N

N

Fast Python sampler for the von Mises Fisher
distribution

Carlos Pinzon, Kangsoo Jung

» To cite this version:

Carlos Pinzon, Kangsoo Jung. Fast Python sampler for the von Mises Fisher distribution. 2023.
hal-04004568v2

HAL Id: hal-04004568
https://hal.science/hal-04004568v2

Preprint submitted on 3 Mar 2023 (v2), last revised 3 Aug 2023 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Public Domain

https://hal.science/hal-04004568v2
https://hal.archives-ouvertes.fr

Fast Python sampler of the von Mises Fisher
distribution

Carlos Pinzén Kangsoo Jung
Inria, LIX Inria, LIX

Abstract

This paper implements a method for sampling from the d-dimensional
Von Mises Fisher distribution using NumPy, focusing on speed and read-
ability. The complexity of the algorithm is O(nd) for n samples, which is
theoretically optimal taking into account that nd is the output size.

1 Introduction

The von Mises Fisher distribution (VMF), named after Richard von Mises [vM81]
and Ronald Fisher [Fis53], is a probability distribution used in directional statis-
tics and directional privacy mechanisms that generalizes the von Mises distribu-
tion (VM) for larger dimensions. The VM distribution has a circumference
as domain, or equivalently the interval [—m, 7], while the domain of the d-
dimensional VMF distribution is the (d—1)-sphere S4~! hence VM corresponds
to VMF when d = 2.

For given parameters of mean direction p € S9! and concentration x €
(0,00), the density function of the VMF is given, for each point z € S?~!, by

p(z | p, k) = Cq(r) exp(kp - x),

where the - denotes the dot product, i.e. the standard inner product in d-
dimensions, and Cy(k) is a normalization constant that depends only on the
dimensionality d and the concentration .

When d = 2, the domain is S!, i.e. the circumference of radius 1 in R2,
and letting 0y and 6 be the angles that define p and x respectively, the density
function is given by p(@ | 6o, k) = Ca(k)exp(kcos(fp — 0)), because p -z =
|| || cos(8p — 0) = cos(fp — 6). This formula coincides with that of the VM
distribution in the form that it is typically presented, with its parameter varying
in [—m, 7).

There exist implementations for VM in the main scientific Python packages
SciPy [Sci23] and NumPy [Num23|, but they do not implement the VMF in
general (for d # 2). In this paper, we propose a fast implementation of the
VMEF that runs in O(n d), which is optimal, since n x d is also to the size of the
output.

2 Related work

There are two Python implementations for sampling from the VMF distribu-
tion [ten23], Whi23]. Before introducing the main difference between our algo-
rithm and these implementations, let us describe in detail the principles they
follow.

o Principle 1 (rotation). Due to the rotational symmetry, it suffices to have
a sampler that handles only p = é; = (0,0,...,0,1)T, because the resulting
samples can be rotated afterwards towards the true p. This rotation is carried
out using a rotation matrix, which can be computed using Givens rotations and
Householder reflections [Hou58].

o Principle 2 (decomposition). The sampling problem can be decomposed
into computing the random angular deviation 6 € [0, 7] between the output x
and p, and the random direction z in which the angle occurs.

Figure taken from Weggen-
mann and Kerschbaum [WK21], de-
picts the decomposition principle for
the case d = 3. The figure shows the
angle 6 between u and z, and all the
remaining orientation information, is
captured in the (d — 1)-dimensional
unitary vector £. Since p is fixed to
be p = é; = (0,0,1), we can em-
bed £ = (&1,£2) in 3 dimensions as
z = (&1,&2,0), so that it is perpendic-
ular to p. The problem of sampling Figure 2.1: Decomposition into f and &.
from VMF can therefore be reduced to sampling 6 and £ separately, and letting
the output (assuming u = é4) be z = cos(f)u + sin(6)z.

o Principle 3 (Muller). Sampling £ can be done using the algorithm by
Muller [Mul59]. More precisely, if Y, ...,Yg_1 ~ AM(0,1) are independent, and
we let Y = (Y1,...,Yg_1)T, it is known that the unitary vector ¢ = Y/|Y] is
uniformly distributed on the (d — 2)-sphere. For instance, when d = 3, £ is
a 2-dimensional vector taken from the 1-sphere (the circumference), and when
d =2, £ is a 1-dimensional vector taken from the 0-sphere (the set {—1,1}).

o Principle 4 (Ulrich-Woods). Sampling 6 can be done using the algorithm
by Ulrich [Ulr84], which was later revised and improved by Woods [Woo94]. It
can be shown from the definition of the VMF distribution that the marginal
distribution of the angle § € [0, 7] is given for some constant C/j(x) by

p(0 | p, 5) = Cly(k) (sin0)? =2 exp(r cos). (2.1)

Ulrich and Woods propose a rejection method for generating samples 6 that
follow this distribution.

3

We

Algorithm

propose to avoid the rotation step and to work entirely in the d-dimensional

space. This means that the Muller method needs to be adjusted to produce
vectors uniformly in {z € S971: 2 | u} instead of {¢ € S¢72}. The Ulrich-
Woods method, however, is left untouched, although it is vectorized to increase
speed. The implementation is shown below.

import numpy as np

def

def

random_VMF (mu, kappa, size=Nomne):

mmnn

Von Mises-Fisher distribution sampler with
mean direction mu and concentration kappa.
Source: https://hal.science/hal-04004568

oo

parse input parameters

n = 1 if size is None else np.product(size)

shape = () if size is None else tuple(np.ravel(size))
mu = np.asarray (mu)

mu = mu / np.linalg.norm(mu)

(d,) = mu.shape

z component: radial samples perpendicular to mu
z = np.random.normal(0, 1, (n, d))

z /= np.linalg.norm(z, axis=1, keepdims=True)

z =2z - (z @ mul[:, Nonel]) * mul[None, :]

z /= np.linalg.norm(z, axis=1, keepdims=True)

sample angles (in cos and sin form)

cos = _random_VMF_cos(d, kappa, n)

sin = np.sqrt(1l - cos#**2)

combine angles with the z component

x = z * sin[:, Nonel] + cos[:, Nonel * mu[None, :]
return x.reshape ((*shape, d))

_random_VMF_cos(d: int, kappa: float, n: int):
Generate n iid samples t with density function given by
p(t) = someConstant * (1-t**2)#**((d-2)/2) * exp(kappax*t)
miumn
b = Eq. 4 of https://doi.org/10.1080/03610919408813161
b= (d - 1) / (2 * kappa + (4 * kappa#**2 + (d - 1)**2)*%0.5)
x0 = (1 - b) / (1 + b)
c = kappa * x0 + (d - 1) * np.log(l - xO0%*x2)
found = 0
out = []
while found < n:
m = min(n, int((n - foumnd) * 1.5))
z = np.random.beta((d - 1) / 2, (4 - 1) / 2, size=m)
t=(1 -1 +Db)=*xz)/ (1 (1 - b) * z)
test = kappa * t + (d - 1) * mnp.log(l - x0 * t) - ¢
accept = test >= -np.random.exponential(size=m)
out .append (t[accept])
found += len(out[-1])
return np.concatenate (out) [:n]

The function random VMF takes as input parameters a vector p of shape

(d,), a floating point number x, and an optional shape size, that follows
the numpy ecosystem standards. More precisely, when size is not given, the
function generates a single d-dimensional output vector; when it is an integer n,
it generates n vectors and the output has shape (n,d); and when it is a shape
tuple, say (1,100, 3), the output will have shape (1,100, 3, d).

The function _random VMF_cos is used by random VMF. This function gen-
erates angles 6 that follow Equation and returns their cosine. It uses
the Ulrich-Woods [Wo094] method with vectorization to accelerate the process.
The number of loops executed by this algorithm (hence also the complexity) is
stochastic, but it typically is 2 and rarely exceeds 4. This occurs because, the
acceptance rate of the Ulrich-Woods method is always above 65.9% (worst case),
and is higher for large d or small k. As a heuristic to increase speed, we take
n samples on the first loop, out which a fraction is possibly rejected, and for
the next iteration, if there are n’ more samples needed, we take n’ + 50%. This
extra overhead increases significantly the chances of the algorithm of needing
only one extra round, at the expense of possibly computing more samples than
needed. The increase of 50% is not done in the first round to account for the
case when the acceptance rate is high (large d or small k), in which most of
the extra samples in the first round will be unused. In the worst case in which
the first round rejects more than 100% — 65.9% = 34%, the next round will
use a sample size of around 65.9% x 150% ~ 100% of n. We acknowledge that
our empirically fast heuristic can be replaced with an even faster more refined
heuristic that computes the optimal increase of samples, but probably at the
cost of reducing simplicity and readability.

4 Experiments

We experimentally show that our implementation is faster while producing the
same outputs as [fen23, [Whi23], which are the existing sampling implementa-
tions from VMF distributions. Table[I]compares the execution time comparison
of our implementation with the existing implementations [ten23], [Whi23| when
generating 1,000 samples. We compared the results while increasing the num-
ber of dimensions to 2, 3, 5, and 50 when kappa was 5 and 50, respectively.
As can be seen from the results, the proposed implementation is more than 10
times faster than the existing implementations. The experimental environment
is Intel Core i5-9400H CPU 2.50GHZ with 16GB ram and the OS is Windows.

Table 1: Execution time comparison

=2 =3 =5 d=50
[Whi23] 10.28ms 9.0lms 8.54ms 7.75ms
Kk=b [ten23] 68.53ms 8.55ms 41.84ms 27.75ms

[Our] 0.60ms 0.48ms 0.55ms 1.11ms

[Whi23] 10.39ms 10.03ms 10.21ms 9.74ms

£=50 [ten23] 60.76ms 8.85ms 52.30ms 50.96ms
[Our] 0.6lms 0.58ms 0.65ms 1.29ms

Figures and [4.3] visualize samples generated from [Whi23] and the

proposed implementation. It can be seen that the same distribution is created
with the results when the dimension is 2, 3, and 4, respectively.

=5 =20 k=50

100 100 . 100
o -
035 . 75 073
.
0s0 030 030
025 02 015
.
000 00 000

100 075 0s0 025 000 025 050 075 L0 100 075 050 025 000 025 030 075 100 100 075 050 025 000 025 050 075 100

100 100 100 .
-
0 . 075 015
.
050 030 0350
o o
.

Figure 4.1: The figures in the first row are the outputs of sampling in 2-
dimension from [Whi23] and the figures in the second row are the outputs
of sampling in 2-dimension with our implementation.

5 Conclusion

Directional statistics are used in various fields such as animal navigation, track-
ing, image analysis, and applications in which the direction is more important
than the magnitude, though, it has received less attention than statistics in Eu-
clidean space. However, if the data are normalized to the unit norm and lie on
the surface of S4~1, directional statistics are more appropriate than Euclidean

=5 =20 =50

Figure 4.2: The figures in the first row are the outputs of sampling in 3-
dimension from [Whi23] and the figures in the second row are the outputs
of sampling in 3-dimension with our implementation.

Figure 4.3: The left figures are the outputs of sampling in 4-dimension from
[Whi23] and the right figures are the outputs of sampling in 4-dimension with
our implementation.

statistics.

The von Mises Fisher distribution (VMF) has been used as a probability dis-
tribution in directional statistics, but its implementation is not being provided
as python libraries. We intend to contribute to the field where directional statics
are needed by proposing an implementation that produces the same outputs as
existing implementations but is more than 10 times faster.

Acknowledgements

This work was supported by the European Research Council (ERC) project
HYPATIA under the European Union’s Horizon 2020 research and innovation
programme. Grant agreement n. 835294.

References

[Fis53] Ronald Aylmer Fisher. Dispersion on a sphere. Proceedings of the
Royal Society of London. Series A. Mathematical and Physical Sci-
ences, 217(1130):295-305, 1953.

[Houb8] Alston S Householder. Unitary triangularization of a nonsymmetric
matrix. Journal of the ACM (JACM), 5(4):339-342, 1958.

[Mul59] Mervin E Muller. A note on a method for generating points uniformly
on n-dimensional spheres. Communications of the ACM, 2(4):19-20,
1959.

[Num23] Numpy.org. Von mises. https://numpy.org/doc/stable/
reference/random/generated/numpy.random.vonmises.html, 2023.

Accessed: 2023-02-16.

[Sci23] Scipy.org. Von mises. https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.vonmises.html), 2023. Accessed:
2023-02-16.

[ten23] tensorflow.org. Von mises fisher. https://github.com/tensorflow/
probability/blob/v0.19.0/tensorflow,robability/python/
distributions/von,,isessisher.py#L44-1L519, 2023. Accessed:
2023-02-16.

[Ulr84] Gary Ulrich. Computer generation of distributions on the m-sphere.
Journal of the Royal Statistical Society: Series C (Applied Statistics),
33(2):158-163, 1984.

[vM81] Richard von Mises. Uber die” ganzzahligkeit” der atomgewicht und
verwandte fragen. Physikal. Z., 19:490-500, 1981.

https://numpy.org/doc/stable/reference/random/generated/numpy.random.vonmises.html
https://numpy.org/doc/stable/reference/random/generated/numpy.random.vonmises.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises.html
https://github.com/tensorflow/probability/blob/v0.19.0/tensorflow_probability/python/distributions/von_mises_fisher.py#L44-L519
https://github.com/tensorflow/probability/blob/v0.19.0/tensorflow_probability/python/distributions/von_mises_fisher.py#L44-L519
https://github.com/tensorflow/probability/blob/v0.19.0/tensorflow_probability/python/distributions/von_mises_fisher.py#L44-L519

[Whi23]

[WK21]

[Wo0094]

Daniel Whittenbury. Von mises. https://dlwhittenbury.github.io/
ds-2-sampling-and-visualising-the-von-mises-fisher-
distribution-in-p-dimensions.html, 2023. Accessed: 2023-
02-16.

Benjamin Weggenmann and Florian Kerschbaum. Differential privacy
for directional data. In Proceedings of the 2021 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 1205-1222,
2021.

Andrew TA Wood. Simulation of the von mises fisher distribution.

Communications in statistics-simulation and computation, 23(1):157—
164, 1994.

https://dlwhittenbury.github.io/ds-2-sampling-and-visualising-the-von-mises-fisher-distribution-in-p-dimensions.html
https://dlwhittenbury.github.io/ds-2-sampling-and-visualising-the-von-mises-fisher-distribution-in-p-dimensions.html
https://dlwhittenbury.github.io/ds-2-sampling-and-visualising-the-von-mises-fisher-distribution-in-p-dimensions.html

	Introduction
	Related work
	Algorithm
	Experiments
	Conclusion

