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Abastract

To analyze a set of data, a statistician has several tools. One of the most common is regression, where a link is established between a response variable and one or more explanatory variables. The types of the possibly parametric link a family of possible curves are chosen then the parametric ones are estimated or non-parametric one chooses a larger function space in which one wishes to obtain a very smooth curve.

In this book focusing our interest on nonparametric regression, various nonparametric models have been introduced such as the nonparametric Poisson model to model the granting of credit and the nonparametric GARCH model to model the variability of Bitcoi Chapter 1 Nonparametric regression models

Introduction

Nonparametric regression is a statistical tool for describing the relationship between a dependent variable and one or more explanatory variables, without assuming a particular form for this relationship. This method makes it possible to construct a form of regression analysis in which the estimating function does not take a predetermined form. It is built on information from the data and requires a larger sample size than regression based on parametric models because the data must provide the structure of the model as well as the estimation of the model.

Among the most robust nonparametric methods:

-The kernel method.

-The Loess method (by local polynomial and by weighted local polynomial).

-The spline method.

The R software proposes to perform non-parametric regressions. These solutions are much more interesting because they make it possible to obtain, in very few command lines, a complete graph with its trend curve.

The Nadaraya-Watson Kernel Method

Consider the regression model

Y = m(X) + (1.1)
where ∼ i.i.d.(0, σ 2 ), X explanatory (random) variable and Y the response. The function m(.) is of unknown form.

How to estimate m, observing the sample (X i , Y i ) n i=1 ?

Suppose we have a dataset available with (x 1 , y 1 ), . . . , (x n , y n ) observations. A simple kernel estimator of m(x) is the Nadaraya-Watson kernel regression (1964) estimator, defined as

mh (x) = n i=1 K( x i -x h )y i n i=1 K( df racx i -xh) (1.2)
with K(•) for some kernel functions and window parameters h > 0. The function K(•) is usually a symmetric probability density and examples of commonly used kernel functions are the Gaussian kernel K(t) = ( √ 2π) -1 exp(-t 2 /2) and Epanechnikov kernel K(t) = max{ 3 4 (1 -t 2 ), 0}.

Let n * numbers of observations X i close to x (i.e. at a distance < h from x) and I x the set of indices of these comments. We can write

n * = n i=1 I(x -h < X i < x + h) i∈Ix Y i = n i=1 I(x -h < X i < x + h)Y i
This results in the NW estimator with uniform kernel:

m(x) = n i=1 I(x -h < X i < x + h)Y i n i=1 I(x -h < X i < x + h)
The kernel regression estimate m (x) is also called constant local estimator because The NW estimator can be obtained as a minimization of the criterion n i=1 (y i -m) 2 K(

x i -x h )
with respect to m for a given x.

The choice of the smoothing parameter h corresponds to a variance/bias trade-off:

1. The higher h is, the smoother the m(x) curve will be. The variance of the estimate is limited, but the estimator m(x) can be highly biased.

2. The lower h, the more irregular the curve m(x). The estimation biases of m(x) are small, but the variance of m(x) is very large.

The choice of h therefore results from a bias/variance trade-off, but also from a smoothing/nonsmoothing trade-off of m(x) .

Local regression

Local regression, or LOESS, is a strongly related nonparametric regression method that combines multiple multiple regression models into a meta-model that relies on the k-nearest neighbor method. "LOESS" is the acronym for "LOCally Estimated Scatterplot Smoothing".

In a loess regression, the fitting of the curve is done locally. To determine the value y taken by the curve at the abscissa point xi, a polynomial of degree 1 or 2 is fitted to the points in the neighborhood of xi. This adjustment is done with weighting: the points closest to xi have more weight in the adjustment.

The local regression can be fitted using the loess function (in the stats package).

loess(formula, data, span = 0.75, degree = 2, parametric = FALSE, family = c("gaussian", "symmetric"), . 

Spline Smoothing Regression

In the Spline Smoothing Regression method, data is fit to a set of spline basis functions with a reduced set of nodes, usually by least squares. This combines the reduced knots of regression splines, with the roughness penalty of spline smoothing.

Smoothing splines are a powerful approach for estimating functional relationships between a predictor X and a response Y. Smoothing splines can be adjusted using the smooth.spline function (in the stats package) or the ss function (in the npreg package).

Splines are widely used for interpolation and approximation of sampled data to a discrete set of points -e.g. for time series interpolation.

Nodes are where the slopes change, and only one level of continuity is applied. When discussing cubic splines (with the usual 3 levels of continuity) or natural cubic splines (linear-tailed restricted cubic splines), I often speak loosely of "a knot is where a change in curvature occurs " or where a "shape change occurs"

An illustrative example

We define the following nonlinear model:

y = sin(exp(x)) + (1.3)
with: ∼ N (0, 1) and x ∼ N (0, 0.6). In the graphical results, we get:

-The curve of the regression function m(x) that we are looking for has estimated .

-The curve of the estimator of the regression function m(x) (the blue line).

We will seek the optimal choice of the parameters K and h according to the estimator of

[N-W].
We choose the smoothing parameter h = n -1/5 (fixed), (n = 40), and K Gaussian kernel (normal).

The R software offers to perform non-parametric regressions. These solutions are much more interesting because they make it possible to obtain, in very few command lines, a complete graph with its trend curve.

Conclusion

Parametric regression can be used when the assumptions of more traditional regression methods, such as linear regression, are not verified, or when the structure of the model is not fundamentally of interest and when only the predictive quality of the model is important. Nonparametric regression is a statistical tool that allows you to write the relationship between a dependent variable and one or more explanatory variables, without specifying a strict form for this relationship. In this chapter we have presented different nonparametric estimation methods in regression. First of all the most classic: kernel estimators, estimation by polynomials, estimation on the basis of splines, Chapter 2

Nonparametric counting models

Introduction

Thus, instead of using techniques to classify individuals into groups, we suggest in this work a judicious approach consists in modeling the counting variable "Number of non-payment.", which is a method of obtaining a model allowing predict the level of indebtedness expected for new loans. Poisson models and negative binomial distribution models, which account for observed heterogeneity, are typically used in situations where the dependent variable is discrete [START_REF] Cameron | Regression based tests for overdispersion in the Poisson model[END_REF].

Alternatively, we propose to use two nonparametric Poisson models where the form of the relationship between the conditional mean and the explanatory variables is unknown.

The first model, denoted NP, estimates a completely nonparametric regression using a second-order Gaussian kernel for the explanatory variables. The second model, denoted

INDEX, is a model with a single index estimated using the semiparametric least squares method of [START_REF] Ichimura | Semiparametric Least Squares (SLS) andWeighted SLS Estimation of Single-Index Models[END_REF] which jointly estimates the bandwidth and the coefficients using the method of nonlinear least squares.

The contribution of this work is to develop a credit scoring system based on the nonpara-metric Poisson model. This means that a financial institution wanted to more efficiently determine the rankings of new customers applying for credit in three different classes:

good, fairly good and bad. The good customers would return the money completely, while the bad customers would be the defaulters sectionEconometric models

The Poisson regression model

In the econometric literature, the mostly adapted model for analyzing count data is the Poisson model. Where, the endogenous variable, for example, the number of default payment noted y i , is assumed to follow a Poisson distribution. The probability for a customer to have unpaid instalments is therefore:

P (Y i = y i ) = e -µ i µ y i i y i ! (y i = 0, 1, 2, ..) (2.1)
where µ i is the parameter of the Poisson distribution, such that:

µ i = E(y i ) = V ar(y i )
This parameter is related to p exogenous variables by the log-linear form:

ln(µ i ) = x i β ∀ i = 1, ..., n (2.2) 
where x i is a vector (1, p) associated with the parameter vector β (p,1) . The choice of the log-linear specification is mainly due to the need to have parameters µ i positivel . For a sample of size n, the Poisson model can be estimated a priori by the maximum likelihood method. The log-likelihood of this specification is:

lnL = n i=1 [-µ i + y i x i β -ln(y i !)] (2.
3)

The likelihood equations are:

∂lnL ∂β = n i=1 (y i -µ i )x i = 0 (2.4)
The Hessian is given by:

∂ 2 lnL ∂β∂β = - n i=1 µ i x i x i (2.5)
Hessian is negative definite for all x and β. Newton's method is a simple algorithm for estimation this model and will converges quickly. The estimated asymptotic variancecovariance matrix of the maximum likelihood estimator is deduced:

-[ n i=1 -μi x i x i ] -1 .
Given the estimation of β, the prediction for observation i is μi = exp(x i β)

The Negative binomial regression model

The equidispersion hypothesis in the poisson model is very restrictive. In practice due to an abundance of null values and or the presence of some extreme values, the variance is often greater than average. In this case, we speak of an over-dispersion of the variable Y (see [START_REF] Cox | Some Remarks on Overdispersion[END_REF], [START_REF] Mullahy | Specification and testing of some modified count data models[END_REF], Hinde and Demétrio (1998)). This situation may call into question the use of this model, by an underestimation of the variances of the parameters of the model.

Hence the idea of using an alternative counting model, based on the negative binomial law, which takes into account this over-dispersion by introducing an additional parameter α which makes it possible to capture the heterogeneity unobserved from the endogenous variable (which may imply unobserved over dispersion).

In a negative binomial regression model, we define the probability that Y takes the value y i

P (Y i = y i /X i = x i ) = Γ(y i + 1 α ) Γ(y i 1)Γ( 1 α ) ( 1 1 + αµ i ) 1 α ( µ i 1 + αµ i ) yi (2.6)
or α is an auxiliary parameter that measures the degree of over-dispersion. This law has a conditional mean µ i and a conditional variance µ i (1 + αµ i ). The Negative Binomial Law tends to Poisson's Law when α goes to zero. If α > 0, the poisson model is rejected to the negative binomial model profile.

The nonparametric poisson model

Recall that where the random variables Y are univariate continuous and variable X are continuous multivariate random, we can use the kernel estimate of the conditional mean of Y given X = x:

ĝ(x) = n i=1 y i K(x i -x, h) n i=1 K(x i -x, h) (2.7)
where K( .) is a product kernel. The bandwidth h can be chosen by leave-one-out crossvalidation such as generalized cross-validation and expected Kullback-Liebler cross validation (based on AIC for the nonparametric regression model).

In the case where the random variables Y are discrete we can use frequency methods, which consist of replacing the kernel weighting function K((x i -x), h) by the indicator

function 1[x i = x].
But in practice this requires a large sample size and discrete random variables that take only a few distinct values.

Hall, Racine, and [START_REF] Hall | Cross-Validation and the Estimation of Conditional Density Functions[END_REF] and [START_REF] Li | Nonparametric Econometrics[END_REF], have proposed an alternative weighting functions that lead to smoother estimation, thereby reducing estimator variance at the expense of introducing some bias as in the continuous case, and that enable use of cross-validation for bandwidth selection. For scalar probability mass function estimation with discrete random variable Y that takes c distinct values, the kernel function K((y iy), h), for example, is replaced by the weight function

Kd(y i , y, λ) = 1 -λ if y i = y (2.8) = λ (1 -c) if y i = y,
where λ = 0 yields the frequency estimate and λ = 1 corresponds to a uniform weight.

For nonparametric regression with discrete regressor X, one can more simply replace the kernel K((y i -y), h) with Kd(y i , y, λ) = 1 if

x i = x and Kd(y i , y, λ) = λ if x i = x.
When discrete data are ordered, nearby observations can be exploited in estimation, as in the continuous case (see [START_REF] Fan | Design-Adaptive Nonparametric Regression[END_REF]). Then the kernel K((y i -y), h) is replaced with

Kord(y i , y, λ) = c! j!(c -j)! λ j (1 -λ) c-j if |y i -y| = j, (2.9) 
where y takes the ordered values 0, 1, ..., c -1. If the discrete data take a large number of values, as can be the case for count data, then this will yield similar results to the continuous case and it can be simpler to use the usual kernel methods.

Poisson semiparametric models

As alternative approach, we can consider single-index poison models where the conditional mean a scalar is a function of a linear combination of the regressors, with

E[y|x] = g(x β
), where the scalar function g (.) is unspecified.

For an unknown function g (.) the single-index model β is only identified up to location and scale. To see this, note that for scalar v the function g * (a+bv) can always be expressed as g(v), so the function g * (a+bxβ) is equivalent to g(x β). Common normalizations are to drop the intercept and restrict. Additionally g(.) must be differentiable. In the simplest case all regressors are continuous. If instead some regressors are discrete, then at least one regressor must be continuous; see [START_REF] Ichimura | Implementing Nonparametric and Semiparametric Estimators[END_REF].

Several different estimators have been proposed that lead to a root-n consistent and asymptotically normal estimator of β and an estimator of the function g (.) that is consistent, though with a convergence rate less than root-n. These estimators include semiparametric least squares [START_REF] Ichimura | Semiparametric Least Squares (SLS) andWeighted SLS Estimation of Single-Index Models[END_REF] and average derivative estimation (Hardle and Stoker, 1989). See, for example, [START_REF] Pagan | Nonparametric Econometrics[END_REF] and [START_REF] Li | Nonparametric Estimation of Conditional CDF and Quantile Functions With Mixed Categorical and Continuous Data[END_REF]. These estimators ignore the intrinsic heteroskedasticity of count data, so will be inefficient.

For generalized linear models with a specified variance function, [START_REF] Weisberg | Adapting for the Missing Link[END_REF] propose a more efficient version of Ichimura's semiparametric least squares. We

suppose .11) where the functional form for the mean function g (.) is not specified, but that for the

E[y i |x i ] = g(x i β) (2.10) V [y i |x i ] = φv(g(x i β)), ( 2 
variance function v(.) is specified. For counts usually v(µ) = φµ or v(µ) = φµ + αµ 2 . If g() were known, then β solves n i=1 (y -g(x i β)) v(g(x i β)) g ( x i β)x i = 0.
With g (.) unknown estimation follows an alternating procedure. Given an initial estimate β, for example from standard Poisson regression, estimate ĝ(.) by kernel regression of y i on x i β and then, given ĝ(.) and β , estimate the first derivative g (.) by kernel methods.

Then re-estimate β based on the equations with the unknown functions g(.) and g (.) replaced by estimates ĝ(.) and ĝ (.), and so on. [START_REF] Weisberg | Adapting for the Missing Link[END_REF] show that the resulting estimator of β has the same asymptotic distribution as in the usual GLM case where g() is known, and that if a second-order kernel is used the estimate ĝ(.) converges to g (.) at the optimal convergence rate of n 2/5

Application: Credit Scoring

Scoring systems have been created for the evaluation of new credit applications. In this work, as an alternative technique we propose to predict future repayment behavior through the expected number of defaults. The use of this last variable suggests that suitable models could be interesting, in which certain covariant exogenous variables are included in order to specify the expected level of indebtedness. These models can be used as explanatory tools when assessing the level of risk associated with personal credit transactions.

Data description

The data used in this study concerns the number of defaulted payments as those which have been analysed by Green (2011). This base is consists of random subsample of 1002 clients for all the bank clients at a given date and contain information about clients who had obtained loans for consumption. Usually, the loan is repaid over a short period of time ( monthly ) with constant payments throughout the repayment period.

The dependent variable is the number of monthly non-payments. The largest value in the sample is 4. The number of zero counts is 813. The proportion of clients with zero non-payments is 81.32 %. A description of the variables used in this paper can be found in Table 1.

Model comparison

Usually, studies in this area take a part of the sample for estimation purposes and another part is used to check the preditive performance of the estimated models. For estimation purposes, some individuals were eliminated from the original sample. Individuals with repayment lasting more than four months at sample collection were excluded from the estimation process on the grounds that there was not enough information about their repayment behaviour and that posterior classification could be misleading.

We started by estimated two parametric models : The poisson model and The negative binomial model (NB2). According to Eventually, the performance of credit scoring models is evaluated through the percentage of correct classification for the individuals who already applied for credit, according to their subsequent behaviour. Nevertheless, the percentage of bad clients that would be classified as good by the scoring is a very important issue. It is this measure that is to be minimized since the smaller it is, the smaller the risk of granting credit to potential defaulters. For count data models, prediction has to be performed in two steps. Firstly, the number of expected defaulted monthly instalments is found. Afterwards, the definition of predicted good or predicted bad is assigned to the individual following the same criterium that is used to define good and bad clients in the sample. At the end, predicted and real behaviour are compared to obtain estimated classification rates that may be used to evaluate the performance of this methodology to traditional approaches. 

Conclusion

In order of analyse the credit-scoring behaviour for individual loans and identifying the number of classes of clients without making assumptions about the parametric form of the heterogeneity term, we fitted four competing models in order to capture the present heterogeneity and to better describe the data. We used nonparametric poison models to account for both heterogeneity and zero inflation present in a data set for credit-scoring.

The main contribution of this paper is that we predict with more sophisticated models the number of defaulted payments, allowing for a different kind of credit scoring rather than the traditional good versus bad categorization. Our results verify in a statistically concrete basis what is well-known in credit-scoring literature, namely that the two-class categorization is not sufficient and that the population consists of more groups.

Classification problems in the context of credit granting decisions may use count data models due to the characteristics of the dependent variable. In fact, the number of defaulted payments is the variable used to define whether a client is good (repaying) or bad (defaulter). The count data non parametric model is useful to find better prediction of the number of default payment.

In this paper although prepayment has not been considered, one should see the way to include duration of repayment at sample collection and its influence in final estimation and classification results. Further research is needed to resolve certain points such as model selection or specification form in non parametric poisson models.

The R scripts

Poisson model estimation formula.model<-reports ∼ age + income + expenditure ccpois <-glm(formula.model, data = CreditCard, family = poisson) summary(ccpois) logLik(ccpois) pre<-round(predict(ccpois,datastq),3) lambda <-round(exp(pre),3) yhat.poiss <-rpois(nrow(datastq),lambda ) Chapter 3

Nonparametric GARCH models

Introduction

In their paper, [START_REF] Tjøstheim | Nonparametric Identification of Nonlinear Time Series: Projections[END_REF] investigated the possibility of identifying nonlinear time series patterns using nonparametric methods. [START_REF] Härdle | Nonparametric Time Series Analysis, a Selective Review with Examples[END_REF] present a selective review of procedure-based approaches to building nonparametric models in time series analysis. They point out that nonlinear, nonparametric time series analysis is useful in dealing with the limitations of constant-mean ARMA models. Hardle et al. (1997) review some developments in modern nonparametric techniques for time series analysis. [START_REF] Engle | Semiparametric ARCH models[END_REF] approach the semi-parametric ARCH model by introducing a more efficient estimator based on a non-parametric estimated density. They also assess the loss of efficiency of the quasi-maximum likelihood estimator, which wrongly assumes normality. Buhlmann and McNeil (2002) proposed a nonparametric approach to GARCH modeling. [START_REF] Hou | A Nonparametric GARCH Model Of Crude Oil Price Return Volatility[END_REF] reviewed the nonparametric approach of Buhlmann and McNeil (2002) to model and predict the volatility of crude oil price returns. They use 4845 daily observations of West Texas Intermediate crude oil spot prices from January 6, 1992 to July 30, 2010 in their application. According to their results on forecast accuracy, the nonparametric GARCH model performs better than the parametric GARCH models. They prefer their nonparametric approaches because of the nonnormality of the oil price distribution.

Another important reason in the development of nonparametric models is the lag selection procedure. The usual nonparametric models perform less than satisfactorily when dealing with more than one lag, especially in the case of the curse of dimensionality.

Alternative lag selection criteria have been investigated for nonlinear autoregressive processes. [START_REF] Tjøstheim | Nonparametric Identification of Nonlinear Time Series: Projections[END_REF] propose to use a nonparametric version of the final prediction error (FPE). [START_REF] Tschernig | Nonparametric Lag Selection for Time Series[END_REF] derived a nonparametric version of the final prediction error for lag selection in nonlinear autoregressive time series under very general conditions, including heteroscedasticity. Yang, et al. (1999) introduce a new nonparametric auto-regression with multiplicative volatility and additive mean to obtain better estimates. [START_REF] Wang | Efficient Semiparametric GARCH Modeling Of Financial Volatility[END_REF] proposed a new efficient semi-parametric GARCH modeling of volatility taking into account the lag selection procedure.

Econometric models

GARCH model

The GARCH model of [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF] is the most widely used model for the volatility estimation.The GARCH models have been very successful in the literature because of their simple specification and easy interpretability. As pointed out by Bera and Higgins (1993), most of the applied financial works show that GARCH (1,1) provides a flexible and parsimonious approximation to the conditional variance dynamics and is capable of representing the majority of financial series. The GARCH (1,1) model is written as,

R t = µ + ε t , with ε t = σ t .z t ; z t ∼ N (0, 1)
The equation for the conditional variance of the residuals is defined as:

σ 2 t = α 0 + α 1 .ε 2 t-1 + β 1 .σ 2 t-1 (3.1)
Where α 0 > 0,α 1 ≥ 0 and β 1 ≥ 0 are constants and the ARCH(1) model corresponds to β 1 = 0. The constraint α 1 + β 1 < 1 implies that the unconditional variance of the return series ε is finite and the conditional variance σ 2 t evolves over time. It also provides the necessary and sufficient condition for the stochastic process σ t ; t ∈ Z to be a unique strictly stationary process with E(σ 2 t ) < ∞.

Two key properties can be noted from (1). First, a large ε 2 t-1 or σ 2 t-1 gives rise to a large σ 2 t and this generates the volatility clustering that is commonly known in financial time series. Second, the tail distribution is thicker than that of a normal distribution.

EGARCH Model

Despite their popularity, ARCH and GARCH models suffer from several weaknesses and drawbacks. [START_REF] Nelson | Conditional heteroskedasticity in asset returns: a new approach[END_REF] criticized the GARCH models in three aspects: First, parameters are restricted to be positive at every time point; Second, it fails to accommodate asymmetry effect (or leverage effect); and Third, measuring the persistence of the shocks on volatility is difficult. [START_REF] Nelson | Conditional heteroskedasticity in asset returns: a new approach[END_REF] proposed the exponential GARCH (EGARCH) that accommodates the drawbacks of a standard GARCH model. The the first-order EGARCH (or EGARCH(1,1)) process specifies the model as

R t = µ + ε t , with ε t = σ t .z t ; z t ∼ N (0, 1)
The equation for the conditional variance of the residuals is defined as:

log(σ 2 t ) = α 0 + α 1 .g(ε t-1 ) + β 1 . log(σ 2 t-1 ) (3.2)
Where ε t follows the normal law is a weak white noise and the function g(.) verified.

g(ε t-1 ) = α.ε t-1 + γ(|ε t-1 | -E(|ε t-1 |)) (3.3)
Here the coefficient γ signifies the leverage effect of shocks on the volatility. The key advantage of the EGARCH model is that the positive restrictions are not needed to be imposed on the variance coefficients. The coefficients γ need to be negative for evidence of asymmetric effects.

GJR-GARCH Model

In the simple GARCH (1,1) approach good news and bad news, i.e. positive and negative shocks, have the same impact on the conditional variance. Many studies have found evidence of asymmetry in stock price behavior, i.e., negative surprises seem to increase volatility more than positive surprises. To allow asymmetric effects in the volatility, [START_REF] Glosten | On the relation between the expected value and the volatility of the nominal excess return on stocks[END_REF] add an additional term in the conditional variance and formulate the so called GJR model. The GJR (1,1) is specified as follows,

R t = µ + ε t , with ε t = σ t .z t ; z t ∼ N (0, 1)
The equation for the conditional variance of the residuals is defined as:

σ 2 t = α 0 + α 1 .ε 2 t-1 + γ.(I ε t-1 <0 .ε 2 t-1 ) + β 1 .σ 2 t-1 (3.4)
Where z t denotes a weak white noise of zero mean and constant variance over time, and the coefficients α 1 , β 1 and γ are real parameters et I ε t-1 <0 denotes the indicator function such that

I ε t-1 <0 = 1 si ε t-1 < 0 = 0 sinon.
The structure of this model indicates that a positive ε t-1 contributes α 1 .ε 2 t-1 to σ t , whereas a negative ε t-1 has a larger impact of (α 1 + γ).ε 2 t-1 with γ > 0. Therefore, if parameters γ is significantly positive, then negative innovations generate more volatility than positive innovations of equal magnitude. The main feature of this model is that a negative shock has a larger impact than a positive shock and hence, it captures the leverage effect. Like the GARCH model, the GJR-GARCH model captures the volatility clustering. Also, it can be shown that the unconditional distribution presents excess kurtosis even under the Gaussian distribution.

Nonparametric ARCH Models

The starting point of the data generating process of a strictly stationary discrete-time stochastic process R t defined on some probability space is the general univariate non-linear stochastic regression model given by

R t = m(R t-1 , . . . , R t-p ) + σ(R t-1 , . . . , R t-p ) t , t = 1, ..., T (3.5) 
Where

m(R t-1 , ..., R t-p ) = E(R t /R t-1 = r 1 , . . . , R t-p = r p ) is the nonlinear autoregressive conditional mean (smooth) function, σ 2 (R t-1 , . . . , R t-p ) = V ar(R t /R t-1 = r 1 , . . . , R t-p =
r p ) represents the nonlinear autoregressive conditional variance (smooth) function, and t is an independent and identically distributed (i,i,d) sequence of random variables with

E( t /R t-1 , . . . , R t-p ) = 0 ,V ar( t /R t-1 , . . . , R t-p ) = 1 and independent of R t-1 , . . . , R t-p .
The model ( 5) is known as the Nonparametric Autoregressive Conditional Heteroscedastic NARCH-model see [START_REF] Fan | Efficient estimation of conditional variance functions in stochastic regression[END_REF].This model is the most flexible nomparametric time series model because it does not impose any (parametric) particular form on the conditional mean and volatility functions. However,due to the well-known "curse of dimensionality" problem, to assume a certain level of structure on the conditional function m(.) and σ (.). In this current study, we employ the first-order conditional heteroscedastic nonlinear autoregressive NARCH (1,1) model

R t = m(R t-1 ) + σ(R t-1 ) t , t = 2, ..., T (3.6) 
where R t are observed and depend on R t-1 with lag 1, m(R t-1 ) is the trend function of NARCH-model, σ(R t-1 ) is the heteroscedastic function of NARCH-model, and t denotes a random variable in the error term, with mean zero and variance one. Following Fan and Yao (1998) if R t is a stationary process, the conditional variance function can be decomposed as

σ 2 = E(R 2 t /R t-1 = r) -(E(R t /R t-1 = r) 2 = g(r) -m(r) 2
such that the conditional variance estimate is based on the nonparametric estimation of g(r) and m(r) given by σ2 (r) = ĝ(r) -m(r) 2 .

A way to obtain estimates of functions g(r) and m(r) is by applying the popular Nadaraya-Watson estimator given by:

m(R t-1 ) = T t=2 K(R t-1 -r)/h)R t T t=2 K(R t-1 -r)/h) ĝ(R t-1 ) = T t=2 K(R t-1 -r)/h)R 2 t T t=2 K(R t-1 -r)/h)
The function K(•) is usually a symmetric probability density and examples of commonly used kernel functions are the Gaussian kernel

K(t) = ( √ 2π) -1 exp(-t 2 /2) and the Epanechnikov kernel K(t) = max{ 3 4 (1 -t 2 ), 0}
and h is bandwidth parameter (smoothing parameter) .

Nonparametric GARCH Models

We propose to apply this nonparametric method that does not require the specification of the functional form of the volatility and that does not regard to the distributional form of the innovation distribution. Moreover, nonparametric GARCH models allow the conditional covariance matrix of the dependent variables to follow a flexible dynamic structure. The stationary stochastic process {ε t ; 1 < t < n} has the nonparametric GARCH(1,1) form given in (Bühlmannand McNeill, 2002):

R t = µ + ε t , with ε t = σ t .z t ; z t ∼ N (0, 1)
The equation for the conditional variance of the residuals is defined as:

σ 2 t = f (ε t-1 , σ 2 t-1 ) (3.7) 
In the nonparametric GARCH approach the exact form of f is unspecified and is estimated using a bivariate nonparametric smoothing technique which is less sensitive to model misspecification such as neglected asymmetric volatility.

Assuming that {ε t ; 1 < t < n} coming from a process satisfying (7), the estimation of a nonparametric GARCH model is applied with the following steps as proposed in (Bühlmann and McNeill, 2002):

1-Firstly, at the m=0 step, an estimate of volatility {σ 2 t,0 ; 1 < t < n} is obtained by fitting an ordinary parametric GARCH(1,1). Then the predictions from the GARCH(1,1) model are extracted which gives the {σ 2 t,0 ; 1 < t < n} estimates for the m=0 step of the algorithm. Since the first value is not estimated in returns, it is set as equal to the mean.

2-In the m=1 step, ε 2 t is regressed with a nonparametric smoothing technique against ε t-1 and σ2 t-1,0 which are obtained from the parametric GARCH(1,1). The squared values of the residuals are obtained from the ARIMA model and the lagged values are the first lag of the residuals of the ARIMA model. The estimated variance of the return series is obtained from the previous step of the algorithm.

3-At the m'th step, the algorithm is repeated and the σ2 t-1,m is estimated by ε t-1 and σ2 t-1,m-1 .

Forecast performance measures

While there are several different measurements for evaluating volatility forecasting performances,the mean square error (MSE) and the mean absolute error (MAE) are used in this study. When the true underlying volatility process is unobservable, we adopt the suggestion to use (σ 2 t = R t -R) 2 as a proxy for latent volatility in this scenario. The MAE and MSE for n step ahead forecast are defined as follows :

M SE = 1 N N t=1 ((R t+n -R) 2 -ĥt (n)) 2 M AE = 1 N N t=1 |(R t+n -R) 2 -ĥt (n)|
where R t+n : the return over horizon n steps ahead at current time t , R: the mean of return , ĥt (n) : the forecasted conditional variance over horizon n steps ahead at current time t.

Application: Modeling the Volatility of Bitcoin

Returns

The cryptocurrency market is a potential source of financial instability and its impact on the financial market is still uncertain. Unlike other financial assets that are regularized, there are no formal regulations for cryptocurrencies. Cryptocurrencies also differ significantly from other financial assets in the financial market and thus create great prospects for investors and market participants in terms of portfolio analysis, risk management and even consumer sentiment analysis. . In the cryptocurrency market, volatility modeling is important to measure the risk of an investment.

Volatility can be defined as a measure of the price dispersion of a financial asset. Market participants and investors are therefore interested in an accurate estimate of volatility in the cryptocurrency market. This is the result of the correlation between volatility and investment returns. It should be noted that volatility is not directly observable and therefore there is a growing need for an efficient model that can capture price volatility in the cryptocurrency market. As bitcoin has gradually had a place in financial markets and portfolio management, time series analysis is a useful tool for studying the characteristics of bitcoin prices and returns, and extracting meaningful statistics to predict future values.

from the Serie.

The objective of this work is to apply time series techniques to model return volatility and to predict future Bitcoin prices. Furthermore, the aim is to examine the effectiveness of the popular GARCH model in the economic and financial world. In this work, we assume the functional form of the unspecified variance process and we will attempt to estimate it as a nonparametric additive mean. Empirically, we verify that the nonparametric model can capture the leverage of negative news and outperform two of the most commonly considered GARCH family parametric models.

Data description

In this study, we apply the previously described different parametric and nonpara- where T is the sample size, skew and kurt are the sample skewness and kurtosis respectively.

Under the null that the data is normal iid, JB is asymptotically distributed as chi-square Figure 2 is the histogram and the normal quantile-quantile (q-q) plot of the return series for the same time period. 

Estimation results

The Note that all parameters of the conditional volatility are significant at the 5% significance level. The coefficient of lagged variance β shows very high volatility persistence.

The sum of α and β from the GARCH model are close to 1, which supports the evidence of volatility clustering. The P-values of Ljung-Box Q-statistic test at the lag 20 of standardized residual series from all models fail to suggest the autocorrelation at a 5% significance level. Thus all models appear to be adequate in describing the linear dependence in the return and volatility series.

The estimated value of the leverage parameters γ of the EGARCH and GJR models with Gaussian/t distributed innovations is: 0.1858/ -0.1402 and 0.10/ -0.0369, respectively. All these parameters are significant at the 5% level with the exception of the γ from the EGARCH model with Gaussian errors. The significance of the parameters indicates the existence of asymmetry effect i.e., bad news (negative shock) has a larger impact on return volatility than good news (positive shock). It is also worth noting that the leverage effect estimated from models fitted with t distributed innovation is higher than the ones with normal distributed innovations. The existence of the asymmetry effect as in other mature stock markets in the world may be a positive sign for market efficiency and completeness.

Forecast results

The performance of the out-of-sample volatility forecasts of various models are summarized in Table 4. It is clear from this table that among different models, the GARCH model This is perhaps not surprising because the asymmetric effect in Bitcoin market is not as 

  ..) formula allows to specify the model Does not take a factor! No more than 4 regressors! span: the proportion of points in the scale. used for "local fitting" (ad hoc) degree =1 indicates locally linear regressions and degree =2 (default) locally quadratic regressions parametric: allows to specify some regressors as parametric The returned object is of class loess and has the following attributes: pred$fitted: the predicted values of y for the given values of x. pred$residuals: the residual values of y for the given values of x (actual values-predicted values)

Figure

  Figure 1.1: The Nadaraya-Watson Kernel Method

  selfempyes and expenditure. Then f (y|x) is obtained as the ratio of a four-dimensional kernel density estimate to a four dimensional kernel density estimate, where reports is treated as ordered discrete data with the weighting function (8), income and expenditure are treated as continuous with a second-order Gaussian kernel of fixed bandwidth, and owneryes, selfempyes , is an unordered binary discrete variable with the weighting function (9). The bandwidth is chosen using expected Kullback-Liebler cross-validation.We additionally estimate semiparametric models of the conditional mean of reports given the four regressors income, owneryes, selfempyes and expenditure. The fourth model, denoted INDEX, is a single-index model estimated using the semiparametric least squares method of[START_REF] Ichimura | Semiparametric Least Squares (SLS) andWeighted SLS Estimation of Single-Index Models[END_REF] that jointly estimates the bandwidth and coefficients using leave-one-out nonlinear least squares. The model selection criterion of Akaike information criterion AIC resulting from the non-parametric poisson model is equal to 605.56, which is significantly less than 610.76 for NB2.When using poisson model, a score was associated to each individual. The score is a transformation of the probability of having been drawn from each of the two populations under study. If the estimated probability of being a good client is greater that the estimated probability of being bad, the prediction for the individual is that it belongs to the good group (and conversely, for a smaller probability). This prediction is compared to the actual client behaviour. When this is done for all individuals in the sample, an estimation of classification rates is obtained.

  with 2 degrees of freedom. The tests rejected the normality at 5% significance level. The return series of Bitcoin is negatively skewed. This indicates that the returns of Bitcoin is non-symmetric. The negative value of the skewness indicates that the distribution of Bitcoin return series is skewed to the left. The positive excess kurtosis (16.626) indicates that the returns are leptokurtic. That is, the returns series has a fatty tail.

Figure 3 . 2 :

 32 Figure 3.2: Histogram and normal q-q plot of return series of Bitcoin.

Figure 1

 1 Figure 1 shows the time series plot of Bitcoin price (left Figure) and the return series (right Figure) of Bitcoin for the time period.Figure 2 is the histogram and the normal

  performs the worst according to all goodness-of-fit measures and the N-GARCH model performs the best in delivering the lowest forecast error. Compared with the GARCH model, the EGARCH model improves the volatility estimation by capturing the leverage effects. For the GJR model, it slightly improves the result from the GARCH estimation.

Figure 3 . 3 :

 33 Figure 3.3: The estimated volatility from in-sample volatility estimation

3. 6

 6 The R scripts Estimation of nonparametric GARCH models library(rugarch) model1=ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)), mean.model = list(armaOrder = c(0, 0), include.mean = TRUE), distribution.model = "norm") m1=ugarchfit(spec=model1,data=Return) mu<-fitted(m1) # Extraire la série résultante hatmu_t (= hatX_t) residuals(m1) # Extraction des résidus sigma(m1) # Extrait les valeurs sigma conditionnelles. fitted hatsigma_t sig _t <-as.numeric(sigma(m1))[<-gam(lag1 ∼ s(lag0)+(sig_t 2),data=dd1) summary(fit.aar2) zz88=fitted( fit.aar2) zz8=data.frame(sigma.RR[-(1533:1534)],zz88) matplot(zz8, type='l', ylab='Condi.Var', col=c("blue","red"), main="N-GARCH ")

  

  Predicted Mean S.D Min Max Cor(y, ŷ) 2

	Actual y 0.164 0.48	0	3	.
	Poisson	0.134 0.42	0	4	0.1
	NB2	0.139 0.44	0	4	-0.04
	NP	1.129 1.01	0	5	0.16
	INDEX 1.075 1.03	0	4	-0.1
		Table 2.4: Summary of various fitted models

Table 3

 3 is a classification table that compares the actual count y i to the predicted count ŷi . The non parametric estimates predict zeros well and underpredict intermediate and larger counts. By contrast the NB2 model, does similarly well in predicting zeros and ones, but underpredicts intermediate and larger counts much more. For example, we have 18 observations where the number of monthly payment that were defaulted is equal to 1 the NB2 model predicts that only 2 count , whereas the non parametric model predicts 9 counts. For the 7 observations with reports excess of 2 the NB2 model predicts that 0 count , whereas the non parametric predicts two counts in excess of 2. Using nonparametric poison model can to account for both heterogeneity and zero inflation present in

a data set for credit-scoring.

Table 4

 4 presents descriptive statistics for the predicted values the number of default payments of studies models. The NB2 model does particularly poorly, with the lowest squared correlation of ( -0.04) between the actual and fitted values. Fitting the entire distribution using an NB2 model in this data example leads to poorer fit of the mean, as is also evident from the average fitted mean of 0.139 being substantially higher than the sample mean of 0.164. The empirical results found suggest that the best fit models are non parametric model is preferred .

table (

 ( Comparison of the different predicted conditional means predictedmeans <-cbind(reports,yhat.poiss,yhat.nb,yhat.npreg,yhat.npindex) 

	library(MASS) bw.npindex <-npindexbw(formula.model,data = CreditCard)
	model.nb <-glm.nb(formula.model, data = CreditCard) summary(bw.npindex)
	summary(model.nb) model.npindex <-npindex(bws=bw.npindex, gradients=TRUE)
	pre1<-round(predict(model.nb,datastq),3) summary(model.npindex)
	lambda1 <-round(exp(pre1),3) pre4<-round(fitted(model.npindex ,datastq),3)
	yhat.nb = rpois(nrow(datastq),lambda1 ) lambda3 <-round(exp(pre4),3)
	table(yhat.nb) yhat.npindex = rpois(nrow(datastq),lambda3)
	predict2 <-cbind(yte,yhat.nb) table(yhat.npindex)
	table(yte,yhat.nb) predict4 <-cbind(yte,yhat.npindex)
	Nonparametric conditional mean estimate (local linear kernel) table(yte,yhat.npindex)
	library(np)
	bw.npreg <-npregbw(formula.model"regtype="ll",bwmethod="cv.aic",data = Cred-
	itCard) apply(predictedmeans,2,mean)
	summary(bw.npreg) apply(predictedmeans,2,sd)
	model.npreg <-npreg(bws=bw.npreg, gradients=TRUE) summary(predictedmeans)
	summary(model.npreg) round(cor(predictedmeans),2)
	pre3<-round(fitted(model.npreg,datastq),3)
	yhat.poiss) lambda2 <-round(exp(pre3),3)
	predict1 <-cbind(yte,yhat.poiss) yhat.npreg = rpois(nrow(datastq),lambda2)
	table(yte,yhat.poiss) table(yhat.npreg)
	predict3 <-cbind(yte,yhat.npreg)
	Estimation of the negative binomial model
	table(yte,yhat.npreg)
	Single-index semi-parametric conditional mean estimate

  The Augmented Dickey Fuller (ADF) test(Dickey and Fuller, 1979) is used to test for stationarity. From Table2, the null hypothesis of statonarity is accepted at 5% -level of significance. Hence, there is no need to difference the return series. To apply GARCH models to the Bitcoin returns series, the presence of stationarity and ARCH effects in the residual return series are tested. The Ljung-box and Lagrange multiplier (LM) test[START_REF] Engle | Garch 101: The use of arch/garch models in applied econometrics[END_REF] are used to test for the presence of ARCH effects in the data.The Ljung-box and LM test are presented in Table2. From the Ljung box test, the null hypothesis of "no autocorrelation" in the squared residuals is rejected at 5% significance level. That is, there is dependency in the squared returns series of Bitcoin. Using the LM test, the null hypothesis of "no ARCH effects" is rejected at 5% significance level. From the Ljung box and LM test, it can be concluded that the volatility ARCH effect is very much present in the return series. Hence, the GARCH models are used to model the returns series data.

Table 3

 3 data descriptive statistics indicate that an appropriate model of Bitcoin returns volatility should account for its time-varying nature and the departure from normality in

	Bitcoin returns distribution. All estimations and computations are done in R Statistical
	Environment (R, 2008) using " rugarch" R package developed by and Ghalanos (2013)
	the "KernSmooth" R package developed by Wand and Ripley (2007). The parametric
	GARCH models are estimated with the Bollerslev and Wooldridge (1992) quasi-maximum
	likelihood method which gives robust standard errors.
	We first fit the series from 02/01/2017 to 30/04/2021 with the standard GARCH(1,1)
	model. Considering the existence of the asymmetry effects in the cyrpto markets, we also
	fit the data with the EGARCH and GJR models. For all these models, the innovations

.3: In-sample estimations of the GARCH, EGARCH, and GJR models are assumed to be both Gaussian,and student-t distributed. The estimated parameters and Ljung-Box Q-statistics tests of the standardized residuals are presented in Table

3

.

Table 3

 3 

	shows the results of the maximum likelihood estimate (MLE) of GARCH(1,1),
	EGARCH(1,1), and GJR-GARCH(1,1) models for Bitcoin returns using Normal and
	student t-distribution. From the table, the log-likelihood value (-4123.559) is maxi-
	mum for GJR-GARCH(1,1) model. The values of the two information criterions (AIC=
	5.385 , BIC=5.409 ) of EGARCH(1,1) are minimum as compared to GARCH(1,1)-t and
	GJR.GARCH(1,1)-t. These results indicate thatEGARCH(1,1)-t model is the optimal
	model to describe the volatility of the return series of Bitcoin.

Now, assume P t and P t-1 represents the current day and previous day price of Bitcoin, then the return series/log returns (R t ) and multiplied by 100 as follows