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Abstract
This paper implements a method for sampling from the d-dimensional

Von Mises Fisher distribution using NumPy, focusing on speed and read-
ability. The complexity of the algorithm is O(nd) for n samples, which is
theoretically optimal taking into account that nd is the output size.

1 Introduction

The von Mises Fisher distribution (VMF), named after Richard von Mises [vM81]
and Ronald Fisher [Fis53], is a probability distribution that is used in directional
statistics and privacy mechanisms. The domain of the VMF distribution in d
dimensions is the d− 1-dimensional sphere Sd−1 ⊆ Rd, where d ∈ {1, 2, ...} is a
parameter. This distribution generalizes the von Mises distribution (VM) which
corresponds to the case d = 2 and a circumference as domain, or equivalently,
the interval [−π, π].

Since the case d = 1 corresponds to a degraded sphere that collapses into
the points −1 and 1, we will always assume a fixed number of dimensions d ≥ 2.
The case d = 1 will be discussed later.

The VMF distribution appears in many applications that are constrained
to unit spheres because it is the result of conditioning an isotropic gaussian
distribution to the unit sphere. When the gaussian is centered at the origin, the
uniform distribution is recovered, and as the center is moved and the isotropic
variance altered, the shape of the distribution varies. For given parameters of
mean direction µ ∈ Sd−1 and concentration κ ∈ (0,∞), the density function of
the VMF at each point x ∈ Sd−1 is given by

p(x | µ, κ) ∝x exp(κµ · x),

where the · denotes the dot product, i.e. the standard inner product in d-
dimensions, and the symbol ∝x denotes proportionality with the same factor
for all x. In other words, the missing factor c depends only on the dimensionality
d and the concentration κ.

When d = 2, the domain is S1, i.e. the circumference of radius 1 in R2,
and letting θ0 and θ be the angles that define µ and x respectively, the den-
sity function is given by p(θ | θ0, κ) ∝θ exp(κ cos(θ0 − θ)), because µ · x =
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|µ| |x| cos(θ0 − θ) = cos(θ0 − θ). This formula coincides with that of the VM
distribution in the form that it is typically presented, with its parameter varying
in [−π, π].

There exist implementations for generating samples that follow a VM distri-
bution in the main scientific Python packages SciPy [Sci23] and NumPy [Num23],
but they do not implement the VMF distribution in general (for d ̸= 2). In this
paper, we propose a fast sample generator of the VMF distribution that runs
in Θ(d) for every sample generated, which is optimal, since d is also to the size
of the output.

2 Related work

There are two existing Python implementations for sampling from the VMF
distribution [ten23, Whi23]. Before introducing the main difference between
our algorithm and these implementations, let us describe in detail the principles
they follow.

◦ Principle 1 (rotation). Due to the rotational symmetry, it suffices to have
a sampler that handles only µ = êd = (0, 0, ..., 0, 1)⊤, because the resulting
samples can be rotated afterwards towards the true µ. This rotation is carried
out using a rotation matrix, which can be computed using Givens rotations and
Householder reflections [Hou58]. We present below an example of the actual
implementation of this rotation, copied from a Python library [Bru22], whose
essence is derived from an earlier paper [CA20].
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◦ Principle 2 (decomposition). The sampling problem can be decomposed
into computing the random angular deviation θ ∈ [0, π] between the output x
and µ, and the random direction z in which the angle occurs.

Figure 2.1: Decomposition into θ and ξ.

Figure 2.1, taken from Weggen-
mann and Kerschbaum [WK21], de-
picts the decomposition principle for
the case d = 3. The figure shows the
angle θ between µ and x, and all the
remaining orientation information, is
captured in the (d − 1)-dimensional
unitary vector ξ. Since µ is fixed to
be µ = êd = (0, 0, 1), we can em-
bed ξ = (ξ1, ξ2) in 3 dimensions as
z = (ξ1, ξ2, 0), so that it is perpen-
dicular to µ. The problem of sampling from VMF can therefore be reduced
to sampling θ and ξ separately, and letting the output (assuming µ = êd) be
x = cos(θ)µ+ sin(θ)z.

◦ Principle 3 (Muller). Sampling ξ can be done using the algorithm by
Muller [Mul59]. More precisely, if Y1, ..., Yd−1 ∼ N (0, 1) are independent, and
we let Y = (Y1, ..., Yd−1)

⊤, it is known that the unitary vector ξ :− Y/|Y | is
uniformly distributed on the (d − 2)-sphere. For instance, when d = 3, ξ is
a 2-dimensional vector taken from the 1-sphere (the circumference), and when
d = 2, ξ is a 1-dimensional vector taken from the 0-sphere (the set {−1, 1}).

◦ Principle 4 (Ulrich-Woods). Sampling θ can be done efficiently using a re-
jection method with an envelope proposed by Ulrich [Ulr84], whose pseudocode
is later presented by Woods [Woo94]. The distribution of the angle θ ∈ [0, π]
is given by p(θ | µ, κ) ∝θ (sin θ)d−3 exp(κ cos θ). Let us put aside the trigono-

metric functions and focus on t
def

:= cos θ ∈ [−1, 1], whose distribution is given
by

p(t | µ, κ) ∝t (1− t2)
d−3
2 exp(κt). (2.1)

An algorithm that generates samples from this distribution is shown and derived
below.

procedure AngleGenerator(d, κ)

r0 := t0 :=

√
1 +

(
d−1
2κ

)2 − d−1
2κ ▷ r0 = t0 ∈ (0, 1)

while True do
t ∼ Beta

(
d−1
2 , d−1

2

)
t← 2t+ 1
t← r0+t

1+r0t

Break the loop with probability exp(κt)(1−r0t)
(d−1)

exp(κt0)(1−r0t0)(d−1)

return t ▷ The output t = cos θ follows Eq. 2.1
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Figure 3.1: Mapping t 7→ r+t
1+rt

3 Algorithm for the angle

In this section we explain the angle generator presented in the previous section.
The reader might notice that this algorithm is not literally the one presented
in [Woo94], but they are equivalent. Our added value is to explain explicitly the
derivation of the algorithm, using a rich family of continuous transformations
in (−1, 1).

As a first approximation for Equation 2.1, if we ignore the exponential term,
the equation corresponds to a Beta distribution shifted and scaled to [−1, 1].
Concretely, if t1 ∼ Beta(α, β), its density is f1(t) ∝t t

α−1(1−t)β−1, and if we let
t2 := 2t1−1, its density can be obtained using the theory of change of variables
as f2(t) = f1(

t+1
2 )( d

dt
t+1
2 ) ∝t tα−1(1 − t)β−1. So, for α = β = d−1

2 , we have

that t2 follows f2(t) ∝t (1− t2)
d−3
2 .

In order to take the exponential factor into account, we will use an additional
transformation for t2. Since the exponential factor continuously gives more
weight to inputs towards the right end (+1), it is natural to consider mappings
that shift the input continuously and bijectively, like those shown in Figure 3.1.
One such type of candidate mappings is the family {hr : r ∈ (−1, 1)} of linear
fractional transformations given by

t 7→ hr(t) :=
r + t

1 + rt
, r ∈ (−1, 1)

This family has several mathematically rich properties. For instance, the inverse
of hr is h−r, and if we compose hr1 with hr2 , we obtain again a function of the
type hr, where r = hk1(k2) = hk2(k1).

Let, therefore, t3 := hr(t2) with unset parameter r, as it will be tuned later to
maximize the acceptance rate. The density for t3 is f3(r, t) = f2(h−r(t))

(
d
dth−r(t)

)
and can be simplified to

f3(r, t) ∝t,r (1− r2)
d−1
2 (1− t2)

d−3
2 (1− rt)1−d (3.1)

∝t (1− t2)
d−3
2 (1− rt)1−d. (3.2)
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We will now develop the rejection sampling method for p(t) := p(t | µ, κ)
(Eq. 2.1) using the envelope f3(r, t) with r tuned to maximize the acceptance
rate. The theory of rejection sampling theory tells that a sample t3 ∼ f3(r, t)

should be accepted with probability p(t3)
M f3(r,t3)

where M := maxt∈[−1,1]
p(t)

f3(r,t)
.

Thus, the acceptance rate is given by

max
r

Et∼f3(r,t)[
p(t)

M f3(r, t)
] = max

r

1

M

∫ +1

−1

f3(r, t)
p(t)

M f3(r, t)
dt = max

r

1

M
.

Equivalently, if q(t) is any function proportional on t to p(t)
f3(r,t)

, then the sam-

ple t3 should be accepted with probability q(t)
q(t0)

, where t0 := argmaxt∈[−1,1] q(t),

and the acceptance rate maximization is equivalent to the optimization

max
r

1

M
≡ min

r
M ≡ min

r
q(t0) = min

r
max

t
q(t) ≡ min

r
max

t
log q(t).

Using Equations 3.1 and 2.1, we get log q(t) = κt + (d − 1) log(1 − rt) −
d−1
2 log(1 − r2). For a fixed r, it can easily be seen that this is maximized

in t ∈ (−1, 1) at t0 := 1 + d−1
k , and log q(t0) is minimized in r ∈ (−1, 1)

at r0 :=

√
1 +

(
d−1
2κ

)2 − d−1
2κ . Coincidentally, when substituting r0 into the

formula of t0, it occurs that r0 = t0.

4 Algorithm

We propose to avoid the rotation step and to work entirely in the d-dimensional
space. This means that the Muller method needs to be adjusted to produce vec-
tors uniformly in {z ∈ Sd−1 : z ⊥ µ} instead of {ξ ∈ Sd−2}. The Ulrich-Woods
method for sampling θ, however, is left untouched, although it is vectorized to
increase speed. The implementation is shown below.

import numpy as np

def random_VMF(mu, kappa , size=None):

"""

Von Mises -Fisher distribution sampler with

mean direction mu and concentration kappa.

Source: https :// hal.science/hal -04004568

"""

# parse input parameters

n = 1 if size is None else np.product(size)

shape = () if size is None else tuple(np.ravel(size))

mu = np.asarray(mu)

mu = mu / np.linalg.norm(mu)

(d,) = mu.shape

# z component : radial samples perpendicular to mu

z = np.random.normal(0, 1, (n, d))

z /= np.linalg.norm(z, axis=1, keepdims=True)

z = z - (z @ mu[:, None]) * mu[None , :]

z /= np.linalg.norm(z, axis=1, keepdims=True)
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# sample angles (in cos and sin form)

cos = random_VMF_angle(d, kappa , n)

sin = np.sqrt(1 - cos ** 2)

# combine angles with the z component

x = z * sin[:, None] + cos[:, None] * mu[None , :]

return x.reshape ((*shape , d))

def random_VMF_angle(d: int , kappa: float , n: int):

"""

Generate n iid samples t with density function given by

p(t) = someConstant * (1-t**2)**((d-3)/2) * exp(kappa*t)

"""

alpha = (d - 1) / 2

t0 = r0 = np.sqrt(1 + (alpha / k) ** 2) - alpha / k

log_t0 = k * t0 + (d - 1) * np.log(1 - r0 * t0)

found = 0

out = []

while found < n:

m = min(n, int((n - found) * 1.5))

t = np.random.beta(alpha , alpha , m)

t = 2 * t - 1

t = (r0 + t) / (1 + r0 * t)

log_acc = k * t + (d - 1) * np.log(1 - r0 * t) - log_t0

t = t[np.random.random(m) < np.exp(log_acc)]

out.append(t)

found += len(out[-1])

return np.concatenate(out)[:n]

The function random VMF takes as input parameters a vector µ of shape
(d,), a floating point number κ, and an optional shape size, that follows
the numpy ecosystem standards. More precisely, when size is not given, the
function generates a single d-dimensional output vector; when it is an integer n,
it generates n vectors and the output has shape (n, d); and when it is a shape
tuple, say (1, 100, 3), the output will have shape (1, 100, 3, d).

The function random VMF angle is used by random VMF. This function gen-
erates angles θ that follow Equation (2.1) and returns their cosine. It uses
the Ulrich-Woods [Woo94] method with vectorization to accelerate the process.
The number of loops executed by this algorithm (hence also the complexity) is
stochastic, but it typically is 2 and rarely exceeds 4. This occurs because, the
acceptance rate of the Ulrich-Woods method is always above 65.9% (worst case),
and is higher for large d or small κ. As a heuristic to increase speed, we take
n samples on the first loop, out which a fraction is possibly rejected, and for
the next iteration, if there are n′ more samples needed, we take n′ +50%. This
extra overhead increases significantly the chances of the algorithm of needing
only one extra round, at the expense of possibly computing more samples than
needed. The increase of 50% is not done in the first round to account for the
case when the acceptance rate is high (large d or small κ), in which most of
the extra samples in the first round will be unused. In the worst case in which
the first round rejects more than 100% − 65.9% = 34%, the next round will
use a sample size of around 65.9%× 150% ≈ 100% of n. We acknowledge that
our empirically fast heuristic can be replaced with an even faster more refined
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heuristic that computes the optimal increase of samples, but probably at the
cost of reducing simplicity and readability.

5 Experiments

We experimentally show that our implementation is faster while producing the
same outputs as [ten23, Whi23], which are the existing sampling implementa-
tions from VMF distributions.

Table 1: Execution time comparison

d=2 d=3 d=5 d=50
[Whi23] 10.28ms 9.01ms 8.54ms 7.75ms

κ=5 [ten23] 68.53ms 8.55ms 41.84ms 27.75ms
[Our] 0.60ms 0.48ms 0.55ms 1.11ms

[Whi23] 10.39ms 10.03ms 10.21ms 9.74ms
κ=50 [ten23] 60.76ms 8.85ms 52.30ms 50.96ms

[Our] 0.61ms 0.58ms 0.65ms 1.29ms

Figure 5.1: The figures in the first row are the outputs of sampling in 2-
dimension from [Whi23] and the figures in the second row are the outputs
of sampling in 2-dimension with our implementation.

Table 1 compares the execution time comparison of our implementation with
the existing implementations [ten23, Whi23] when generating 1,000 samples.
We compared the results while increasing the number of dimensions to 2, 3, 5,
and 50 when kappa was 5 and 50, respectively. As can be seen from the results,
the proposed implementation is more than 10 times faster than the existing
implementations. The experimental environment is Intel Core i5-9400H CPU
2.50GHZ with 16GB ram and the OS is Windows.

Figure 5.2 shows the empirical histograms of the function random VMF angle

compared with the theoretical distribution given by Equation 2.1. The picture,
which was generated with the Python code below, illustrates clearly that the
algorithm is faithful to the theoretical density curve.
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import numpy as np

import matplotlib.pyplot as plt

fig , Ax = plt.subplots(2, 3)

N = 100000

x = np.linspace(-1, 1, 1000)[1:-1]

dk = [(3, 3), (4, 1), (2, 5), (2, 1), (50, 1), (50 , 150)]

for (d, k), ax in zip(dk, np.ravel(Ax)):

X = random_VMF_angle(d, k, N)

ax.hist(X, density=True , bins="auto")

y = (1 - x** 2) ** ((d - 3) / 2) * np.exp(k * x)

y /= np.trapz(y=y, x=x)

ax.plot(x, y)

ax.set_title(f"(d,k)={(d,k)}")

plt.tight_layout ()

plt.show()

Figure 5.2: Empirical histograms of 100 000 generated samples (blue) vs theo-
retical density p(t | µ, κ) (orange) for different values of d and κ.

Furthermore, Figures 5.1, 5.3, and 5.4 visualize samples generated from
[Whi23] and the proposed implementation. It can be concluded, visually, the
distributions appear to be the indeed the same when the dimension is 2, 3, and
4, respectively.

6 Conclusion

Directional statistics are used in various fields such as animal navigation, track-
ing, image analysis, and applications in which the direction is more important
than the magnitude, though, it has received less attention than statistics in Eu-
clidean space. However, if the data are normalized to the unit norm and lie on
the surface of Sd−1, directional statistics are more appropriate than Euclidean
statistics.
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Figure 5.3: The figures in the first row are the outputs of sampling in 3-
dimension from [Whi23] and the figures in the second row are the outputs
of sampling in 3-dimension with our implementation.

Figure 5.4: The left figures are the outputs of sampling in 4-dimension from
[Whi23] and the right figures are the outputs of sampling in 4-dimension with
our implementation.
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The von Mises Fisher distribution (VMF) has been used as a probability dis-
tribution in directional statistics, but its implementation is not being provided
as python libraries. We intend to contribute to the field where directional statics
are needed by proposing an implementation that produces the same outputs as
existing implementations but is more than 10 times faster.
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