N
N

N

HAL

open science

Affine Disjunctive Invariant Generation with Farkas’
Lemma

Hongming Liu, Jingyu Ke, Hongfei Fu, Ligian Chen, Guogiang Li

» To cite this version:

Hongming Liu, Jingyu Ke, Hongfei Fu, Ligian Chen, Guoqiang Li. Affine Disjunctive Invariant Gen-
eration with Farkas’ Lemma. 2023. hal-04004595v2

HAL Id: hal-04004595
https://hal.science/hal-04004595v2

Preprint submitted on 25 Jul 2023 (v2), last revised 18 Nov 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04004595v2
https://hal.archives-ouvertes.fr

Affine Disjunctive Invariant Generation with Farkas’ Lemma

HONGMING LIU, Shanghai Jiao Tong University, China
JINGYU KE, Shanghai Jiao Tong University, China

HONGFEI FU”, Shanghai Jiao Tong University, China

LIQIAN CHEN, National University of Defense Technology, China
GUOAQIANG LI, Shanghai Jiao Tong University, China

Invariant generation is the classical problem that aims at automated generation of assertions that over-
approximates the set of reachable program states in a program. We consider the problem of generating affine
invariants over affine while loops (i.e., loops with affine loop guards, conditional branches and assignment
statements), and explore the automated generation of disjunctive affine invariants. Disjunctive invariants
are an important class of invariants that capture disjunctive features in programs such as multiple phases,
transitions between different modes, etc., and are typically more precise than conjunctive invariants over
programs with these features. To generate tight affine invariants, existing constraint-solving approaches have
investigated the application of Farkas’ Lemma to conjunctive affine invariant generation, but none of them
considers disjunctive affine invariants.

In this work, we propose a novel approach to generate affine disjunctive invariants via Farkas’ Lemma.
By observing that disjunctive invariants often arise from the conditional branches in the loop body, our
approach first pushes all the conditional branches in a loop body to the top level so that every top-level
branch appears at the entry point of the loop body, and treats each top-level branch as a standalone branch
location. Then our approach constructs an affine transition system that describes the transitions between
the branch locations, and solves the conjunctive affine invariants at each branch by existing approaches via
Farkas’ Lemma. The final disjunctive invariant is the disjunction of the conjunctive invariants generated over
these branch locations. Furthermore, we explore the following improvements to our approach: (a) an invariant
propagation technique on the affine transition system that first generates an invariant only at the initial branch
location and then propagates this invariant to other branch locations in a breadth-first fashion to improve the
time efficiency of invariant generation; (b) an extension of our approach to generate affine disjunctive loop
summary, and (c) the use of loop summary to generate affine disjunctive invariants over nested affine while
loops. Experimental results over a wide range of benchmarks demonstrate that our approach can (i) generate
affine disjunctive invariants that are capable of proving safety properties of while loops beyond previous
approaches and state-of-the-art software verifiers with even a considerable advantage in time efficiency,
and (ii) derive substantially more accurate affine loop summaries than existing approaches. Moreover, the
improvement of invariant propagation can indeed speed up the invariant generation, and that of using loop
summary to handle nested loops can indeed generate tight disjunctive invariants for nested loops.

1 INTRODUCTION

Invariant generation is the classical problem that targets the automated generation of invariants
which can be used to aid the verification of critical program properties. An invariant at a program
location is an assertion that over-approximates the set of program states reachable to that location,
i.e,, every reachable program state to the location is guaranteed to satisfy the assertion. Since
invariants provide an over-approximation for reachable program states, they play a fundamental
role in program verification and can be used for safety [Albarghouthi et al. 2012; Manna and
Pnueli 1995; Padon et al. 2016], reachability [Alias et al. 2010; Asadi et al. 2021; Bradley et al. 2005;

“Corresponding Author

Authors’ addresses: Hongming Liu, Shanghai Jiao Tong University, Shanghai, China, hm-liu@sjtu.edu.cn; Jingyu Ke,
Shanghai Jiao Tong University, Shanghai, China, windocotber@gmail.com; Hongfei Fu, Shanghai Jiao Tong University,
Shanghai, China, jt002845@sjtu.edu.cn; Ligian Chen, National University of Defense Technology, Changsha, China, lqchen@
nudt.edu.cn; Guogiang Li, Shanghai Jiao Tong University, Shanghai, China, li.g@sjtu.edu.cn.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:2 Hongming Liu, Jingyu Ke, Hongfei Fu, Ligian Chen, and Guogiang Li

Chen et al. 2007; Colén and Sipma 2001; David et al. 2016; Podelski and Rybalchenko 2004] and
time-complexity [Chatterjee et al. 2019] analysis in program verification.

Automated approaches for invariant generation have been studied over decades and there have
been an abundance of literature along this line of research. From different types of program objects,
invariant generation targets numerical values (e.g., integers or real numbers) [Bagnara et al. 2003;
Boutonnet and Halbwachs 2019; Chatterjee et al. 2020; Colon et al. 2003; Rodriguez-Carbonell
and Kapur 2004a; Singh et al. 2017], arrays [Larraz et al. 2013; Srivastava and Gulwani 2009],
pointers [Calcagno et al. 2011; Le et al. 2019], algebraic data types [K. et al. 2022], etc. By the
different methodologies in existing approaches, invariant generation can be solved by abstract
interpretation [Boutonnet and Halbwachs 2019; Cousot and Cousot 1977; Cousot and Halbwachs
1978; Gopan and Reps 2007], constraint solving [Chatterjee et al. 2020; Colon et al. 2003; Cousot
2005; Gulwani et al. 2008], inference [Calcagno et al. 2011; Dillig et al. 2013; Donaldson et al. 2011;
Gan et al. 2020; Garg et al. 2014; McMillan 2008; Sharma and Aiken 2016; Somenzi and Bradley
2011; Xu et al. 2020], recurrence analysis [Farzan and Kincaid 2015; Kincaid et al. 2017, 2018],
machine learning [Garg et al. 2016; He et al. 2020; Ryan et al. 2020; Yao et al. 2020], data-driven
approaches [Chen et al. 2015; Csallner et al. 2008; Le et al. 2019; Nguyen et al. 2012; Riley and
Fedyukovich 2022; Sharma et al. 2013], etc. Most results in the literature consider a strengthened
version of invariants, called inductive invariants, that requires the inductive condition that the
invariant at a program location is preserved upon every program execution back and forth to the
location (i.e., under the assumption that the invariant holds at the location, it continues to hold
whenever the program execution goes back to the location).

An important criterion on the quality of invariants is the accuracy against the exact set of
reachable program states. Invariants that have too much accuracy loss (i.e., including too many
program states that actually are not reachable) may be not precise enough to verify a target program
property, while invariants with better accuracy can verify more program properties. Thus, ensuring
the accuracy of the generated invariants is an important subject in invariant generation. In this
work, we consider the automated generation of disjunctive invariants, i.e., invariants that are in the
form of a disjunction of assertions. Compared with conjunctive invariants, disjunctive invariants
are capable of capturing disjunctive features such as multiple phases and mode transitions in while
loops, and thus can be substantially more accurate than conjunctive ones.

We consider the automated generation of numerical invariants (i.e., invariants over the numerical
values of program variables). Numerical invariants are an important subclass of invariants that is
closely related to numerical program failures such as array out-of-bound and division by zero.

We focus on affine disjunctive invariants over affine while loops. An affine while loop is a while
loop in which every conditional branch and loop guard is specified by affine inequalities, and every
assignment statement is in the form of an affine expression that specifies an affine update on the
current program state. Moreover, we consider the method of constraint solving that usually leads to
accurate invariants. A typical constraint-solving method is via Farkas’ Lemma [Colon et al. 2003; Ji
et al. 2022; Liu et al. 2022; Sankaranarayanan et al. 2004b]. that provides a complete characterization
for affine inequalities. However, as Farkas’ Lemma only concerns conjunction of affine inequalities,
its application is limited to conjunctive affine invariant generation. The question on how to apply
Farkas’ Lemma to disjunctive affine invariant generation remains to be a challenge.

To address this challenge, we explore a succinct disjunctive pattern from the conditional branches
in an unnested loop, show how this disjunctive pattern can be integrated with Farkas’ Lemma, and
further explore algorithmic improvements and extensions to loop summary and nested loop. Our
detailed contributions are as follows.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:3

o First, for an unnested while loop, we consider disjunctive invariants that arise from the condi-
tional branches in the loop body. To utilize the disjunctive information from the conditional
branches, our approach first pushes all the conditional branches in a loop body to the top level
so that every top-level branch appears at the entry point of the loop body. The motivation
behind the top-level branches is that each top-level branch refers to a branch location with
a standalone conjunctive invariant for the location, and the final invariant is an overall
disjunction of the conjunctive invariants at the top-level branches. Taking one step further,
our approach constructs an affine transition system that describes the transitions between
the current and the next branch locations in a loop iteration, and solves the conjunctive affine
invariants over at the branch locations of the affine transition system by existing approaches
via Farkas’ Lemma.

o Second, under a mild non-crossing assumption for an affine transition system, we improve the
constraint solving algorithm by a novel invariant propagation technique that first generates
the invariant only at the initial branch location and then obtains the invariants at other
branch locations by a breadth-first propagation from the initial branch location. The invariant
propagation technique improves the overall time efficiency by having the involved invariant
computation only at the initial branch location and obtaining the invariants at other locations
by a lightweight propagation process.

e Third, we extend our approach to generate affine disjunctive loop summary of affine while
loops. Loop summary is the classical problem of the automated derivation of the input-
output relationship for a while loop. In our extension, we follow the standard paradigm (see
e.g. Boutonnet and Halbwachs [2019]) that incorporates fresh variables to represent the initial
values of the program variables in the loop and generate the invariants for both the original
program variables and the fresh variables through our approach to derive the loop summary.

e Fourth, to derive the disjunctive affine invariants and loop summaries of a nested loop, we
extend our approach to nested while loops by integrating the loop summaries of the inner
loops into the construction of the affine transition system for the outer loop.

e Finally, we implement our approach as a prototype tool built upon the Clang Static Ana-
lyzer [Clang Static Analyzer 2022].

Experimental results over a wide range of benchmarks (including SV-COMP and WCET) demon-
strate that our approach can prove safety properties that are related to various disjunctive features
in affine loops and beyond previous approaches and state-of-the-art software verifiers, and derive
substantially more accurate affine disjunctive loop summary than previous approaches. Moreover,
our approach is more time efficient compared with previous approaches.

2 PRELIMINARIES

Below we recall the model of affine transition systems [Sankaranarayanan et al. 2004b] and affine
invariant generation over such model via Farkas’ Lemma. In our invariant generation algorithm,
we use affine transition systems as the abstract model for programs with affine conditions and
updates. We first present the necessary definitions for affine transition systems and invariants,
and then the application of Farkas’ Lemma to affine invariant generation. We relegate a detailed
example to the next section.

2.1 Affine Transition Systems and Invariants

To present affine transition systems, we first define several basic concepts related to affine inequali-
ties as follows. An affine inequality (resp. affine equality) over a set V = {xi, ..., x,} of real-valued
variables is of the form a;x; +- - - + apx, + b > 0, where a;’s and b are real coefficients, and < € {>}

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:4 Hongming Liu, Jingyu Ke, Hongfei Fu, Ligian Chen, and Guogiang Li

(resp. »a € {=}), respectively. An affine assertion over V is a conjunction of affine inequalities and
equalities over V. Moreover, a propositional affine predicate (PAP) over V is a propositional formula
whose atomic propositions are affine inequalities and equalities over V. A PAP is in disjunctive
(resp. conjunctive) normal form (DNF) (resp. CNF) if it is a finite disjunction of affine assertions
(resp. a finite conjunction of finite disjunctions of affine assertions), respectively. Note that we
only consider non-strict no-smaller-than operator > for affine inequalities, and the no-greater-than
inequalities @ < f could be equivalently transformed into —a@ > —f. Moreover, although an affine
equality @ = f could be equivalently expressed by the conjunction of the two inequalities a < f§
and o > f, we handle each affine equality directly since one can apply algorithmic optimizations
to affine equalities. Below we present the definition of affine transition systems.

DEFINITION 1 (AFFINE TRANSITION SYSTEMS [SANKARANARAYANAN ET AL. 2004B]). An affine
transition system (ATS) is a tuple I’ = (X, X', L, T, £*, 0) where we have:

o X is a finite set of real-valued variables and X' = {x’ | x € X} is the set of primed variables
from X. Throughout the work, we abuse the notations so that (i) each variable x € X also
represents its value in the current execution step of the system and (ii) each primed variable
x" € X' represents the value of the unprimed counterpart x € X in the next execution step.

e L is a finite set of locations and ¢* € L is the initial location.

o T is a finite set of transitions such that each transition t is a triple (£, ', p) that specifies the
Jjump from the current location { to the next location £’ with the guard condition p as a PAP over
Xux’.

e 0 is a PAP in DNF over the variables X. Informally, each disjunctive clause of the PAP 0 specifies
an independent initial condition at the initial location £*.

We define the directed graph DG(T') of an ATS T as the graph in which the vertices are the
locations of I' and there is an edge (¢, ¢) iff there is a transition (¢, £’, p) with source location ¢ and
target location ¢’. To describe the semantics of an ATS, we further define the notions of valuations,
configurations and their associated satisfaction relation as follows.

A valuation over a finite set V of variables is a function ¢ : V' — R that assigns to each variable
x € V areal value o(x) € R. In this work, we mainly consider valuations over the variables X of
an ATS and simply abbreviate “valuation over X” as “valuation” (i.e., omitting X). Given an ATS, a
configuration is a pair (¢, o) with the intuition that ¢ is the current location and ¢ is a valuation
that specifies the current values for the variables. For the sake of convenience, we always assume
an implicit linear order over the variable set V and treat each valuation o over V equivalently as a
real vector so that its ith coordinate o|[i] is the value for the ith variable in the linear order.

We introduce the following satisfaction relations. Given an affine assertion ¢ over a variable set
V and a valuation o, we write o |= ¢ to mean that o satisfies ¢, i.e., ¢ is true when one substitutes
the corresponding values o(x) to all the variables x in ¢. Given an ATS T, two valuations o, ¢’
(over X) and an affine assertion ¢ over X U X’, we write o, ¢’ |= ¢ to mean that ¢ is true when one
substitutes every variable x € X by o(x) and every variable x’ € X’ by ¢’ (x) in ¢. Moreover, given
two affine assertions ¢, i over a variable set V, we write ¢ | ¢/ to mean that ¢ implies ¢/, i.e., for
every valuation o over V we have that o |= ¢ implies o | .

The semantics of an ATS T is specified by the notion of paths. A path 7 of the ATS T is a finite
sequence of configurations (£, 0y) . . . (£, ox) such that

e (Initialization) £, = ¢* and oy | 0, and
e (Consecution) for every 0 < j < k — 1, there exists a transition 7 = (¢, ', p) such that £ = ¢;,
U’ =¢jy and 0}, 0541 E p.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:5

We say that a configuration (¢, o) is reachable if there exists a path (£, 0p) ... (£, ox) such that
(£x, ox) = (£, 0). Intuitively, a path starts with some legitimate initial configuration (as specified by
Initialization) and proceeds by repeatedly applying the transitions to the current configuration
(as described in Consecution). Thus, any path = = (£, 0y) . .. (£, o) corresponds to a possible
execution of the underlying ATS. Informally, an ATS starts at the initial location ¢£* with an arbitrary
initial valuation ¢* such that ¢* | 6, constituting an initial configuration (£, 0y); then at each
step j (j > 0), given the current configuration (¢}, o), the ATS determines the next configuration
(€41, 0j+1) by first selecting a transition 7 = (¢, £’, p) such that £ = ¢; and then choosing (£j.+1, 0j+1)
to be any configuration that satisfies £;,; = ¢ and ¢}, 041 F p.

In the following, we assume that the guard condition p of each transition in a ATS is an affine
assertion. This follows from the fact that one can always transform the guard condition into a
DNF and then split the transition into multiple sub-transitions where the guard condition of each
sub-transition is an affine assertion that is a disjunctive clause of the DNF. A small detail here is
that to handle strict inequalities such as @ < f which arise from taking the negation of a non-strict
affine inequality, we either have the over-approximation a < f or tighten it as « < — 1 in the
integer case (i.e., every variable is integer valued, and every coefficient is an integer).

Below we define invariants over affine transition systems. An invariant at a location ¢ of an ATS
is an assertion ¢ such that for every path 7= = (£, 09) . .. (f, ox) of the ATS and each 0 < i < k, it
holds that ¢; = ¢ implies 0; |= ¢. An invariant ¢ is (conjunctively) affine if ¢ is an affine assertion
over the variable set X, and is disjunctively affine if ¢ is a PAP in DNF. Intuitively, an invariant
¢ at a location ¢ is an assertion that over-approximates the set of reachable configurations at ¢;
the invariant is affine if it is in the form of an affine assertion, and disjunctively affine if it is a
disjunction of affine assertions.

To automatically generate invariants, one often investigates a strengthened notion called inductive
invariants. In this work, we present inductive affine invariants in the form of inductive affine
assertion maps [Colon et al. 2003; Liu et al. 2022; Sankaranarayanan et al. 2004b] as follows. We say
that an affine assertion map (AAM) over an ATS is a function 7 that maps every location ¢ of the
ATS to an affine assertion 7(¢) over the variables X. Then an AAM 7 is inductive if the following
conditions hold:

e (Initialization) 0 |= n(£*);

¢ (Consecution) For every transition r = (¢, £, p), we have that n(£) A p E n(£’)’, where
n(£’)" is the affine assertion obtained by replacing every variable x € X in 5(¢’) with its
next-value counterpart x’ € X’.

Informally, an AAM is inductive if it is (i) implied by the initial condition given by 6 at the initial
location ¢ (i.e., Initialization) and (ii) preserved under the application of every transition (i.e.,
Consecution). By a straightforward induction on the length of a path under an ATS, one could
verify that every affine assertion in an inductive AAM is indeed an invariant. In the rest of the
work, we focus on the automated synthesis of inductive AAMs, and the disjunctive affine invariants
are obtained by taking a disjunction of relevant affine assertions in an AAM.

Sometimes we need to consider the ATS I'[¢, K] derived from an ATS T, a location ¢ of I and a
subset K of valuations. In detail, the ATS I'[#, K] is obtained by having the location £ as the only
location, the self-loop transitions at ¢ (i.e., transitions (¢”,¢’, p) in T such that ¢ = £’ = ¢) as the
only transitions, and the initial condition as the subset K. Here we slightly abuse the type of the
initial condition so that the initial condition can also be a subset of valuations. This will not cause
any problem as we consider any initial condition equivalently as the set of valuations that satisfy it.

In this work, we also consider the problem of loop summary. Loop summary is the classical
subject to generate logical formulas that over-approximate the relationship between the input and

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:6 Hongming Liu, Jingyu Ke, Hongfei Fu, Ligian Chen, and Guogiang Li

output of a while loop. Given an ATS that describes the execution of a while loop, we denote by
Xin = {xin | x € X} a copy of input variables from X and X,y := {xout | x € X} a copy of output
variables. We write Xi, (resp. Xout) for the vector of input (resp. output) variables, respectively. With
the designated termination location £, at the end of a while loop, a loop summary S is a logical
formula S(xi, Xout) With free variables xj,, Xout such that for all paths 7 = (£, 0y) - . . (£, ox) such
that £ = ¢, we have S(oy, o%).

2.2 Applying Farkas’ Lemma to Affine Invariant Generation

Farkas’ Lemma [Farkas 1894] is a classical theorem in the theory of affine inequalities and previous
results [Colon et al. 2003; Liu et al. 2022; Sankaranarayanan et al. 2004b] have applied the theorem
to affine invariant generation. In this work, we consider a variant form of Farkas’ Lemma [Schrijver
1999, Corollary 7.1h] as follows.

THEOREM 2.1 (FARKAS’ LEMMA). Consider an affine assertion ¢ over a set V. = {xy,...,x,} of
real-valued variables as in Figure 1a. When ¢ is satisfiable (i.e., there is a valuation over V that satisfies
@), it implies an affine inequality as in Figure 1b (i.e., ¢ |=) if and only if there exist non-negative
real numbers Ao, A1, . .., A such that (i)c; = X721 Ai-a;j foralll < j < n,and (i))d = Ao+ 212, Ai - b
as in Figure 1c. Moreover, ¢ is unsatisfiable if and only if the inequality —1 > 0 (as /) can be derived
from above.

ail X1+ - +ay xp+b1 =0 A 120 Arair+ -+ Amami =c1
0: Alair - x1+ -+ aip - Xp+ by 0
Am1-X1+ - +amn - Xp+bm>0 : B LN Main+ -+ Amamn=cn
Aml@m1 - X1+ +amn * Xn+bm ™m0 Aotdiby 4 - - _
. , o+Mb1 + - AAmbm =d
(a) ¢ in Farkas’ Lemma oL Xt At Cpxgt d >0 ¥
¢ . cl.xl+. . .+cn.xn+d20 -1 > 0(_false
(b) ¢ in Farkas’ Lemma (c) The Tabular Form for Farkas’ Lemma

Fig. 1. The ¢, ¥ and Tabular Form for Farkas’ Lemma [Col6n et al. 2003; Sankaranarayanan et al. 2004b]

One direction of Farkas’ Lemma is straightforward, as one easily sees that if we have a non-
negative affine combination of the inequalities in ¢ that can derive i, then it is guaranteed that
holds whenever ¢ is true. Farkas’ Lemma further establishes that the other direction is also valid.
In general, Farkas’ Lemma simplifies the inclusion of a polyhedron inside a halfspace into the
satisfiability of a system of affine inequalities.

REMARK 1. In the statement of Farkas’ Lemma above, if we strengthen an affine inequality a;1x; +
co4ajpxn +bj > 0in @ to equality (ie, ajixy + -+ -+ ajnx, + bj = 0), then the theorem holds with
the relaxation that we do not require A; > 0. This could be observed by first replacing the equality
equivalent with both ajix; +---+ajnx, +bj > 0 and ajix; +- -+ ajux, + b; <0, and then applying
Farkas’ Lemma. By similar arguments, the theorem statement holds upon changing multiple affine
inequalities into equalities with the relaxation of non-negativity for their corresponding A;’s.

The application of Farkas’ Lemma can be visualized by the tabular form in Figure 1c (taken
from Colon et al. [2003]), where »y, ..., € {= >} and we multiply A, Ay, ..., A, with their
inequalities in ¢ and sum up them together to get 1. For 1 < j < m, if ; is >, we require A; > 0,
otherwise (i.e., ; is =) we do not impose restriction on A;.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1.7

To illustrate the application of Farkas’ Lemma to invariant generation, we also recall several
concepts from polyhedra theory. A subset P of R" is a polyhedronif P = {x € R* | A- x < b} for
some real matrix A € R™*" and real vector b € R™, where x is treated as a column vector and the
comparison A-x < b is defined in the coordinate-wise fashion. A polyhedron P is a polyhedral cone if
P={x€eR"|A-x < 0} for some real matrix A € R™*" where 0 is the m-dimensional zero column
vector. It is well-known from the Farkas-Minkowski-Weyl Theorem [Schrijver 1999, Corollary 7.1a]
that any polyhedral cone P can be represented as P = {¥X, A, - g; | ; = 0forall 1 < i < k} for
some real vectors gy, ..., g, where such vectors g;’s are called a collection of generators for the
polyhedral cone P.

The existing approaches [Colon et al. 2003; Liu et al. 2022; Sankaranarayanan et al. 2004b]
apply Farkas’ Lemma to (conjunctive) affine invariant generation. All these approaches follow the
template-based paradigm as follows:

e Establish an affine template with unknown coefficients over the input ATS that represents
the inductive AAM to be solved.

e Apply the initiation and consecution conditions to the template to obtain the constraints for
an AAM.

e Use Farkas’ Lemma to simplify the constraints obtained in the previous step.

e Solve the simplified constraints from the previous step to obtain concrete solutions to the
unknown coeflicients in the template. Each solution corresponds to one inductive AAM for
the input ATS.

The technical details of the paradigm above are given as Step A1 - Step A4 below. We fix an
input ATS with variable set X = {x1,...,x,}.

Step ALl. In the first step, all the existing approaches establish a template for an inductive AAM. A
template 7 involves an affine inequality n(f) = cg1 - x1 + -+ Crn - X +d > 0 at each location ¢ of
the ATS with the unknown coefficients ¢, 1, . . ., ¢z, d to be resolved. Note that, although there is
only one template at each location, the approaches can obtain a conjunctive affine invariant where
one solution of the unknown coefficients corresponds to one conjunctive affine inequality.

Step A2. In the second step, all the approaches establish constraints from the initialization and the
consecution conditions for an inductive invariant. Recall that the initialization condition specifies
that the affine inequality 7 (£*) at the initial location £* should be implied by the initial condition 6,
ie., 0 | n(£"), and the consecution condition specifies that every transition preserves the affine
assertion map 7, i.e., for every transition (¢, £/, p) we have that n(£) A p = n(¢’)".

Step A3. In the third step, all the approaches apply Farkas’ Lemma to the constraints collected
from the initialization condition 6 |= 5(£*) and the consecution condition n(£) A p | n(¢’")’ for
every transition (¢, ¢, p). For initialization, we apply the tabular in Figure 1c to obtain Figure 2a
which results in an affine assertion over the unknown coefficients ¢ 1, . . ., ¢¢« », d and the fresh
variables Ay, A4, . .., ;. Similarly, the tabular applied to the consecution condition of a transition
(¢, ¢, p) gives Figure 2b where in addition to A, c¢ j, d, ¢ j, dp We have a fresh variable y as the
non-negative multiplier for n(¢). Note that for the consecution condition, the constraint obtained
is no longer affine since the fresh variable p is multiplied to n(f) in the tabular.

Step A4. In the last step, the (non-affine) constraints from the previous step are solved to obtain
the concrete values for the unknown coefficients in 7, so that a concrete inductive AAM would be
obtained. It is from this point on that the existing approaches become diverse:

e By Colon et al. [2003], the non-affine constraints were solved through the complete but costly
method of quantifier elimination;

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:8 Hongming Liu, Jingyu Ke, Hongfei Fu, Ligian Chen, and Guogiang Li
ce1X1+ -+ ConX +de > 0 (¢
/10 1>0 f £,1X1 t,nXn i S0 ’7()
0 >
/11 apxi+ -+ agpxpt+ bl > 0 Al aiixi+ -+ aipnxp+ a’nx£+~ st ainx;l+ b11 0
. 0
: o : : : : - p
Aml@mix1+ +AmnXn+bm >0 Am@m1X1+ * +amnXpt+d, X1+ +an X thm im0
3k
Cor 1 X1+ + FHCpr pXp+dps = 061 (£F) Cf/,lx{+- e pxptdpy = 0—n(L")’
—1 > 0« false -1 > 0« false

(a) Initialization Tabular

(b) Consecution Tabular

Fig. 2. Tabular for Initialization and Consecution [Coldn et al. 2003; Sankaranarayanan et al. 2004b]

e By Sankaranarayanan et al. [2004b], the non-affine constraints were solved through (i) several
reasonable heuristics to guess possible values for the key parameter y in Figure 2b so as to
remove the non-linearity and obtain an affine under-approximation of the original non-affine
constraints, and (ii) the generator computation over polyhedral cones to obtain the invariants.
A major heuristic there is to guess possible values for y through some practical rules such as
factorization and setting ¢ manually to 0, 1 (where 0 means an invariant local to the guard of
the transition and 1 means one incremental to the previous execution).

By Liu et al. [2022], a substantial improvement on the scalability to the approach by Sankara-

narayanan et al. [2004b] is proposed by generating affine invariants one location at time. The
main advantage of this approach is that redundant invariants can be detected more efficiently

in the solving of the constraints.

3 OVERVIEW OF OUR APPROACH

In this section, we describe our our approach via a simple while loop with disjunctive feature. We

first take a look at the example below.

x=0;
y=50;
while (x < 100) {
x=x+1;
if (x > 50)
y=y+1;

(a) An affine while loop

x=0;
y=150;
while (x < 100){
switch {
case x > 49:
x=x+1;
y=y+1;
case x <49:
x=x+1;

}

(b) The transformed loop

Fig. 3. An affine while loop from Sharma et al. [2011] and its transformed loop

ExampLE 1. Consider an affine while loop in Figure 3a taken from Sharma et al. [2011] with integer-
valued variables x, y. Before the loop, the values of the variables x, y are initialized to 0, 50, respectively.
In each loop iteration, the value of x is incremented by one, and if this value exceeds 50, then the value
of y is incremented by one. The loop has a disjunctive feature from the if branch in the loop body that

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:9

when the value of x is no greater than 50, then only the variable x is incremented; when the value of x
reaches 51, then both the variables x,y are incremented (until the value of x reaches 100). O

Our approach has three main steps. The first step to handle the loop is to transform the loop into
an equivalent canonical form where all the conditional branches appear at the entry point (i.e., top
level) of the loop body. Each top-level branch corresponds to a standalone conjunctive invariant at
the branch, and the overall invariant is meant to be a disjunction of the conjunctive invariants at
these top-level branches.

EXAMPLE 2. We push the if branch if (x > 50) in Figure 3a to the front of the loop body, so that we
have two top-level branches x > 49 and x < 49 in Figure 3b. Notice that if the value of x is no greater
than 49 at the entry point of the original loop body, then the if branch is not executed and only the
variable x is incremented. Otherwise (i.e., the value of x is greater than 49), both the variables x, y
are incremented in the loop iteration. Thus, in Figure 3b we have a special switch statement at the
top of the loop body, and two top-level branches x > 49 and x < 49 to distinguish between the cases
of the increment of only x or both x, y. Our aim is to obtain independent invariants for the cases of
x > 49 and x < 49, say n; for x > 49 and n; for x < 49, and the final invariant is the disjunction of
mAx>49 andn, Ax <49 (e, (n1 Ax >49) V (n2 A x < 49)). O

To obtain the invariants for the top-level branches, our second step is to construct an affine
transition system that includes every top-level branch as a standalone location (we shall refer to
such a location as a branch location) and every possible jump between the top-level branches (for
the current and next loop iteration) as a transition. The details are given as follows.

ExampLE 3. To obtain an affine transition system that describes the jumps between the top-level
branches in Figure 3b, we treat the two branches x > 49 and x < 49 as standalone branch locations,
and use £, and t; to denote the branch locations, respectively. Moreover, we have a special location €,
that represents the termination location of the loop. We further add transitions between the branch
locations that respect their entry conditions in the current and next loop iteration. For example, the
transition 5 : (€, {1, ps) specifies the jump from the branch location £, to the branch location £; with
the guard condition ps specified by x < 49, 50 < x’ <99, x" =x+1, y’ =y, where (i) x < 49 and
50 < x” < 99 are derived from the entry condition x < 49 of the branch location ¢, (in the current
loop iteration) and the counterpart x > 49 of £, (in the next loop iteration), both conjuncted with the
loop guard, and (ii) x" = x + 1,y’ = y specify the update to the variables x,y under the current branch
location t,. In the same way, one can derive transitions for other jumps. The whole affine transition
system is given in Figure 4, where ¢, is the initial location. Note that the transitions 1z, 75 are infeasible
and hence can be removed. O

After the affine transition system is constructed, our third step applies existing approaches [Liu
et al. 2022; Sankaranarayanan et al. 2004b] via Farkas’ Lemma to obtain the invariants at each
branch location, and group these invariants disjunctively together to obtain the final invariant.
Below we give a detailed illustration.

ExampLE 4. Consider to generate affine invariants over the ATS in Figure 4a. The approach [Sankara-
narayanan et al. 2004b] first establishes a template at each location by setting n(£;) = cp,1X + cg 2y +
dg, > 0 fori € {1,2,e} (Step A1 in the previous section). Then, it generates the constraints from
the initialization and consecution conditions (Step A2) and simplifies the constraints by the Farkas’
tabular in Figure 2 (Step A3). For initialization, the tabular in Figure 5a gives the simplified constraints
[ce,1 = A1, ce2 = Az, dp, > —50A;3] (recall Remark 1, where Ay > 0 but we do not impose restriction on
M, A2) and generates the constraints [50cg, » + dg, > 0] by projecting away the fresh variables A;’s. For
consecution, we present the application of the Farkas’ tabular to the transition ts as in Figure 5b. The

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:10 Hongming Liu, Jingyu Ke, Hongfei Fu, Ligian Chen, and Guogiang Li

X={xy} L= {t’l,t’z*,t’e}, T={r,72,13,74, 75,76}, 0 : x =0 Ay =50, 71 : {1, {1, p1),
T2 (01, €2, p2), 73 1 (01, Les P3), T4 = {2, &2, pa), T5 = (b2, 01, p5), T6 * {2, Le, P6),

50 < x < 99 50 < x < 99 50 < x < 99
50 < x’ <99) x' <49) 100 < x’
X =x+1[°P2 | ¥ =x+1["P3| ¥ =x+1]|

Yy =y+1 y=y+1 Yy =y+1

x <49 x <49 x <49

| X <4 50 < x’ <99 100 < x’

Paiiyr = x4 1|°P5 X =x+17P6 7 |x =x+1

Y=y Y=y v =y

(a) The ATS

Fig. 4. The corresponding ATS for Figure 3b

fresh variables A;’s are projected away and the fresh non-affine variable i is eliminated by reason-
able heuristics that guesses its value through either practical rules such as factorization or setting y
manually to 0 or 1. Other transitions are treated in a similar way.

Hlee1x+cp2y +dpy 20— n(e)
Ao 120
> M| —x +49 >0
Ao 1 20 X %! - 50 >0
M| x =0, i ST
4| —x + X -1 =
/12 Yy -50=0 As -y + y =0

‘c,ez,lx +cpoy+ dp, 20— n(t)

coaX +cp oy +dpy 20en(0)
—1 >0« false

(a) Initialization Farkas’ Tabular for Figure 4a (b) Consecution Farkas’ Tabular for 75 in Figure 4a
Fig. 5. Initialization and Consecution Farkas’ Tabulars for Figure 4a

The constraints obtained from the previous step constitutes a PAP ® in CNF where each clause in the
conjunction is the constraint derived from either the initialization or the consecution of a transition,
and every disjunctive affine assertion in such a clause in the conjunction results from a distinct guessed
value for the non-affine i1 parameter in the tabular for consecution. In the last step (Step A4), the
approach [Sankaranarayanan et al. 2004b] expands the PAP ® equivalently into a DNF PAP (where
each clause in the disjunction is an affine assertion that defines a polyhedral cone) and obtains the affine
invariants by the generator computation of each polyhedral cone in the DNF PAP. For this example, one
clause in the disjunction (treated as a polyhedral cone) from the DNF formula is shown in Figure 6a
(where we abbreviate cy, j, dy, as c;j, d;); further by computing the generators of the polyhedral cone in
Figure 6a, we obtain the corresponding generators and their invariants in Figure 6b, where in the left
part each row specifies a generator with a type (a point, a ray or a line generator) over the unknown
coefficients c;;’s and d;’s, and in the right part we instantiate the generator to the unknown coefficients
in the template n to obtain the invariants at location 1, £, and £,.

The affine invariants obtained from the generator computation can be further minimized by removing
trivial invariants such as 0 > 0 and redundant inequalities. After processing all the disjunctive clauses
of the DNF and grouping all the generated invariants together, the final disjunctive invariant at the
entry point of the loop body isn(£;) Vn(£2), which is (x = yA50 < x < 99)V (y = 50A0 < x < 49), and
the invariant for the termination location £, is derived from the invariants at ¢,, £, and the transitions
tot asn(fe) = (x =y = 100). The approach [Liu et al. 2022] improves the scalability by generating
the invariants one location at a time that allows to detect redundant invariants more efficiently. O

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:11

type ci1 c12 di Ca1 Cap do Cet Cep de n(t) 1(6) n()
point 0 0 0 0 000 0 0 | 0>0 0=0 0=0
€12 — ez = 0,¢12 — €22 = 0, line 1 -1 0 0 —150 0 —1 100 |x—y=0 —y+50=0 —y+100 =0
o > 0,011 4 C1a > 0 line 0 0 0 0 00 1 0-100 0=0 0=0 x-100=0
21 = 50117612 = 5 ray 0 0 49 1 0 0 0 0 49 | 49>0 x>0 49> 0
50ci2 +dz 20, ray 00 0 0 0000 1| 0>0 020 120
—99¢11 + ¢12 — d1 + 100ce1 + de > 0, ray 0 0 1 00000 1| 120 0>0 120
50c1; +dj — 49¢y; — dy > 0 ray 1 0500 0 0 0 0 49 [x=50>0 0>0 49>0
ray 00 1 00100 1| 1>0 120 120
(a) A clause in the DNF (b) generators (left) and their invariants (right) for Figure 6a

Fig. 6. Example of a disjunctive clause and its generators and invariants

In the third step, we observe that simply to apply existing approaches in Farkas’ Lemma incurs
extra computation overhead since all these approaches require to compute the invariant at every
location by an involved computation procedure. The overhead may be large if the number of branch
locations is considerable. Thus, we propose an invariant propagation technique that only computes
the invariant at the initial branch location (during which our approach does not compute the
invariant at other branch locations) and have a breadth-first propagation of this invariant to other
branch locations, when the affine transition system admits a depth-first search tree without cross
edges (i.e., edges that go back to a non-ancestor node). The following example illustrates this idea
over the ATS in Figure 4a.

ExampLE 5. Consider the affine transition system in Figure 4a. Its underlying directed graph is
given in Figure 7 (here we ignore the termination location £,), for which we have a DFS tree that is
composed of the solid tree edges and the dashed edges are back edges (i.e., edges that go back to an
ancestor node). Notice that there is no cross edge in the DFS tree. Our invariant propagation technique
utilizes the absence of cross edges.

S ——————— Tree Edge
; e Back Edge . .
Invariant at location [,

r” . 0<x<49
." Propagation y=50
' P2 Ps
L Invariant at location [;
\ 50 < x <99

\ x = y

\\ ,04 ’I/

Fig. 7. Invariant Propagation through DFS tree

First, our approach computes the invariant at the initial branch location t, to be n(t,) = (y =
50 A 0 < x < 49). Then, our invariant propagation calculates a new initial condition x = 50 A y = 50
for the branch location £, by propagating the invariant n(£;) along the transition ps. Next, with the
new initial condition, our approach solves the invariant at the branch location ¢, by considering only
the self-loop transition p; to obtain n(£;) = (x =y A 50 < x < 99). Note that the back edge from ¢ to
t, does not affect the invariant at £, (even if p, was feasible). Finally, the invariant at the termination

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:12 Hongming Liu, Jingyu Ke, Hongfei Fu, Ligian Chen, and Guogiang Li

location ¢, is derived from (1) and n(&,). The key point of invariant propagation over this example is
that the invariant at the branch location ¢, is obtained by a propagation from that of >, rather than a
thorough invariant solving over the whole affine transition system. O

Loop Summaries and Nested Loops. Besides invariant generation over unnested affine while loops,
our approach also generates affine disjunctive loop summary by introducing fresh input variables
that represent the inputs of the programs and generating invariants over both the original program
variables and the fresh input variables. Furthermore, our approach tackles nested affine while loops
by computing the loop summaries of the inner loops and uses these summaries as the abstraction
of the inner loops to construct the affine transition system for the outer loop.

4 DISJUNCTIVE AFFINE INVARIANT GENERATION FOR UNNESTED LOOPS

In this section, we present our approach for generating affine disjunctive loop invariants over
unnested affine while loops. Throughout the section, we fix the set of program variables as X =
{x1,...,x,} and identify the set X as the set of variables in the ATS to be derived from the loop.
We consider the canonical form of an unnested affine while loop as in Figure 8, where we have:

e The PAP G is the loop condition (or loop guard) for the while loop.

e The vector x = (x,.. ., xn)T represents the column vector of program variables, and each
F; (1 < i < m) is an affine function, i.e., F;(x) = Ax + b where A (resp. b) is an n X n square
matrices (resp. n-dimensional column vector) that specifies the affine update under the affine
assertion ¢; (as a conditional branch). The assignment x := F;(x) is considered simultaneously
for the variables in x so that in one execution step, the current valuation o is updated to
Fi (O') .

e The switch keyword represents a special conditional branching (i.e., different from its original
meaning in e.g. C programming language) that if the current values of the program variables
satisfy the condition ¢;, then the assignment at the ith conditional branch (i.e., x := F;(x)) is
executed. Note that the branch conditions ¢y, . . ., ¢, need not to be pairwise disjoint (i.e.,
there can be some valuation o that satisfies both ¢;, ¢; (i # j)), so that our setting covers
nondeterminism in imperative programs.

o The statements 6y, . . ., &, specify whether the loop continues after the affine update of the
conditional branches ¢, ..., ¢,,. Each statement J; is either the skip statement that does
nothing (which means that the loop continues after the affine update of F;) or the break
statement (which means that the loop exits after the affine update).

A major motivation behind Figure 8 is that we treat each top-level branch ¢; as a standalone branch
location and the overall invariant is a disjunction of the invariants at these branch locations.

while G {
switch
case ¢;: x:=F(x);d1;

case ¢, : x:=F,(%x);0n;
}
Fig. 8. The canonical form of an unnested affine while loop

Any unnested affine while loop with break statement can be transformed into the canonical
form in Figure 8 by recursively examining the substructures of the loop body of the loop. A detailed
transformation is provided in Appendix A. Note that although the transformation into our canonical

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:13

form may cause exponential blow up in the number of conditional branches in the loop body, in
practice a loop typically has a small number of conditional branches and further improvement can
be carried out by removing invalid branches (i.e., those whose branch condition is unsatisfiable).
Moreover, such a canonical form is often necessary to derive precise disjunctive information for a
while loop.

Below we illustrate our algorithm to generate disjunctive affine invariants on unnested affine
while loops. Informally, our algorithm applies the top-level branches and follows Farkas’ Lemma
for affine invariant generation as in Colon et al. [2003]; Liu et al. [2022]; Sankaranarayanan et al.
[2004b], and further proposes the improvement of invariant generation that is closely related to
the top-level branches and has not been considered in the existing approaches [Colon et al. 2003;
Liu et al. 2022; Sankaranarayanan et al. 2004b]. Here we first consider an unnested affine while
loop W. The workflow of our algorithm is demonstrated as follows (Step B1 - Step B3).

Step B1. We first transform the loop W into a canonical form Cy; w.r.t Figure 8 as stated previously.
Taking Example 1 as a running example, the canonical form of the example is given in Example 2.

Step B2. Then we apply the top-level branches to transform the loop Cyy into a ATS. The transfor-
mation is in a straightforward fashion that every top-level conditional branch (i.e., ¢; in Figure 8)
corresponds to a stand-alone location, and the guard of a transition is determined by the loop
condition (i.e., G) as well as the branch conditions of the source and target locations of the transition.
Formally, we have that the ATS Iy derived from the loop W is given as follows:

e The set of locations is {fi, . .., £y, £}, where each £ (1 < i < m) corresponds to the branch
location with branch condition ¢; and £, is the termination program counter of the loop.

e For each 1 < i < m, if §; = break, we have that transition (where we denote x’ :=
(x1, cox)h

T = (fi,fe,G A ¢i AX = Fl(X))
that specifies the one-step jump from the branch location ¢ to the termination location ¢,
where the guard condition is a conjunction of the loop guard G (for staying in the loop at the
current loop iteration), the branch condition ¢; (that the current execution of the loop body
follows the location #;) and x’ = F;(x) (for the affine update).
For each 1 < i, j < m, where §; # break, we have the transition

Tij = (fi, fj,G AN qSi A G[X//X] A ¢j[X’/X] AX = FI(X))

that specifies the one-step jump from the branch location ¢ to the branch location ¢;, for
which the guard condition is G A ¢; A G[x'/x] A ¢;[x’/x] A X" = F;(x) since the transition
needs to pass the loop guard G, satisfy the branch condition ¢; when staying in the location
{;, have the affine update specified by F; and fulfill the loop guard G[x’/x] and the branch
condition ¢; upon entering the location ¢;.

For each 1 < i < m, where §; # break, we have the transition

i = (6, le, G A §i A (2G)[X'/x] AX' =TFi(x))

for the one-step jump from the branch location # to the termination location £, for which
the guard condition is a conjunction of the loop guard G, the branch condition ¢;, the affine
update x” = F;(x) and the negation of the loop guard (for jumping out of the loop).

After the transformation, we remove transitions with unsatisfiable guard condition to reduce the
size of the derived ATS. The transformation for the running example has been given in Example 3.

Step B3. After the transformation into an ATS, we follow existing approaches [Colon et al. 2003;
Liu et al. 2022; Sankaranarayanan et al. 2004b] that generate affine invariants with Farkas’ Lemma.
In particular, we apply the recent approach [Liu et al. 2022] that has the most scalability (see

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:14 Hongming Liu, Jingyu Ke, Hongfei Fu, Ligian Chen, and Guogiang Li

Example 4 for the running example). A slight difference is that we do not encode the constraints
for the termination program location /. This is because the invariant at £, can be derived from
non-termination locations to the termination location. In the following, we further propose an
invariant propagation technique that takes advantage of a common feature in the top-level branches
to improve the time efficiency.

In our invariant propagation, we explore a special structure in the derived ATS that often arises
in the top-level branches, and propose a technique that applies to the special structure and allows
one to generate invariants at only one location and obtain the invariants at other locations through
a propagation process. To illustrate the invariant propagation, we first identify the special structure
of non-crossing affine transition systems.

DEFINITION 2. An ATST is non-crossing if there exists a depth-first search (DFS) tree of the directed
graph DG(T) (i.e., its underlying directed graph) rooted at the initial location that does not have cross
edges. (Recall that a cross edge in a DFS tree is an edge whose destination location is a visited location
in the DFS but not an ancestor of the source location of the edge).

An example of a non-crossing DFS tree is given in Example 5, while a simple example that
violates the non-crossing property would be a complete directed graph. Non-crossing ATS’s are
common in the top-level branch form of an unnested while loop. For example, the case of multiphase
invariants [Sharma et al. 2011] is a special case of non-crossing affine transition systems where a
location is never entered again once it is left. The strict alternation between branch locations is also
a special case of non-crossing affine transition systems. In general, any affine transition system
that has one outgoing-transition for every location (which arises from deterministic mode change
in while loops) is non-crossing, since in its DFS tree there is no cross edges.

We illustrate the main workflow of our invariant propagation technique. Consider an ATS T
transformed from an unnested affine while loop. Given a DFS tree T of DG(T) rooted at the initial
location ¢* that has the non-crossing property and a conjunctive affine invariant r(£*) at the
location ¢* generated from the approach by Liu et al. [2022], the invariant propagation works
by repeatedly propagating the invariant n(¢*) from the root to other locations in a breadth-first
search (BFS) from the root £*. In the BFS, a single step of propagation that is from a location ¢
in the current BFS front with the invariant (¢) (as a DNF PAP) computed from the prior BFS
process to a location ¢’ in the next front, considers all transitions from ¢ to ¢’; for each such
transition © = (£, ¢, p), our approach computes a DNF PAP as an invariant I(z, ¢’) for the ATS
T[¢,K; :== {0’ | Jo.(c = n(£) Ao,0’" | p)}] (see Page 5 for the definition of T'[—, —]) via the
approach by Liu et al. [2022] and disjuncts all these I(7,{’)’s together to obtain r(¢’). Note that
in such an ATST[¢',K; := {0’ | Jo.(c E n(£) A 0,0" |= p)}] we consider self-loop transitions at
a location ¢’ since our approach needs to cover the case that when propagated to the location ¢’,
the ATS (and the original program) may dwell at the branch location ¢’ for a finite unbounded
number of steps. The invariant at the termination location £, is also obtained by performing a single
propagation step from the non-termination locations.

The details of a single propagation in the BFS is as follows. Consider a location ¢ at the current
BFS front with the computed PAP invariant (f) = \/%, ®; where each @; is an affine assertion.
Then for each transition z = (£, ¢’, p), we have that I(z,¢’) = \/;1:1 I(z, t’,i) where each I(z, ', i)
is a conjunctive affine invariant of the ATST[¢',K;; := {0’ | Jo.(c E ®; A 0,0" = p)}]. Hence,
our approach calculates I(z, £’) by computing for each 1 < i < d the conjunctive affine invariant
I(z, ', i) (over T'[¢’, K; ;]) by the approaches [Liu et al. 2022].

EXAMPLE 6. A preliminary example of invariant propagation for our running example has been
given in Example 5, where we have the DFS tree and the breath-first propagation from the branch

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:15

location ¢, to £;. We give more details for the single propagation step from ¢, to £;. For ® := n(f;) =
(y =50 A0 < x < 49) and transition T = (£, £, ps), our approach computes K; := {¢’ | Jo.(c |
D Ao,0’ Eps) ={(x,y) | (x =50 Ay =50)}, and further derives the invariant for {; from the ATS
I'[£1, K] (that comprises only the location £; and the self-loop transition p; at t;).]

To instantiate a single propagation step, we need to encode the set K;; as an affine assertion
@’ ; without quantifiers that defines the set, and this can be accomplished by the projection of
the polyhedron {(o,0”") | 0 E ®; A 0,0’ £ p} onto the dimensions of ¢’. However, polyhedral
projection is an operation with relatively high computation cost. Below we show that these @’ ,’s
can be computed more efficiently by the resorting to the affine updates between x and x” from the
original while loop.

Consider the task to project the polyhedron H = {(0,0’) | 0 | ® A 0,0" |= p} in the treatment
of a transition 7 = (¢, ¢/, p) stated above, where @ is an affine assertion. Recall that the transition is
derived in the way that the relationship between the variables from X and X’ is given by some
affine assignment x := Ax + b (i.e,, X’ = Ax + b) under some conditional branch in the canonical
form of Figure 8. We consider two cases below.

e The first case is that the matrix A is invertible. In this case, we have that x = A~!x’ — A~ b,
and we obtain an affine assertion & over X’ that defines the projected polyhedron directly
as (® A p)[(A™'x’ — A~'b)/x]. In this case, no polyhedral projection is needed.

e The second case is that the matrix A is not invertible. Then we solve the system of affine
equations Ax = x’ — b by the standard method of Gaussian Elimination in elementary affine
algebra and obtains that x = u(x’) + Zle ax - vi (ay,...,ar € R) where (i) the vector u(x’)
is a solution to the non-homogenous equation Ax = x’ — b and can be expressed as an
affine combination of the entries in x” (i.e., u(x’) = Cx’ + d for some matrix C and vector
d) and (ii) vy, ..., vk are the basic solution of the homogeneous equation Ax = 0 and are
constant vectors not relying on x’. The fresh variables ay, . . ., ai are the coefficients of the
basic solution and can take any real value. As a consequence, the projection of the affine
assertion o = @ A 0,0’ = p (that defines the polyhedron H) onto the variables x’ can be
obtained as the projection of the affine assertion (® A p)[(u(x’) + Z{;l ax - v;)/x] onto the
variables x’ (i.e., projecting away the dimensions of ay, . . ., ai). Note that the number of the
basic solution ay, . . ., a is equal to n — rank(A) where rank(A) is the rank of the matrix A.
This means that the number of variables to be projected away is smaller than n. It follows
that in this case, it is possible to project away much less variables compared with the original
projection method (that needs to project away all the n variables xi, . . ., x, in x), and thus
can further improve the time efficiency.

The advantage of incorporating invariant propagation lies at the observation that to gener-
ate the invariants at all the locations, previous approaches consider to solve them either as a
whole [Sankaranarayanan et al. 2004b] or separately [Liu et al. 2022] via the generator computation
of polyhedral cones. Thus, all these approaches require to solve the invariants at all the locations
with generator computation, an operation with relative high cost and possible exponential blow-up.
Invariant propagation improves the time efficiency in that when the underlying ATS has a non-
crossing DFS tree, then it suffices to perform generator computation only in the computation of
the invariants at the initial location and in the treatment of self-loops at other locations.

Note that non-crossing affine transition systems do not cover all cases of directed acyclic graphs,
but this can be partially remedied by first computing the strongly-connected components (SCCs)
of the underlying ATS and then considering each SCC separately.

In summary, the workflow of our algorithm over an unnested affine while loop is as follows.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:16 Hongming Liu, Jingyu Ke, Hongfei Fu, Ligian Chen, and Guogiang Li

o First, our algorithm transforms an unnested affine while loop into the canonical form in
Figure 8 and further transforms it into an affine transition system.

e Second, our algorithm applies the approach by Liu et al. [2022] and our invariant propagation
technique (if possible) to obtain affine invariants at the branch locations of the affine transition
system. In the case that the affine transition system is non-crossing w.r.t the initial location,
our algorithm applies the approach by Liu et al. [2022] to obtain the affine invariant at the
initial location and afterwards derive the invariants at other locations through invariant
propagation. Otherwise (i.e., the affine transition system is not non-crossing), our algorithm
follows the original approach by Liu et al. [2022] to generate the invariants at all the locations.

By an induction on the depth of the DFS tree, we can prove that the assertions generated from
our invariant propagation are indeed invariants and are at least as tight as the invariants generated
by the previous approaches [Liu et al. 2022; Sankaranarayanan et al. 2004b]. Due to space limitation,
we relegate the detailed proofs to Appendix D.

5 DISJUNCTIVE AFFINE INVARIANT GENERATION FOR NESTED LOOPS

Recall that in the previous section, we proposed a novel approach for generating disjunctive affine
invariants over unnested while loops via Farkas’ Lemma, top-level branches and an invariant
propagation technique. In this section, we extend this approach to nested affine while loops.

The main idea is as follows. Given a nested affine while loop W, our approach works by first
recursively computing the loop summary Sy for each inner while loop W’ in W (from the innermost
to the outermost), and then tackling the main loop body via the top-level branches and the loop
summaries Sy of the inner loops. Below we fix a nested affine while loop W with variable set
X ={x1,...,x,} and present the technical details.

The most involved part in our approach is the transformation of the main loop W into its
corresponding ATS by the top-level branches. Unlike the situation of unnested while loops, a direct
recursive algorithm that transforms the loop W into a canonical form in Figure 8 as in the unnested
case is not possible, since one needs to tackle the loop summaries from the inner while loops in W.

To address the problem above, our algorithm works with the control flow graph (CFG) H of the
loop body of the loop W and considers the execution paths in this CFG. The CFG H is a directed graph
whose vertices are the program counters of the loop body and whose edges describe the one-step
jumps between these program counters. Except for the standard semantics of the jumps emitting
from assignment statements and conditional branches, for a program counter that represents the
entry point of an inner while loop that is not nested in other inner loops, we have the special
treatment that the jump at the program counter is directed to the termination program counter of
this inner loop in the loop body of W (i.e., skipping the execution of this inner loop). An execution
path in the CFG H is a directed path of program counters that ends in (i) either the termination
program counter of the loop body of W without visiting a program counter that represents the
break statement or (ii) a first break statement without visiting prior break statements. An example
is as follows.

ExampLE 7. Consider the janne_complex program from Boutonnet and Halbwachs [2019] in Figure 9.
The CFG of the program is given in Figure 10 where the nodes correspond to the program counters, the
directed edges with guards specifies the jumps and their conditions, and the affine assignments are
given in the program counters Ay, Az, As.

We denote by W the outer loop with entry point Eoyter, and by W' the inner loop with entry point
Einner- The execution path starts at the Initial Condition [x, y], jumps to the next vertices along the
edge whose condition is satisfied (e.g., True is tautology, x < 30 is satisfied when variable x value is

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Affine Disjunctive Invariant Generation with Farkas’ Lemma 1:17

while (x <30){
while(y <x){
if (y>5) y=y=3;
else y=y+2;
if (y>=10 && y<=12) x=x+10;
else x=x+1;

/
x=x+2; y=y—-10;

Fig. 9. The janne_complex program

x> 30 l Ay True
y=

. x<30 y<x y>5 g True
True Eouter — Elner — f Branch = e ;iy a End Branch

Initial Condition True y=x A
3
X'=x+2 V5[p_yis | True
A1 peyo10 Y=x+1

Fig. 10. The CFG of janne_complex [Boutonnet and Halbwachs 2019]

less than 30, etc.), and terminates in the Exit statement. The only execution path for the loop body of
W is Ajs — Ay, for which we abstract the whole inner loop by Ays. m]

Based on the CFG H and the execution paths, our approach constructs the ATS for the outer
loop W as follows. Since the output of an inner while loop W’ in W cannot be exactly determined
from the input to the loop W’, we first have fresh output variables Xy 1, ..., Xy to represent
the output values of the variables Xy 1, . .., Xy~ after the execution of the inner loop W’. These
output variables are used to express the loop summaries of these inner loops.

Then, to get the numerical infor