
HAL Id: hal-04004568
https://hal.science/hal-04004568v1

Preprint submitted on 24 Feb 2023 (v1), last revised 3 Aug 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Fast Python sampler of the von Mises Fisher
distribution
Carlos Pinzón

To cite this version:

Carlos Pinzón. Fast Python sampler of the von Mises Fisher distribution. 2023. �hal-04004568v1�

https://hal.science/hal-04004568v1
https://hal.archives-ouvertes.fr

Fast Python sampler of the von Mises Fisher

distribution

Carlos Pinzón
Inria, LIX

Abstract

This paper implements a method for sampling from the d-dimensional
Von Mises Fisher distribution using NumPy, focusing on speed and read-
ability. The complexity of the algorithm is O(nd) for n samples, which is
theoretically optimal taking into account that nd is the output size.

1 Introduction

The von Mises Fisher distribution (VMF), named after Richard von Mises [vM81]
and Ronald Fisher [Fis53], is a probability distribution used in directional statis-
tics and directional privacy mechanisms that generalizes the von Mises distribu-
tion (VM) for larger dimensions. The VM distribution has a circumference
as domain, or equivalently the interval [−π, π], while the domain of the d-
dimensional VMF distribution is the (d−1)-sphere Sd−1, hence VM corresponds
to VMF when d = 2.

For given parameters of mean direction µ ∈ Sd−1 and concentration κ ∈
(0,∞), the density function of the VMF is given, for each point x ∈ Sd−1, by

p(x | µ, κ) = Cd(κ) exp(κµ · x),

where the · denotes the dot product, i.e. the standard inner product in d-
dimensions, and Cd(κ) is a normalization constant that depends only on the
dimensionality d and the concentration κ.

When d = 2, the domain is S1, i.e. the circumference of radius 1 in R2,
and letting θ0 and θ be the angles that define µ and x respectively, the density
function is given by p(θ | θ0, κ) = C2(κ) exp(κ cos(θ0 − θ)), because µ · x =
|µ| |x| cos(θ0 − θ) = cos(θ0 − θ). This formula coincides with that of the VM
distribution in the form that it is typically presented, with its parameter varying
in [−π, π].

There exist implementations for VM in the main scientific Python packages
SciPy [Sci23] and NumPy [Num23], but they do not implement the VMF in
general (for d ̸= 2). In this paper, we propose a fast implementation of the
VMF that runs in Θ(nd), which is optimal, since n× d is also to the size of the
output.

1

2 Related work

There are two Python implementations for sampling from the VMF distribu-
tion [ten23, Whi23]. Before introducing the main difference between our algo-
rithm and these implementations, let us describe in detail the principles they
follow.

◦ Principle 1 (rotation). Due to the rotational symmetry, it suffices to have
a sampler that handles only µ = êd = (0, 0, ..., 0, 1)⊤, because the resulting
samples can be rotated afterwards towards the true µ. This rotation is carried
out using a rotation matrix, which can be computed using Givens rotations and
Householder reflections [Hou58].

◦ Principle 2 (decomposition). The sampling problem can be decomposed
into computing the random angular deviation θ ∈ [0, π] between the output x
and µ, and the random direction z in which the angle occurs.

Figure 2.1: Decomposition into θ and ξ.

Figure 2.1, taken from Weggen-
mann and Kerschbaum [WK21], de-
picts the decomposition principle for
the case d = 3. The figure shows the
angle θ between µ and x, and all the
remaining orientation information, is
captured in the (d − 1)-dimensional
unitary vector ξ. Since µ is fixed to
be µ = êd = (0, 0, 1), we can em-
bed ξ = (ξ1, ξ2) in 3 dimensions as
z = (ξ1, ξ2, 0), so that it is perpendic-
ular to µ. The problem of sampling
from VMF can therefore be reduced to sampling θ and ξ separately, and letting
the output (assuming µ = êd) be x = cos(θ)µ+ sin(θ)z.

◦ Principle 3 (Muller). Sampling ξ can be done using the algorithm by
Muller [Mul59]. More precisely, if Y1, ..., Yd−1 ∼ N (0, 1) are independent, and
we let Y = (Y1, ..., Yd−1)

⊤, it is known that the unitary vector ξ := Y/|Y | is
uniformly distributed on the (d − 2)-sphere. For instance, when d = 3, ξ is
a 2-dimensional vector taken from the 1-sphere (the circumference), and when
d = 2, ξ is a 1-dimensional vector taken from the 0-sphere (the set {−1, 1}).

◦ Principle 4 (Ulrich-Woods). Sampling θ can be done using the algorithm
by Ulrich [Ulr84], which was later revised and improved by Woods [Woo94]. It
can be shown from the definition of the VMF distribution that the marginal
distribution of the angle θ ∈ [0, π] is given for some constant C ′

d(κ) by

p(θ | µ, κ) = C ′
d(κ) (sin θ)

d−2 exp(κ cos θ).

Ulrich and Woods propose a rejection method for generating samples θ that
follow this distribution.

2

3 Algorithm

We propose to avoid the rotation step and to work entirely in the d-dimensional
space. This means that the Muller method needs to be adjusted to produce
vectors uniformly in {z ∈ Sd−1 : z ⊥ µ} instead of {ξ ∈ Sd−2}. The Ulrich-
Woods method, however, is left untouched, although it is vectorized to increase
speed. The implementation is shown below.

import numpy as np

def random_VMF(mu, kappa , size=None):

"""

Von Mises -Fisher distribution sampler with

mean direction mu and concentration kappa

"""

parse input parameters

n = 1 if size is None else np.product(size)

shape = () if size is None else tuple(np.ravel(size))

mu = np.asarray(mu)

mu = mu / np.linalg.norm(mu)

(d,) = mu.shape

z component : radial samples perpendicular to mu

z = np.random.normal(0, 1, (n, d))

z /= np.linalg.norm(z, axis=1, keepdims=True)

z = z - (z @ mu[:, None]) * mu[None , :]

z /= np.linalg.norm(z, axis=1, keepdims=True)

sample angles (in cos and sin form)

cos = _random_VMF_cos(d, kappa , n)

sin = np.sqrt(1 - cos ** 2)

combine angles with the z component

x = z * sin[:, None] + cos[:, None] * mu[None , :]

return x.reshape ((*shape , d))

def _random_VMF_cos(d: int , kappa: float , n: int):

"""

Generate n iid samples t with density function given by

p(t) = someConstant * (1-t**2)**((d-2)/2) * exp(kappa*t)

"""

b = Eq. 4 of https :// doi.org/10.1080/ 03610919408813161

b = (d - 1) / (2 * kappa + (4 * kappa **2 + (d - 1) **2) ** 0.5)

x0 = (1 - b) / (1 + b)

c = kappa * x0 + (d - 1) * np.log(1 - x0 ** 2)

found = 0

out = []

while found < n:

m = min(n, int((n - found) * 1.5))

z = np.random.beta((d - 1) / 2, (d - 1) / 2, size=m)

t = (1 - (1 + b) * z) / (1 - (1 - b) * z)

test = kappa * t + (d - 1) * np.log(1 - x0 * t) - c

accept = test >= -np.random.exponential(size=m)

out.append(t[accept])

found += len(out[-1])

return np.concatenate(out)[:n]

3

References

[Fis53] Ronald Aylmer Fisher. Dispersion on a sphere. Proceedings of the
Royal Society of London. Series A. Mathematical and Physical Sci-
ences, 217(1130):295–305, 1953.

[Hou58] Alston S Householder. Unitary triangularization of a nonsymmetric
matrix. Journal of the ACM (JACM), 5(4):339–342, 1958.

[Mul59] Mervin E Muller. A note on a method for generating points uniformly
on n-dimensional spheres. Communications of the ACM, 2(4):19–20,
1959.

[Num23] Numpy.org. Von mises. https://numpy.org/doc/stable/
reference/random/generated/numpy.random.vonmises.html, 2023.
Accessed: 2023-02-16.

[Sci23] Scipy.org. Von mises. https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.vonmises.html, 2023. Accessed:
2023-02-16.

[ten23] tensorflow.org. Von mises fisher. https://github.com/tensorflow/
probability/blob/v0.19.0/tensorflowprobability/python/
distributions/vonmisesfisher.py#L44-L519, 2023. Accessed:
2023-02-16.

[Ulr84] Gary Ulrich. Computer generation of distributions on the m-sphere.
Journal of the Royal Statistical Society: Series C (Applied Statistics),
33(2):158–163, 1984.

[vM81] Richard von Mises. Uber die” ganzzahligkeit” der atomgewicht und
verwandte fragen. Physikal. Z., 19:490–500, 1981.

[Whi23] Daniel Whittenbury. Von mises. https://dlwhittenbury.github.io/
ds-2-sampling-and-visualising-the-von-mises-fisher-

distribution-inp-dimensions.html, 2023. Accessed: 2023-02-
16.

[WK21] Benjamin Weggenmann and Florian Kerschbaum. Differential privacy
for directional data. In Proceedings of the 2021 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 1205–1222,
2021.

[Woo94] Andrew TA Wood. Simulation of the von mises fisher distribution.
Communications in statistics-simulation and computation, 23(1):157–
164, 1994.

4

https://numpy.org/doc/stable/reference/random/generated/numpy.random.vonmises.html
https://numpy.org/doc/stable/reference/random/generated/numpy.random.vonmises.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises.html
https://github.com/tensorflow/probability/blob/v0.19.0/tensorflow_probability/python/distributions/von_mises_fisher.py#L44-L519
https://github.com/tensorflow/probability/blob/v0.19.0/tensorflow_probability/python/distributions/von_mises_fisher.py#L44-L519
https://github.com/tensorflow/probability/blob/v0.19.0/tensorflow_probability/python/distributions/von_mises_fisher.py#L44-L519
https://dlwhittenbury.github.io/ds-2-sampling-and-visualising-the-von-mises-fisher-distribution-inp-dimensions.html
https://dlwhittenbury.github.io/ds-2-sampling-and-visualising-the-von-mises-fisher-distribution-inp-dimensions.html
https://dlwhittenbury.github.io/ds-2-sampling-and-visualising-the-von-mises-fisher-distribution-inp-dimensions.html

	Introduction
	Related work
	Algorithm

