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Fast Python sampler of the von Mises Fisher

distribution

Carlos Pinzón
Inria, LIX

Abstract

This paper implements a method for sampling from the d-dimensional
Von Mises Fisher distribution using NumPy, focusing on speed and read-
ability. The complexity of the algorithm is O(nd) for n samples, which is
theoretically optimal taking into account that nd is the output size.

1 Introduction

The von Mises Fisher distribution (VMF), named after Richard von Mises [vM81]
and Ronald Fisher [Fis53], is a probability distribution used in directional statis-
tics and directional privacy mechanisms that generalizes the von Mises distribu-
tion (VM) for larger dimensions. The VM distribution has a circumference
as domain, or equivalently the interval [−π, π], while the domain of the d-
dimensional VMF distribution is the (d−1)-sphere Sd−1, hence VM corresponds
to VMF when d = 2.

For given parameters of mean direction µ ∈ Sd−1 and concentration κ ∈
(0,∞), the density function of the VMF is given, for each point x ∈ Sd−1, by

p(x | µ, κ) = Cd(κ) exp(κµ · x),

where the · denotes the dot product, i.e. the standard inner product in d-
dimensions, and Cd(κ) is a normalization constant that depends only on the
dimensionality d and the concentration κ.

When d = 2, the domain is S1, i.e. the circumference of radius 1 in R2,
and letting θ0 and θ be the angles that define µ and x respectively, the density
function is given by p(θ | θ0, κ) = C2(κ) exp(κ cos(θ0 − θ)), because µ · x =
|µ| |x| cos(θ0 − θ) = cos(θ0 − θ). This formula coincides with that of the VM
distribution in the form that it is typically presented, with its parameter varying
in [−π, π].

There exist implementations for VM in the main scientific Python packages
SciPy [Sci23] and NumPy [Num23], but they do not implement the VMF in
general (for d ̸= 2). In this paper, we propose a fast implementation of the
VMF that runs in Θ(nd), which is optimal, since n× d is also to the size of the
output.
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2 Related work

There are two Python implementations for sampling from the VMF distribu-
tion [ten23, Whi23]. Before introducing the main difference between our algo-
rithm and these implementations, let us describe in detail the principles they
follow.

◦ Principle 1 (rotation). Due to the rotational symmetry, it suffices to have
a sampler that handles only µ = êd = (0, 0, ..., 0, 1)⊤, because the resulting
samples can be rotated afterwards towards the true µ. This rotation is carried
out using a rotation matrix, which can be computed using Givens rotations and
Householder reflections [Hou58].

◦ Principle 2 (decomposition). The sampling problem can be decomposed
into computing the random angular deviation θ ∈ [0, π] between the output x
and µ, and the random direction z in which the angle occurs.

Figure 2.1: Decomposition into θ and ξ.

Figure 2.1, taken from Weggen-
mann and Kerschbaum [WK21], de-
picts the decomposition principle for
the case d = 3. The figure shows the
angle θ between µ and x, and all the
remaining orientation information, is
captured in the (d − 1)-dimensional
unitary vector ξ. Since µ is fixed to
be µ = êd = (0, 0, 1), we can em-
bed ξ = (ξ1, ξ2) in 3 dimensions as
z = (ξ1, ξ2, 0), so that it is perpendic-
ular to µ. The problem of sampling
from VMF can therefore be reduced to sampling θ and ξ separately, and letting
the output (assuming µ = êd) be x = cos(θ)µ+ sin(θ)z.

◦ Principle 3 (Muller). Sampling ξ can be done using the algorithm by
Muller [Mul59]. More precisely, if Y1, ..., Yd−1 ∼ N (0, 1) are independent, and
we let Y = (Y1, ..., Yd−1)

⊤, it is known that the unitary vector ξ := Y/|Y | is
uniformly distributed on the (d − 2)-sphere. For instance, when d = 3, ξ is
a 2-dimensional vector taken from the 1-sphere (the circumference), and when
d = 2, ξ is a 1-dimensional vector taken from the 0-sphere (the set {−1, 1}).

◦ Principle 4 (Ulrich-Woods). Sampling θ can be done using the algorithm
by Ulrich [Ulr84], which was later revised and improved by Woods [Woo94]. It
can be shown from the definition of the VMF distribution that the marginal
distribution of the angle θ ∈ [0, π] is given for some constant C ′

d(κ) by

p(θ | µ, κ) = C ′
d(κ) (sin θ)

d−2 exp(κ cos θ).

Ulrich and Woods propose a rejection method for generating samples θ that
follow this distribution.
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3 Algorithm

We propose to avoid the rotation step and to work entirely in the d-dimensional
space. This means that the Muller method needs to be adjusted to produce
vectors uniformly in {z ∈ Sd−1 : z ⊥ µ} instead of {ξ ∈ Sd−2}. The Ulrich-
Woods method, however, is left untouched, although it is vectorized to increase
speed. The implementation is shown below.

import numpy as np

def random_VMF(mu, kappa , size=None):

"""

Von Mises -Fisher distribution sampler with

mean direction mu and concentration kappa

"""

# parse input parameters

n = 1 if size is None else np.product(size)

shape = () if size is None else tuple(np.ravel(size))

mu = np.asarray(mu)

mu = mu / np.linalg.norm(mu)

(d,) = mu.shape

# z component : radial samples perpendicular to mu

z = np.random.normal(0, 1, (n, d))

z /= np.linalg.norm(z, axis=1, keepdims=True)

z = z - (z @ mu[:, None]) * mu[None , :]

z /= np.linalg.norm(z, axis=1, keepdims=True)

# sample angles (in cos and sin form)

cos = _random_VMF_cos(d, kappa , n)

sin = np.sqrt(1 - cos ** 2)

# combine angles with the z component

x = z * sin[:, None] + cos[:, None] * mu[None , :]

return x.reshape ((*shape , d))

def _random_VMF_cos(d: int , kappa: float , n: int):

"""

Generate n iid samples t with density function given by

p(t) = someConstant * (1-t**2)**((d-2)/2) * exp(kappa*t)

"""

# b = Eq. 4 of https :// doi.org/10.1080/ 03610919408813161

b = (d - 1) / (2 * kappa + (4 * kappa **2 + (d - 1) **2) ** 0.5)

x0 = (1 - b) / (1 + b)

c = kappa * x0 + (d - 1) * np.log(1 - x0 ** 2)

found = 0

out = []

while found < n:

m = min(n, int((n - found) * 1.5))

z = np.random.beta((d - 1) / 2, (d - 1) / 2, size=m)

t = (1 - (1 + b) * z) / (1 - (1 - b) * z)

test = kappa * t + (d - 1) * np.log(1 - x0 * t) - c

accept = test >= -np.random.exponential(size=m)

out.append(t[accept])

found += len(out[-1])

return np.concatenate(out)[:n]
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