1.We first transform the loop𝑊 into a canonical form C𝑊 w.r.t Figure 8 as stated previously.

Taking Example 1 as a running example, the canonical form of the example is given in Example 2.

Step B2. Then we apply the top-level branches to transform the loop C𝑊 into a ATS. The transfor-

mation is in a straightforward fashion that every top-level conditional branch (i.e., 𝜙𝑖 in Figure 8)

corresponds to a stand-alone location, and the guard of a transition is determined by the loop

condition (i.e.,𝐺) as well as the branch conditions of the source and target locations of the transition.

Formally, we have that the ATS Γ𝑊 derived from the loop𝑊 is given as follows:

• The set of locations is {ℓ1, . . . , ℓ𝑚, ℓ𝑒 }, where each ℓ𝑖 (1 ≤ 𝑖 ≤ 𝑚) corresponds to the branch

location with branch condition 𝜙𝑖 and ℓ𝑒 is the termination program counter of the loop.

• For each 1 ≤ 𝑖 ≤ 𝑚, if 𝛿𝑖 = break, we have that transition (where we denote x′ :=

(𝑥 ′
1
, . . . , 𝑥 ′𝑛)T)

𝜏𝑖 = (ℓ𝑖 , ℓ𝑒 ,𝐺 ∧ 𝜙𝑖 ∧ x′ = F𝑖 (x))
that specifies the one-step jump from the branch location ℓ𝑖 to the termination location ℓ𝑒 ,

where the guard condition is a conjunction of the loop guard G (for staying in the loop at the

current loop iteration), the branch condition 𝜙𝑖 (that the current execution of the loop body

follows the location ℓ𝑖) and x′ = F𝑖 (x) (for the affine update).

• For each 1 ≤ 𝑖, 𝑗 ≤ 𝑚, where 𝛿𝑖 ≠ break, we have the transition

𝜏𝑖 𝑗 = (ℓ𝑖 , ℓ𝑗 ,𝐺 ∧ 𝜙𝑖 ∧𝐺 [x′/x] ∧ 𝜙 𝑗 [x′/x] ∧ x′ = F𝑖 (x))
that specifies the one-step jump from the branch location ℓ𝑖 to the branch location ℓ𝑗 , for

which the guard condition is 𝐺 ∧ 𝜙𝑖 ∧𝐺 [x′/x] ∧ 𝜙 𝑗 [x′/x] ∧ x′ = F𝑖 (x) since the transition
needs to pass the loop guard 𝐺 , satisfy the branch condition 𝜙𝑖 when staying in the location

ℓ𝑖 , have the affine update specified by F𝑖 and fulfill the loop guard 𝐺 [x′/x] and the branch

condition 𝜙 𝑗 upon entering the location ℓ𝑗 .

• For each 1 ≤ 𝑖 ≤ 𝑚, where 𝛿𝑖 ≠ break, we have the transition

𝜏 ′𝑖 = (ℓ𝑖 , ℓ𝑒 ,𝐺 ∧ 𝜙𝑖 ∧ (¬𝐺) [x′/x] ∧ x′ = F𝑖 (x))
for the one-step jump from the branch location ℓ𝑖 to the termination location ℓ𝑒 for which

the guard condition is a conjunction of the loop guard 𝐺 , the branch condition 𝜙𝑖 , the affine

update x′ = F𝑖 (x) and the negation of the loop guard (for jumping out of the loop).

After the transformation, we remove transitions with unsatisfiable guard condition to reduce the

size of the derived ATS. The transformation for the running example has been given in Example 3.

Step B3. After the transformation into an ATS, we follow existing approaches [Colón et al. 2003;

Liu et al. 2022; Sankaranarayanan et al. 2004b] that generate affine invariants with Farkas’ Lemma.

In particular, we apply the recent approach [Liu et al. 2022] that has the most scalability (see

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:14 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

Example 4 for the running example). A slight difference is that we do not encode the constraints

for the termination program location ℓ𝑒 . This is because the invariant at ℓ𝑒 can be derived from

non-termination locations to the termination location. In the following, we further propose an

invariant propagation technique that takes advantage of a common feature in the top-level branches

to improve the time efficiency.

In our invariant propagation, we explore a special structure in the derived ATS that often arises

in the top-level branches, and propose a technique that applies to the special structure and allows

one to generate invariants at only one location and obtain the invariants at other locations through

a propagation process. To illustrate the invariant propagation, we first identify the special structure

of non-crossing affine transition systems.

Definition 2. An ATS Γ is non-crossing if there exists a depth-first search (DFS) tree of the directed
graph DG(Γ) (i.e., its underlying directed graph) rooted at the initial location that does not have cross
edges. (Recall that a cross edge in a DFS tree is an edge whose destination location is a visited location
in the DFS but not an ancestor of the source location of the edge).

An example of a non-crossing DFS tree is given in Example 5, while a simple example that

violates the non-crossing property would be a complete directed graph. Non-crossing ATS’s are

common in the top-level branch form of an unnested while loop. For example, the case of multiphase

invariants [Sharma et al. 2011] is a special case of non-crossing affine transition systems where a

location is never entered again once it is left. The strict alternation between branch locations is also

a special case of non-crossing affine transition systems. In general, any affine transition system

that has one outgoing-transition for every location (which arises from deterministic mode change

in while loops) is non-crossing, since in its DFS tree there is no cross edges.

We illustrate the main workflow of our invariant propagation technique. Consider an ATS Γ
transformed from an unnested affine while loop. Given a DFS tree 𝑇 of DG(Γ) rooted at the initial

location ℓ∗ that has the non-crossing property and a conjunctive affine invariant 𝜂 (ℓ∗) at the
location ℓ∗ generated from the approach by Liu et al. [2022], the invariant propagation works

by repeatedly propagating the invariant 𝜂 (ℓ∗) from the root to other locations in a breadth-first

search (BFS) from the root ℓ∗. In the BFS, a single step of propagation that is from a location ℓ

in the current BFS front with the invariant 𝜂 (ℓ) (as a DNF PAP) computed from the prior BFS

process to a location ℓ ′ in the next front, considers all transitions from ℓ to ℓ ′; for each such

transition 𝜏 = (ℓ, ℓ ′, 𝜌), our approach computes a DNF PAP as an invariant 𝐼 (𝜏, ℓ ′) for the ATS
Γ [ℓ ′, 𝐾𝜏 := {𝜎 ′ | ∃𝜎.(𝜎 |= 𝜂 (ℓ) ∧ 𝜎, 𝜎 ′ |= 𝜌)}] (see Page 5 for the definition of Γ [−,−]) via the

approach by Liu et al. [2022] and disjuncts all these 𝐼 (𝜏, ℓ ′)’s together to obtain 𝜂 (ℓ ′). Note that
in such an ATS Γ [ℓ ′, 𝐾𝜏 := {𝜎 ′ | ∃𝜎.(𝜎 |= 𝜂 (ℓ) ∧ 𝜎, 𝜎 ′ |= 𝜌)}] we consider self-loop transitions at

a location ℓ ′ since our approach needs to cover the case that when propagated to the location ℓ ′,
the ATS (and the original program) may dwell at the branch location ℓ ′ for a finite unbounded
number of steps. The invariant at the termination location ℓ𝑒 is also obtained by performing a single

propagation step from the non-termination locations.

The details of a single propagation in the BFS is as follows. Consider a location ℓ at the current

BFS front with the computed PAP invariant 𝜂 (ℓ) = ∨𝑑
𝑖=1 Φ𝑖 where each Φ𝑖 is an affine assertion.

Then for each transition 𝜏 = (ℓ, ℓ ′, 𝜌), we have that 𝐼 (𝜏, ℓ ′) = ∨𝑑
𝑖=1 𝐼 (𝜏, ℓ ′, 𝑖) where each 𝐼 (𝜏, ℓ ′, 𝑖)

is a conjunctive affine invariant of the ATS Γ [ℓ ′, 𝐾𝜏,𝑖 := {𝜎 ′ | ∃𝜎.(𝜎 |= Φ𝑖 ∧ 𝜎, 𝜎 ′ |= 𝜌)}]. Hence,
our approach calculates 𝐼 (𝜏, ℓ ′) by computing for each 1 ≤ 𝑖 ≤ 𝑑 the conjunctive affine invariant

𝐼 (𝜏, ℓ ′, 𝑖) (over Γ [ℓ ′, 𝐾𝜏,𝑖]) by the approaches [Liu et al. 2022].

Example 6. A preliminary example of invariant propagation for our running example has been
given in Example 5, where we have the DFS tree and the breath-first propagation from the branch

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:15

location ℓ2 to ℓ1. We give more details for the single propagation step from ℓ2 to ℓ1. For Φ := 𝜂 (ℓ2) =
(𝑦 = 50 ∧ 0 ≤ 𝑥 ≤ 49) and transition 𝜏 = (ℓ2, ℓ1, 𝜌5), our approach computes 𝐾𝜏 := {𝜎 ′ | ∃𝜎.(𝜎 |=
Φ ∧ 𝜎, 𝜎 ′ |= 𝜌5) = {(𝑥,𝑦) | (𝑥 = 50 ∧ 𝑦 = 50)}, and further derives the invariant for ℓ1 from the ATS
Γ [ℓ1, 𝐾𝜏] (that comprises only the location ℓ1 and the self-loop transition 𝜌1 at ℓ1). □

To instantiate a single propagation step, we need to encode the set 𝐾𝜏,𝑖 as an affine assertion

Φ′𝜏,𝑖 without quantifiers that defines the set, and this can be accomplished by the projection of

the polyhedron {(𝜎, 𝜎 ′) | 𝜎 |= Φ𝑖 ∧ 𝜎, 𝜎 ′ |= 𝜌} onto the dimensions of 𝜎 ′. However, polyhedral
projection is an operation with relatively high computation cost. Below we show that these Φ′𝜏,𝑖 ’s
can be computed more efficiently by the resorting to the affine updates between x and x′ from the

original while loop.

Consider the task to project the polyhedron 𝐻 = {(𝜎, 𝜎 ′) | 𝜎 |= Φ ∧ 𝜎, 𝜎 ′ |= 𝜌} in the treatment

of a transition 𝜏 = (ℓ, ℓ ′, 𝜌) stated above, where Φ is an affine assertion. Recall that the transition is

derived in the way that the relationship between the variables from 𝑋 and 𝑋 ′ is given by some

affine assignment x := Ax + b (i.e., x′ = Ax + b) under some conditional branch in the canonical

form of Figure 8. We consider two cases below.

• The first case is that the matrix A is invertible. In this case, we have that x = A−1x′ − A−1b,
and we obtain an affine assertion Φ′ over 𝑋 ′ that defines the projected polyhedron directly

as (Φ ∧ 𝜌) [(A−1x′ − A−1b)/x]. In this case, no polyhedral projection is needed.

• The second case is that the matrix 𝐴 is not invertible. Then we solve the system of affine

equations Ax = x′ − b by the standard method of Gaussian Elimination in elementary affine

algebra and obtains that x = u(x′) +∑𝑘
𝑖=1 𝑎𝑘 · v𝑖 (𝑎1, . . . , 𝑎𝑘 ∈ R) where (i) the vector u(x′)

is a solution to the non-homogenous equation Ax = x′ − b and can be expressed as an

affine combination of the entries in x′ (i.e., u(x′) = Cx′ + d for some matrix C and vector

d) and (ii) v1, . . . , v𝑘 are the basic solution of the homogeneous equation Ax = 0 and are

constant vectors not relying on x′. The fresh variables 𝑎1, . . . , 𝑎𝑘 are the coefficients of the

basic solution and can take any real value. As a consequence, the projection of the affine

assertion 𝜎 |= Φ ∧ 𝜎, 𝜎 ′ |= 𝜌 (that defines the polyhedron 𝐻) onto the variables x′ can be

obtained as the projection of the affine assertion (Φ ∧ 𝜌) [(u(x′) +∑𝑘
𝑖=1 𝑎𝑘 · v𝑖)/x] onto the

variables x′ (i.e., projecting away the dimensions of 𝑎1, . . . , 𝑎𝑘). Note that the number of the

basic solution 𝑎1, . . . , 𝑎𝑘 is equal to 𝑛 − rank(𝐴) where rank(𝐴) is the rank of the matrix 𝐴.

This means that the number of variables to be projected away is smaller than 𝑛. It follows

that in this case, it is possible to project away much less variables compared with the original

projection method (that needs to project away all the 𝑛 variables 𝑥1, . . . , 𝑥𝑛 in x), and thus

can further improve the time efficiency.

The advantage of incorporating invariant propagation lies at the observation that to gener-

ate the invariants at all the locations, previous approaches consider to solve them either as a

whole [Sankaranarayanan et al. 2004b] or separately [Liu et al. 2022] via the generator computation

of polyhedral cones. Thus, all these approaches require to solve the invariants at all the locations

with generator computation, an operation with relative high cost and possible exponential blow-up.

Invariant propagation improves the time efficiency in that when the underlying ATS has a non-

crossing DFS tree, then it suffices to perform generator computation only in the computation of

the invariants at the initial location and in the treatment of self-loops at other locations.

Note that non-crossing affine transition systems do not cover all cases of directed acyclic graphs,

but this can be partially remedied by first computing the strongly-connected components (SCCs)

of the underlying ATS and then considering each SCC separately.

In summary, the workflow of our algorithm over an unnested affine while loop is as follows.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:16 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

• First, our algorithm transforms an unnested affine while loop into the canonical form in

Figure 8 and further transforms it into an affine transition system.

• Second, our algorithm applies the approach by Liu et al. [2022] and our invariant propagation

technique (if possible) to obtain affine invariants at the branch locations of the affine transition

system. In the case that the affine transition system is non-crossing w.r.t the initial location,

our algorithm applies the approach by Liu et al. [2022] to obtain the affine invariant at the

initial location and afterwards derive the invariants at other locations through invariant

propagation. Otherwise (i.e., the affine transition system is not non-crossing), our algorithm

follows the original approach by Liu et al. [2022] to generate the invariants at all the locations.

By an induction on the depth of the DFS tree, we can prove that the assertions generated from

our invariant propagation are indeed invariants and are at least as tight as the invariants generated

by the previous approaches [Liu et al. 2022; Sankaranarayanan et al. 2004b]. Due to space limitation,

we relegate the detailed proofs to Appendix D.

5 DISJUNCTIVE AFFINE INVARIANT GENERATION FOR NESTED LOOPS
Recall that in the previous section, we proposed a novel approach for generating disjunctive affine

invariants over unnested while loops via Farkas’ Lemma, top-level branches and an invariant

propagation technique. In this section, we extend this approach to nested affine while loops.

The main idea is as follows. Given a nested affine while loop𝑊 , our approach works by first

recursively computing the loop summary 𝑆𝑊 ′ for each inner while loop𝑊 ′ in𝑊 (from the innermost

to the outermost), and then tackling the main loop body via the top-level branches and the loop

summaries 𝑆𝑊 ′ of the inner loops. Below we fix a nested affine while loop𝑊 with variable set

𝑋 = {𝑥1, . . . , 𝑥𝑛} and present the technical details.

The most involved part in our approach is the transformation of the main loop𝑊 into its

corresponding ATS by the top-level branches. Unlike the situation of unnested while loops, a direct

recursive algorithm that transforms the loop𝑊 into a canonical form in Figure 8 as in the unnested

case is not possible, since one needs to tackle the loop summaries from the inner while loops in𝑊 .

To address the problem above, our algorithm works with the control flow graph (CFG) 𝐻 of the

loop body of the loop𝑊 and considers the execution paths in this CFG. The CFG𝐻 is a directed graph

whose vertices are the program counters of the loop body and whose edges describe the one-step

jumps between these program counters. Except for the standard semantics of the jumps emitting

from assignment statements and conditional branches, for a program counter that represents the

entry point of an inner while loop that is not nested in other inner loops, we have the special

treatment that the jump at the program counter is directed to the termination program counter of

this inner loop in the loop body of𝑊 (i.e., skipping the execution of this inner loop). An execution
path in the CFG 𝐻 is a directed path of program counters that ends in (i) either the termination

program counter of the loop body of𝑊 without visiting a program counter that represents the

break statement or (ii) a first break statement without visiting prior break statements. An example

is as follows.

Example 7. Consider the janne_complex program from Boutonnet and Halbwachs [2019] in Figure 9.
The CFG of the program is given in Figure 10 where the nodes correspond to the program counters, the
directed edges with guards specifies the jumps and their conditions, and the affine assignments are
given in the program counters 𝐴1, 𝐴2, 𝐴3.
We denote by𝑊 the outer loop with entry point 𝐸Outer, and by𝑊 ′ the inner loop with entry point

𝐸inner. The execution path starts at the Initial Condition [𝑥,𝑦], jumps to the next vertices along the
edge whose condition is satisfied (e.g., True is tautology, 𝑥 < 30 is satisfied when variable 𝑥 value is

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:17

while (𝑥 < 30) {
while (𝑦 < 𝑥) {

i f (𝑦 > 5) 𝑦 = 𝑦 ∗ 3 ;
e l s e 𝑦 = 𝑦 + 2 ;
i f (y >=10 && y <=12) 𝑥 = 𝑥 + 10 ;
e l s e 𝑥 = 𝑥 + 1 ;

}
𝑥 = 𝑥 + 2 ; 𝑦 = 𝑦 − 10 ;

}

Fig. 9. The janne_complex program

Fig. 10. The CFG of janne_complex [Boutonnet and Halbwachs 2019]

less than 30, etc.), and terminates in the Exit statement. The only execution path for the loop body of
𝑊 is 𝐴𝐼𝑆 → 𝐴1, for which we abstract the whole inner loop by 𝐴𝐼𝑆 . □

Based on the CFG 𝐻 and the execution paths, our approach constructs the ATS for the outer

loop𝑊 as follows. Since the output of an inner while loop𝑊 ′ in𝑊 cannot be exactly determined

from the input to the loop𝑊 ′, we first have fresh output variables 𝑥𝑊 ′,1, . . . , 𝑥𝑊 ′,𝑛′ to represent

the output values of the variables 𝑥𝑊 ′,1, . . . , 𝑥𝑊 ′,𝑛′ after the execution of the inner loop𝑊 ′. These
output variables are used to express the loop summaries of these inner loops.

Then, to get the numerical information from execution paths, we symbolically compute the

values of the program variables at each program counter in an execution path. In detail, given an

execution path 𝜔 = 𝜄1, . . . , 𝜄𝑘 where each 𝜄𝑖 is a program counter of the loop body of the loop𝑊 ,

our approach computes the affine expressions 𝛼𝑥,𝑖 and PAPs 𝛽𝑖 (for 𝑥 ∈ 𝑋 and 1 ≤ 𝑖 ≤ 𝑘) over
the program variables in 𝑋 (for which they represent their initial values at the start of the loop

body of𝑊 here) and the fresh output variables. The intuition is that (i) each affine expression 𝛼𝑥,𝑖
represents the value of the variable 𝑥 at the program counter 𝜄𝑖 along the execution path 𝜔 and (ii)

each PAP 𝛽𝑖 specifies the condition that the program counter 𝜄𝑖 is reached along the execution path

𝜔 . The computation is recursive on 𝑖 as follows.

Denote the vectors 𝛼𝑖 := (𝛼𝑥1,𝑖 , . . . , 𝛼𝑥𝑛,𝑖) and 𝑥𝑊 ′ = (𝑥𝑊 ′,1, . . . , 𝑥𝑊 ′,𝑛′). For the base case when
𝑖 = 1, we have 𝛼1 = (𝑥1, . . . , 𝑥𝑛) and 𝛽1 = true that specifies the initial setting at the start program

counter 𝜄1 of the loop body of the original loop𝑊 . For the recursive case, suppose that our approach

has computed the affine expressions in 𝛼𝑖 and the PAP 𝛽𝑖 . We classify four cases below:

• Case 1: The program counter 𝜄𝑖 is an affine assignment statement x := F(x). Then we have

that 𝛼𝑖+1 = 𝛼𝑖 [F(x)/x] and 𝛽𝑖+1 := 𝛽𝑖 .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:18 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

• Case 2: The program counter 𝜄𝑖 is a conditional branch with branch condition 𝑏 and the next

program counter 𝜄𝑖+1 follows its then-branch. Then the vector 𝛼𝑖+1 is the same as 𝛼𝑖 , and the

PAP 𝛽𝑖+1 is obtained as 𝛽𝑖+1 = 𝛽𝑖 ∧ 𝑏.
• Case 3: The program counter 𝜄𝑖 is a conditional branch with branch condition 𝑏 and the next

program counter 𝜄𝑖+1 follows its else-branch. The only difference between this case and the

previous case is that 𝛽𝑖+1 is obtained as 𝛽𝑖+1 := 𝛽𝑖 ∧ ¬𝑏.
• Case 4: The program counter 𝜄𝑖 is the entry point of an inner while loop𝑊 ′ of𝑊 and 𝜄𝑖+1
is the successor program counter outside𝑊 ′ in the loop body of𝑊 . Then 𝛼𝑖+1 := 𝑥𝑊 ′ and

𝛽𝑖+1 := 𝑆𝑊 ′ (𝛼𝑖 , 𝑥𝑊 ′). Here we use the ouput variables to express the loop summary. Note that

the loop summary 𝑆𝑊 ′ (see Page 6 for the definition of 𝑆) is recursively computed.

Example 8. Continue with the execution path in Example 7. The evolution of 𝛼𝑖 and 𝛽𝑖 with the

𝛼1 = [𝑥, 𝑦], 𝛽1 = true 𝑥 < 30−−−−→ 𝛼2 = [𝑥, 𝑦], 𝛽2 = 𝛽1 ∧ 𝑥 < 30 𝐴𝐼𝑆−−→
𝛼3 = [𝑥𝑊 ′ , 𝑦𝑊 ′], 𝛽3 = 𝛽2 ∧ 𝑆𝑊 ′ (𝛼2, 𝛼3) 𝐴1−→

𝛼4 = [𝑥𝑊 ′ + 2, 𝑦𝑊 ′ − 10], 𝛽4 = 𝛽3

Fig. 11. The evolution of 𝛼𝑖 and 𝛽𝑖 for the execution path of𝑊 in Figure 10

initial setting 𝛼1 = [𝑥,𝑦], 𝛽1 = true is given in Figure 11. □

After the 𝛼𝑖 , 𝛽𝑖 ’s are obtained for an execution path𝜔 = 𝜄1, . . . , 𝜄𝑘 from the recursive computation

above, we let the PAP Ψ𝜔 :=
∧

𝑖∈𝐼 𝛽𝑖 where the index set 𝐼 is the set of all 1 ≤ 𝑖 ≤ 𝑘 such that the

program counter 𝜄𝑖 corresponds to either a conditional branch or the entry point of an inner while

loop, and the vector of affine expression 𝛼𝜔 := 𝛼𝑘+1. Note that the PAP Ψ𝜔 is the condition that the

execution of the loop body follows the execution path 𝜔 , and the affine expressions in the vector

𝛼𝜔 represent the values of the program variables after the execution path 𝜔 of the loop body of𝑊

in terms of the initial values of the program variables and the fresh variables for the output of the

inner while loops in𝑊 .

Finally, our approach constructs the ATS for the loop𝑊 and we only present the main points:

• First, for each execution path 𝜔 of the loop body of𝑊 , we have a standalone location ℓ𝜔 for

this execution path. Recall that we abstract the inner loops, so that the execution paths can

be finitely enumerated.

• Second, for all locations ℓ𝜔 , ℓ𝜔 ′ (from the execution paths 𝜔,𝜔 ′), we have the transition

𝜏𝜔,𝜔 ′ := (ℓ𝜔 , ℓ𝜔 ′ ,Ψ𝜔 ∧ Ψ′
𝜔 ′ ∧ x′ = 𝛼𝜔) which means that if the execution path in the current

iteration of the loop𝑊 is 𝜔 , then in the next iteration the execution path can be 𝜔 ′ with the

guard condition Ψ𝜔 ∧ Ψ′
𝜔 ′ ∧ x′ = 𝛼𝜔 that comprises the conditions for the execution paths

𝜔,𝜔 ′ and the condition x′ = 𝛼𝜔 for the next values of the program variables.

• Third, we enumerate all possible initial locations 𝑙𝜔 , along with their corresponding initial

conditions 𝜃 = 𝐺 ∧ Ψ𝜔 . To derive loop summary, we follow the standard technique (see

e.g. Boutonnet and Halbwachs [2019]) to include the input variables 𝑋in and conjunct the

affine assertion

∧
𝑥∈𝑋 𝑥 = 𝑥in into each disjunctive clause of the initial condition 𝜃 . Manually

specified initial conditions can also be conjuncted into 𝜃 .

A detailed process that handles break statement is similar to the unnested situation. Again, we

can remove invalid transitions by checking whether their guard condition is satisfiable or not.

Finally, we apply the approach [Liu et al. 2022] and our invariant propagation to the ATS

constructed above to obtain the loop summary as an invariant (over the variables in 𝑋in ∪ 𝑋)
generated at the termination location ℓ𝑒 , and rename each variable 𝑥 ∈ 𝑋 to its output 𝑥out.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:19

Example 9. Consider the janne_complex program in Figure 9. By integrating the loop summary
of the inner loop, our approach constructs an affine transition system that corresponds to a while
loop of 22 top-level branches. For the lack of space, we relegate the detailed branches to Figure 16 in
Appendix F. □

At the end of the illustration of our algorithms, we discuss possible extensions as follows.

Remark 2 (Extensions). Our approach can be extended in the following ways. To obtain a more
precise top-level branch representation, one extension is by (i) distinguishing even/odd integer values
of program variables and (ii) detecting hidden termination phases via the approach in [Ben-Amram
and Genaim 2017]. To handle machine integers, another extension is by having a piecewise disjunctive
treatment for the cases of overflow and non-overflow. Finally, our approach could be extended to floating
point numbers by considering piecewise affine approximations [Miné 2004, 2006].

6 IMPLEMENTATION AND EVALUATION
We implement our approach as a prototype tool based on the Clang Static Analyzer [Clang Static

Analyzer 2022]. The implementation includes a front-end that transforms C programs into the input

form of our invariant generation solver (i.e., our back-end). The front-end first transforms affine

while loops in C into the canonical form as in Figure 8 and then converts the canonical form into an

affine transition system. The back-end is an extension of StInG [StInG 2006] written in C++ and uses

PPL 1.2 [Bagnara et al. 2002] for polyhedra manipulation (e.g., projection, generator computation,

etc.). The back-end generates invariants at initial location by applying invariant-generation with

Farkas’ Lemma and uses invariant propagation method to generate invariants at other locations

whenever applicable.

Notably, our back-end includes two additional features. The first one is the functionality to

remove invalid transitions with unsatisfiable guard condition 𝜌 . The second one is the treatment of

the situation of the unsatisfiability in the application of Farkas’ Lemma (see −1 ≥ 0 at the bottom

of Figure 2a and Figure 2b), which is however missing in the original tool StInG [StInG 2006]. The

former can simplify the ATS to improve time efficiency and the later can increase accuracy. A key

difficulty in the second one is that we obtain polyhedra rather than polyhedral cones, and thus

cannot directly apply the generator computation. To address this difficulty, we show that it suffices

to consider 𝜇 = 1 in Figure 2b and include the generators of both the polytope and the polyhedral

cone of the Minkowski decomposition of the polyhedron. As its correctness proof is somewhat

technical, we relegate them to Appendix B and Appendix C.

Belowwe present the experimental evaluation.We compare our approachwith (i) previous related

approaches on disjunctive invariant generation, (ii) relevant approaches in loop summary and (iii)

state-of-the-art software verifiers including SeaHorn [SeaHorn 2015], CPAChecker [CPAchecker

2022], Veriabs [Darke et al. 2021] (the champion of the reachability track in SV-COMP 2023) and

the recent recurrence analysis tool from Wang and Lin [2023]. All the experimental results are

obtained from a Linux (Ubuntu 20.04 LTS) with an 11th Gen Intel Core i7 (3.20 GHz) CPU, 32 GB of

memory. We choose representative benchmarks related to affine disjunctive invariants and loop

summary from the literature [Ancourt et al. 2010; Boutonnet and Halbwachs 2019; Henry et al.

2012; Riley and Fedyukovich 2022; Sharma et al. 2011; Xie et al. 2016] and also SV-COMP, WCET

benchmark sets for evaluation. Our experimental results are summarized in Table 1 – Table 4.

In all the tables, "Our approach" means the results by our approach, "Type" means what type

of results we obtained, "Time" means the runtime measured in seconds, "v.s." means the accuracy

compared against the previous results. For the type of results, we have "Dis" means the result is

an invariant (holding at the loop header) obtained by disjuncting all invariants at each location

except ℓ𝑒 , "Smry" means the result is a loop summary where the input variables carry the subscript

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:20 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

Table 1. Experimental Results on Invariant Generation

Benchmark Our Approach

Name Type Time v.s. Detailed Result

Riley and Fedyukovich [2022] fig2 ★ Dis 0.02s >
(z=0 ∧ 0 ≤ x ≤ 1000y-1 ∧ 1 ≤ y) ∨ (x-1000y=z ∧ x-999 ≤ 1000y ≤ x ∧ 1 ≤ y) ∨

(z=1000 ∧ 1 ≤ y ∧ 1000y ≤ x-1000)

Ancourt et al. [2010]

Gopan07 ★
Dis <0.01s + (x=y ∧ 0 ≤ x ≤ 50) ∨ (x+y=102 ∧ 51 ≤ x ≤ 102)

LR <0.01s > x=102 ∧ y=-1

Gulwani07 ★
Dis 0.01s + (y=50 ∧ 1 ≤ x ≤ 49) ∨ (x=y ∧ 50 ≤ x ≤ 99)

LR 0.01s > x=y=100

Halbwachs ★
Dis 0.01s + 0 ≤ y ≤ x ≤ 100

LR 0.01s > (101 ≤ x ≤ 102 ∧ 0 ≤ y ∧ y+2 ≤ x) ∨ (x=101 ∧ 1 ≤ y ≤ 101)

Sharma et al. [2011]

POPL07 ★
Dis <0.01s > (y=50 ∧ 0 ≤ x ≤ 49) ∨ (x=y ∧ 50 ≤ x ≤ 99)

LR <0.01s > x=y=100

CAV06 ★
Dis 0.01s + (f=0 ∧ x=y ∧ 0 ≤ x ≤ 50) ∨ (f=0 ∧ x+y=102 ∧ 51 ≤ x ≤ 101) ∨

(f=0 ∧ y=0 ∧ x=102)

LR 0.01s + f=1 ∧ x=102 ∧ y=-1

ex1 ★
Dis 0.02s + (f=0 ∧ x=y ∧ 0 ≤ x ≤ 48) ∨ (f=0 ∧ x+y=98 ∧ 49 ≤ x ≤ 98) ∨

(f=0 ∧ y=-1 ∧ x=99)

LR 0.02s + f=1 ∧ x=99 ∧ y=-2

ex2 ★
Dis 0.02s + (0 ≤ x ≤ 24 ∧ x=y=z) ∨ (25 ≤ x ≤ 50 ∧ x=y ∧ 5x-100=z) ∨

(51 ≤ x ≤ 99 ∧ x+y=102 ∧ 5x-100=z)

LR 0.02s + x=100 ∧ y=2 ∧ z=400

Xie et al. [2016]

fig1a ★ Dis 0.01s + (n=100 ∧ 0 ≤ x ≤ 99 ∧ x=z-1) ∨ (n=100 ∧ 1 ≤ x ≤ 99 ∧ x=z)

fig6a ★ Dis 0.02s + (n-1 ≥ m ∧ j ≥ 0 ∧ i ≥ 0 ∧ n-i ≥ 1 ∧ m-j ≥ 1) ∨
(m=j ∧ n ≥ i+1 ∧ i ≥ 0 ∧ n-1 ≥ m ∧ m ≥ 1)

fig1c ★ Dis <0.01s + 1 ≤ j ≤ m-1 ∧ 0 ≤ k ∧ i ≤ m-1

fig1f ★ Dis 0.01s + (s=1 ∧ x1 = x2 ∧ 0 ≤ x1) ∨ (s=2 ∧ x1 = x2 + 1 ∧ 1 ≤ x1) ∨
(s=3 ∧ x1 = x2 ∧ 1 ≤ x1) ∨ (s=4 ∧ x1 = x2 ∧ 1 ≤ x1)

Boutonnet and Halbwachs [2019]

eudiv ‡★ Dis 0.01s + r ≥ b ≥ 1 ∧ a ≥ q+r ∧ q ≥ 0

correct1 ★ Dis <0.01s + s ≥ 0 ∧ t ≥ 0 ∧ x=o+e

janne_complex ⊛ Dis 20.86s +
(55x+11y ≤ 1686 ∧ x ≤ y ∧ 481x ≥ 241y) ∨

(y ≤ 5 ∧ 2x-y ≥ 14 ∧ x-y ≤ 12) ∨ (y ≤ 5 ∧ x-y ≤ 12 ∧ 65x-29y ≥ 420) ∨
(55x+11y-1686 ≤ 0 ∧ 1 ≤ x-y ≤ 12 ∧ y ≥ 6 ∧ 481x+4y ≥ 4842 ∧ 3x-y ≥ 22)

minver ⊛ ‡★ Dis <0.01s + j ≤ 3i ≤ 2j ∧ j ≤ 3

fft1 ⊛★ Dis 0.10s + (n=8 ∧ m=15 ∧ k+2 ≤ j ∧ k ≤ 8 ∧ 9 ≤ j ≤ 2k ∧ 1 ≤ i ≤ 15) ∨
(n=8 ∧ m=15 ∧ 2 ≤ j ≤ 8 ∧ 2 ≤ i ≤ 15 ∧ j ≤ 2k ∧ k ≤ 8)

Henry et al. [2012] fig1 ★ Dis <0.01s + (2x=t ∧ p=0 ∧ 2x ≤ 99 ∧ 0 ≤ x) ∨ (2x=t+3 ∧ p=1 ∧ 2 ≤ x ≤ 51)

0 (e.g., 𝑥0) and the output variables do not carry subscript (e.g., 𝑥), and "LR" means the result is an

invariant at the termination location ℓ𝑒 with a determined fixed-input. "Detailed Results" means

detailed invariants or summaries for "Dis" or "Smry" or "LR" generated from our approach. For the

accuracy in the column "v.s.", we have "=" means that our result is equal to the original result, ">"

means that our result is strictly stronger, and "+" means that no existing result is available. For

the symbol in the column "Name", we have "⊛" means an affine nested loop, "‡" means that our

result is strengthened by incremental method [Bradley 2012] which is a strategy to strengthen an

invariant using previously generated invariants step-by-step, "★" means that our result is obtained

by invariant propagation.

First, Table 1 presents the experimental results on our approach with invariant propagation.

Note that the runtime for all benchmarks are mostly very short (within 0.2s) and thus we only

consider the comparison in accuracy. In Table 1, one can observe that our approach mostly generates

invariants with better accuracy. In detail, our approach could derive significantly tighter disjunctive

invariants for benchmarks in Riley and Fedyukovich [2022]; Sharma et al. [2011], and generate

precise LR results of program in disjunctive form for benchmarks in Ancourt et al. [2010]; Sharma

et al. [2011]. On several benchmarks (such as eudiv, minver in Boutonnet and Halbwachs [2019])

that require incremental method, we run our approach twice for which the second run generates

more invariants based on those obtained in the first run and obtain tighter invariants. Finally, our

approach could also resolve nested loops with complex control flow such as janne_complex, minver,
fft1 in Boutonnet and Halbwachs [2019]. We relegate the detailed invariants in the original papers

to Appendix E.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:21

Table 2. Experimental Results on Loop Summary

Benchmark Our Approach

Name Type Time v.s. Detailed Result

Riley and Fedyukovich [2022] fig2 ★

Smry

0.03s +

(x0 ≤ x ∧ y=y0 ∧ z=z0) ∨
(x-1000y=z-z0 ∧ y=y0 ∧ x0+1 ≤ 1000y

∧ 1000y ≤ x ≤ 1000y+999) ∨
(z=z0+1000 ∧ y=y0

∧ x0 ≤ 1000y-1 ∧ 1000y ≤ x-1000)

Xie et al. [2016]

fig1a ★ ‡ 0.01s >

(x=z=n=n0 ∧ x0 ≤ z0-1 ∧ z0 ≤ n-1) ∨
(x0+1 ≤ x=n=n0 ≤ z0=z) ∨
(x=z=n=n0 ∧ z0 ≤ x0 ≤ n-1)

fig6a ★ 0.02s = i0=j0=0 ∧ m=m0 ∧ i=n=n0 ∧ j=0 ∧ 1 ≤ m ≤ n-1

fig1c ★ < 0.01s > 1 ≤ j ≤ m-1 ∧ m ≤ i ≤ 2m-2 ∧ 1 ≤ k ≤ m-i0

fig1f ★ 0.02s >

(s=1 ∧ x1-x2 = x10-x20 ∧ x10 ≤ x1) ∨
(s=2 ∧ x1-x2-1 = x10-x20 ∧ 1 ≤ x1-x10) ∨
(s=3 ∧ x1-x2 = x10-x20 ∧ 1 ≤ x1-x10) ∨
(s=4 ∧ x1-x2 = x10-x20 ∧ 1 ≤ x1-x10)

Boutonnet and Halbwachs [2019]

eudiv ★ ‡ 0.01s = a=a0 ∧ b=b0 ∧ r ≥ 0 ∧ b ≥ r+1 ∧ a+1 ≥ b+q+r ∧ q ≥ 1

correct1 ★ ‡ < 0.01s + (x-x0=e-e0 ∧ x0=o+e0 ∧ t ≥ 0 ∧ x-x0-t+s+e0 ≥ 1

∧ x0 ≥ x+s ∧ x0+t ≥ e0+x)

janne_complex ⊛ 34.34s +

(x0 ≤ 29 ∧ y0 ≤ 5 ∧ y0 ≤ x0 - 1 ∧ x ≤ y + 12

∧ -36x-12x0+y-18y0 ≥ -1811 ∧ -36x-61x0+y-18y0 ≥ -3036

∧ -107x-52x0-12y-78y0+6639 ≥ 0 ∧ 3x-y ≥ 22

∧ x ≥ 30 ∧ 2x-2x0+y0 ≥ 12 ∧ x-x0 ≥ 4) ∨
(x0 ≤ 29 ∧ y0 ≥ x0 ∧ 30 ≤ x ≤ 31 ∧ x ≤ y+12

∧ 5x-5x0+y-y0 ≥ 0 ∧ 13x-13x0-3y+3y0 ≥ 0

∧ 127x-155x0-25y+25y0+308 ≥ 0

∧ 297x-297x0-47y+47y0-1064 ≥ 0)

minver ★⊛ 0.01s + (i0 ≤ 2 ∧ j0 ≤ 2 ∧ i=j=3) ∨
(i0 ≤ 2 ∧ j0 ≥ 3 ∧ i=3 ∧ j=j0)

fft1 ★⊛ 0.10s +

(n=n0 ∧ m=m0 ∧ i0+1 ≤ i=m+1 ∧ j0 ≥ n+1

∧ k+1 ≤ j ≤ 2k ∧ 3k+1 ≤ j+n) ∨
(n=n0 ∧ m=m0 ∧ i=m+1 ≥ i0+2

∧ 2k ≥ j ≥ k+1 ∧ 3k+1 ≤ j+n ∧ j0 ≤ n) ∨
(k=n=n0 ∧ m=m0 ∧ i=m+1 ≥ i0+1

∧ 2k ≥ j ∧ k ≥ j0 ∧ k ≥ j)

WCET[Gustafsson et al. 2010]

cnt_cover ★ < 0.01s + c=c0+10 ∧ cnt=cnt0+10

cnt_minver ★⊛ 0.05s +
(i0=2 ∧ j0 ≤ 2 ∧ i=j=3 ∧ cnt1=1) ∨

(i0 ≤ 1 ∧ j0 ≤ 2 ∧ i=j=3) ∨
(i0 ≤ 2 ∧ j ≥ 3 ∧ i=3 ∧ j=j0 ∧ i0+cnt2=3)

cnt_fft1 ★⊛ 0.20s +

(n=n0 ∧ m=m0 ∧ i0+cnt1=i=m+1 ∧ j0 ≥ n+1

∧ k+1 ≤ j ≤ 2k ∧ 3k+1 ≤ j+n ∧ i-i0 ≥ cnt2 ≥ 1) ∨
(n=n0 ∧ m=m0 ∧ i=m+1=i0+cnt1 ∧ 2k ≥ j ≥ k+1

∧ 3k+1 ≤ j+n ∧ j0 ≤ n ∧ i-i0-1 ≥ cnt2 ≥ 1) ∨
(k=n=n0 ∧ m=m0 ∧ i=m+1=i0+cnt1 ∧ 2k ≥ j

∧ k ≥ j0 ∧ k ≥ j ∧ i-i0-1 ≥ cnt2 ≥ 0)

SPEED[Gulwani et al. 2009]

cnt_SimpleSingle ★ < 0.01s +

(x=n0 ∧ cnt1 = cnt2 + cnt3 ∧ x = x0 + cnt2 + cnt3

∧ x = n ∧ cnt2 ≥ 1 ∧ cnt3 ≥ 0) ∨
(x=n0 ∧ cnt1 = cnt2 + cnt3 ∧ x = x0 + cnt2 + cnt3

∧ x = n ∧ cnt2 ≥ 0 ∧ cnt3 ≥ 1)

cnt_SimpleSingle2 ★ 0.10s +

(cnt1 = cnt2 ∧ m = m0 ∧ x = x0 + cnt2 ∧ cnt3 = 0

∧ y = y0 +cnt2 ∧ x = n ∧ x = n0 ∧ cnt2 ≥ 1 ∧ y ≥ m) ∨
(y = m ∧ y = m0 ∧ x = x0 + cnt1 ∧ x = x0 + cnt2 + cnt3

∧ x = x0 + y - y0 ∧ x0 = n - cnt2

∧ x0 = n0 - cnt2 ∧ cnt2 ≥ 1 ∧ x ≥ x0 + cnt2 + 1) ∨
(y = m0 ∧ cnt2 = 0 ∧ x = x0 +cnt1 ∧ x = x0 + cnt3

∧ x = x0 + y - y0 ∧ y = m ∧ n = n0 ∧ x ≥ n + 1 ∧ x ≥ x0 + 1)

cnt_SimpleMultiple ★ 0.05s +

(y = m0 ∧ y = m ∧ x = x0 + cnt1 - cnt2 ∧ cnt1 = cnt2 + cnt3

∧ y = y0 + cnt2 ∧ x = n ∧ x = n0 ∧ cnt1 ≥ cnt2 + 1 ∧ cnt2 ≥ 1) ∨
(x = x0 + cnt1 ∧ cnt2 = 0 ∧ m = m0 ∧ x = x0 + cnt3

∧ y = y0 ∧ x = n ∧ x = n0 ∧ x ≥ x0 + 1 ∧ y ≥ m)

cnt_NestedMultiple ★⊛ 0.03s +

(y=m0 ∧ cnt2=1 ∧ x=x0+1 ∧ cnt3=0

∧ cnt1=1 ∧ x=n ∧ x=n0 ∧ y=m ∧ y ≥ y0+1) ∨
(y=m0 ∧ cnt2=1 ∧ x=x0+cnt1 ∧ cnt1=cnt3+1

∧ y=m ∧ x=n ∧ x=n0 ∧ y ≥ y0+1 ∧ cnt1 ≥ 2) ∨
(x=x0+cnt1 ∧ cnt2=0 ∧ m=m0 ∧ x=x0+cnt3

∧ y=y0 ∧ x=n ∧ x=n0 ∧ x≥ x0+1 ∧ y ≥ m)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:22 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

Table 3. Experiment for SeaHorn, CPAChecker, VeriAbs and OOPSLA23

Benchmark Our Approach SeaHorn CPAChecker VeriAbs OOPSLA23

Name Proof Time (s) Proof Time (s) Proof Time (s) Proof Time (s) Proof Time (s)

Riley and Fedyukovich [2022] fig2★

T

0.02 F > 36000 F 3 F 27 F 1

Ancourt et al. [2010]

Gopan07★ 0.01 F > 36000 T 17 T 30 F 1

Halbwachs★ 0.01 F > 36000 T 30 T 33 F 1

Gulwani07★ 0.01 T 1 T 16 T 18 T 2

Sharma et al. [2011]

CAV06★ < 0.01 F > 36000 T 12 T 35 F 1

ex1★ 0.01 F > 36000 T 14 T 35 F 1

POPL07★ 0.02 T 1 T 11 T 19 T 2

ex2★ 0.02 T 2 T 13 T 20 T 2

Xie et al. [2016]

fig1a★ 0.01 F 1 F 10 F 21 F 4

fig1c★ < 0.01 F 1 F 10 F 27 F 1

fig6a★ 0.02 F 1 F 11 F 874 F 1

fig1f★ 0.01 T 1 F 445 F 513 T 3

Boutonnet and Halbwachs [2019]

eudiv★‡ 0.01 F 1 F 10 F 18 F 1

janne_complex⊛ 28.24 F 1 F 9 F 16 F 1

minver★ ‡⊛ < 0.01 F 1 F 9 F 898 F 2

fft1★⊛ 0.08 F 1 F 9 F 1 F 1

correct1★ 0.01 F 1 T 10 F 19 F 2

Henry et al. [2012] fig1★ 0.01 T 1 T 17 T 18 F 2

SV-COMP [2023]

benchmark44_disjunctive.c★ 0.01 F 1 F 1 F 32 F 1

count_by_nondet.c★ 0.01 F > 36000 F 1 F 901 F 3

mono-crafted_6.c★ 0.01 F > 36000 F 1 T 236 T 2

mono-crafted_9.c★ 0.01 F > 36000 F 1 T 270 T 2

mono-crafted_13.c★ 0.01 F > 36000 F 1 T 209 T 2

Mono4_1.c★ 0.01 F > 36000 F 1 F 403 T 2

Mono5_1.c★ 0.01 F > 36000 F 1 F 405 T 3

Mono6_1.c★ 0.02 F > 36000 F 1 F 403 T 2

gcnr2008.c★ 0.02 F 1 F 1 F 62 F 1

gr2006.c★ 0.02 F > 36000 T 17 T 85 F 1

benchmark07_linear.c★ 0.01 T 1 T 10 F 30 F 1

benchmark21_disjunctive.c★ 0.01 T 1 T 11 T 31 F 1

benchmark32_linear.c★ 0.01 T 1 T 8 T 17 F 1

benchmark51_polynomial.c★ 0.01 T 1 T 10 T 17 F 1

afnp2014.c★ 0.01 T 1 T 66 T 22 T 2

eq1.c★ 0.01 T 1 T 10 F 223 F 1

gj2007.c★ 0.01 T 1 T 11 T 51 T 2

nested_5.c★⊛ 0.03 T 2 T 8 T 23578 F 1

terminator_02-2.c★ 0.02 T 1 T 9 T 19 F 1

nested_6.c★⊛ 0.02 T 1 T 9 T 15 F 1

sum01_bug02.c★ 0.01 T 1 T 9 F 1 F 1

sum01_bug02_sum01_bug02_base.case.c★ 0.01 T 1 T 9 F 1 F 1

nested_delay_notd2.c★ 0.02 T 1 F 1 F 208 F 1

benchmark06_conjunctive.c★ 0.01 T 2 F 1 F 853 F 1

benchmark31_disjunctive.c★ 0.01 T 2 F 1 F 30 F 1

benchmark45_disjunctive.c★ 0.01 T 2 F 1 F 28 F 1

benchmark46_disjunctive.c★ 0.01 T 2 F 1 F 29 F 1

benchmark47_linear.c★ 0.01 T 1 F 1 F 33 F 1

bhmr2007.c★ 0.02 T 1 F 1 F 899 F 1

cggmp2005_variant.c★ 0.01 T 1 F 1 T 193 T 2

ddlm2013.c★ 0.02 T 1 F 1 F 901 T 2

half.c★ 0.01 T 1 F 1 F 811 T 2

Second, Table 2 presents the experimental results on affine disjunctive loop summary. We first

compare our generated loop summaries with existing results in Xie et al. [2016] and Boutonnet and

Halbwachs [2019] (for eudiv, correct1), and find that our approach mostly generate more accurate

loop summaries. Then we test our approach on WCET benchmarks in Gustafsson et al. [2010]

related to affine loop summary and adapt Speed benchmarks in Gulwani et al. [2009] to affine

runtime behaviour by fixing the number of loop iterations in either the outer or the inner loop. In

these benchmarks, we use a special variable cnt to represent the number of loop iterations of an

outer/inner loop. The results for these benchmarks were previously not reported, and our results

show that our approach generates precise affine disjunctive loop summaries for these benchmarks.

Third, Table 3 presents the comparison with the state-of-the-art software verifiers SeaHorn [Sea-

Horn 2015], CPAChecker [CPAchecker 2022], Veriabs [Darke et al. 2021] and the tool fromWang and

Lin [2023] (the column "OOPSLA23" in the table) .We first have the comparison over the benchmarks

in Table 1 (i.e., the benchmarks except for "SV-COMP" in Table 3). For this part of benchmarks, since

both SeaHorn and CPAChecker require the user to provide a goal property, we feed them simple goal

properties such as the equality between variables and constants (e.g., 𝑥 = 𝑦, 𝑥 = 100, etc.) arising

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:23

from the disjunctive feature of the benchmarks. Thenwe choose representative benchmarks with dis-

junctive feature from the categories loop-new, loop-lit, loop-crafted-1, loops, loop-invariants, loop-zilu,
loop-simple of SV-COMP and compare the results between our approach and Seahorn/CPAChecker.

These benchmarks from SV-COMP covers typical disjunctive features including multi-phase loop,
loop with if-else or if-else-break, loop with nondeterminism-branch, loop with switch-case, loop under
non-initialized variables, mode transition, nested loops. We keep the original assertions for the bench-

marks from SV-COMP. In the table, the columns "SeaHorn"/"CPAChecker"/"Veriabs"/"OOPSLA23"

mean the results generated by SeaHorn/CPAChecker/Veriabs/OOPSLA23, and the "Proof" column

specifies whether the tool could verify the given assertion for which the symbol "F" (resp. "T")

means the obtained results are incapable (resp. capable) of checking the assertions respectively.

We set a time-out of 10 hours in this table. One can observe that these tools fail on most of the

benchmarks even if these benchmarks are at a small scale, while our approach succeeds in checking

the assertions in all the benchmarks and is substantially more time efficient. We find that the

reasons behind these tools include failure to handle break-statement such as Gopan07, incapability
to handle non-initialized variables such as fig1a, fig6a, fig1c, eudiv, correct1, janne_complex, minver,
fft1, incompetence to handle disjunction such as Halbwachs, insufficient to handle nested loops

with complex control flow such as janne_complex, minver, fft1, etc.

Table 4. Experiment for Invariant Propagation

Benchmark

Our Approach

No PPG PPG

Name Loc Dim Time (s) Time (s) Speedup

POPL07★ [Sharma et al. 2011]

3p 3 9 <0.01 <0.01 1.00X

4p 4 16 0.05 0.04 1.25X

5p 5 25 0.33 0.05 6.60X

6p 6 36 3.32 0.09 36.89X

7p 7 49 35.40 0.21 168.57X

8p 8 64 359.21 0.40 898.03X

9p 9 81 2900.43 0.84 3452.89X

Finally, Table 4 demonstrates the improvement of speedup by our invariant propagation technique.

In Table 4, "𝑟 -p" means that 𝑟 is a benchmark-inside number to show how many locations are there

in the ATS, "Loc" means the number of locations under ATS, "Dim" means the number of unknown

coefficients at all locations, "No PPG" means using our disjunctive affine invariant generation over

each location under ATS without invariant propagation (i.e., following the original approach in Liu

et al. [2022]), "PPG" means using our invariant propagation, "Time(s)" means the runtime measured

in seconds, and "Speedup" means the ratio of time consumed by "No PPG" against "PPG". The

experimental results in Table 4 show that our invariant propagation could substantially improve

the time efficiency over large benchmarks.

Remark 3 (Other Related Approaches). We are unable to have direct comparison with the
very related work Boutonnet and Halbwachs [2019]; Henry et al. [2012]; Lin et al. [2021]; Riley and
Fedyukovich [2022]; Xie et al. [2016] due to the following reasons. First, the works Boutonnet and
Halbwachs [2019]; Lin et al. [2021]; Xie et al. [2016] neither publicize their implementation nor report
the detailed invariants in some key benchmarks such as janne_complex, minver, fft1. Second, although
the tool PAGAI [Henry et al. 2012] claims the functionality of disjunctive invariant generation, we
find that this functionality could not work in the disjunctive-invariant-generation mode. Third, the
tool in Riley and Fedyukovich [2022] accepts only the smtlib format of the CHC solver and has a
preprocessing on the original CHC input, making the recovery of the original loop information difficult.
We have tried the submodules of SeaHorn [SeaHorn 2015] and Eldarica [Eldarica 2022] to transform

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:24 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

several simple examples (e.g., Gopan07 and POPL07) in this paper into their CHC format, but this tool
does not terminate on the CHC inputs of these simple examples. We also note that machine learning
approaches [Ryan et al. 2020; Si et al. 2018; Yao et al. 2020] could also generate disjunctive invariants,
but we found robustness problem that a slight deviation in a simple program (without changing the
branch structure in the loop) can cause these approaches non-terminating. Our approach is based on
constraint solving and therefore does not have this robustness issue. □

7 RELATEDWORKS
Below we compare our approach with the most related approaches in the literature. We first have

the comparison with the constraint-solving approaches.

• Our approach uses the framework to apply Farkas’ Lemma as proposed in Colón et al. [2003];

Liu et al. [2022]; Sankaranarayanan et al. [2004b] and extend the framework to disjunctive

affine invariants and loop summary, for which our basic contribution is the construction of an

affine transition system that reflects the disjunctive feature from the conditional branches in a

loop. Furthermore, we propose invariant propagation to improve the time efficiency, and the

use of loop summary to handle nested loops. The recent result [Ji et al. 2022] also considers

Farkas’ Lemma, but focuses on conjunctive affine invariants over unnested affine while loops

through the use of eigenvalues and roots of polynomial equations, and hence is orthogonal

to our approach. Besides, other approaches on affine invariant generation include de Oliveira

et al. [2017]; Gulwani et al. [2008]; Gupta and Rybalchenko [2009]. The approach [Gulwani

et al. 2008] solves the quadratic constraints derived from Farkas’ Lemma by SAT solvers and

bit-vector modeling. The approach [de Oliveira et al. 2017] uses eigenvectors to handle several

restricted classes of conjunctive affine invariants. The tool InvGEN [Gupta and Rybalchenko

2009] generates conjunctive affine invariants by an integrated use of abstract interpretation

and Farkas’ Lemma. These approaches propose completely different techniques, and thus are

orthogonal to our approach.

• Since our approach targets affine invariant generation, it is incomparable with previous

results on polynomial invariant generation [Adjé et al. 2015; Chatterjee et al. 2020; Chen

et al. 2015; Cousot 2005; de Oliveira et al. 2016; Hrushovski et al. 2018; Humenberger et al.

2017; Kapur 2005; Lin et al. 2014; Rodríguez-Carbonell and Kapur 2004b; Sankaranarayanan

et al. 2004a; Yang et al. 2010]. Moreover, most of these approaches consider only conjunctive

polynomial invariants, and hence do not consider disjunction.

It is also worth noting that the previous work [Sharma et al. 2011] proposes a general framework

for detecting multiphase disjunctive invariants that can be instantiated with constraint solving.

Multiphase disjunctive invariants are a special case of our disjunctive pattern (that considers

standalone conjunctive invariants at top-level branches) in the sense that each phase in a multiphase

feature is directly captured by its phase condition as a top-level branch in our approach. Therefore,

we consider a wider class of disjunctive invariants as compared with Sharma et al. [2011].

Second, we compare our approach with the results [Lin et al. 2021; Xie et al. 2016] that consider

a similar disjunctive pattern to ours. These approaches propose path dependency automata that

consider different execution paths of the loop body w.r.t whether each conditional branch in the

loop body is entered or not, treat each execution path as a standalone mode, and have transitions

between these modes. However, an indispensible ingredient of path dependency automata is the

exact estimation of the number of loop iterations sojourning in each mode, and hence is limited

to inductive variables (i.e., assignments must be in the form 𝑥 := 𝑥 + 𝑐 or 𝑥 := 𝑐 ∗ 𝑥) and strict

alternation between different modes. Our approach directly constructs affine transition systems

between different top-level branch locations, and hence do not have such limitation. Moreover, we

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:25

extend our approach to handle nested loops via loop summary, while these approaches could not

have an adequate support for nested loops.

Third, we compare our approach with abstract interpretation. Compared with the approaches

that generate conjunctive affine invariants via polyhedral abstract domain [Bagnara et al. 2003;

Cousot and Halbwachs 1978; Singh et al. 2017], our approach targets the more general case of

disjunctive affine invariants. There are also a bunch of abstract-interpretation approaches in

disjunctive affine invariant generation, such as the work [Gopan and Reps 2007] that performs

disjunctive partitioning by representing the contribution of each iteration with a separate abstract-

domain element, the recent work [Boutonnet and Halbwachs 2019] that distinguishes different

disjunctive cases by different entries into the conditional branches w.r.t the input values, and the

state-of-the-art tool PAGAI [Henry et al. 2012] that may infer disjunctive invariants as disjunctions

of elements of the abstract domain via specific iteration algorithm. These approaches are based on

abstract interpretation and heuristics different from our disjunctive pattern and techniques, and

hence are orthogonal to our approach.

Fourth, we compare our approach with recurrence analysis [Farzan and Kincaid 2015; Kincaid

et al. 2017, 2018]. Recurrence analysis usually relies on the existence of a closed form solution. For

example, the very recent most related recurrence analysis approach [Wang and Lin 2023] (that

also targets disjunctive invariants and loop summary) requires the (ultimate) strict alternation

between top-level conditional branches to ensure the existence of a closed form solution, so that

the applicability of this approach is limited and does not include nested loops. Our approach is not

limited by the absence of a closed form solution.

Fifth, we compare our approach with other methods such as machine learning, inference and

data-driven approaches. Unlike constraint solving that can have an accuracy guarantee for the

generated invariants based on the constraints, these methods cannot have an accuracy guarantee.

Furthermore, machine learning and data-driven approaches themselves cannot guarantee that the

generated assertions are indeed invariants. Moreover, our approach can generate invariants without
the need of a goal property, while these approaches usually requires a goal property. Note that the

invariant generation without a given goal property is a classical setting (see e.g. Colón et al. [2003];

Cousot and Halbwachs [1978]), and has applications in loop summary and probabilistic program

verification (see e.g. Chakarov and Sankaranarayanan [2013]; Wang et al. [2021]).

Finally, we compare our approach with the related approaches on loop summary. Compared

with the approaches [Cousot and Cousot 2001, 2002] that are based on convex polyhedra abstract

domain and can only generate conjunctive affine loop summaries, our approach is able to generate

disjunctive loop summaries. Compared with the approach by Kranz and Simon [2018] that applies

Heyting completion [Giacobazzi and Scozzari 1998] (to make an existing domain meet-distributive)

on-demand and computes a summary of the function for each on-demand created predicate (repre-

sented via Herbrand terms), our approach is capable of generating affine inequality invariants with

arbitrary coefficients, while their approach mainly uses an equality domain (as well as a pointer

domain) to track equality relations of limited form between variables. Compared with the approach

by Boutonnet and Halbwachs [2019] that enhances abstract interpretation with disjunction from

distinct entries into the conditional branches in the program by different initial inputs, our approach

is orthogonal in the sense that we apply Farkas’ Lemma and the top-level branches, which are

completely different. Compared with (i) the PIPS tool [Ancourt et al. 2010; Irigoin et al. 1991; PIPS

2022] that employs heuristics to generate conjunctive affine loop summaries and (ii) the approach

by Ancourt et al. [2010] that generates conjunctive affine invariants by a simple heuristics that

examines the stepwise incremental update of affine assignments, our approach follows a com-

pletely different methodology and generates disjunctive affine loop summary. Compared with the

approaches by Popeea and Chin [2006, 2013] that maintain a set of limited pre-fixed number of

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:26 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

polyhedra for abstracting program states at each program point (to derive a disjunctive polyhedral

analysis) under the framework of abstract interpretation, our approach is orthogonal to them and

does not require the user to manually provide assertions. It would also be an interesting future

direction to investigate how our approach could be used for procedure summary [Allen 1974;

Gulwani and Tiwari 2007; Zhang et al. 2014].

8 CONCLUSION AND FUTUREWORK
In this work, we proposed a novel approach to generate affine disjunctive invariants and loop

summaries via Farkas’ Lemma. Experimental results show that our approach is capable of deriving

substantially more accurate affine disjunctive invariants and loop summaries against existing

approaches. One future direction would be to consider extensions in Remark 2. Another interesting

direction is to extend our approach to procedure summary.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science Foundation under Grant

No. nnnnnnn and Grant No. mmmmmmm. Any opinions, findings, and conclusions or recommen-

dations expressed in this material are those of the author and do not necessarily reflect the views

of the National Science Foundation.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:27

REFERENCES
Assalé Adjé, Pierre-Loïc Garoche, and Victor Magron. 2015. Property-based Polynomial Invariant Generation Using

Sums-of-Squares Optimization. In SAS (LNCS, Vol. 9291). Springer, 235–251.
Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. 2012. Ufo: A Framework for Abstraction- and Interpolation-

Based Software Verification. In CAV (LNCS, Vol. 7358). Springer, 672–678. https://doi.org/10.1007/978-3-642-31424-7_48

Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. 2010. Multi-dimensional Rankings, Program Termination,

and Complexity Bounds of Flowchart Programs. In SAS (LNCS, Vol. 6337). Springer, 117–133. https://doi.org/10.1007/978-

3-642-15769-1_8

Frances E. Allen. 1974. Interprocedural Data Flow Analysis. In Information Processing, Proceedings of the 6th IFIP Congress
1974, Stockholm, Sweden, August 5-10, 1974, Jack L. Rosenfeld (Ed.). North-Holland, 398–402.

Corinne Ancourt, Fabien Coelho, and François Irigoin. 2010. A Modular Static Analysis Approach to Affine Loop Invariants

Detection. Electron. Notes Theor. Comput. Sci. 267, 1 (2010), 3–16. https://doi.org/10.1016/j.entcs.2010.09.002

Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi. 2021. Polynomial

reachability witnesses via Stellensätze. In PLDI. ACM, 772–787. https://doi.org/10.1145/3453483.3454076

Roberto Bagnara, Patricia M. Hill, Elisa Ricci, and Enea Zaffanella. 2003. Precise Widening Operators for Convex Polyhedra.

In Static Analysis, 10th International Symposium, SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings (Lecture
Notes in Computer Science, Vol. 2694), Radhia Cousot (Ed.). Springer, 337–354. https://doi.org/10.1007/3-540-44898-5_19

Roberto Bagnara, Elisa Ricci, Enea Zaffanella, and PatriciaM. Hill. 2002. Possibly Not Closed Convex Polyhedra and the Parma

Polyhedra Library. In SAS (Lecture Notes in Computer Science, Vol. 2477). Springer, 213–229. https://doi.org/10.1007/3-

540-45789-5_17

Amir M. Ben-Amram and Samir Genaim. 2017. On Multiphase-Linear Ranking Functions. In CAV (LNCS, Vol. 10427), Rupak
Majumdar and Viktor Kuncak (Eds.). Springer, 601–620. https://doi.org/10.1007/978-3-319-63390-9_32

Rémy Boutonnet and Nicolas Halbwachs. 2019. Disjunctive Relational Abstract Interpretation for Interprocedural Program

Analysis. In Verification, Model Checking, and Abstract Interpretation - 20th International Conference, VMCAI 2019, Cascais,
Portugal, January 13-15, 2019, Proceedings (LNCS, Vol. 11388), Constantin Enea and Ruzica Piskac (Eds.). Springer, 136–159.

https://doi.org/10.1007/978-3-030-11245-5_7

Aaron R. Bradley. 2012. Understanding IC3. In Theory and Applications of Satisfiability Testing - SAT 2012 - 15th International
Conference, Trento, Italy, June 17-20, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7317), Alessandro Cimatti

and Roberto Sebastiani (Eds.). Springer, 1–14. https://doi.org/10.1007/978-3-642-31612-8_1

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2005. Linear Ranking with Reachability. In CAV (LNCS, Vol. 3576).
Springer, 491–504. https://doi.org/10.1007/11513988_48

Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2011. Compositional Shape Analysis by Means

of Bi-Abduction. J. ACM 58, 6 (2011), 26:1–26:66. https://doi.org/10.1145/2049697.2049700

Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In CAV (LNCS,
Vol. 8044). Springer, 511–526. https://doi.org/10.1007/978-3-642-39799-8_34

Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. 2019. Non-polynomial Worst-Case Analysis of

Recursive Programs. ACM Trans. Program. Lang. Syst. 41, 4 (2019), 20:1–20:52. https://doi.org/10.1145/3339984

Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Ehsan Kafshdar Goharshady. 2020. Polynomial invariant

generation for non-deterministic recursive programs. In PLDI. ACM, 672–687. https://doi.org/10.1145/3385412.3385969

Yu-Fang Chen, Chih-Duo Hong, Bow-Yaw Wang, and Lijun Zhang. 2015. Counterexample-Guided Polynomial Loop

Invariant Generation by Lagrange Interpolation. In CAV (LNCS, Vol. 9206). Springer, 658–674. https://doi.org/10.1007/978-
3-319-21690-4_44

Yinghua Chen, Bican Xia, Lu Yang, Naijun Zhan, and Chaochen Zhou. 2007. Discovering Non-linear Ranking Functions by

Solving Semi-algebraic Systems. In ICTAC (LNCS, Vol. 4711). Springer, 34–49. https://doi.org/10.1007/978-3-540-75292-9_3
Clang Static Analyzer 2022. Clang Static Analyzer: A source code analysis tool that finds bugs in C, C++, and Objective-C

programs. https://clang-analyzer.llvm.org/.

Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. 2003. Linear Invariant Generation Using Non-linear Constraint

Solving. In CAV (LNCS, Vol. 2725). Springer, 420–432. https://doi.org/10.1007/978-3-540-45069-6_39

Michael Colón and Henny Sipma. 2001. Synthesis of Linear Ranking Functions. In TACAS (LNCS, Vol. 2031). Springer, 67–81.
https://doi.org/10.1007/3-540-45319-9_6

Patrick Cousot. 2005. Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and

Semidefinite Programming. In VMCAI (LNCS, Vol. 3385). Springer, 1–24. https://doi.org/10.1007/978-3-540-30579-8_1

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs

by Construction or Approximation of Fixpoints. In POPL. ACM, 238–252. https://doi.org/10.1145/512950.512973

Patrick Cousot and Radhia Cousot. 2001. Compositional Separate Modular Static Analysis of Programs by Abstract

Interpretation. In SSGRR. 6–10.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1007/978-3-642-31424-7_48
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.1016/j.entcs.2010.09.002
https://doi.org/10.1145/3453483.3454076
https://doi.org/10.1007/3-540-44898-5_19
https://doi.org/10.1007/3-540-45789-5_17
https://doi.org/10.1007/3-540-45789-5_17
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-030-11245-5_7
https://doi.org/10.1007/978-3-642-31612-8_1
https://doi.org/10.1007/11513988_48
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1145/3339984
https://doi.org/10.1145/3385412.3385969
https://doi.org/10.1007/978-3-319-21690-4_44
https://doi.org/10.1007/978-3-319-21690-4_44
https://doi.org/10.1007/978-3-540-75292-9_3
https://clang-analyzer.llvm.org/
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/3-540-45319-9_6
https://doi.org/10.1007/978-3-540-30579-8_1
https://doi.org/10.1145/512950.512973

1:28 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

Patrick Cousot and Radhia Cousot. 2002. Modular Static Program Analysis. In Compiler Construction, 11th International
Conference, CC 2002, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2002,
Grenoble, France, April 8-12, 2002, Proceedings (LNCS, Vol. 2304), R. Nigel Horspool (Ed.). Springer, 159–178. https:

//doi.org/10.1007/3-540-45937-5_13

Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery of Linear Restraints Among Variables of a Program. In

POPL. ACM Press, 84–96. https://doi.org/10.1145/512760.512770

CPAchecker 2022. CPAchecker: The Configurable Software-Verification Platform. https://cpachecker.sosy-lab.org.

Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. 2008. DySy: dynamic symbolic execution for invariant

inference. In ICSE. ACM, 281–290. https://doi.org/10.1145/1368088.1368127

Priyanka Darke, Sakshi Agrawal, and R Venkatesh. 2021. VeriAbs: A tool for scalable verification by abstraction (competition

contribution). In Tools and Algorithms for the Construction and Analysis of Systems: 27th International Conference, TACAS
2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City,
Luxembourg, March 27–April 1, 2021, Proceedings, Part II 27. Springer, 458–462.

Cristina David, Pascal Kesseli, Daniel Kroening, and Matt Lewis. 2016. Danger Invariants. In FM (LNCS, Vol. 9995). 182–198.
https://doi.org/10.1007/978-3-319-48989-6_12

Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. 2016. Polynomial Invariants by Linear Algebra. In ATVA (LNCS,
Vol. 9938). 479–494. https://doi.org/10.1007/978-3-319-46520-3_30

Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. 2017. Synthesizing Invariants by Solving Solvable Loops. In

ATVA (LNCS, Vol. 10482). Springer, 327–343. https://doi.org/10.1007/978-3-319-68167-2_22

Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan. 2013. Inductive invariant generation via abductive inference.

In OOPSLA. ACM, 443–456. https://doi.org/10.1145/2509136.2509511

Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp Rümmer. 2011. Software Verification Using k-Induction.

In SAS (LNCS, Vol. 6887), Eran Yahav (Ed.). Springer, 351–368. https://doi.org/10.1007/978-3-642-23702-7_26

Eldarica 2022. Eldarica: A model checker for Horn clauses, Numerical Transition Systems, and software programs. https:

//github.com/uuverifiers/eldarica.

J. Farkas. 1894. A Fourier-féle mechanikai elv alkalmazásai (Hungarian). Mathematikaiés Természettudományi Értesitö 12
(1894), 457–472.

Azadeh Farzan and Zachary Kincaid. 2015. Compositional Recurrence Analysis. In FMCAD. IEEE, 57–64.
Ting Gan, Bican Xia, Bai Xue, Naijun Zhan, and Liyun Dai. 2020. Nonlinear Craig Interpolant Generation. In CAV (LNCS,

Vol. 12224). Springer, 415–438. https://doi.org/10.1007/978-3-030-53288-8_20

Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. 2014. ICE: A Robust Framework for Learning Invariants.

In CAV (LNCS, Vol. 8559). Springer, 69–87. https://doi.org/10.1007/978-3-319-08867-9_5

Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016. Learning invariants using decision trees and implication

counterexamples. In POPL. ACM, 499–512. https://doi.org/10.1145/2837614.2837664

Roberto Giacobazzi and Francesca Scozzari. 1998. A Logical Model for Relational Abstract Domains. ACM Trans. Program.
Lang. Syst. 20, 5 (1998), 1067–1109. https://doi.org/10.1145/293677.293680

Denis Gopan and Thomas W. Reps. 2007. Guided Static Analysis. In Static Analysis, 14th International Symposium, SAS 2007,
Kongens Lyngby, Denmark, August 22-24, 2007, Proceedings (LNCS, Vol. 4634), Hanne Riis Nielson and Gilberto Filé (Eds.).

Springer, 349–365. https://doi.org/10.1007/978-3-540-74061-2_22

Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. 2009. SPEED: precise and efficient static estimation of program

computational complexity. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.). ACM, 127–139.

https://doi.org/10.1145/1480881.1480898

Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. 2008. Program analysis as constraint solving. In PLDI.
ACM, 281–292. https://doi.org/10.1145/1375581.1375616

Sumit Gulwani and Ashish Tiwari. 2007. Computing Procedure Summaries for Interprocedural Analysis. In Programming
Languages and Systems, 16th European Symposium on Programming, ESOP 2007, Held as Part of the Joint European
Conferences on Theory and Practics of Software, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings (Lecture
Notes in Computer Science, Vol. 4421), Rocco De Nicola (Ed.). Springer, 253–267. https://doi.org/10.1007/978-3-540-71316-

6_18

Ashutosh Gupta and Andrey Rybalchenko. 2009. InvGen: An Efficient Invariant Generator. In CAV (LNCS, Vol. 5643).
Springer, 634–640. https://doi.org/10.1007/978-3-642-02658-4_48

Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. 2010. The Mälardalen WCET Benchmarks – Past, Present

and Future, Björn Lisper (Ed.). OCG, Brussels, Belgium, 137–147.

Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2020. Learning fast and precise numerical analysis.

In PLDI. ACM, 1112–1127. https://doi.org/10.1145/3385412.3386016

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1145/512760.512770
https://cpachecker.sosy-lab.org
https://doi.org/10.1145/1368088.1368127
https://doi.org/10.1007/978-3-319-48989-6_12
https://doi.org/10.1007/978-3-319-46520-3_30
https://doi.org/10.1007/978-3-319-68167-2_22
https://doi.org/10.1145/2509136.2509511
https://doi.org/10.1007/978-3-642-23702-7_26
https://github.com/uuverifiers/eldarica
https://github.com/uuverifiers/eldarica
https://doi.org/10.1007/978-3-030-53288-8_20
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1145/2837614.2837664
https://doi.org/10.1145/293677.293680
https://doi.org/10.1007/978-3-540-74061-2_22
https://doi.org/10.1145/1480881.1480898
https://doi.org/10.1145/1375581.1375616
https://doi.org/10.1007/978-3-540-71316-6_18
https://doi.org/10.1007/978-3-540-71316-6_18
https://doi.org/10.1007/978-3-642-02658-4_48
https://doi.org/10.1145/3385412.3386016

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:29

Julien Henry, David Monniaux, and Matthieu Moy. 2012. PAGAI: A Path Sensitive Static Analyser. Electron. Notes Theor.
Comput. Sci. 289 (2012), 15–25. https://doi.org/10.1016/j.entcs.2012.11.003

Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. 2018. Polynomial Invariants for Affine Programs. In

LICS. ACM, 530–539. https://doi.org/10.1145/3209108.3209142

Andreas Humenberger, Maximilian Jaroschek, and Laura Kovács. 2017. Automated Generation of Non-Linear Loop Invariants

Utilizing Hypergeometric Sequences. In ISSAC. ACM, 221–228. https://doi.org/10.1145/3087604.3087623

François Irigoin, Pierre Jouvelot, and Rémi Triolet. 1991. Semantical interprocedural parallelization: an overview of the PIPS

project. In Proceedings of the 5th international conference on Supercomputing, ICS 1991, Cologne, Germany, June 17-21, 1991,
Edward S. Davidson and Friedel Hossfeld (Eds.). ACM, 244–251. https://doi.org/10.1145/109025.109086

Yucheng Ji, Hongfei Fu, Bin Fang, and Haibo Chen. 2022. Affine Loop Invariant Generation via Matrix Algebra. In Computer
Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part I (Lecture Notes
in Computer Science, Vol. 13371), Sharon Shoham and Yakir Vizel (Eds.). Springer, 257–281. https://doi.org/10.1007/978-3-

031-13185-1_13

Hari Govind V. K., Sharon Shoham, and Arie Gurfinkel. 2022. Solving constrained Horn clauses modulo algebraic data types

and recursive functions. Proc. ACM Program. Lang. 6, POPL (2022), 1–29. https://doi.org/10.1145/3498722

Deepak Kapur. 2005. Automatically Generating Loop Invariants Using Quantifier Elimination. In Deduction and Applications
(Dagstuhl Seminar Proceedings, Vol. 05431). Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI),

Schloss Dagstuhl, Germany. http://drops.dagstuhl.de/opus/volltexte/2006/511

Zachary Kincaid, Jason Breck, Ashkan Forouhi Boroujeni, and Thomas W. Reps. 2017. Compositional recurrence analysis

revisited. In PLDI. ACM, 248–262. https://doi.org/10.1145/3062341.3062373

Zachary Kincaid, John Cyphert, Jason Breck, and Thomas W. Reps. 2018. Non-linear reasoning for invariant synthesis. Proc.
ACM Program. Lang. 2, POPL (2018), 54:1–54:33. https://doi.org/10.1145/3158142

Julian Kranz and Axel Simon. 2018. Modular Analysis of Executables Using On-Demand Heyting Completion. In Verification,
Model Checking, and Abstract Interpretation - 19th International Conference, VMCAI 2018, Los Angeles, CA, USA, January
7-9, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10747), Isil Dillig and Jens Palsberg (Eds.). Springer, 291–312.
https://doi.org/10.1007/978-3-319-73721-8_14

Daniel Larraz, Enric Rodríguez-Carbonell, and Albert Rubio. 2013. SMT-Based Array Invariant Generation. In Verification,
Model Checking, and Abstract Interpretation, 14th International Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013.
Proceedings (Lecture Notes in Computer Science, Vol. 7737), Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni (Eds.).

Springer, 169–188. https://doi.org/10.1007/978-3-642-35873-9_12

Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen. 2019. SLING: using dynamic analysis to infer program invariants in

separation logic. In Proceedings of the 40th ACMSIGPLANConference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 788–801. https:

//doi.org/10.1145/3314221.3314634

Wang Lin, Min Wu, Zhengfeng Yang, and Zhenbing Zeng. 2014. Proving total correctness and generating preconditions for

loop programs via symbolic-numeric computation methods. Frontiers Comput. Sci. 8, 2 (2014), 192–202.
Yingwen Lin, Yao Zhang, Sen Chen, Fu Song, Xiaofei Xie, Xiaohong Li, and Lintan Sun. 2021. Inferring Loop Invariants for

Multi-Path Loops. In International Symposium on Theoretical Aspects of Software Engineering, TASE 2021, Shanghai, China,
August 25-27, 2021. IEEE, 63–70. https://doi.org/10.1109/TASE52547.2021.00030

Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li. 2022. Scalable Linear Invariant Generation with

Farkas’ Lemma. Proc. ACM Program. Lang. 6, OOPSLA2, Article 132 (oct 2022), 29 pages. https://doi.org/10.1145/3563295

Zohar Manna and Amir Pnueli. 1995. Temporal verification of reactive systems - safety. Springer.
Kenneth L. McMillan. 2008. Quantified Invariant Generation Using an Interpolating Saturation Prover. In TACAS (LNCS,

Vol. 4963), C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, 413–427. https://doi.org/10.1007/978-3-540-78800-3_31

Antoine Miné. 2004. Relational Abstract Domains for the Detection of Floating-Point Run-Time Errors. In Programming
Languages and Systems, 13th European Symposium on Programming, ESOP 2004, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings (Lecture
Notes in Computer Science, Vol. 2986), David A. Schmidt (Ed.). Springer, 3–17. https://doi.org/10.1007/978-3-540-24725-8_2

Antoine Miné. 2006. Symbolic Methods to Enhance the Precision of Numerical Abstract Domains. In Verification, Model
Checking, and Abstract Interpretation, 7th International Conference, VMCAI 2006, Charleston, SC, USA, January 8-10, 2006,
Proceedings (Lecture Notes in Computer Science, Vol. 3855), E. Allen Emerson and Kedar S. Namjoshi (Eds.). Springer,

348–363. https://doi.org/10.1007/11609773_23

ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2012. Using dynamic analysis to discover

polynomial and array invariants. In ICSE. IEEE Computer Society, 683–693. https://doi.org/10.1109/ICSE.2012.6227149

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by

interactive generalization. In PLDI. ACM, 614–630. https://doi.org/10.1145/2908080.2908118

PIPS 2022. PIPS. https://pips4u.org

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1016/j.entcs.2012.11.003
https://doi.org/10.1145/3209108.3209142
https://doi.org/10.1145/3087604.3087623
https://doi.org/10.1145/109025.109086
https://doi.org/10.1007/978-3-031-13185-1_13
https://doi.org/10.1007/978-3-031-13185-1_13
https://doi.org/10.1145/3498722
http://drops.dagstuhl.de/opus/volltexte/2006/511
https://doi.org/10.1145/3062341.3062373
https://doi.org/10.1145/3158142
https://doi.org/10.1007/978-3-319-73721-8_14
https://doi.org/10.1007/978-3-642-35873-9_12
https://doi.org/10.1145/3314221.3314634
https://doi.org/10.1145/3314221.3314634
https://doi.org/10.1109/TASE52547.2021.00030
https://doi.org/10.1145/3563295
https://doi.org/10.1007/978-3-540-78800-3_31
https://doi.org/10.1007/978-3-540-24725-8_2
https://doi.org/10.1007/11609773_23
https://doi.org/10.1109/ICSE.2012.6227149
https://doi.org/10.1145/2908080.2908118
https://pips4u.org

1:30 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

Andreas Podelski and Andrey Rybalchenko. 2004. A Complete Method for the Synthesis of Linear Ranking Functions. In

VMCAI (LNCS, Vol. 2937). Springer, 239–251. https://doi.org/10.1007/978-3-540-24622-0_20

Corneliu Popeea and Wei-Ngan Chin. 2006. Inferring Disjunctive Postconditions. In Advances in Computer Science - ASIAN
2006. Secure Software and Related Issues, 11th Asian Computing Science Conference, Tokyo, Japan, December 6-8, 2006,
Revised Selected Papers (Lecture Notes in Computer Science, Vol. 4435), Mitsu Okada and Ichiro Satoh (Eds.). Springer,

331–345. https://doi.org/10.1007/978-3-540-77505-8_26

Corneliu Popeea and Wei-Ngan Chin. 2013. Dual analysis for proving safety and finding bugs. Sci. Comput. Program. 78, 4
(2013), 390–411. https://doi.org/10.1016/j.scico.2012.07.004

Daniel Riley and Grigory Fedyukovich. 2022. Multi-Phase Invariant Synthesis. In ESEC/FSE 2022. To appear.

Enric Rodríguez-Carbonell and Deepak Kapur. 2004a. An Abstract Interpretation Approach for Automatic Generation of

Polynomial Invariants. In SAS (LNCS, Vol. 3148). Springer, 280–295. https://doi.org/10.1007/978-3-540-27864-1_21

Enric Rodríguez-Carbonell and Deepak Kapur. 2004b. Automatic Generation of Polynomial Loop Invariants: Algebraic

Foundations. In ISSAC. ACM, 266–273. https://doi.org/10.1145/1005285.1005324

Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu, and Suman Jana. 2020. CLN2INV: Learning Loop Invariants with

Continuous Logic Networks. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net. https://openreview.net/forum?id=HJlfuTEtvB

Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. 2004a. Non-linear loop invariant generation using Gröbner

bases. In POPL. ACM, 318–329. https://doi.org/10.1145/964001.964028

Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. 2004b. Constraint-Based Linear-Relations Analysis. In SAS
(LNCS, Vol. 3148). Springer, 53–68. https://doi.org/10.1007/978-3-540-27864-1_7

Alexander Schrijver. 1999. Theory of linear and integer programming. Wiley.

SeaHorn 2015. SeaHorn: A fully automated analysis framework for LLVM-based languages. http://seahorn.github.io.

Rahul Sharma and Alex Aiken. 2016. From invariant checking to invariant inference using randomized search. Formal
Methods Syst. Des. 48, 3 (2016), 235–256. https://doi.org/10.1007/s10703-016-0248-5

Rahul Sharma, Isil Dillig, Thomas Dillig, and Alex Aiken. 2011. Simplifying Loop Invariant Generation Using Splitter

Predicates. In Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings (Lecture Notes in Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer,

703–719. https://doi.org/10.1007/978-3-642-22110-1_57

Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and Aditya V. Nori. 2013. A Data Driven

Approach for Algebraic Loop Invariants. In ESOP (LNCS, Vol. 7792). Springer, 574–592. https://doi.org/10.1007/978-3-

642-37036-6_31

Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. 2018. Learning Loop Invariants for Program

Verification. In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M. Wallach, Hugo Larochelle,

Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (Eds.). 7762–7773. https://proceedings.neurips.cc/paper/

2018/hash/65b1e92c585fd4c2159d5f33b5030ff2-Abstract.html

Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2017. Fast polyhedra abstract domain. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017,
Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 46–59.

Fabio Somenzi and Aaron R. Bradley. 2011. IC3: where monolithic and incremental meet. In International Conference on
Formal Methods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October 30 - November 02, 2011, Per Bjesse and
Anna Slobodová (Eds.). FMCAD Inc., 3–8. http://dl.acm.org/citation.cfm?id=2157657

Saurabh Srivastava and Sumit Gulwani. 2009. Program verification using templates over predicate abstraction. In Proceedings
of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009, Dublin, Ireland,
June 15-21, 2009, Michael Hind and Amer Diwan (Eds.). ACM, 223–234. https://doi.org/10.1145/1542476.1542501

StInG 2006. StInG: Stanford Invariant Generator. http://theory.stanford.edu/~srirams/Software/sting.html.

SV-COMP 2023. Software Verification Competition. https://sv-comp.sosy-lab.org.

Chenglin Wang and Fangzhen Lin. 2023. Solving Conditional Linear Recurrences for Program Verification: The Periodic

Case. In OOPSLA. ACM. to appear.

Jinyi Wang, Yican Sun, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady. 2021. Quantitative analysis of

assertion violations in probabilistic programs. In PLDI. ACM, 1171–1186. https://doi.org/10.1145/3453483.3454102

Xiaofei Xie, Bihuan Chen, Yang Liu, Wei Le, and Xiaohong Li. 2016. Proteus: computing disjunctive loop summary via

path dependency analysis. In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang, and Zhendong

Su (Eds.). ACM, 61–72. https://doi.org/10.1145/2950290.2950340

Rongchen Xu, Fei He, and Bow-Yaw Wang. 2020. Interval counterexamples for loop invariant learning. In ESEC/FSE. ACM,

111–122. https://doi.org/10.1145/3368089.3409752

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-77505-8_26
https://doi.org/10.1016/j.scico.2012.07.004
https://doi.org/10.1007/978-3-540-27864-1_21
https://doi.org/10.1145/1005285.1005324
https://openreview.net/forum?id=HJlfuTEtvB
https://doi.org/10.1145/964001.964028
https://doi.org/10.1007/978-3-540-27864-1_7
http://seahorn.github.io
https://doi.org/10.1007/s10703-016-0248-5
https://doi.org/10.1007/978-3-642-22110-1_57
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-37036-6_31
https://proceedings.neurips.cc/paper/2018/hash/65b1e92c585fd4c2159d5f33b5030ff2-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/65b1e92c585fd4c2159d5f33b5030ff2-Abstract.html
http://dl.acm.org/citation.cfm?id=2157657
https://doi.org/10.1145/1542476.1542501
http://theory.stanford.edu/~srirams/Software/sting.html
https://sv-comp.sosy-lab.org
https://doi.org/10.1145/3453483.3454102
https://doi.org/10.1145/2950290.2950340
https://doi.org/10.1145/3368089.3409752

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:31

Lu Yang, Chaochen Zhou, Naijun Zhan, and Bican Xia. 2010. Recent advances in program verification through computer

algebra. Frontiers Comput. Sci. China 4, 1 (2010), 1–16. https://doi.org/10.1007/s11704-009-0074-7

Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui Gu. 2020. Learning nonlinear loop invariants with gated

continuous logic networks. In PLDI. ACM, 106–120. https://doi.org/10.1145/3385412.3385986

Xin Zhang, Ravi Mangal, Mayur Naik, and Hongseok Yang. 2014. Hybrid top-down and bottom-up interprocedural analysis.

In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -
June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 249–258. https://doi.org/10.1145/2594291.2594328

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1007/s11704-009-0074-7
https://doi.org/10.1145/3385412.3385986
https://doi.org/10.1145/2594291.2594328

1:32 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

A PROCESS OF TRANSFORMATION TO CANONICAL FORM
Here, we provide a detailed demonstration of how to transform an affine program P into its canonical

form, as shown in Figure 8 and Figure 12:

switch {

case 𝜙𝑃,1 : x := 𝐹𝑃,1 (x) ; 𝛿𝑃,1 ;
· · ·
case 𝜙𝑃,𝑝 : x := 𝐹𝑃,𝑝 (x) ; 𝛿𝑃,𝑝 ;

}

(a) C𝑃

switch {

case 𝜙𝑄,1 : x := F𝑄,1 (x) ; 𝛿𝑄,1 ;

· · ·
case 𝜙𝑄,𝑞 : x := F𝑄,𝑞 (x) ; 𝛿𝑄,𝑞 ;

}

(b) C𝑄

switch {

· · ·
case 𝜙𝑃,𝑖 :

x := (F𝑃,𝑖 (x)) ;
𝑏𝑟𝑒𝑎𝑘 ; (if 𝛿𝑃,𝑖 = break)

· · ·
case 𝜙𝑃,𝑖 ∧ 𝜙𝑄,𝑗 [F𝑃,𝑖 (x)/x] :

x := F𝑄,𝑗 (F𝑃,𝑖 (x)) ;
𝛿𝑄,𝑗 ; (if 𝛿𝑃,𝑖 = skip)

· · ·
}

(c) The sequential case

switch {

· · ·
case 𝜙𝑃,𝑖 ∧ 𝑏 :

x := F𝑃,𝑖 (x) ; 𝛿𝑃,𝑖 ;
· · ·
case 𝜙𝑄,𝑗 ∧ ¬𝑏 :

x := F𝑄,𝑗 (x) ; 𝛿𝑄,𝑗 ;

· · ·
}

(d) The conditional case

Fig. 12. The canonical form of transformation (TF) for 𝑃 , 𝑄

• For the base case where the program 𝑃 is either a single affine assignment x := F(x) or
resp. the break statement, the transformed program C𝑃 is simply switch {case true : x :=

F(x); skip; } or resp. switch {case true : x := x; break; }, respectively.
• For a sequential composition 𝑅 = 𝑃 ;𝑄 , the algorithm recursively computes C𝑃 and C𝑄 as in

Figure 12a and Figure 12b respectively, and then compute C𝑅 as in Figure 12c for which:

– For each 1 ≤ 𝑖 ≤ 𝑝 such that 𝛿𝑃,𝑖 = break, we have the branch x := F𝑃,𝑖 (x); break; (i.e.,
the branch already breaks in the execution of 𝑃).

– For each 1 ≤ 𝑖 ≤ 𝑝 and 1 ≤ 𝑗 ≤ 𝑞 such that 𝛿𝑃,𝑖 = skip, we have the branch x :=

F𝑄,𝑗 (F𝑃,𝑖 (x));𝛿𝑄,𝑗 under the branch condition 𝜙𝑃,𝑖 ∧ (𝜙𝑄,𝑗 [F𝑃,𝑖 (x)/x]) (i.e., the branch

continues to the execution of 𝑄).

• For a conditional branch 𝑅 = if 𝑏 then 𝑃 else 𝑄 , the algorithm recursively computes C𝑃 and

C𝑄 as in the previous case, and then compute C𝑅 as in Figure 12d for which:

– For each 1 ≤ 𝑖 ≤ 𝑝 , we have the branch x = F𝑃,𝑖 (x);𝛿𝑃,𝑖 ; with branch condition 𝜙𝑃,𝑖 ∧ 𝑏
(i.e., the branch conditions of 𝑃 is conjuncted with the extra condition 𝑏).

– For each 1 ≤ 𝑗 ≤ 𝑞, we have the branch x = F𝑄,𝑗 (x);𝛿𝑄,𝑗 ; with branch condition 𝜙𝑄,𝑗 ∧ ¬𝑏
(i.e., the branch conditions of 𝑄 is conjuncted with the extra condition ¬𝑏).

B PROOF OF NO ACCURACY LOSS FOR 𝜇=1
To prove that there is no accuracy loss while setting 𝜇 manually to 1, for convenience, we denote

the consecution tabular with −1 ≥ 0 as constraint consecution tabular and the consecution tabular

without −1 ≥ 0 as transition consecution tabular. Then we prove that constraint consecution

tabular is equivalent whether 𝜇 = 1 or 𝜇 = 𝑘,∀𝑘 > 0.

We scale the leftmost coefficient column 𝑘, 𝜆𝑖 ’s to be 1, 𝜆′𝑖 ’s by multiplying
1

𝑘
, where 𝜆′𝑖 =

𝜆𝑖
𝑘
. The

coefficient of invariants after transformation is the same as the previous tabular.

Consider all the constraint consecution tabular and choose the maximum 𝑘𝑚𝑎𝑥 of their 𝑘’s. Then,

we scale 𝜆𝑖 ’s, 𝑐𝑙,𝑖 ’s and 𝑑ℓ by 𝑘𝑚𝑎𝑥 and modify 𝜆′
0
to be 𝜆′′

0
= 𝜆′

0
+ 𝑘𝑚𝑎𝑥

𝑘
− 1. Note that it’s necessary

to select the fixed 𝑘𝑚𝑎𝑥 to scale 𝑐𝑙,𝑖 ’s, so that we avoid affecting the solution in the transition

consecution tabular as transition consecution tabular is always satisfied if we multiply 𝑐 with fixed

constant 𝑘𝑚𝑎𝑥 .

Thus we prove there is no accuracy loss as we set 𝜇 = 1 by means of coefficient scaling.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:33

𝑘 𝑐ℓ,1𝑥1+· · ·+ 𝑐ℓ,𝑛𝑥𝑛 + 𝑑ℓ≥0
𝜆0 1≥0
𝜆1 𝑎11𝑥1+· · ·+ 𝑎1𝑛𝑥𝑛+ 𝑎′

11
𝑥 ′
1
+· · ·+ 𝑎′

1𝑛
𝑥 ′𝑛+ 𝑏1≥0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

𝜆𝑚𝑎𝑚1𝑥1+· · ·+𝑎𝑚𝑛𝑥𝑛+𝑎′𝑚1
𝑥 ′
1
+· · ·+𝑎′𝑚𝑛𝑥

′
𝑛+𝑏𝑚≥0
−1≥0

(a) 𝜇 = 𝑘,∀𝑘 > 0

Fig. 13. Constraint consecution tabular

1 𝑐ℓ,1𝑥1+· · ·+ 𝑐ℓ,𝑛𝑥𝑛 + 𝑑ℓ≥0
𝜆′
0

1≥0
𝜆′
1
𝑎11𝑥1+· · ·+ 𝑎1𝑛𝑥𝑛+ 𝑎′

11
𝑥 ′
1
+· · ·+ 𝑎′

1𝑛
𝑥 ′𝑛+ 𝑏1≥0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

𝜆′𝑚𝑎𝑚1𝑥1+· · ·+𝑎𝑚𝑛𝑥𝑛+𝑎′𝑚1
𝑥 ′
1
+· · ·+𝑎′𝑚𝑛𝑥

′
𝑛+𝑏𝑚≥0
− 1

𝑘
≥0

Fig. 14. Transformed constraint consecution tabular

1 𝑘𝑚𝑎𝑥 · 𝑐ℓ,1𝑥1+· · ·+𝑘𝑚𝑎𝑥 · 𝑐ℓ,𝑛𝑥𝑛 +𝑘𝑚𝑎𝑥 · 𝑑ℓ≥0
𝜆′′
0

1≥0
𝜆′
1

𝑎11𝑥1+· · ·+ 𝑎1𝑛𝑥𝑛+ 𝑎′
11
𝑥 ′
1
+· · ·+ 𝑎′

1𝑛
𝑥 ′𝑛+ 𝑏1≥0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

𝜆′𝑚 𝑎𝑚1𝑥1+· · ·+ 𝑎𝑚𝑛𝑥𝑛+𝑎′𝑚1
𝑥 ′
1
+· · ·+𝑎′𝑚𝑛𝑥

′
𝑛+ 𝑏𝑚≥0

−1≥0

Fig. 15. Equivalent constraint transformation tabular

C PROOF OF CORRECTNESS OF SOLUTIONS TO INVARIANT SETS IN THE
IMPLEMENTATION PART

In the implementation, we utilize decomposition theorem of polyhedra and decompose the solution

set of invariant when 𝜇 = 1 to be a polytope 𝑃 and a polyhedral cone 𝐶 . Similarly, we denote 𝐹

as the solution set of invariants, which contains the coefficient of invariants at any locations and

𝐹 ′ as the solution set of invariants when 𝜇 = 1 in all the consecution tabular. Then the union of

the polytope and polyhedral cone is chosen as our solution set of invariants 𝐹 ∗ = 𝑃 ∪𝐶 , where
𝐹 ′ = 𝑃 +𝐶 .

Lemma 1. Decomposition theorem of polyhedra. A set 𝑃 of vectors in Euclidean space is a
polyhedron if and only if 𝑃 = 𝑄 +𝐶 for some polytope 𝑄 and some polyhedral cone 𝐶 .

Now, we are going to prove the correctness of 𝐹 ∗. I.e., the vectors in polytope and polyhedral

cone are both the coefficient of invariants in different locations.

Consider the relation between 𝐹 and 𝐹 ′, we define that 𝐹 ′′ = {𝑘 · 𝒄 | 𝒄 ∈ 𝐹 ′, 𝑘 > 0}.

Proposition 1. 𝐹 = 𝐹 ′′

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:34 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

Proof. We first consider 𝐹 ⊆ 𝐹 ′′, which equivalent to prove ∀𝒄 ∈ 𝐹, ∃𝒄0 ∈ 𝐹 ′, 𝑘 ∈ 𝑅 such that

𝑘 · 𝒄0 = 𝒄 . We consider the transition consecution tabular. Note that, the consecution tabular is

always satisfied if we scale the invariant 𝜂 (ℓ) and 𝜂 (ℓ ′) simultaneously.

Then consider the constraint consecution tabular. We have proved if we multiply 𝒄0 ∈ 𝐹 ′ with
𝑘𝑚𝑎𝑥 , we can find corresponding 𝒄 = 𝑘𝑚𝑎𝑥 ∗ 𝒄0 is the solution to constraint consecution tabular

with 𝜇 = 𝑘,∀𝑘 > 0. (the definition of 𝑘𝑚𝑎𝑥 and proof is given in Appendix A)

Thus, we prove that ∀𝒄 ∈ 𝐹 , there exists 𝒄0 ∈ 𝐹 ′ and 𝑘𝑚𝑎𝑥 ∈ 𝑅 such that 𝑘𝑚𝑎𝑥 ∗ 𝒄0 = 𝒄 and have

𝐹 ⊆ 𝐹 ′′.
Secondly, we prove 𝐹 ′′ ⊆ 𝐹 . From the definition of 𝐹 ′′, if 𝒄 ∈ 𝐹 ′, we multiply

1

𝑘
to 𝜇 = 1 in

the constraint consecution tabular, and 𝑘 · 𝒄 satisfy the transformed tabulars and other transition

consecution tabulars. So 𝑘 · 𝒄 ∈ 𝐹 , and we have 𝐹 ′′ ⊆ 𝐹 .
So 𝐹 = 𝐹 ′′. □

We utilize the decomposition theorem in 𝐹 ′ and have 𝐹 ′ = 𝑃 +𝐶 , where 𝑃 is a polytope and 𝐶 is

a polyhedral cone. From the properties of polytope and polyhedral cone, a polytope is a convex

hull of finitely many vectors and a polyhedral cone is finitely generated by some vectors.

𝑃 = {𝒑1,𝒑2, . . . ,𝒑𝒏} (1)

𝐶 = {𝒈1,𝒈2, . . . ,𝒈𝒎} (2)

Note that the addition in the theorem means Minkowski sum, Thus,

𝐹 ′ = 𝑃 +𝐶 = {𝒑1,𝒑2, . . . ,𝒑𝒏;𝒈1,𝒈2, . . . ,𝒈𝒎} (3)

Where 𝒑 𝒊’s represents the vectors finitely generate the polytope 𝑃 and 𝑔𝑖 ’s represents the vectors

finitely generate the polyhedral cone𝐶 . That means that ∀𝑣 ∈ 𝐹 ′, 𝑣 = 𝑎1𝒑1+ · · ·+𝑎𝑛𝒑𝒏 +𝑏1𝒈1+ · · ·+
𝑏𝑚𝒈𝒎 ,where

∑
𝑖 𝑎𝑖 = 1 (from the definition of convex hull) and 𝑎𝑖 , 𝑏𝑖 ≥ 0,∀𝑖 . Consider 𝐹 = 𝐹 ′′ =

{𝑘 ·𝒄 | ∃𝑘 > 0, 𝑘 ·𝒄 ∈ 𝐹, 𝒄 ∈ 𝐹 ′}, it’s concluded that∀𝒗 ∈ 𝐹, 𝒗 = 𝑎′
1
𝒑1+· · ·+𝑎′𝑛𝒑𝒏+𝑏′1+𝒈1+· · ·+𝑏′𝑚𝒈𝒎 ,

where 𝑎′𝑖 = 𝑘𝑎𝑖 , 𝑘 > 0 and 𝑏′𝑖 = 𝑘𝑏𝑖 , 𝑘 > 0.

Thus, it’s obvious that ∀𝒑 ∈ 𝑃 , we have 𝒑 ∈ 𝐹 as we can set 𝒈 𝒊 = 0,∀𝑖 . However, we can not use

the similar method to prove ∀𝒄 ∈ 𝐶, 𝒄 ∈ 𝐹 , as the∑𝑖 𝑎𝑖 equal to a non-zero number and 𝑎𝑖 ≥ 0,∀𝑖 . So
to prove the 𝑃 ∪𝐶 is also the solution set of invariants, we should consider the practical implications

of invariant.

We have known that 𝐹 = {𝒗 | 𝒗 = 𝑎′
1
𝒑1+· · ·+𝑎′𝑛𝒑𝒏+𝑏′1+1+ · · ·+𝑏′𝑚𝒈𝒎, 𝑎

′
𝑖 ≥ 0,𝒈 𝒊 ≥ 0∀𝑖,∑𝑖 𝑎

′
𝑖 > 0}

corresponding to the solution of 𝒗𝑇𝑥 <= 𝑑ℓ .

Destruct 𝐹 to be

𝐹 = {𝑝 + 𝑐 | 𝑝 = 𝑎′
1
𝒑1 + · · · + 𝑎′𝑛𝒑𝒏, 𝑐 = 𝒈1 + · · · + 𝑏′𝑚𝒈𝒎, 𝑎

′
𝑖 ≥ 0,𝒈 𝒊 ≥ 0∀𝑖,

∑︁
𝑖

𝑎′𝑖 > 0} (4)

From the above conclusion, 𝑃 ⊆ 𝐹 , which means ∀𝒑 ∈ 𝑃 , 𝒑𝑇𝒙 <= 𝑑ℓ is satisfied. Also, ∀𝒗 ∈
𝐹, 𝒗 = 𝒑 + 𝒄,𝒑 ∈ 𝑃, 𝒄 ∈ 𝐶 , and (𝒑 + 𝒄)𝑇𝒙 <= 𝑑ℓ .

Consider ∀𝜀 > 0, we have (𝜀𝒑 + 𝒄)𝑇𝒙 <= 𝑑ℓ . Thus, we finally conclude that lim𝜀→0 (𝜀𝒑 + 𝒄)𝑇𝒙 =

𝒄𝑇𝒙 <= 𝑑ℓ , which means for all 𝒄 ∈ 𝐶 , 𝒄 is also a solution to invariants. Thus we prove 𝐶 ∈ 𝐹 , and
𝑃 ∪𝐶 ∈ 𝐹 .
So it’s correct to directly use the union of the polytope and the polyhedral cone to represents

the solution set of invariants.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:35

D PROOF FOR CORRECTNESS AND ACCURACY FOR OUR INVARIANT
PROPAGATION

Below we prove the theoretical properties that the affine assertions generated from our invariant

propagation are indeed invariants, and are at least as tight as the invariants generated from the

previous approaches [Liu et al. 2022; Sankaranarayanan et al. 2004b].

Proposition 2. The affine assertions generated by the invariant propagation are invariants.

Proof. Let Γ be an ATS whose directed graph DG(Γ) has a non-crossing DFS tree𝑇 . The proof is
by induction on the BFS level of the tree𝑇 . The base step is that the affine assertion at the root (i.e.,

the initial location) is correct since it is generated by the approach [Liu et al. 2022]. The inductive

step is to show that if the affine assertions generated at the nodes of the current level are invariants,

then so are the affine assertions at the next level. The proof for the inductive step follows from the

fact that any path of the ATS Γ that visits a location ℓ ′ in the next BFS level should first visit some

location ℓ (with the valuation 𝜎 guaranteed to satisfy the invariant 𝜂 (ℓ)) in the current BFS level,

and then possibly repeatedly stays at the location ℓ ′. (Note that here we use the fact that there is
no crossing edge in the DFS tree𝑇 . This fact is captured by the initial condition 𝐾𝜏,𝑖 for a transition

(ℓ, ℓ ′, 𝜌) (that is obtained from the 𝑖th disjunctive clause Φ𝑖 of the invariant 𝜂 (ℓ)) and the invariant

𝐼 (𝜏, ℓ ′, 𝑖) for the self-loop ATS Γ [ℓ ′, 𝐾𝜏,𝑖] in a single propagation step. □

Proposition 3. The invariant propagation generates invariants at least as tight as the previous
approaches [Liu et al. 2022; Sankaranarayanan et al. 2004b].

Proof. The proof proceeds via an induction on the BFS level of the invariant propagation. For

the base step, we have that the affine invariant generated at the root is generated directly from the

previous approach [Liu et al. 2022]. Then the base step follows from the fact that the approach [Liu

et al. 2022] has the same precision as the original approach [Sankaranarayanan et al. 2004b]. For

the inductive step, suppose the induction hypothesis that the invariant of every node at the current

BFS level in the DFS tree implies the counterpart generated by the approach [Sankaranarayanan

et al. 2004b]. We prove that the implication holds for the next BFS level. The proof can be ob-

tained by observing that each individual affine inequality (as a conjunctive inequality in an affine

assertion) in the invariants generated by the approach [Sankaranarayanan et al. 2004b] on a lo-

cation ℓ ′ at the next BFS level satisfies the consecution condition derived from any transition

𝜏 = (ℓ, ℓ ′, 𝜌) to the location ℓ ′, so that each such inequality is implied by the initial condition

𝐾𝜏,𝑖 and satisfies the possible consecution condition from the self-loop in Γ [ℓ ′, 𝐾𝜏,𝑖]. Since we

apply the same approach [Sankaranarayanan et al. 2004b] (i.e., solving the same constraints for

the unknown coefficients from the consecution condition of the self-loop), the invariant 𝜂 (ℓ ′)
generated by our invariant propagation implies any individual affine inequality generated by the

approach [Sankaranarayanan et al. 2004b]. □

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:36 Hongming Liu, Jingyu Ke, Hongfei Fu, Liqian Chen, and Guoqiang Li

E FULL EXPERIMENTAL RESULTS ON INVARIANT GENERATION AND LOOP
SUMMARY COMPAREDWITH ORIGINAL RESULTS

Table 5. Full Experimental Results on Invariant Generation for Table 1

Benchmark Comparison

Name Type Time v.s. Original Result Our Result

Riley and Fedyukovich [2022] fig2 ★ Dis 0.02s >

(y>0 y>x/1000 =⇒ z=0) ∧
(y>0 y=x/1000 =⇒ z=x-1000y) ∧

(y>0 y<x/1000 =⇒ z=1000)

(z=0 ∧ 0 ≤ x ≤ 1000y-1 ∧ 1 ≤ y) ∨
(x-1000y=z ∧ x-999 ≤ 1000y ≤ x ∧ 1 ≤ y) ∨

(z=1000 ∧ 1 ≤ y ∧ 1000y ≤ x-1000)

Ancourt et al. [2010]

Gopan07 ★ LR <0.01s > x=102 x=102 ∧ y=-1

Gulwani07 ★ LR 0.01s > y=100 x=y=100

Halbwachs ★ LR 0.01s > 2≤x+y ∧ y≤x ∧ x+y≤202 (101 ≤ x ≤ 102 ∧ 0 ≤ y ∧ y+2 ≤ x) ∨ (x=101 ∧ 1 ≤ y ≤ 101)

Sharma et al. [2011] POPL07 ★
Dis <0.01s > (y=50 ∧ x ≤ 50) ∨ (x=y ∧ 50 ≤ x ≤ 100) (y=50 ∧ 0 ≤ x ≤ 49) ∨ (x=y ∧ 50 ≤ x ≤ 99)

LR <0.01s > y=100 x=y=100

Table 6. Full Experimental Results on Loop Summary for Table 2

Benchmark Comparison

Name Type Time v.s. Original Result Our Result

Xie et al. [2016]

fig1a ★ ‡

Smry

0.01s >

(x0 ≥ n0 ∧ x=x0 ∧ z=z0) ∨
(x0 <n0 ≤ z0 ∧ x=n0 ∧ z=z0) ∨
(x0 < n0 ∧ z0 < n0 ∧ x=z=n0)

(x=z=n=n0 ∧ x0 ≤ z0-1 ∧ z0 ≤ n-1) ∨
(x0+1 ≤ x=n=n0 ≤ z0=z) ∨
(x=z=n=n0 ∧ z0 ≤ x0 ≤ n-1)

fig1c ★ < 0.01s > i < m 1 ≤ j ≤ m-1 ∧ m ≤ i ≤ 2m-2 ∧ 1 ≤ k ≤ m-i0

fig1f ★ 0.02s > x10 ≥ 0 ∧ x20 ≥ 0

(s=1 ∧ x1-x2 = x10-x20 ∧ x10 ≤ x1) ∨
(s=2 ∧ x1-x2-1 = x10-x20 ∧ 1 ≤ x1-x10) ∨
(s=3 ∧ x1-x2 = x10-x20 ∧ 1 ≤ x1-x10) ∨
(s=4 ∧ x1-x2 = x10-x20 ∧ 1 ≤ x1-x10)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:37

F FULL INNER CAESS FOR FIGURE 9

while (𝑥 < 30) {

switch
case :

; Skip ;

case 𝑥 <= 29, 6 <= 𝑦,𝑦 <= 𝑥 − 1 :
𝑥 ′ <= 29, 𝑦′ >= 6, 𝑦′ − 𝑥 ′ <= −1, 36𝑥 ′ − 𝑦′ <= 36𝑥 − 3𝑦 + 18, 3𝑥 ′ − 𝑦′ >= 22, 𝑥 ′ >= 𝑥 + 3, 𝑥 ′ − 𝑦′ <= 12 ; Skip ;

case 𝑥 <= 29, 6 <= 𝑦,𝑦 <= 𝑥 − 1 :
𝑥 ′ <= 29, 𝑦′ <= 𝑥 ′ − 1, 𝑦′ <= 5, 36𝑥 − 3𝑦 + 18 >= 36𝑥 ′ − 𝑦′, 3𝑥 ′ − 𝑦′ >= 22, 𝑥 ′ − 𝑥 >= 3, 𝑥 ′ <= 𝑦′ + 12 ; Skip ;

case 𝑥 <= 29, 6 <= 𝑦,𝑦 <= 𝑥 − 1 :
𝑥 ′ <= 29, 𝑦′ <= 𝑥 ′ − 1, 𝑦′ <= 5, 36𝑥 − 3𝑦 + 18 >= 36𝑥 ′ − 𝑦′, 3𝑥 ′ − 𝑦′ >= 22, 𝑥 ′ − 𝑥 >= 3, 𝑥 ′ <= 𝑦′ + 12 ; Skip ;

case 𝑥 <= 29, 6 <= 𝑦,𝑦 <= 𝑥 − 1 :
𝑥 ′ <= 29, 𝑦′ >= 𝑥 ′, 36𝑥 − 3𝑦 + 18 >= 36𝑥 ′ − 𝑦′, 3𝑥 ′ − 𝑦′ >= 22, 𝑥 ′ − 𝑥 >= 3, 𝑥 ′ <= 𝑦′ + 12 ; Skip ;

case 𝑥 <= 29, 6 <= 𝑦,𝑦 <= 𝑥 − 1 :
𝑥 ′ >= 30, 36𝑥 − 3𝑦 + 18 >= 36𝑥 ′ − 𝑦′, 3𝑥 ′ − 𝑦′ >= 22, 𝑥 ′ − 𝑥 >= 3, 𝑥 ′ <= 𝑦′ + 12 ; Skip ;

case 𝑥 <= 29, 𝑦 <= 𝑥 − 1, 𝑦 <= 5 :

𝑥 ′ <= 29, 𝑦′ <= 𝑥 ′ − 1, 𝑦′ <= 5, 𝑥 ′ <= 𝑦′ + 12, 36𝑥 − 18𝑦 + 141 >= 36𝑥 ′ − 𝑦′ − 82, 6𝑥 − 3𝑦 + 6 >= 6𝑥 ′, 𝑦′ − 22, 2𝑥 ′ − 2𝑥 + 𝑦 − 12 >= 0, 𝑥 ′ − 𝑥 >= 4, 3𝑥 ′ − 𝑦′ >= 22 ; Skip ;

case 𝑥 <= 29, 𝑦 <= 𝑥 − 1, 𝑦 <= 5 :

𝑥 ′ <= 29, 6 <= 𝑦′, 𝑦′ <= 𝑥 ′ − 1, 𝑥 ′ <= 𝑦′ + 12, 36𝑥 − 18𝑦 + 141 >= 36𝑥 ′ − 𝑦′ − 82, 6𝑥 − 3𝑦 + 6 >= 6𝑥 ′ − 𝑦′ − 22, 2𝑥 ′ − 2𝑥 + 𝑦 − 12 >= 0, 𝑥 ′ − 𝑥 >= 4, 3𝑥 ′ − 𝑦′ >= 22 ; Skip ;

case 𝑥 <= 29, 𝑦 <= 𝑥 − 1, 𝑦 <= 5 :

𝑥 ′ <= 29, 𝑦′ <= 𝑥 ′ − 1, 𝑦′ <= 5, 𝑥 ′ <= 𝑦′ + 12, 36𝑥 − 18𝑦 + 141 >= 36𝑥 ′ − 𝑦′ − 82, 6𝑥 − 3𝑦 + 6 >= 6𝑥 ′ − 𝑦′ − 22, 2𝑥 ′ − 2𝑥 + 𝑦 − 12 >= 0, 𝑥 ′ − 𝑥 >= 4, 3𝑥 ′ − 𝑦′ >= 22 ; Skip ;

case 𝑥 <= 29, 𝑦 <= 𝑥 − 1, 𝑦 <= 5 :

𝑥 ′ <= 29, 𝑦′ >= 𝑥 ′, 𝑥 ′ <= 𝑦′ + 12, 36𝑥 − 18𝑦 + 141 >= 36𝑥 ′ − 𝑦′ − 82, 6𝑥 − 3𝑦 + 6 >= 6𝑥 ′ − 𝑦′ − 22, 2𝑥 ′ − 2𝑥 + 𝑦 − 12 >= 0, 𝑥 ′ − 𝑥 >= 4, 3𝑥 ′ − 𝑦′ >= 22 ; Skip ;

case 𝑥 <= 29, 𝑦 <= 𝑥 − 1, 𝑦 <= 5 :

𝑥 ′ >= 30, 𝑥 ′ <= 𝑦′ + 12, 36𝑥 − 18𝑦 + 141 >= 36𝑥 ′ − 𝑦′ − 82, 6𝑥 − 3𝑦 + 6 >= 6𝑥 ′ − 𝑦′ − 22, 2𝑥 ′ − 2𝑥 + 𝑦 − 12 >= 0, 𝑥 ′ − 𝑥 >= 4, 3𝑥 ′ − 𝑦′ >= 22 ; Skip ;

case 𝑥 <= 29, 𝑦 <= 𝑥 − 1, 𝑦 <= 5 :

𝑥 ′ <= 29, 𝑦′ <= 𝑥 ′ − 1, 𝑦′ <= 5, 𝑥 ′ − 2𝑥 + 𝑦 = 0, 𝑥 ′ = 𝑦′, 𝑦 + 2 <= 𝑥 ′, 𝑥 ′ <= 7 ; Skip ;

case 𝑥 <= 29, 𝑦 <= 𝑥 − 1, 𝑦 <= 5 :

𝑥 ′ <= 29, 6 <= 𝑦′, 𝑦′ <= 𝑥 ′ − 1, 𝑥 ′ − 2𝑥 + 𝑦 = 0, 𝑥 ′ = 𝑦′, 𝑦 + 2 <= 𝑥 ′, 𝑥 ′ <= 7 ; Skip ;

case 𝑥 <= 29, 𝑦 <= 𝑥 − 1, 𝑦 <= 5 :

𝑥 ′ <= 29, 𝑦′ <= 𝑥 ′ − 1, 𝑦′ <= 5, 𝑥 ′ − 2𝑥 + 𝑦 = 0, 𝑥 ′ = 𝑦′, 𝑦 + 2 <= 𝑥 ′, 𝑥 ′ <= 7 ; Skip ;

case 𝑥 <= 29, 𝑦 <= 𝑥 − 1, 𝑦 <= 5 :

𝑥 ′ <= 29, 𝑦′ >= 𝑥 ′, 𝑥 ′ − 2𝑥 + 𝑦 = 0, 𝑥 ′ = 𝑦′, 𝑦 + 2 <= 𝑥 ′, 𝑥 ′ <= 7 ; Skip ;

case 𝑥 <= 29, 𝑦 <= 𝑥 − 1, 𝑦 <= 5 :

𝑥 ′ >= 30, 𝑥 ′ − 2𝑥 + 𝑦 = 0, 𝑥 ′ = 𝑦′, 𝑦 + 2 <= 𝑥 ′, 𝑥 ′ <= 7 ; Skip ;

case 𝑥 <= 29, 𝑦 >= 𝑥 :

𝑥 ′ <= 29, 𝑦′ >= 𝑥 ′, 𝑥 ′ = 𝑥 + 2, 𝑦′ = 𝑦 − 10 ; Skip ;

case 𝑥 <= 29, 𝑦 >= 𝑥 :

𝑥 ′ <= 29, 6 <= 𝑦′, 𝑦′ <= 𝑥 ′ − 1, 𝑥 ′ = 𝑥 + 2, 𝑦′ = 𝑦 − 10 ; Skip ;

case 𝑥 <= 29, 𝑦 >= 𝑥 :

𝑥 ′ <= 29, 𝑦′ <= 𝑥 ′ − 1, 𝑦′ <= 5, 𝑥 ′ = 𝑥 + 2, 𝑦′ = 𝑦 − 10 ; Skip ;

case 𝑥 <= 29, 𝑦 >= 𝑥 :

𝑥 ′ <= 29, 𝑦′ <= 𝑥 ′ − 1, 𝑦′ <= 5, 𝑥 ′ = 𝑥 + 2, 𝑦′ = 𝑦 − 10 ; Skip ;

case 𝑥 <= 29, 𝑦 >= 𝑥 :

𝑥 ′ <= 29, 𝑦′ <= 𝑥 ′ − 1, 𝑦′ <= 5, 𝑥 ′ = 𝑥 + 2, 𝑦′ = 𝑦 − 10 ; Skip ;

case 𝑥 <= 29, 𝑦 >= 𝑥 :

𝑥 ′ >= 30, 𝑥 ′ = 𝑥 + 2, 𝑦′ = 𝑦 − 10 ; Skip ;

}

Fig. 16. The full janne_complex program after converted

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Affine Transition Systems and Invariants
	2.2 Applying Farkas' Lemma to Affine Invariant Generation

	3 Overview of Our Approach
	4 Disjunctive Affine Invariant Generation for Unnested Loops
	5 Disjunctive Affine Invariant Generation for Nested Loops
	6 Implementation and Evaluation
	7 Related Works
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Process of transformation to canonical form
	B Proof of no accuracy loss for =1
	C Proof of correctness of solutions to invariant sets in the implementation part
	D Proof for Correctness and Accuracy for our Invariant Propagation
	E Full Experimental Results on Invariant Generation and Loop Summary Compared with Original Results
	F Full Inner Caess for Figure 9

