Frédéric Dambreville 
email: frederic.dambreville@onera.fr
  
Simulation conditionally to a subvariety and application to Bayesian optimization: a dichotomous approach

Keywords: Rare Event Simulation, Subvariety, Bayesian Optimization, Interval Analysis

This chapter concerns the issue of simulating a random vector conditionally to a subvariety. In practice, the subvariety is approximated by a thin shell surrounding it. These simulations are unusual cases of rare event simulation, which are made even more dicult with the dimension, the thinness of the shell and the nonlinearity of the subvariety. We propose a generic approach dedicated to the simulation of this type of rare event, which is dichotomous and inspired by interval analysis, with a particular eort to reduce the dimension curse. Non-incremental and incremental versions of the algorithm are designed in order to handle possible incremental constraint sets. Details on a multithread implementation are given especially in terms of data structure. These simulation methods are then used to propose a non-linear approach to Bayesian optimization. Examples of simulations and of Bayesian optimization are given in order to illustrate and compare the performances of the methods.

Introduction

This chapter is the long version of conference paper [START_REF] Dambreville | Optimizing a sensor deployment with network constraints computable by costly requests[END_REF]. As a main topic, it addresses the issue of sampling a random vector dened on an n-dimension box conditionally to a subvariety of this box. As a secondary topic and a main application of the simulation, the chapter proposes a non-linear algorithmic approach for Bayesian optimisation [START_REF] Mo£kus | On bayesian methods for seeking the extremum[END_REF].

Thus, given a random vector X of density f X dened on R n , given box In survey [START_REF] Morio | A survey of rare event simulation methods for static inputoutput models[END_REF], Morio, Balesdent et al. have evaluated the advantages and drawbacks of various rare event sampling methods. At this point, a comment may be done. In the literature, rare events are generally modelled by a function of risk being above an acceptable threshold. This formalism is quite general, but it suggests that the simulation of a rare event is tightly related to the maximization of a function. In practice, the maximizing set of a function is unimodal or somewhat multimodal. It is uncommon that this maximizing set is a subvariety.

Not surprisingly, many methods evaluated in [START_REF] Morio | A survey of rare event simulation methods for static inputoutput models[END_REF] are working well when the rare event is unimodal or moderately multimodal. In the case of conditional vector [X |g(X) ∈ [ ] ], these approaches do not work properly or need additional studies to take benecially into account the subvariety structure. This chapter promotes an alternative approach based on a dichotomous exploration in order to sample conditionally to a subvariety characterized by a known function. By design, this approach produces independent samples and avoids the phenomenon of sample impoverishement. These properties make it particularly well suited for an accurate approximation of a law conditionally to the subvariety. However, the method must ght the curse of dimensionality and we will be faced with two orthogonal dimensional problems: the exponential increase in sampling exploration and the degeneracy of particle weights. This paper presents an approach as well as generic and weakly parameterized algorithms, allowing good sampling performance for moderate dimensions (up to 11 for now) with balanced management of dimensional issues.

One main applicative purpose of this work is to contribute to the domain of Bayesian optimization from a nonlinear point of view. Bayesian optimization is among the key techniques for black-box optimization. In this kind of problems, one have to optimize fonctions which do not have usable formalization and for 1 [X |g(X) ∈ [ ] ] is used as an abbreviation for

[X |X ∈ [b] & g(X) ∈ [ ] ] .
which the request to an evaluator is generally particularly expensive. Accordingly, an inherent goal of such optimization is to save as much as possible on the number of candidate solutions to be evaluated. Approaches based on Gaussian surrogate models [START_REF] Jones | Ecient global optimization of expensive black-box functions[END_REF] have demonstrated the great interest of these Bayesian methods, but suer from a drop in eciency with the increase in dimension. Our contribution aims to address this dimensional diculty by considering a known non-linear criterion depending on a model noise (a random vector) rather than a surrogate model of the criterion.

The chapter is divided in four main parts. Section 2 introduces concepts of interval analysis and derives some rst ideas for a generic sampler. Section 3 deepens the intuitions introduced in section 2 and presents the working generic algorithms. Section 4 applies the sampling method for the design of a nonlinear algorithm for Bayesian optimization. Section 5 presents tests and analyses.

The algorithm already presented in conference paper [START_REF] Dambreville | Optimizing a sensor deployment with network constraints computable by costly requests[END_REF] has slightly evolved and its implementation has been deeply revisited in terms of multithreading and data structure. In comparison to the conference paper, this chapter also describes a new incremental sampling algorithm, includes a new chapter dedicated to Bayesian optimization and presents rebuilt and supplemented tests and results.

Toward a generic sampling approach

This section presents some useful concepts and ideas for dening actually working sampling algorithms. Interval analysis is one of these tools. Interval analysis is a performing and accurate tool for dealing with constraints, and it provides a precise control on the approximation errors. Another interesting point is that intervals and boxes combine well with probability distributions.

Condiderations about interval analysis

It is not our purpose to perform a good introduction on interval analysis [START_REF] Alefeld | Interval analysis: theory and applications[END_REF][START_REF] Jaulin | Applied Interval Analysis with Examples in Parameter and State Estimation[END_REF].

However, we refer to some key concepts, which are inspiring ideas for this work. functions and operators. As a main ingredient throughout this chapter, it is reasonable to assume that for most common real functions g, it is possible to derive an interval function [g] that satises properties:

g([x]) ⊂ [g]([x]) for any [x] ∈ [R n ], 2 [g]([x]) ⊂ [g]([y]) when [x] ⊂ [y], If ρ([x]) vanishes, then ρ([g]([x])) vanishes: ρ (g([x])) ------→ ρ([x])→0 0 (1) 2 In particular, it is better if [g] is minimal, that is [g]([x]) is the minimal box containing g([x]) as subset for all [x] ∈ [R n ].
These properties express that [g] implies a bound on the error propagated by g, and this bound has good convergence behavior in regards to the error. Incidentally, we assume from now on that notation [g] refers to an interval function, which veries these good properties with respect to the function g.

Let us see how to build the interval functions on some common examples:

1. Reference functions, g ∈ {ln, exp, sin, cos, . n , . . . }, are continuous onto R, so that g(

[x]) ∈ [R] for all [x] ∈ [R]. Then, it is optimal to set [g]([x]) = g([x]) for all [x] ∈ [R]
. As a consequence, the interval functions are easily optimaly implementable for most reference functions. Here are some incomplete examples of denitions:

[ln]([x]) [ln(x -), ln(x + )] and [x] n [x n -, x n + ] for n > 0, [x n + , x n -] for n < 0 & 0 ∈ [x], (2) 
[cos][x]            [cos(x -), cos(x + )] for [x] ⊂ [-π, 0] [cos(x + ), cos(x -)] for [x] ⊂ [0, π] [min(cos(x -), cos(x + )), 1] for 0 ∈ [x] ⊂ [-π, π] etc. (3) 
2. Minimal interval functions for classical operators +, •, -, / are also easily dened. For example:

[x] + [y] [x -+ y -, x + + y + ] and [x] -[y] [x --y + , x + -y -] . (4) 
3. Function g dened by g(θ) = (cos(θ), sin(θ)) is an example, which is such that g(

[θ]) ∈ R 2 . One would rather dene [g]([θ]) = [cos]([θ]) × [sin]([θ]) (× is the Carthesian product) which is a strict supset of g([θ]) in general.
By the way, this construction is an illustration on how the interval functions of reference are used to dene complex interval functions straightforwardly.

There is no uniqueness in the construction of [g], unless it is chosen minimal. Unfortunately, constructing a minimal [g] is not always easy or automatic. Let us consider the case of function g : θ → cos 2 θ + sin 2 θ . Then, there are two obvious denitions for [g]:

1. By using the reference functions cos, sin, . 2 and + one may derive:

[g]([θ]) = ([cos]([θ])) 2 + ([sin]([θ])) 2 . ( 5 
)
For example, we compute [g] 0, π 2 = [0, 2] which is a bad error bound on theoretical value 1. Now, we also compute [g] - 

θ + sin 2 θ = 1, it is optimal to dene [g]([θ]) = [1, 1].
Although approach 2 gives the best solution, in practice approach 1 is prefered since it is generic, it is based on already implemented functions of reference, and it provides a way to construct automatically [g] without any specic knowledge.

Subpaving and set inversion. As [g] implies a bound on errors propagated by g with good convergence behavior, it may be used combined with a dichotomous process to produce a subpaving which eciently approximates a set inversion g -1 ([y]) . The example on gure 2 is kindly given by professor Jaulin and is also taken from [START_REF] Dambreville | Simulating a Random Vector Conditionally to a Subvariety: A Generic Dichotomous Approach[END_REF]. It shows a resulting subpaving which approximates a set inversion. The decomposition is clearly dichotomous. Property (1) plays a key role in the decomposition process, ensuring that case a or case b are nally achieved when sub-boxes [x] are suciently small and sufciently far from the frontier of set g -1 ([y]) .

Naive dichotomous approach for sampling

Let µ be Borel measure on R n . It is given from now on: a random vector X on R n characterized by a bounded density f X . Cumulative distribution function F X of X, dened by F X (x) = P (X ≤ x) for all x ∈ R n , is assumed to be easily computable,

a box [b] ∈ [R n ] and a small box [ ] ∈ [R m ],
a continuous map g : [b] → R m built of functions and operators of reference, [g] derived from g and related interval functions and operators of reference.

Sampling within boxes. We point out that it is easy to compute P (X ∈ [y])

or to sample [X |X ∈ [y]
] when F X is available, especially when the components of X are jointly independent. These results are well known, and details are given in [START_REF] Dambreville | Simulating a Random Vector Conditionally to a Subvariety: A Generic Dichotomous Approach[END_REF]. Thus, these features are taken for granted in this paper.

Sampling by means of a subpaving. Assume that set g -1 ([ ]) has been approximated (by excess) by a subpaving. Thus, there is P ⊂ [R n ] such that:

For all [x], [y] ∈ P, boxes [x[ and [y[ are disjoint, g -1 ([ ]) ⊆ [x]∈P [x] and P g -1 ([ ]) , where P [x]∈P [x[ .
Set P is typically composed from boxes of case a and case c (red and yellow colors) after a dichotomous subpaving construction of the set inversion.

The quality of the approximation may be quantied by set measures:

α P = µ P \ g -1 ([ ]) = [x]∈P µ ([x[) -µ g -1 ([ ]) . (6) 
Smaller is α P , better is the approximation. Interval based set inversions are able to reach arbitrary precision for small dimensions (2 or 3 typically).

Now, for all y ∈ R n , it happens that:

f X|X∈ P (y) = f X (y)δy∈ P P (X ∈ P ) (7) = f X (y) [x]∈P δ y∈[x[ [x]∈P P (X ∈ [x[) = [x]∈P P (X ∈ [x[) f X|X∈[x[ (y) [x]∈P P (X ∈ [x[) = [x]∈P P (X ∈ [x]) [x]∈P P (X ∈ [x]) f X|X∈[x[ (y) , (8) 
where δ true = 1 and δ false = 0 else. Since f X is bounded, equation [START_REF] Jaulin | Applied Interval Analysis with Examples in Parameter and State Estimation[END_REF] implies:

[X |X ∈ P ] L ----→ α P →0 X X ∈ g -1 ([ ] (9) 
Now, equation [START_REF] Jones | Ecient global optimization of expensive black-box functions[END_REF] shows clearly that f X|X∈ P may be sampled by applying two steps: rst sample a box [x] ∈ P according to the discrete probability P (X∈[x]) The approach is ecient on conditional events like Toward an improved approach. A key point of algorithm 1 is to be able to sample a box [x] of a subpaving of g -1 ([ ]). It is noticeable that an entire build of the subpaving is not needed here. Indeed, if we were able to construct a box [x] of the subpaving on demand, together with its relative weight within the subpaving, then we would be able to build sample y.

[X |g(X) ∈ [ ] ].
Therefore, it may be opportune to merge the sampling process with the dichotomous construction of the subpaving itself. Now, a main ingredient of a dichotomous approach is also how the algorithm divides and conquers. In general, bisections are often used in dichotomous processes, as there is a garanty of exponential volume decrease of the search area. Our approach is less constrained, so as to better tune the exploration strategy.

Function Sampling [X |g(X) ∈ [ ] ]

input : r, g, ω, N output:

(y k , w k ) 1:N 2 for k ← 1 to N do 3 ([x 0 ], π k , j) ← ([b], 1, 0) 4 while ρ([x j ]) > r and [g]([x j ]) ⊂ [ ] do 5 ([l j+1 ], [r j+1 ]) ← Cut([x j ]) 6 j ← j + 1 7 [x j ] ← Bern(([l j ], ω [lj ] ), ([r j ], ω [rj ] )) 8 π k ← ω [x j ] ω [l j ] +ω [r j ] π k 9 end 10 w k ← P (X ∈ [x j ]) π k 11 Build y k by sampling [X |X ∈ [x j ] ]
12 end 13 end Algorithm 2: Based on a weighting function.

Here, we speak in terms of cuts, which are more general, being implied that an appropriate management of the box length is made in order to ensure the convergence. In this paper, a cut is dened as follows:

A cut of box [x] ∈ [R n ] is a pair ([l], [r]) ∈ [R n ] 2 such that: [l[ ∩[r[ = ∅ and [l[ [r[ = [x[ , (10) 
A bisection is a cut ([l], [r]) such that [l] and [r] are same-sized.

In order to drive the dichotomous sampling process, we assume that a predictive weighting function is available:

ω [x] = 0 if [g]([x]) ∩ [ ] = ∅ ω [x] P (X ∈ [x] & g(X) ∈ [ ]) otherwise. (11) 
Algorithm 2 implicitly builds a partial subpaving, and produces at the same time a weighted particle cloud as a result of the sampling of

[X |g(X) ∈ [ ] ] .
The algorithm iterates (for loop) the same sampling process, that is the following

successive steps, until [x j ] is suciently small (i.e. ρ([x j ]) ≤ r) or is inside an implied suppaving (i.e. [g]([x j ]) ⊂ [ ]) 3 : Build a cut of [x j ] by means of function Cut([x j ]
). This function is designed so as to ensure that ρ([x j ]) vanishes, Select randomly one box of cut ([l j ], [r j ]) in proportion to their weight, by

mean of Bernoulli process Bern(([l j ], ω [lj ] ), ([r j ], ω [rj ] )),
Update π k which computes the processed probability of [x j ] in regards to the Bernoulli sequence. 3 Recall that

[g]([xj]) is easily computable while g([xj]) is not.
Assume that J is the last value reached by parameter j after the while loop.

Then, the corrected weight w k = 1

π k P (X ∈ [x J ]) is computed for [x J ] and for y k , and y k is sampled from [x J ] . Notice that ω [x] = 0 when [g]([x]) ∩ [ ] = ∅, so that boxes [x J ]
are necessary within a subpaving of g -1 ([ ]) or its border, thanks to the Bernoulli process.

Combined with loop constraint ρ([x j ]) > r and [g]([x j ]) ⊂ [ ], it follows that a subpaving of g -1 ([ ]) (or its border) is implicitely and partially built during the sampling process.

When [g]([x J ]) ⊂ [ ], we have w k = P (X∈[x J ]) π k
where π k evaluates the processed probability for [x J ]. As a result, the weighted particles (y k , w k ) provide an unbiased estimation of f X|g(X) ∈[ ] in a subpaving of g -1 ([ ]) . It is not the same at the border of g -1 ([ ]) , but this case is neglected. However, the sampler is not at all ecient when considering its variance.

Assume ω

[x] = P (X ∈ [x] & g(X) ∈ [ ])
, a case which works perfectly. In this ideal case, the weight along a while loop is computed by:

ω [xj ] ω [lj ] + ω [rj ] = P (X ∈ [x j ] & g(X) ∈ [ ]) P (X ∈ [l j ] ∪ [r j ] & g(X) ∈ [ ]) = P (X ∈ [x j ] & g(X) ∈ [ ]) P (X ∈ [x j-1 ] & g(X) ∈ [ ]) , (12) 
and then:

π k = J j=1 ω [xj ] ω [lj ] + ω [rj ] = P (X ∈ [x J ] & g(X) ∈ [ ]) P (X ∈ [b] & g(X) ∈ [ ]) . (13) 
Three cases potentially arise:

[g]([x J ]) ⊂ [ ], i.e. [x J ] is in implied subpaving. Since g([x J ]) ⊂ [g]([x J ]), it comes P (X ∈ [x J ] & g(X) ∈ [ ]) = P (X ∈ [x J ]
) . Then:

w k = P (X ∈ [xJ ]) P (X∈[x J ] & g(X)∈[ ]) P (X∈[b] & g(X)∈[ ]) = P (X ∈ [xJ ]) P (X∈[x J ]) P (X∈[b] & g(X)∈[ ]) = P (X ∈ [b] & g(X) ∈ [ ]) = P (g(X) ∈ [ ]) (14) [g]([x J ]) ∩ [ ] = ∅ but [g]([x J ]) ⊂ [ ] , i.e. [x J ]
is within the border of the implied subpaving. These cases are negligible for small precision r.

[g]([x J ]) ∩ [ ] = ∅ , i.e. [x J ] is outside the implied subpaving and its border.

This case is simply impossible from the Bernoulli process.

Equation ( 14) shows that the sampling process results in a cloud of same-weight particles over the implied subpaving. Border cases are negligible. Here we have a sampler of [X |g(X) ∈ [ ] ] with the best variance performance in regards to the number of particles. But hypothesis ω

[x] = P (X ∈ [x] & g(X) ∈ [ ]) is nec- essary.
Of course such exact weighting function is almost never available.

Why Does It Generally Not

Work? When ω [x] = P (X ∈ [x] & g(X) ∈ [ ]) ,
the accumulated error will explode with the dimension, which will result in dramatically uneven weights on the particles. The resulting weighted particles cloud is then useless for practical applications.

3 Generic dichotomous approaches for sampling Algorithms 1 and 2 illustrate the two main dimensional issues, that we have to deal with. These approaches are complementary:

By building a complete subpaving of g -1 ([ ]), algorithm 1 makes possible a direct sampling of [X |g(X) ∈ [ ] ], and incidently an accurate computa-

tion of P (X ∈ [x] & g(X) ∈ [ ])
. However, this construction of a complete subpaving is only possible for small dimensions.

Algorithm 2 avoids the construction of a complete subpaving. Instead, it builds the boxes of an implied subpaving on demand throughout the sampling iteration. However, the algorithm is inecient unless the predictive

weighting function ω [x] is a good approximation of P (X ∈ [x] & g(X) ∈ [ ]) .
This condition is not accessible in general.

We propose now an intermediate approach which: keeps history of the subpaving construction throughout the sampling process, use this history to build an improved estimate of P (

X ∈ [x] & g(X) ∈ [ ]) .
By these tricks, it is expected that the sampling precision will increase with the number of samples. In order to avoid useless exploration, we also truncate the dichotomous process on the basis of some predictive assessment of nal weight w k . Thus, the algorithm tends to favor breadth search instead of depth search at the early stages of the sampling process.

Some containment of the curse of dimension

From now on, it is assumed that:

0 ≤ ω [x] ≤ P (X ∈ [x]) , (15) 
and that:

ω [x] = 0 if [g]([x]) ∩ [ ] = ∅ , P (X ∈ [x]) if [g]([x]) ⊂ [ ] . ( 16 
)
Algorithm 3 is an evolution of algorithm 2. In addition, it builds an history of cuts, stored in map cuts, and computes dynamically from this history an improved weighting function, stored in map omg. 

k ← 0 while k < N do • • • k ← k + 1 • • • end
Variable cuts is a dictionary and is used to register the history of computed cuts.

At start, cuts is dened empty (line 2). For a given box [x j ], the cut on [x j ] is computed only once, if it is computed, by line 8 : 

ifundef cuts([x j ]) ← Cut([x j ]) 1 Function Sampling [X |g(X) ∈ [ ] ] input : σ, r, g, ω, N output: (y k , w k ) 1:N 2 (cuts, omg, k) ← (∅, ∅, 0) 3 omg([b]) ← ω [b] 4 while k < N do 5 ([x0], π k , j) ← ([b], 1, 0) 6 while ρ([xj]) > r and [g]([xj]) ⊂ [ ] do 7 if log 2 omg([b]) omg([x j ]) π k > σ goto 20 8 ifundef cuts([xj ]) ← Cut([xj]) 9 ([lj+1], [rj+1]) ← cuts([xj ]) 10 j ← j + 1 11 ifundef omg([rj ]) ← ω [r j ] 12 ifundef omg([lj ]) ← ω [l j ] 13 (ν [l j ] , ν [r j ] ) ← (omg([lj]), omg([rj ])) 14 [xj] ← Bern(([lj], ν [l j ] ), ([rj], ν [r j ] )) 15 π k ← ν [x j ] ν [l j ] +ν [r j ] π k 16 end 17 w k ← P (X ∈ [xj]) π k 18 Build y k by sampling [X |X ∈ [xj] ] 19 k ← k + 1 20 for i ← j to 1 do 21 omg([xi-1]) ← omg([li]) + omg([ri
(ν [lj ] , ν [rj ] ) (omg([l j ]), omg([r j ])) .
There is an interesting property here. Assume that J is the last value reached by j and that J < J is such that omg([l j ]) and omg([r j ]) are already dened for all 1 ≤ j ≤ J . Weighting functions are updated in these cases. Then, it comes for all 1 ≤ j ≤ J that: omg([

x j-1 ]) = omg([l j ]) + omg([r j ]) .
The computation of π k is then simplied:

π k = J j=1 ν [xj ] ν [lj ] + ν [rj ] J j=J +1 ν [xj ] ν [lj ] + ν [rj ] = J j=1 ν [xj ] ν [xj-1] J j=J +1 ν [xj ] ν [lj ] + ν [rj ] = ν [x J ] ν [b] J j=J +1 ν [xj ] ν [lj ] + ν [rj ]
.

(

) 17 
Thus, the error on π k grows exponentially only within the newly explored cuts, that is here from J + 1 to J. This is a reason for setting a certain restriction on the depth-oriented aspect of this sampling process. Another good reason is to prevent degenerate particle weights, w k . Algorithm 3 thus implements some code (line 7) for testing the degeneracy of π k and eventually restarting the sampling loop (second while):

if log 2 omg([b]) omg([x j ]) π k > σ goto 20
This code tests the logarithmic distance between the weight of [x j ], omg([x j ]), and the weight resulting from the sampling process, omg([b]) π k . If it is higher than σ, then the loop is stopped by going to line 20. By doing that, the incrementation of k is skipped, so that the sampling loop is restarted for the same indice k. However, the update of variable omg is done, and of course, the history of cuts stays incremented. So, although the sampling loop has been interrupted in this case, the sampling structure has been upgraded. This results in an adaptive process which will balance depth and breadth explorations when running the sampling. Breadth exploration is favored on the rst sampling iterations, but the tendency becomes inverted after several samples.

Incremental algorithm

In section 4, we present an application of the conditional simulation for Bayesian optimization. In this applicative context, we have to successively simulate a random vector conditionally to incremental constraints.

More precisely, let U ≥ 1 and let Our purpose is to sample successively the sequence of conditional vectors:

[ u ] ∈ [R mu ] and g u : [b] → R mu be dened for 1 ≤ u ≤ U . For 1 ≤ v ≤ U are dened: [ 1:v ] = v u=1 [ u ] , (18) and g 1:v : [b] → v u=1 R mu by: g 1:v (x) = (g 1 (x), • • • , g v (x)) for all x ∈ [b] . (19) 1 Function Sampling [X |g1:v(X) ∈ [ 1:v ] ] input : σ, r, g, ω, N output: (y k , w k ) 1:N 2 (cuts, omg, lev) ← (∅, ∅, ∅) 3 for v ← 1 to U do 4 k ← 0 5 ifundef (omg([b]), lev([b])) ← (ω 1:v [b] , v) 6 else 7 (t, lev([b])) ← (lev([b]), v) 8 omg([b]) ← omg([b]) t<u≤v u [b] 9 while k < N do 10 ([x0], π k , j) ← ([b], 1, 0) 11 while ρ([xj]) > r and [g1:v]([xj]) ⊂ [ 1:v ] do 12 if log 2 omg([b]) omg([x j ]) π k > σ goto 31 13 ifundef cuts([xj ]) ← Cut([xj], v) 14 ([lj+1], [rj+1]) ← cuts([xj ]) 15 j ← j + 1 16 ifundef (omg([rj]), lev([rj ])) ← (ω 1:v [r j ] , v) 17 else 18 (t, lev([rj ])) ← (lev([rj]), v) 19 omg([rj ) ← omg([rj ]) t<u≤v u [r j ] 20 ifundef (omg([lj]), lev([rj ])) ← (ω 1:v [l j ] , v) 21 else 22 (t, lev([lj ])) ← (lev([lj]), v) 23 omg([lj ) ← omg([lj ]) t<u≤v u [l j ] 24 (ν [l j ] , ν [r j ] ) ← (omg([lj]), omg([rj ])) 25 [xj] ← Bern(([lj], ν [l j ] ), ([rj], ν [r j ] )) 26 π k ← ν [x j ] ν [l j ] +ν [r j ] π k 27 end 28 w k ← P (X ∈ [xj]) π k 29 Build y k by sampling [X |X ∈ [xj] ] 30 k ← k + 1 31 for i ← j to 1 do 32 [xi-1] ⇐ Shrink([li], [ri]) 33 omg([xi-1]) ← omg([li]) + omg([ri
[X |g 1:1 (X) ∈ [ 1:1 ] ] , • • • , [X |g 1:v (X) ∈ [ 1:v ] ] , • • • , [X |g 1:U (X) ∈ [ 1:U ] ] , (20) 
in an ecient way. When the sampling is done by means of algorithm 3, the sampling structure produced for each conditional vector, [X |g

1:v (X) ∈ [ 1:v ] ] where v ∈ [[1, U ]],
is lost from a simulation process to another. This is inecient, since it is foreseeable that the sampling structure for vector

[X |g 1:v (X) ∈ [ 1:v ] ] is certainly informative for sampling vector [X |g 1:v+1 (X) ∈ [ 1:v+1 ] ].
Algorithm 4 is an update of algorithm 3, with the purpose of incrementally building the sampling structures for the sequence ([X |g

1:v (X) ∈ [ 1:v ] ]) 1≤v≤U .
Predictive weight is now incremental and takes multiplicative form:

ω 1:v [x] = P (X ∈ [x]) v u=1 u [x] . ( 21 
) Prex P (X ∈ [x]) in (21) is not out of place: recall that ω 1:v [x] should approximate P (X ∈ [x] & g 1:v (X) ∈ [ 1:v ]) = P (X ∈ [x]) P (g 1:v (X) ∈ [ 1:v ] |X ∈ [x]
). The multiplicative form is then a consequence of the incremental constraint.

In order to deal with the incremental construction of the samplers, algorithm 4 introduces new dictionary, lev, complementary to cuts and omg. is recomputed from its cut. This is better for improving future incremental computation of omg during the sampling process.

Practical implementation and parallelism

Practical implementation. Algorithm 3 and 4 draw the main principles of our sampling methods. Some implementation details are described now.

Initial predictive weight. We implement the following denition of ω :

ω [x] = µ [g]([x]) ∩ [ ] µ [g]([x])) P (X ∈ [x]) , ( 22 
)
where µ is Borel measure on R m . This denition checks properties (15) and ( 16). It also tries a rough approximation for P (X ∈ [x] & g(X) ∈ [ ]) . For incremental implementation, denition extends naturally as a product:

ω 1:v [x] = P (X ∈ [x]) v u=1 u [x] with u [x] = µ [g u ]([x]) ∩ [ u ] µ [g u ]([x])) . ( 23 
)
Cutting strategy. The denition of Cut is an important choice. Our algorithm selects a cut ([y], [z]) randomly in regards to the following criteria:

Favor cuts such that ω [y] ω [z] or ω [y] ω [z] , Avoid overly elongated [x], i.e. such that maxi(x + i -x - i ) mini(x + i -x - i )
1,

In addition, some cuts history simplications are implemented (next point).

Reducing sampling structure. Our implementation tries to optimize the structure of cut, weight, and level history, when it is possible. Dierent cases are implying such reductions, which are not mentioned here. A typical example is shown in gure 3.

Assume that ([y], [z]) is a cut of [x], ([t], [u]

) [x]

[y]

[z]

[t]

[u]

=⇒ [x]

[y]

[t] Setup. The algorithms are rather simple to set up. Except for the choice of ω, which is structural, r, M and σ are the only parameters to be dened.

Parallelization. This paragraph gives additional information on how incremental algorithm 4 is implemented with parallelization. Data structures cuts, omg and lev deal rather well with parallel processing, so that our implementation is multithread. Nevertheless, the practical implementation needs some work.

In our implementation, the dictionaries cuts, omg and lev are stored in a same structure. This structure is composed of shared references to vertices which are stored within a Slab allocation [START_REF] Bonwick | The slab allocator: An object-caching kernel memory allocator[END_REF]. Slab allocation is a structure, which allows easy and ecient deallocation and reallocation, while reducing the risk of framentation of the memory. A vertex is an element of the history of the sampling process, which contains the following elds:

A box [x] with its weight omg([x]) and its level v = lev([x]), which is an indicator that omg([x]) has been computed from g 1:v and [ 1:v ],

The type of vertex: a node or a leaf ? Is property [g This data structure allowed some fair performance increase in comparison to conference paper [START_REF] Dambreville | Simulating a Random Vector Conditionally to a Subvariety: A Generic Dichotomous Approach[END_REF]. The memory management is now smoother and more ecient. In particular, we no longer have process freezing phenomena following heavy memory management.

1:v ]([x]) ⊂ [ 1:v ] true?
The denition of an ecient data structure is a main achievement when designing a multithread implementation. Now, we give some clarication on how the sampling process is shared between the threads:

Multiple instances (usually as many as the number of processor threads) of the sampling loop are run simultaneously. This includes descending through the sampling structure, possible extension of this structure, possible sampling of box and point if conditions are met, and backward reconstruction of weights and restructuring of the sampling structure, If a vertex currently processed by an instanced loop has been deleted by another instance, then the vertex subtree is rst deleted by the process, and afterward, the loop is restarted.

Processes are stop when the desired number of samples is obtained,

Application to Bayesian optimization

Bayesian optimization is a key technique for black-box optimization, and it is actually a great motivation for this work.

Assume that one needs to optimize a function which is not well known, and which may be computed by a highly costly process (a heavy simulation, tests made by human teams on the grounds, etc.). Of course the optimization should be made by sparing at best the number of calls to the costly evaluation.

In [START_REF] Jones | Ecient global optimization of expensive black-box functions[END_REF], Jones, Schonlau and Welch proposed the ecient global optimization method (EGO) for addressing such kind of problem. The idea is to use a surrogate model under the form of a functional random variable. This functional random variable is described by means of a Gaussian process with correlation depending on spatial distance (kriging). Based on such modelling, the construction of an optimal parameter sequence to be evaluated is obtained by iterating:

Compute the posterior law of the functional random variable, according to the past evaluations, Compute the expected improvement function, in regards to the posterior law and the already best computed value. This expected improvement is an indicator of the next parameter to be evaluated, Find parameter optimizing the expected improvement and evaluate it.

The approach relies on the construction of the Gaussian modelling, and it tends to be less ecient when the dimension of the optimization space increases. Works have been made in order to deal with this dimensional issue and improve the modelling; e.g. [START_REF] Hebbal | Ecient global optimization using deep gaussian processes[END_REF]. But this issue is still a true challenge.

Beside, EGO itself is a form of Bayesian optimization introduced by Mockus [START_REF] Mo£kus | On bayesian methods for seeking the extremum[END_REF][START_REF] Mockus | Bayesian approach adapting stochastic and heuristic methods of global and discrete optimization[END_REF][START_REF] Zilinskas | Stochastic global optimization: A review on the occasion of 25 years of informatica[END_REF]. We proposed in [START_REF] Dambreville | Optimizing a sensor deployment with network constraints computable by costly requests[END_REF] a Bayesian optimization approach in the context of a nonlinear function depending on a model noise; the realization of the noise was the unknown information of the problem. We hoped by a nonlinear approach to better handle some of the diculty induced by the dimension. The work was not complete, since we were not able to build a good conditional sampling at that time. The purpose of this paper and of [START_REF] Dambreville | Simulating a Random Vector Conditionally to a Subvariety: A Generic Dichotomous Approach[END_REF] was to build such sampler.

It is beyond the scope of this chapter to detail the seminal works of Mockus, or those of Jones, Schonlau and Welch. We will introduce the subject by a short description of EGO algorithm. Then, we present our nonlinear approach.

Formalization: Function γ → g(γ, x o ) is to be minimized. Parameter x o is unknown, but x o is a realization of random vector X, whose law F X is known.

In order to optimize γ, we are allowed to request an evaluator for computing g(γ, x o ), but each call to this evaluator is costly. The objective is then to solve γ o ∈ arg min γ g(γ, x o ) by optimizing at the same time the sequence of evaluated cases γ u and of their evaluations e u = g(γ u , x o ).

EGO method: Main idea of EGO consists in approximating g(γ, X) by a Gaussian process (GP) γ → G(γ). Given past evaluated cases γ u and evaluations

e u = g(γ u , x o ) for u ≤ v, posterior variable [G(γ) |∀u ≤ v, G(γ u ) = e u ] is
Gaussian and mathematically computed. This conditional variable is a main ingredient for computing the expected improvement, EI(γ), which is an indicator of value γ for which next evaluation of g(γ, x o ) is promizing:

EI(γ) = E G(γ)|∀u≤v,G(γu)=eu max{m γ -G(γ), 0} where m γ = min 1≤u≤v e u . ( 24 
)
It is computed mathematically. Since EI(γ) indicates where evaluations are promising, it is maximized in order to chose next case γ v+1 ∈ arg max γ EI(γ) and request its evaluation e v+1 = g(γ v+1 , x o ).

Nonlinear algorithm: We took inspiration of EGO, but now, random function g(•, X) is used directly instead of GP approximation. Parameters γ v and evaluations e v = g(γ v , x o ) are optimized by iterating algorithm 5. While EI(γ) is formed dierently in this algorithm, it is essentially the same as in denition (24) modulo an ane transform. It is theoretically dened by:

EI(γ) = E X|∀u≤v,g(γu,X)=eu min{g(γ, X), m γ } with m γ = min 1≤u≤v e u . (25) 
In practice, EI(γ) is obtained by a Monte Carlo derived from an approximated

sampling of [X |∀u ≤ v, g(γ u , X) = e u ].
As a crucial ingredient:

Vector [X |∀u ≤ v, g(γ u , X) = e u ] is approximated by [X |g 1:v (X) ∈ [ 1:v ] ],
where g u = g and u is a small box around e u .

The sampling is done by the way of this approximation.

This approximated random vector, conditional to a subvariety, incorporates incrementally all constraints related to the past evaluations. The sampling is done by algorithm 3 or preferably by incremental algorithm 4.

Algorithm thus consists of:

1. Generating samples of posterior random vector

[X |g 1:v (X) ∈ [ 1:v ] ],
2. Building a Monte Carlo approximation of EI(γ), 3. Choosing parameter γ v+1 by minimizing EI(γ) and evaluating it.

1 Function Process next measure input : γu and eu g(γu,

x o ) for 1 ≤ u ≤ v output: γv+1 and ev+1 g(γv+1, x o ) 2 Make samples of [X |g1:v(X) ∈ [ 1:v ] ] 3 
Compute mγ = min 1≤u≤v eu and:

EI(γ) E X|g 1:v (X)∈[ 1:v ] min{g(γ, X), mγ} 4 
Compute γv+1 ∈ arg minγ EI(γ) 5

Compute ev+1 g(γv+1, x o ) 6 end Algorithm 5: Sampler-based Bayesian optimizer Implementations of step 4 are not detailed here. Essentially, we used a metaheuristic method, the cross-entropy algorithm for optimization [START_REF] Rubinstein | The Cross Entropy Method: A Unied Approach To Combinatorial Optimization[END_REF], for this task; this method is related to parameterized rare-event simulation.

Examples and tests

Regarding the conference publication [START_REF] Dambreville | Simulating a Random Vector Conditionally to a Subvariety: A Generic Dichotomous Approach[END_REF], all the results presented here have been recomputed or supplemented by recent implementations of the algorithms.

Simulation: test cases

The tests presented here are performed for sampling algorithm 3 or its incremental version 4. The algorithms have been implemented in Rust language (www.rust-lang.org) and were processed on 7 threads. The algorithms are tested on mathematically simple simulation problems, in order to make the statistics of the results clear enough to analyze.

Parameters. All simulations have been achieved with the following parameters: r = 0.001 is the radius bound for second while stop condition, M = 5000 is the number of samples discarded during sampler initialization, N = 50000 is the number of sampled particles, σ = 10 on all tests.

Test Cases. Thorough the section, it is assumed that X follows the uniform Case (c): For n = 11 and 0 ≤ v ≤ 9, it is considered: 

g c (x) = ||x|| 2 min(|x 1 |, |x 2 |) x 3 . . . x 2+v , (27) 
These 4 subsegments have the same size so that their probabilities are the same in regard to X.

Purpose of the Test Cases. Subsequently, case (a) is used in order to evaluate the performance of the sampling process both in accuracy and in eciency for dierent dimensions. Case (b) is used in order to evaluate the eciency of the sampling when the number of constaints increases; algorithm 3 and incremental algorithm 4 are also compared. Case (c) is used in order to evaluate the accuracy of the sampling in case of complex constaints which introduce disjoint modes.

Simulation: case (a)

This case is mathematically easy to predict. In [START_REF] Dezert | An ecient method for generating points uniformly distributed in hyperellipsoids[END_REF], Dezert and Musso proposed a method, which may be used for uniformly sampling on an ellipsoid shell. Whatever, one must keep in mind that our approach is generic and can be applied to an innite number of congurations.

Histograms. Figure 4 presents some histograms for case (a). For each subcase n ∈ {3, 7, 11}, we have computed the radius of all samples x and built the associated histograms subgures (1), ( 3) and ( 5). For each n ∈ {3, 7, 11} and for all 1 ≤ i < j ≤ n, we have computed the angle of all samples (x i , x j ) and built the associated histograms. From these n(n-1) 2

histograms of each subcase, we have computed the minimal, mean and maximal histograms. The results are shown in blue, green and red, respectively, and provide an hint on the error of the estimation subgures ( 2), ( 4) and ( 6).

( 4) present the cumulative cpu-time per thread and the evolution of the cpu-time per sample and per thread consumed by the process (expressed in second). In comparison to [START_REF] Dambreville | Simulating a Random Vector Conditionally to a Subvariety: A Generic Dichotomous Approach[END_REF], there is no more time discontinuity caused by intermittent memory allocations. Our memory management has been improved as shown in section 3.3. We notice clearly that the sampling eciency increases with the number of generated samples. However, the cumulative cpu time still increases dramatically with the dimension (the memory use evolves similarly). Although the curse of dimension has been delayed by our approach, it is still there.

) 1 
The number of loop retries during the sampling is plotted in subgure (2).

It is an interesting indication of the achievement of the sampling structure. It decreases with the number of samples and becomes small, even for the highest dimension (around 28 for n = 11). This result should be compared to the probability of the subvariety (around 10 -6 for n = 11). The theoretical histogram is uniform, which conforms to these results.

Simulation: case (b)

As a conclusion here, the performance of the sampler is likely to increase with the number of constraints, and this is a useful quality. Incremental algorithm 4 is more ecient than algorithm 3, while ensuring equivalent accuracy.

Algorithm 4 must therefore be favored for incremental constraints. In last example of section 5.5 on Bayesian optimisation, implementation of algorithm 4 was even necessary for an acceptable computation time.

Simulation: case (c)

Figure 7 presents computed radial histograms and angular histograms (for coordinates x 1 and x 2 there is only one) for subcases v = 6 and v = 9.

( 1 is also relaxed.

) Radius histogram v = 6 (2) Angle histogram v = 6 (3) Radius histogram v = 9 (4) Angle histogram v = 9 1 
Actually, theoretical angular histogram is even no longer discontinuous around subsegments, A i , for this reason.

As a preliminary conclusion, we consider that our sampling method is globally performant in sampling conditionally to subvarieties. A future issue will be to increase the dimension of the sampling space.

Bayesian optimization

A simple geometric problem. We intend to nd the isobarycenter γ = (a, b) of 4 unknown points

M i = (x o 2i-1 , x o 2i ) ∈ [-5, 5] 2 with i ∈ {1, 4}.
The only approach that is possible for us is to test some solutions by requesting for a costly measurement; for requirement γ u = (a u , b u ), this measurement evaluates:

e u = g(γ u , x o ) = ||γ u -h(x o )|| 2 with h(x o ) = 1 4 4 i=1 M i = 1 4 4 i=1 (x o 2i-1 , x o 2i ) . ( 29 
)
Our purpose is to optimize (a, b) by minimally requesting evaluation g(γ, x o ).

Geometric solution. Each measure restricts the solution to a circle. After 2 measures, we usualy have to choose between two points, and the solution is found equiprobably at step 3 or 4.

Tests and Results. Points M 1 , . . . , M 4 are (2, -1), (3, 2), (-3 2 , 4), ( 1 2 , 3). Their isobarycenter is [START_REF] Alefeld | Interval analysis: theory and applications[END_REF][START_REF] Bonwick | The slab allocator: An object-caching kernel memory allocator[END_REF]. We used a sampler with M = 5000, N = 10000 and [ ] = [-1 100 , 1 100 ] u . Variable X is considered uniform on [-5, 5] 8 . Table 1 presents a typical optimized sequence for parameters γ u = (a u , b u ). Optimization of EI is done the cross-entropy method [START_REF] Rubinstein | The Cross Entropy Method: A Unied Approach To Combinatorial Optimization[END_REF] and is thus near-optimal. In this example, ≤ 0.02 0% 0% 26% 40% 10% 9% 2% 3% 3% 3% 1% 1% 1% eu o ≤ 0.04 0% 0% 36% 57% 6% 1% 0% 0% 0% 0% 0% 0% 0% eu o ≤ 0.09 0% 0% 40% 57% 3% 0% 0% 0% 0% 0% 0% 0% 0% Table 2 presents the results for 100 runs. For these runs, the mean cpu time is 2627s, where non-incremental algorithm 3 has been used for simulation. Three convergence conditions, e u ≤ e cond with e cond ∈ {0.02, 0.04, 0.09}, are considered for these runs. Value u o = min{u/e u ≤ e cond } is the nal step for which convergence condition is met. Percentage is given for each nal step value u o . In all cases, we notice that most optimal values are found at steps 3 or 4. The result tends to be equilibrated on 3 and 4 when stopping criterion is relaxed. EGO method. For the sake of comparison, we apply EGO to our problem. Gaussian process G with covariance cov(G(γ), G(γ )) = 1 4 exp -1 2 ||γ -γ || 2 and mean 0 is used. Table 3 summarizes the results of 100 tests. Each test imple- Decision space of higher dimension. Variable X is uniform on [-5, 5] 8

with realization x o = (2, -1, 3, 2, -3 2 , 4, 1 2 , 3). Points M i,j = (m i,j,k ) 1≤k≤28 with 1 ≤ j < i ≤ 8 are built from X by setting m i,j,k = X i X j if k = j + (i-2)(i-1) 2 and m i,j,k = 0 else. Function g(γ, X) is dened by g(γ, X) = ||γ -h(X)|| 2 where h(X) = 1 28 8 i=2 i-1 j=1 M i,j . The problem is thus of much higher dimension.

We had some theoretical issues on this example. The Bayesian estimation was unable to resolve some remaining ponctual cases for zero dimension subvarieties. This diculty has been overcome by adding exclusion constraints around already tested cases. Table 4 gives an example of run (progress is in bold). Incremental Table 4: Example in a space of higher dimension u 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 eu 1.02 1.04 1.18 0.77 0.68 0.68 0.61 1 0.33 0.12 0.18 0.21 0.09 0.09 0.09 0.09 0.05 0.10 0.09 0.12 algorithm 4 were needed for simulation, and optimization has been performed within a day. On the other hand, algorithm 3 was far too slow in this case for optimizing in reasonable time.

Conclusion

We proposed an original dichotomous method for sampling a random vector conditionally to a subvariety. This method has been parallelized, and we proposed non-incremental and incremental implementations. This generic approach, inspired from interval analysis, is accurate and ecient up to a space of dimension 11. We have shown how it could be applied eciently to Bayesian optimization problems. The work is promizing from theoretical and applicative point of view and oers some improvement perspectives. A main issue is to enhance the eciency of the approach with respect to higher dimensions. With this perspective in mind, some relaxation techniques applied to the subvariety may be considered.

NotationsR

  is the set of reals and x, y, z are real variables,[x] [x -, x + ], [y], [z] are notations for intervals, Bold notations [x] n k=1 [x k ] = n k=1 [x - k , x + k ] and [x[ n k=1 [x - k , x + k [ are used for boxes and half-open boxes respectively, [R] {[x -, x + ] : [x -, x + ] ⊂ R} is the set of interval subsets of R . [R n ] { n k=1 [x k ] : ∀k, [x k ] ∈ [R]} is the set of box subsets of R n , ρ([x]) = x + -x -and ρ([x]) = max 1≤k≤n ρ([x k ]) are the length of interval & box, g : R k → R j is a (multivariate) real function, g([x]) {g(y) : y ∈ [x]}. Set g([x]) is not necessarily a box, [g] : R k → R j is an interval function. Set [g]([x]) is a box.

  [b] ∈ [R n ], small box [ ] ∈ [R m ] and map g : [b] → R m , our main objective is to sample conditional vector [X |g(X) ∈ [ ] ] 1 . When space dimension n and constraint dimension m increase and length ρ([ ]) of [ ] is small, then event [g(X) ∈ [ ]] has very low probability. We are dealing here with a particular case of rare event simulation. Moreover, as [g(X) ∈ [ ]] approximates a subvariety, it is foreseeable that conditional random vector [X |g(X) ∈ [ ] ] is essentially and continuously multimodal. Sketch gure 1 illustrates this well: to sample conditionally to the blue curve by a mixture of Gaussians, a large number of Gaussians are needed.

Fig. 1 :

 1 Fig. 1: Gaussian mixture

Fig. 2 :

 2 Fig. 2: Subpaving

P

  (X∈[x]) , then sample y by the conditional law f X|X∈[x[ . At last, we have here an ecient method for sampling [X |g(X) ∈ [ ] ] (algorithm 1).

  is a cut of [z] and [g]([u])∩[ ] = ∅ , i.e. [u] is outside the subpaving and its border. Then, boxes [z] and [u] are useless and should be removed from the structure.

Fig. 3 :

 3 Fig. 3: Structure reduction Discarding rst samples. M rst samples are discarded, so as to initialize the structure of the sampler. After that, N samples are sampled and returned.

  When vertex is a node and box [x] has a cut ([l], [r]) = cuts([x]), then the vertex is completed with weak references to the vertices related to boxes [l] and [r] respectively.Shared references allow multiple threads to access a same data; moreover, the existance of a shared reference will prevent the erasure of referenced data. Weak references are derived from shared references and also allow threads to access the data, but they do not prevent the erasure of referenced data. By restricting the shared references to the Slab allocation, we prevent the possibility of memory leak, especially when the sampling structure is reduced by a thread. Since the structure is shared among threads, the access to the vertices are protected by memory locks: the locks allow either many read-only accesses or only one readwrite access to the data.

  law on b = [-2, 2] n with n ∈ {2, 3, • • • , 11} . Three cases are investigated: Case (a): Are dened g a (x) = ||x|| 2 = n j=1 x 2 j and [ a ] = [0.95, 1.05] . Then g -1 a ([ a ]) is a hyper-spherical shell, which approximates the unit hypersphere of dimension n -1.Case (b): For n = 11 and 0 ≤ v ≤ 9, it is considered:g b (x) = ||x|| 2 x 3 . . . x 2+v and [ b ] = [ a ] × [z] v ,(26) with [z] = [-0.05, 0.05] . Similarly to (a), but with additional constraints, g -1 b ( b ) approximates a hypersphere of dimension n -1 -v. When v = 0, we are back to case (a) with n = 11. When v = 9, then g -1 b ( b ) approximates the unit circle C within the rst two dimensions, related to coordinates x 1 , x 2 .

  and [ c ] = [ a ] × [α] × [z] v with [α] = [0, 0.5] . Thus, this case is obtained by adding constraint 0 ≤ min(|x 1 |, |x 2 |) ≤ 0.5 to subcases of (b). For subcase v = 9 especially, we are approximately sampling on the (disjoint) union of the 4 subsegments A 1 , . . . , A 4 of the unit circle C, dened by: Aj = x1, x2 ∈ C arg x1, x2 ∈ j

Fig. 4 :

 4 Fig. 4: Case (a) histograms 20 divisions

( 1 )Fig. 5 :

 15 Fig. 5: Case (a) statistics n = 3, 7, 11

Figure 6

 6 Figure 6 presents synthetic performance curves, as well as comparative histogram examples for algorithm 3 and algorithm 4 on case (b).

( 1 ) 5 Fig. 6 :

 156 Fig. 6: Case (b) speed and histograms

Fig. 7 :

 7 Fig. 7: Case (c) histograms radius: 20 divisions; angle: 100 divisions

  The lines of this algorithm are colored in black, blue or dark blue. Black lines are inherited from algorithm 2. Blue lines are new additions to the previous algorithm. Dark blue lines (4, 19, 23 and 2 partially) correspond to the for loop of algorithm 2 rewritten as a while loop:

  to 8, lines 16 to 19 and lines 20 to 23.

	Incremental computation means that unde-
	ned value omg([x]) is set equal to ω 1:v [x] , while already dened value omg([x]) is v multiplicatively completed by u=t+1

Constraint level t = lev([x]) indicates that weight omg([x]) has been actually computed with constraints sequence g 1:t (X) ∈ [ 1:t ]. Indeed, the sampling structure is not garanteed to be up-to-date for all subtrees of the sampling structure, and it is thus necessary to trace this upgrade level. On the other hand, function call Cut(v, [x]), which creates a cut of box [x], now depends on constraint level v. So, news cuts are created by considering all constraints information, although this will of course not be the case for cuts related to past levels u < v. At last, new function Shrink is introduced. Code [x] ⇐ Shrink([l], [r]) replaces [x] by the smallest box containing both [l] and [r]; this replacement is deep and thus concerns dictionaries cuts, omg and lev as well. Even root variable [b] in algorithm 4 can have its value replaced. Nevertheless, deep replacements are cost-free here thanks to the way the structures are implemented.

In algorithm 4, parts taken unchanged from algorithm 3 are in black while evolutions are in blue. A for loop over the number of constraints, v, is added at lines 3 and 36 and repeats the entire sampling process for a given set of constraints. The sampling process itself does not change much, but incremental computations are now done on omg and lev is updated in consequence: lines 5 u [x] . At line 32, the shape of box [x i-1 ]

Table 1 :

 1 Exemple of optimization sequence -0.41 0.84 0.97 0.99 1.00 0.98 1.02 -3.79 0.98 0.98 -0.39 1.03 bu 0.02 -1.94 2.05 1.99 2.02 1.98 2.02 1.99 6.49 2.00 1.99 5.40 2.00 eu 2.21 4.19 0.16 0.03 0.02 0.02 0.03 0.02 6.57 0.02 0.03 3.67 0.03 best value for e u is 0.02. Best values are generally found around 0.02: this is a consequence of error interval [ ], which is not zero size.

	u 1	2	3	4	5	6	7	8	9	10 11	12	13
	au 0.01											

Table 2 :

 2 Results for 100 runs

	uo	1 2	3	4	5	6 7 8 9 10 11 12 13
	eu o					

Table 3 :

 3 Results for EGO method 100 successive evaluations. Convergence conditions are e u ≤ e cond with dierent values for e cond ranging from 0.5 to 0.001. Again, value u o is the nal step for which convergence condition is met. For each value e cond , the table indicates the percentage of tests which succeeded to reach convergence with less than 100 evaluations. In case of convergence, the worse, mean and best nal steps are given. EGO is outperformed here. However, EGO is able to achieve more rened results e.g. e cond = 0.001 if the evaluation budget is relaxed: indeed, EGO is based on exact mathematical computation of the expected improvement.

	e cond	0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001
	% : uo ≤ 100 91% 74% 69% 64% 55% 46% 42% 29% 14%
	worse(uo)	55	78	96	97	97	84	93	93	99
	mean(uo)	11.8 19.4 23.1 25.5 30 31.3 37.5 56.3 60.5
	best(uo)	1	1	8	8	8	15	15	19	19

ments