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Abstract

This paper implements a method for sampling from the d-dimensional
Von Mises Fisher distribution using NumPy, focusing on speed and read-
ability. The complexity of the algorithm is O(nd) for n samples, which is
theoretically optimal taking into account that nd is the output size.

1 Introduction

The von Mises Fisher distribution (VMF), named after Richard von Mises [vM81]
and Ronald Fisher [Fis53], is a probability distribution used in directional statis-
tics and directional privacy mechanisms that generalizes the von Mises distribu-
tion (VM) for larger dimensions. The VM distribution has a circumference
as domain, or equivalently the interval [—m, 7], while the domain of the d-
dimensional VMF distribution is the (d—1)-sphere S4~! hence VM corresponds
to VMF when d = 2.

For given parameters of mean direction p € S9! and concentration x €
(0,00), the density function of the VMF is given, for each point z € S?~!, by

p(z | p, k) = Cq(r) exp(kp - x),

where the - denotes the dot product, i.e. the standard inner product in d-
dimensions, and Cy(k) is a normalization constant that depends only on the
dimensionality d and the concentration .

When d = 2, the domain is S!, i.e. the circumference of radius 1 in R2,
and letting 0y and 6 be the angles that define p and x respectively, the density
function is given by p(@ | 6o, k) = Ca(k)exp(kcos(fp — 0)), because p -z =
|| || cos(8p — 0) = cos(fp — 6). This formula coincides with that of the VM
distribution in the form that it is typically presented, with its parameter varying
in [—m, 7).

There exist implementations for VM in the main scientific Python packages
SciPy [Sci23] and NumPy [Num23|, but they do not implement the VMF in
general (for d # 2). In this paper, we propose a fast implementation of the
VMEF that runs in O(n d), which is optimal, since n x d is also to the size of the
output.



2 Related work

There are two Python implementations for sampling from the VMF distribu-
tion [ten23], Whi23]. Before introducing the main difference between our algo-
rithm and these implementations, let us describe in detail the principles they
follow.

o Principle 1 (rotation). Due to the rotational symmetry, it suffices to have
a sampler that handles only p = é; = (0,0,...,0,1)T, because the resulting
samples can be rotated afterwards towards the true p. This rotation is carried
out using a rotation matrix, which can be computed using Givens rotations and
Householder reflections [Hou58].

o Principle 2 (decomposition). The sampling problem can be decomposed
into computing the random angular deviation 6 € [0, 7] between the output x
and p, and the random direction z in which the angle occurs.

Figure taken from Weggen-
mann and Kerschbaum [WK21], de-
picts the decomposition principle for
the case d = 3. The figure shows the
angle 6 between u and z, and all the
remaining orientation information, is
captured in the (d — 1)-dimensional
unitary vector £. Since p is fixed to
be p = é; = (0,0,1), we can em-
bed £ = (&1,£2) in 3 dimensions as
z = (&1,&2,0), so that it is perpendic-
ular to p. The problem of sampling Figure 2.1: Decomposition into f and &.
from VMF can therefore be reduced to sampling 6 and £ separately, and letting
the output (assuming u = é4) be z = cos(f)u + sin(6)z.

o Principle 3 (Muller). Sampling £ can be done using the algorithm by
Muller [Mul59]. More precisely, if Y, ...,Yg_1 ~ AM(0,1) are independent, and
we let Y = (Y1,...,Yg_1)T, it is known that the unitary vector ¢ = Y/|Y] is
uniformly distributed on the (d — 2)-sphere. For instance, when d = 3, £ is
a 2-dimensional vector taken from the 1-sphere (the circumference), and when
d =2, £ is a 1-dimensional vector taken from the 0-sphere (the set {—1,1}).

o Principle 4 (Ulrich-Woods). Sampling 6 can be done using the algorithm
by Ulrich [Ulr84], which was later revised and improved by Woods [Woo94]. It
can be shown from the definition of the VMF distribution that the marginal
distribution of the angle § € [0, 7] is given for some constant C/j(x) by

p(0 | p, 5) = Cly(k) (sin0)? =2 exp(r cos ). (2.1)

Ulrich and Woods propose a rejection method for generating samples 6 that
follow this distribution.



3

We

Algorithm

propose to avoid the rotation step and to work entirely in the d-dimensional

space. This means that the Muller method needs to be adjusted to produce
vectors uniformly in {z € S971: 2 | u} instead of {¢ € S¢72}. The Ulrich-
Woods method, however, is left untouched, although it is vectorized to increase
speed. The implementation is shown below.

import numpy as np

def

def

random_VMF (mu, kappa, size=Nomne):

mmnn

Von Mises-Fisher distribution sampler with
mean direction mu and concentration kappa.
Source: https://hal.science/hal-04004568

oo

# parse input parameters

n = 1 if size is None else np.product(size)

shape = () if size is None else tuple(np.ravel(size))
mu = np.asarray (mu)

mu = mu / np.linalg.norm(mu)

(d,) = mu.shape

# z component: radial samples perpendicular to mu
z = np.random.normal(0, 1, (n, d))

z /= np.linalg.norm(z, axis=1, keepdims=True)

z =2z - (z @ mul[:, Nonel]) * mul[None, :]

z /= np.linalg.norm(z, axis=1, keepdims=True)

# sample angles (in cos and sin form)

cos = _random_VMF_cos(d, kappa, n)

sin = np.sqrt(1l - cos#**2)

# combine angles with the z component

x = z * sin[:, Nonel] + cos[:, Nonel * mu[None, :]
return x.reshape ((*shape, d))

_random_VMF_cos(d: int, kappa: float, n: int):
Generate n iid samples t with density function given by
p(t) = someConstant * (1-t**2)#**((d-2)/2) * exp(kappax*t)
miumn
# b = Eq. 4 of https://doi.org/10.1080/03610919408813161
b= (d - 1) / (2 * kappa + (4 * kappa#**2 + (d - 1)**2)*%0.5)
x0 = (1 - b) / (1 + b)
c = kappa * x0 + (d - 1) * np.log(l - xO0%*x2)
found = 0
out = []
while found < n:
m = min(n, int((n - foumnd) * 1.5))
z = np.random.beta((d - 1) / 2, (4 - 1) / 2, size=m)
t=(1 -1 +Db)=*xz)/ (1 (1 - b) * z)
test = kappa * t + (d - 1) * mnp.log(l - x0 * t) - ¢
accept = test >= -np.random.exponential(size=m)
out .append (t[accept])
found += len(out[-1])
return np.concatenate (out) [:n]

The function random VMF takes as input parameters a vector p of shape




(d,), a floating point number x, and an optional shape size, that follows
the numpy ecosystem standards. More precisely, when size is not given, the
function generates a single d-dimensional output vector; when it is an integer n,
it generates n vectors and the output has shape (n,d); and when it is a shape
tuple, say (1,100, 3), the output will have shape (1,100, 3, d).

The function _random VMF_cos is used by random VMF. This function gen-
erates angles 6 that follow Equation and returns their cosine. It uses
the Ulrich-Woods [Wo094] method with vectorization to accelerate the process.
The number of loops executed by this algorithm (hence also the complexity) is
stochastic, but it typically is 2 and rarely exceeds 4. This occurs because, the
acceptance rate of the Ulrich-Woods method is always above 65.9% (worst case),
and is higher for large d or small k. As a heuristic to increase speed, we take
n samples on the first loop, out which a fraction is possibly rejected, and for
the next iteration, if there are n’ more samples needed, we take n’ + 50%. This
extra overhead increases significantly the chances of the algorithm of needing
only one extra round, at the expense of possibly computing more samples than
needed. The increase of 50% is not done in the first round to account for the
case when the acceptance rate is high (large d or small k), in which most of
the extra samples in the first round will be unused. In the worst case in which
the first round rejects more than 100% — 65.9% = 34%, the next round will
use a sample size of around 65.9% x 150% ~ 100% of n. We acknowledge that
our empirically fast heuristic can be replaced with an even faster more refined
heuristic that computes the optimal increase of samples, but probably at the
cost of reducing simplicity and readability.

4 Experiments

We experimentally show that our implementation is faster while producing the
same outputs as [fen23, [Whi23], which are the existing sampling implementa-
tions from VMF distributions. Table[I]compares the execution time comparison
of our implementation with the existing implementations [ten23], [Whi23| when
generating 1,000 samples. We compared the results while increasing the num-
ber of dimensions to 2, 3, 5, and 50 when kappa was 5 and 50, respectively.
As can be seen from the results, the proposed implementation is more than 10
times faster than the existing implementations. The experimental environment
is Intel Core i5-9400H CPU 2.50GHZ with 16GB ram and the OS is Windows.



Table 1: Execution time comparison

=2 =3 =5  d=50
[Whi23] 10.28ms  9.0lms  8.54ms  7.75ms
Kk=b [ten23]  68.53ms  8.55ms  41.84ms 27.75ms

[Our] 0.60ms  0.48ms  0.55ms  1.11ms

[Whi23] 10.39ms 10.03ms 10.21ms  9.74ms

£=50 [ten23]  60.76ms  8.85ms  52.30ms  50.96ms
[Our] 0.6lms  0.58ms  0.65ms  1.29ms

Figures and [4.3] visualize samples generated from [Whi23] and the

proposed implementation. It can be seen that the same distribution is created
with the results when the dimension is 2, 3, and 4, respectively.
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Figure 4.1: The figures in the first row are the outputs of sampling in 2-
dimension from [Whi23] and the figures in the second row are the outputs
of sampling in 2-dimension with our implementation.

5 Conclusion

Directional statistics are used in various fields such as animal navigation, track-
ing, image analysis, and applications in which the direction is more important
than the magnitude, though, it has received less attention than statistics in Eu-
clidean space. However, if the data are normalized to the unit norm and lie on
the surface of S4~1, directional statistics are more appropriate than Euclidean
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Figure 4.2: The figures in the first row are the outputs of sampling in 3-
dimension from [Whi23] and the figures in the second row are the outputs
of sampling in 3-dimension with our implementation.

Figure 4.3: The left figures are the outputs of sampling in 4-dimension from
[Whi23] and the right figures are the outputs of sampling in 4-dimension with
our implementation.



statistics.

The von Mises Fisher distribution (VMF) has been used as a probability dis-
tribution in directional statistics, but its implementation is not being provided
as python libraries. We intend to contribute to the field where directional statics
are needed by proposing an implementation that produces the same outputs as
existing implementations but is more than 10 times faster.
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