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Abstract. This chapter concerns the issue of simulating a random vec-
tor conditionally to a subvariety. In practice, the subvariety is approxi-
mated by a thin shell surrounding it. These simulations are unusual cases
of rare event simulation, which are made even more di�cult with the di-
mension, the thinness of the shell and the nonlinearity of the subvariety.
We propose a generic approach dedicated to the simulation of this type
of rare event, which is dichotomous and inspired by interval analysis,
with a particular e�ort to reduce the dimension curse. Non-incremental
and incremental versions of the algorithm are designed in order to handle
possible incremental constraint sets. Details on a multithread implemen-
tation are given especially in terms of data structure. These simulation
methods are then used to propose a non-linear approach to Bayesian
optimization. Examples of simulations and of Bayesian optimization are
given in order to illustrate and compare the performances of the methods.

Keywords: Rare Event Simulation, Subvariety, Bayesian Optimization,
Interval Analysis.

Notations

� R is the set of reals and x, y, z are real variables,
� [x] , [x−, x+], [y], [z] are notations for intervals,
� Bold notations [x] ,

∏n
k=1[xk] =

∏n
k=1[x

−
k , x

+
k ] and [x[,

∏n
k=1[x

−
k , x

+
k [ are

used for boxes and half-open boxes respectively,
� [R] , {[x−, x+] : [x−, x+] ⊂ R} is the set of interval subsets of R .

[Rn] , {
∏n
k=1[xk] : ∀k, [xk] ∈ [R]} is the set of box subsets of Rn ,

� ρ([x]) = x+−x− and ρ([x]) = max
1≤k≤n

ρ([xk]) are the length of interval & box,

� g : Rk → Rj is a (multivariate) real function,
� g([x]) , {g(y) : y ∈ [x]}. Set g([x]) is not necessarily a box,
� [g] :

[
Rk
]
→
[
Rj
]
is an interval function. Set [g]([x]) is a box.

1 Introduction

This chapter is the long version of conference paper [3]. As a main topic, it ad-
dresses the issue of sampling a random vector de�ned on an n-dimension box
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conditionally to a subvariety of this box. As a secondary topic and a main appli-
cation of the simulation, the chapter proposes a non-linear algorithmic approach
for Bayesian optimisation [10].

Thus, given a random vector X of density fX de�ned on Rn, given box
[b] ∈ [Rn], small box [ε] ∈ [Rm] and map g : [b]→ Rm, our main objective is to
sample conditional vector [X |g(X) ∈ [ε] ] 1.

When space dimension n and constraint di-
mension m increase and length ρ([ε]) of [ε]
is small, then event [g(X) ∈ [ε]] has very low
probability. We are dealing here with a partic-
ular case of rare event simulation. Moreover,
as [g(X) ∈ [ε]] approximates a subvariety, it
is foreseeable that conditional random vector
[X |g(X) ∈ [ε] ] is essentially and �continuously�
multimodal. Sketch �gure 1 illustrates this well:
to sample conditionally to the blue curve by a
mixture of Gaussians, a large number of Gaus-
sians are needed.

Fig. 1: Gaussian mixture

In survey [11], Morio, Balesdent et al. have evaluated the advantages and
drawbacks of various rare event sampling methods. At this point, a comment
may be done. In the literature, rare events are generally modelled by a function
of risk being above an acceptable threshold. This formalism is quite general, but
it suggests that the simulation of a rare event is tightly related to the maximiza-
tion of a function. In practice, the maximizing set of a function is unimodal or
somewhat multimodal. It is uncommon that this maximizing set is a subvariety.
Not surprisingly, many methods evaluated in [11] are working well when the
rare event is unimodal or moderately multimodal. In the case of conditional vec-
tor [X |g(X) ∈ [ε] ], these approaches do not work properly or need additional
studies to take bene�cially into account the subvariety structure.

This chapter promotes an alternative approach based on a dichotomous ex-
ploration in order to sample conditionally to a subvariety characterized by a
known function. By design, this approach produces independent samples and
avoids the phenomenon of sample impoverishement. These properties make it
particularly well suited for an accurate approximation of a law conditionally
to the subvariety. However, the method must �ght the curse of dimensionality
and we will be faced with two orthogonal dimensional problems: the exponential
increase in sampling exploration and the degeneracy of particle weights. This
paper presents an approach as well as generic and weakly parameterized algo-
rithms, allowing good sampling performance for moderate dimensions (up to 11
for now) with balanced management of dimensional issues.

One main applicative purpose of this work is to contribute to the domain of
Bayesian optimization from a nonlinear point of view. Bayesian optimization is
among the key techniques for black-box optimization. In this kind of problems,
one have to optimize fonctions which do not have usable formalization and for

1[X |g(X) ∈ [ε] ] is used as an abbreviation for [X |X ∈ [b] & g(X) ∈ [ε] ] .
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which the request to an evaluator is generally particularly expensive. Accord-
ingly, an inherent goal of such optimization is to save as much as possible on
the number of candidate solutions to be evaluated. Approaches based on Gaus-
sian surrogate models [8] have demonstrated the great interest of these Bayesian
methods, but su�er from a drop in e�ciency with the increase in dimension. Our
contribution aims to address this dimensional di�culty by considering a known
non-linear criterion depending on a model noise (a random vector) rather than
a surrogate model of the criterion.

The chapter is divided in four main parts. Section 2 introduces concepts of
interval analysis and derives some �rst ideas for a generic sampler. Section 3
deepens the intuitions introduced in section 2 and presents the working generic
algorithms. Section 4 applies the sampling method for the design of a nonlinear
algorithm for Bayesian optimization. Section 5 presents tests and analyses.

The algorithm already presented in conference paper [3] has slightly evolved
and its implementation has been deeply revisited in terms of multithreading and
data structure. In comparison to the conference paper, this chapter also describes
a new incremental sampling algorithm, includes a new chapter dedicated to
Bayesian optimization and presents rebuilt and supplemented tests and results.

2 Toward a generic sampling approach

This section presents some useful concepts and ideas for de�ning actually working
sampling algorithms. Interval analysis is one of these tools. Interval analysis is
a performing and accurate tool for dealing with constraints, and it provides a
precise control on the approximation errors. Another interesting point is that
intervals and boxes combine well with probability distributions.

2.1 Condiderations about interval analysis

It is not our purpose to perform a good introduction on interval analysis [1, 7].
However, we refer to some key concepts, which are inspiring ideas for this work.

functions and operators. As a main ingredient throughout this chapter, it
is reasonable to assume that for most common real functions g, it is possible to
derive an interval function [g] that satis�es properties:

� g([x]) ⊂ [g]([x]) for any [x] ∈ [Rn],2
� [g]([x]) ⊂ [g]([y]) when [x] ⊂ [y],
� If ρ([x]) vanishes, then ρ([g]([x])) vanishes:

ρ (g([x])) −−−−−−→
ρ([x])→0

0 (1)

2In particular, it is better if [g] is minimal, that is [g]([x]) is the minimal box containing
g([x]) as subset for all [x] ∈ [Rn].
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These properties express that [g] implies a bound on the error propagated by
g, and this bound has good convergence behavior in regards to the error. Inci-
dentally, we assume from now on that notation [g] refers to an interval function,
which veri�es these good properties with respect to the function g.

Let us see how to build the interval functions on some common examples:

1. Reference functions, g ∈ {ln, exp, sin, cos, .n, . . . }, are continuous onto R, so
that g([x]) ∈ [R] for all [x] ∈ [R]. Then, it is optimal to set [g]([x]) = g([x])
for all [x] ∈ [R] . As a consequence, the interval functions are easily opti-
maly implementable for most reference functions. Here are some incomplete
examples of de�nitions:

[ln]([x]) , [ln(x−), ln(x+)] and [x]n ,

{
[xn−, x

n
+] for n > 0,

[xn+, x
n
−] for n < 0 & 0 6∈ [x],

(2)

[cos][x] ,


[cos(x−), cos(x+)] for [x] ⊂ [−π, 0]

[cos(x+), cos(x−)] for [x] ⊂ [0, π]

[min(cos(x−), cos(x+)), 1] for 0 ∈ [x] ⊂ [−π, π]
etc.

(3)

2. Minimal interval functions for classical operators +, ·, −, / are also easily
de�ned. For example:

[x] + [y] , [x−+ y−, x+ + y+] and [x] − [y] , [x−− y+, x+− y−] . (4)

3. Function g de�ned by g(θ) = (cos(θ), sin(θ)) is an example, which is such
that g([θ]) 6∈

[
R2
]
. One would rather de�ne [g]([θ]) = [cos]([θ]) × [sin]([θ])

(× is the Carthesian product) which is a strict supset of g([θ]) in general.
By the way, this construction is an illustration on how the interval functions
of reference are used to de�ne complex interval functions straightforwardly.

There is no uniqueness in the construction of [g], unless it is chosen minimal.
Unfortunately, constructing a minimal [g] is not always easy or automatic. Let
us consider the case of function g : θ 7→ cos2 θ + sin2 θ . Then, there are two
obvious de�nitions for [g]:

1. By using the reference functions cos, sin, .2 and + one may derive:

[g]([θ]) = ([cos]([θ]))2 + ([sin]([θ]))2 . (5)

For example, we compute [g]
([
0, π2

])
= [0, 2] which is a bad error bound

on theoretical value 1. Now, we also compute [g]
([
− 1

10 ,
1
10

])
' [0.99, 1.01]

which is a tight error bound on 1 . This example holds con�rmation that
[g]([θ]) has a good behavior for small boxes [θ].

2. By noticing that cos2 θ + sin2 θ = 1, it is optimal to de�ne [g]([θ]) = [1, 1].

Although approach 2 gives the best solution, in practice approach 1 is prefered
since it is generic, it is based on already implemented functions of reference, and
it provides a way to construct automatically [g] without any speci�c knowledge.
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Subpaving and set inversion. As [g] implies
a bound on errors propagated by g with good
convergence behavior, it may be used combined
with a dichotomous process to produce a sub-
paving which e�ciently approximates a set in-
version g−1([y]) . The example on �gure 2 is
kindly given by professor Jaulin and is also taken
from [4]. It shows a resulting subpaving which
approximates a set inversion. The decomposition
is clearly dichotomous.

Fig. 2: Subpaving

A bisection process is iterated starting from main box [b] ; at each iteration,
sub-boxes [x] are tested against the constraint g([x]) ⊂ [y] . Three cases arise:

case a: [g]([x]) ⊂ [y], then [x] is among red boxes, which constitute a subpaving
of g−1([y]) .

case b: [g]([x]) ∩ [y] = ∅, then [x] is among blue boxes, which constitute a
subpaving of Rn \ g−1([y]) .

case c: Otherwise, bisection has to be repeated on [x] until su�cient conver-
gence (yellow color).

Property (1) plays a key role in the decomposition process, ensuring that case a
or case b are �nally achieved when sub-boxes [x] are su�ciently small and suf-
�ciently far from the frontier of set g−1([y]) .

2.2 Naive dichotomous approach for sampling

Let µ be Borel measure on Rn. It is given from now on:

� a random vector X on Rn characterized by a bounded density fX . Cumu-
lative distribution function FX of X, de�ned by FX(x) = P (X ≤ x) for all
x ∈ Rn, is assumed to be easily computable,

� a box [b] ∈ [Rn] and a small box [ε] ∈ [Rm],
� a continuous map g : [b]→ Rm built of functions and operators of reference,
� [g] derived from g and related interval functions and operators of reference.

Sampling within boxes. We point out that it is easy to compute P (X ∈ [y])
or to sample [X |X ∈ [y] ] when FX is available, especially when the components
ofX are jointly independent. These results are well known, and details are given
in [4]. Thus, these features are taken for granted in this paper.

Sampling by means of a subpaving. Assume that set g−1([ε]) has been
approximated (by excess) by a subpaving. Thus, there is P ⊂ [Rn] such that:

� For all [x], [y] ∈ P, boxes [x[ and [y[ are disjoint,
� g−1([ε]) ⊆

⋃
[x]∈P

[x] and tP ' g−1([ε]) , where tP ,
⊔

[x]∈P
[x[ .



6 Frédéric Dambreville

Set P is typically composed from boxes of case a and case c (red and yellow
colors) after a dichotomous subpaving construction of the set inversion.

The quality of the approximation may be quanti�ed by set measures:

αP = µ
(
tP \ g−1([ε])

)
=
∑
[x]∈P

µ ([x[)− µ
(
g−1([ε])

)
. (6)

Smaller is αP, better is the approximation. Interval based set inversions are able
to reach arbitrary precision for small dimensions (2 or 3 typically).

Now, for all y ∈ Rn, it happens that:

fX|X∈tP (y) =
fX(y)δy∈tP

P (X ∈ tP)
(7)

=

fX(y)
∑

[x]∈P
δy∈[x[∑

[x]∈P
P (X ∈ [x[)

=

∑
[x]∈P

P (X ∈ [x[) fX|X∈[x[ (y)∑
[x]∈P

P (X ∈ [x[)

=
∑
[x]∈P

P (X ∈ [x])∑
[x]∈P

P (X ∈ [x])
fX|X∈[x[(y) , (8)

where δtrue = 1 and δfalse = 0 else. Since fX is bounded, equation (7) implies:

[X |X ∈ tP ]
L−−−−→

αP→0

[
X
∣∣X ∈ g−1([ε]] (9)

Now, equation (8) shows clearly that fX|X∈tP may be sampled by apply-
ing two steps: �rst sample a box [x] ∈ P according to the discrete probability
P (X∈[x])∑

[x]∈P
P (X∈[x]) , then sample y by the conditional law fX|X∈[x[. At last, we have

here an e�cient method for sampling [X |g(X) ∈ [ε] ] (algorithm 1).

The approach is e�cient
on conditional events like
[X |g(X) ∈ [ε] ]. But this ap-
plication of the interval-based
inversion is only applicable to
rather small dimensions. Tak-
ing inspiration of this prelim-
inary approach, we address
now the sampling problem in
higher dimensions.

1 Function Sampling [X |g(X) ∈ [ε] ]
input : α,g,N output: y1:N

2 Build subpaving P such that αP < α
3 for k ← 1 to N do

4 Select [x] ∈ P with proba. P (X∈[x])∑
[x]∈P

P (X∈[x])

5 Build yk by sampling [X |X ∈ [x] ]

6 end

7 end
Algorithm 1: Based on a subpaving.

Toward an improved approach. A key point of algorithm 1 is to be able
to sample a box [x] of a subpaving of g−1([ε]). It is noticeable that an entire
build of the subpaving is not needed here. Indeed, if we were able to construct
a box [x] of the subpaving on demand, together with its relative weight within
the subpaving, then we would be able to build sample y.
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Therefore, it may be op-
portune to merge the sam-
pling process with the di-
chotomous construction of
the subpaving itself. Now,
a main ingredient of a di-
chotomous approach is also
how the algorithm divides
and conquers. In general, bi-
sections are often used in
dichotomous processes, as
there is a garanty of expo-
nential volume decrease of
the search area. Our ap-
proach is less constrained,
so as to better tune the ex-
ploration strategy.

1 Function Sampling [X |g(X) ∈ [ε] ]
input : r, g, ω,N output: (yk, wk)1:N

2 for k ← 1 to N do
3 ([x0], πk, j)← ([b], 1, 0)
4 while ρ([xj ]) > r and [g]([xj ]) 6⊂ [ε] do
5 ([lj+1], [rj+1])← Cut([xj ])

6 j ← j + 1

7 [xj ]← Bern(([lj ], ω[lj ]), ([rj ], ω[rj ]))

8 πk ←
ω[xj ]

ω[lj ]
+ω[rj ]

πk

9 end

10 wk ← P (X ∈ [xj ])
/
πk

11 Build yk by sampling [X |X ∈ [xj ] ]

12 end

13 end
Algorithm 2: Based on a weighting function.

Here, we speak in terms of cuts, which are more general, being implied that

an appropriate management of the box length is made in order to ensure the

convergence. In this paper, a cut is de�ned as follows:

� A cut of box [x] ∈ [Rn] is a pair ([l], [r]) ∈ [Rn]2 such that:

[l[∩[r[ = ∅ and [l[t[r[ = [x[ , (10)

� A bisection is a cut ([l], [r]) such that [l] and [r] are same-sized.

In order to drive the dichotomous sampling process, we assume that a predictive
weighting function is available:{

ω[x] = 0 if [g]([x]) ∩ [ε] = ∅

ω[x] ' P (X ∈ [x] & g(X) ∈ [ε]) otherwise.
(11)

Algorithm 2 implicitly builds a partial subpaving, and produces at the same
time a weighted particle cloud as a result of the sampling of [X |g(X) ∈ [ε] ] .
The algorithm iterates (for loop) the same sampling process, that is the following
successive steps, until [xj ] is su�ciently small (i.e. ρ([xj ]) ≤ r) or is inside an
implied suppaving (i.e. [g]([xj ]) ⊂ [ε])3:

� Build a cut of [xj ] by means of function Cut([xj ]). This function is designed
so as to ensure that ρ([xj ]) vanishes,

� Select randomly one box of cut ([lj ], [rj ]) in proportion to their weight, by
mean of Bernoulli process Bern(([lj ], ω[lj ]), ([rj ], ω[rj ])),

� Update πk which computes the processed probability of [xj ] in regards to
the Bernoulli sequence.

3Recall that [g]([xj ]) is easily computable while g([xj ]) is not.
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Assume that J is the last value reached by parameter j after the while loop.
Then, the corrected weight wk = 1

πk
P (X ∈ [xJ ]) is computed for [xJ ] and for

yk , and yk is sampled from [xJ ] .
Notice that ω[x] = 0 when [g]([x])∩ [ε] = ∅, so that boxes [xJ ] are necessary

within a subpaving of g−1([ε]) or its border, thanks to the Bernoulli process.
Combined with loop constraint ρ([xj ]) > r and [g]([xj ]) 6⊂ [ε], it follows that a
subpaving of g−1([ε]) (or its border) is implicitely and partially built during the
sampling process.

When [g]([xJ ]) ⊂ [ε], we have wk = P (X∈[xJ ])
πk

where πk evaluates the pro-

cessed probability for [xJ ]. As a result, the weighted particles (yk, wk) provide
an unbiased estimation of fX|g(X)∈[ε] in a subpaving of g−1([ε]) . It is not the
same at the border of g−1([ε]) , but this case is neglected. However, the sampler
is not at all e�cient when considering its variance.

Assume ω[x] = P (X ∈ [x] & g(X) ∈ [ε]), a case which works perfectly. In
this ideal case, the weight along a while loop is computed by:

ω[xj ]

ω[lj ] + ω[rj ]
=

P (X ∈ [xj ] & g(X) ∈ [ε])

P (X ∈ [lj ] ∪ [rj ] & g(X) ∈ [ε])
=

P (X ∈ [xj ] & g(X) ∈ [ε])

P (X ∈ [xj−1] & g(X) ∈ [ε])
,

(12)

and then:

πk =

J∏
j=1

ω[xj ]

ω[lj ] + ω[rj ]
=
P (X ∈ [xJ ] & g(X) ∈ [ε])

P (X ∈ [b] & g(X) ∈ [ε])
. (13)

Three cases potentially arise:

� [g]([xJ ]) ⊂ [ε], i.e. [xJ ] is in implied subpaving. Since g([xJ ]) ⊂ [g]([xJ ]), it
comes P (X ∈ [xJ ] & g(X) ∈ [ε]) = P (X ∈ [xJ ]) . Then:

wk =
P (X ∈ [xJ ])

P (X∈[xJ ] & g(X)∈[ε])
P (X∈[b] & g(X)∈[ε])

=
P (X ∈ [xJ ])
P (X∈[xJ ])

P (X∈[b] & g(X)∈[ε])

= P (X ∈ [b] & g(X) ∈ [ε])

= P (g(X) ∈ [ε]) (14)

� [g]([xJ ]) ∩ [ε] 6= ∅ but [g]([xJ ]) 6⊂ [ε] , i.e. [xJ ] is within the border of the
implied subpaving. These cases are negligible for small precision r.

� [g]([xJ ]) ∩ [ε] = ∅ , i.e. [xJ ] is outside the implied subpaving and its border.
This case is simply impossible from the Bernoulli process.

Equation (14) shows that the sampling process results in a cloud of same-weight
particles over the implied subpaving. Border cases are negligible. Here we have
a sampler of [X |g(X) ∈ [ε] ] with the best variance performance in regards to
the number of particles. But hypothesis ω[x] = P (X ∈ [x] & g(X) ∈ [ε]) is nec-
essary. Of course such exact weighting function is almost never available.

Why Does It Generally Not Work? When ω[x] 6= P (X ∈ [x] & g(X) ∈ [ε]) ,
the accumulated error will explode with the dimension, which will result in
dramatically uneven weights on the particles. The resulting weighted particles
cloud is then useless for practical applications.
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3 Generic dichotomous approaches for sampling

Algorithms 1 and 2 illustrate the two main dimensional issues, that we have to
deal with. These approaches are complementary:

� By building a complete subpaving of g−1([ε]), algorithm 1 makes possible
a direct sampling of [X |g(X) ∈ [ε] ], and incidently an accurate computa-
tion of P (X ∈ [x] & g(X) ∈ [ε]) . However, this construction of a complete
subpaving is only possible for small dimensions.

� Algorithm 2 avoids the construction of a complete subpaving. Instead, it
builds the boxes of an implied subpaving on demand throughout the sam-
pling iteration. However, the algorithm is ine�cient unless the predictive
weighting function ω[x] is a good approximation of P (X ∈ [x] & g(X) ∈ [ε]) .
This condition is not accessible in general.

We propose now an intermediate approach which:

� keeps history of the subpaving construction throughout the sampling process,
� use this history to build an improved estimate of P (X ∈ [x] & g(X) ∈ [ε]) .

By these tricks, it is expected that the sampling precision will increase with the
number of samples. In order to avoid useless exploration, we also truncate the
dichotomous process on the basis of some predictive assessment of �nal weight
wk. Thus, the algorithm tends to favor breadth search instead of depth search
at the early stages of the sampling process.

3.1 Some containment of the curse of dimension

From now on, it is assumed that:

0 ≤ ω[x] ≤ P (X ∈ [x]) , (15)

and that:
ω[x] =

{
0 if [g]([x]) ∩ [ε] = ∅ ,
P (X ∈ [x]) if [g]([x]) ⊂ [ε] .

(16)

Algorithm 3 is an evolution of algorithm 2. In addition, it builds an history
of cuts, stored in map cuts, and computes dynamically from this history an
improved weighting function, stored in map omg.

The lines of this algorithm are colored in black, blue or dark blue. Black
lines are inherited from algorithm 2. Blue lines are new additions to the previous
algorithm. Dark blue lines (4, 19, 23 and 2 partially) correspond to the for loop
of algorithm 2 rewritten as a while loop:

k ← 0 while k < N do · · · k ← k + 1 · · · end

Variable cuts is a dictionary and is used to register the history of computed cuts.
At start, cuts is de�ned empty (line 2). For a given box [xj ], the cut on [xj ] is
computed only once, if it is computed, by line 8 :

ifundef cuts([xj ])← Cut([xj ])
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1 Function Sampling [X |g(X) ∈ [ε] ]
input : σ, r, g, ω,N output: (yk, wk)1:N

2 (cuts, omg, k) ← (∅, ∅, 0)
3 omg([b])← ω[b]

4 while k < N do
5 ([x0], πk, j)← ([b], 1, 0)
6 while ρ([xj ]) > r and [g]([xj ]) 6⊂ [ε] do

7 if
∣∣∣log2( omg([b])

omg([xj ])
πk
)∣∣∣ > σ goto 20

8 ifundef cuts([xj ]) ← Cut([xj ])

9 ([lj+1], [rj+1])← cuts([xj ])

10 j ← j + 1

11 ifundef omg([rj ]) ← ω[rj ]

12 ifundef omg([lj ]) ← ω[lj ]

13 (ν[lj ], ν[rj ])← (omg([lj ]), omg([rj ]))

14 [xj ]← Bern(([lj ], ν[lj ]), ([rj ], ν[rj ]))

15 πk ←
ν[xj ]

ν[lj ]
+ν[rj ]

πk

16 end

17 wk ← P (X ∈ [xj ])
/
πk

18 Build yk by sampling [X |X ∈ [xj ] ]
19 k ← k + 1
20 for i← j to 1 do
21 omg([xi−1]) ← omg([li]) + omg([ri])
22 end

23 end

24 end
Algorithm 3: Based on cuts history.

Keyword ifundef tests if cuts([xj ]) is de�ned ; if still unde�ned, then cuts([xj ])
is set to Cut([xj ]).

Variable omg is a dictionary which records the predictive weighting function and
its possible updates, when needed. At start, omg is only de�ned for [b] and is
set to ω[b] (lines 2 and 3). Variable omg([rj ]) is set to ω[rj ], if it has not been
initialized yet (line 11). The same is done for variable omg([lj ]) at line 12. When
the cuts sequence is done (second while), then the weighting function is updated
by the for loop (lines 20, 21, 22). This ensures the computation of omg([x]) as the
sum of the weights omg([z]) of the leaves [z] of the cuts tree rooted on [x]. Then,
property (16) ensures that omg([x]) gets closer to P (X ∈ [x] & g(X) ∈ [ε]) when
the cuts tree rooted on [x] gets more re�ned.

Algorithm 3 is similar to algorithm 2, except that:

� cut ([lj+1], [rj+1]) is recovered from the history, when it is possible (line 9),

� box selection is done by means of (ν[lj ], ν[rj ]) , (omg([lj ]), omg([rj ])) .

There is an interesting property here. Assume that J is the last value reached
by j and that J ′ < J is such that omg([lj ]) and omg([rj ]) are already de�ned for
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all 1 ≤ j ≤ J ′ . Weighting functions are updated in these cases. Then, it comes
for all 1 ≤ j ≤ J ′ that:

omg([xj−1]) = omg([lj ]) + omg([rj ]) .

The computation of πk is then simpli�ed:

πk =

J′∏
j=1

ν[xj ]

ν[lj ] + ν[rj ]

J∏
j=J′+1

ν[xj ]

ν[lj ] + ν[rj ]
=

J′∏
j=1

ν[xj ]

ν[xj−1]

J∏
j=J′+1

ν[xj ]

ν[lj ] + ν[rj ]

=
ν[xJ′ ]

ν[b]

J∏
j=J′+1

ν[xj ]

ν[lj ] + ν[rj ]
. (17)

Thus, the error on πk grows exponentially only within the newly explored cuts,
that is here from J ′+1 to J . This is a reason for setting a certain restriction on
the depth-oriented aspect of this sampling process. Another good reason is to
prevent degenerate particle weights, wk. Algorithm 3 thus implements some code
(line 7) for testing the degeneracy of πk and eventually restarting the sampling
loop (second while):

if
∣∣∣log2( omg([b])

omg([xj ])
πk

)∣∣∣ > σ goto 20

This code tests the logarithmic distance between the weight of [xj ], omg([xj ]),
and the weight resulting from the sampling process, omg([b]) πk. If it is higher
than σ, then the loop is stopped by going to line 20. By doing that, the incre-
mentation of k is skipped, so that the sampling loop is restarted for the same
indice k. However, the update of variable omg is done, and of course, the history
of cuts stays incremented. So, although the sampling loop has been interrupted
in this case, the sampling structure has been upgraded. This results in an adap-
tive process which will balance depth and breadth explorations when running
the sampling. Breadth exploration is favored on the �rst sampling iterations,
but the tendency becomes inverted after several samples.

3.2 Incremental algorithm

In section 4, we present an application of the conditional simulation for Bayesian
optimization. In this applicative context, we have to successively simulate a
random vector conditionally to incremental constraints.

More precisely, let U ≥ 1 and let [εu] ∈ [Rmu ] and gu : [b]→ Rmu be de�ned
for 1 ≤ u ≤ U . For 1 ≤ v ≤ U are de�ned:

[ε1:v] =

v∏
u=1

[εu] , (18)

and g1:v : [b]→
∏v
u=1 Rmu by:

g1:v(x) = (g1(x), · · · , gv(x)) for all x ∈ [b] . (19)
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1 Function Sampling [X |g1:v(X) ∈ [ε1:v] ]
input : σ, r, g, ω,N output: (yk, wk)1:N

2 (cuts, omg, lev)← (∅, ∅, ∅)
3 for v ← 1 to U do
4 k ← 0

5 ifundef (omg([b]), lev([b]))← (ω1:v
[b] , v)

6 else
7 (t, lev([b]))← (lev([b]), v)

8 omg([b])← omg([b])
∏

t<u≤v

$u
[b]

9 while k < N do
10 ([x0], πk, j)← ([b], 1, 0)
11 while ρ([xj ]) > r and [g1:v]([xj ]) 6⊂ [ε1:v] do

12 if
∣∣∣log2( omg([b])

omg([xj ])
πk
)∣∣∣ > σ goto 31

13 ifundef cuts([xj ])← Cut([xj ], v)

14 ([lj+1], [rj+1])← cuts([xj ])

15 j ← j + 1

16 ifundef (omg([rj ]), lev([rj ])) ← (ω1:v
[rj ]

, v)

17 else
18 (t, lev([rj ]))← (lev([rj ]), v)

19 omg([rj)← omg([rj ])
∏

t<u≤v

$u
[rj ]

20 ifundef (omg([lj ]), lev([rj ])) ← (ω1:v
[lj ]
, v)

21 else
22 (t, lev([lj ]))← (lev([lj ]), v)

23 omg([lj)← omg([lj ])
∏

t<u≤v

$u
[lj ]

24 (ν[lj ], ν[rj ])← (omg([lj ]), omg([rj ]))

25 [xj ]← Bern(([lj ], ν[lj ]), ([rj ], ν[rj ]))

26 πk ←
ν[xj ]

ν[lj ]
+ν[rj ]

πk

27 end

28 wk ← P (X ∈ [xj ])
/
πk

29 Build yk by sampling [X |X ∈ [xj ] ]
30 k ← k + 1
31 for i← j to 1 do
32 [xi−1]⇐ Shrink([li], [ri])
33 omg([xi−1])← omg([li]) + omg([ri])
34 end

35 end

36 end

37 end
Algorithm 4: Incremental sampling.

Our purpose is to sample successively the sequence of conditional vectors:

[X |g1:1(X) ∈ [ε1:1] ] , · · · , [X |g1:v(X) ∈ [ε1:v] ] , · · · , [X |g1:U (X) ∈ [ε1:U ] ] ,
(20)
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in an e�cient way. When the sampling is done by means of algorithm 3, the
sampling structure produced for each conditional vector, [X |g1:v(X) ∈ [ε1:v] ]
where v ∈ [[1, U ]], is lost from a simulation process to another. This is ine�cient,
since it is foreseeable that the sampling structure for vector [X |g1:v(X) ∈ [ε1:v] ]
is certainly informative for sampling vector [X |g1:v+1(X) ∈ [ε1:v+1] ].

Algorithm 4 is an update of algorithm 3, with the purpose of incrementally
building the sampling structures for the sequence ([X |g1:v(X) ∈ [ε1:v] ])1≤v≤U .
Predictive weight is now incremental and takes multiplicative form:

ω1:v
[x] = P (X ∈ [x])

v∏
u=1

$u
[x] . (21)

Pre�x P (X ∈ [x]) in (21) is not out of place: recall that ω1:v
[x] should approximate

P (X ∈ [x] & g1:v(X) ∈ [ε1:v]) = P (X ∈ [x])P (g1:v(X) ∈ [ε1:v] |X ∈ [x] ). The
multiplicative form is then a consequence of the incremental constraint.

In order to deal with the incremental construction of the samplers, algo-
rithm 4 introduces new dictionary, lev, complementary to cuts and omg. Con-
straint level t = lev([x]) indicates that weight omg([x]) has been actually com-
puted with constraints sequence g1:t(X) ∈ [ε1:t]. Indeed, the sampling structure
is not garanteed to be up-to-date for all subtrees of the sampling structure, and
it is thus necessary to trace this upgrade level. On the other hand, function call
Cut(v, [x]), which creates a cut of box [x], now depends on constraint level v. So,
news cuts are created by considering all constraints information, although this
will of course not be the case for cuts related to past levels u < v. At last, new
function Shrink is introduced. Code [x] ⇐ Shrink([l], [r]) replaces [x] by the
smallest box containing both [l] and [r]; this replacement is deep and thus con-
cerns dictionaries cuts, omg and lev as well. Even root variable [b] in algorithm 4
can have its value replaced. Nevertheless, deep replacements are cost-free here
thanks to the way the structures are implemented.

In algorithm 4, parts taken unchanged from algorithm 3 are in black while
evolutions are in blue. A for loop over the number of constraints, v, is added
at lines 3 and 36 and repeats the entire sampling process for a given set of
constraints. The sampling process itself does not change much, but incremental
computations are now done on omg and lev is updated in consequence: lines 5 to
8, lines 16 to 19 and lines 20 to 23. Incremental computation means that unde-
�ned value omg([x]) is set equal to ω1:v

[x] , while already de�ned value omg([x]) is

multiplicatively completed by
∏v
u=t+1$

u
[x]. At line 32, the shape of box [xi−1]

is recomputed from its cut. This is better for improving future incremental com-
putation of omg during the sampling process.

3.3 Practical implementation and parallelism

Practical implementation. Algorithm 3 and 4 draw the main principles of
our sampling methods. Some implementation details are described now.
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Initial predictive weight. We implement the following de�nition of ω :

ω[x] =
µ
(
[g]([x]) ∩ [ε]

)
µ
(
[g]([x]))

P (X ∈ [x]) , (22)

where µ is Borel measure on Rm . This de�nition checks properties (15) and (16).
It also tries a rough approximation for P (X ∈ [x] & g(X) ∈ [ε]) . For incremen-
tal implementation, de�nition extends naturally as a product:

ω1:v
[x] = P (X ∈ [x])

v∏
u=1

$u
[x] with $

u
[x] =

µ
(
[gu]([x]) ∩ [εu]

)
µ
(
[gu]([x]))

. (23)

Cutting strategy. The de�nition of Cut is an important choice. Our algorithm
selects a cut ([y], [z]) randomly in regards to the following criteria:

� Favor cuts such that ω[y] � ω[z] or ω[y] � ω[z],

� Avoid overly elongated [x], i.e. such that
maxi(x

+
i −x

−
i )

mini(x
+
i −x

−
i )
�1,

In addition, some cuts history simpli�cations are implemented (next point).

Reducing sampling structure. Our implementation tries to optimize the structure
of cut, weight, and level history, when it is possible. Di�erent cases are implying
such reductions, which are not mentioned
here. A typical example is shown in �gure 3.
Assume that ([y], [z]) is a cut of [x], ([t], [u])
is a cut of [z] and [g]([u])∩ [ε] = ∅ , i.e. [u] is
outside the subpaving and its border. Then,
boxes [z] and [u] are useless and should be
removed from the structure.

[x]

[y]

[z]

[t]

[u]

=⇒ [x]

[y]

[t]

Fig. 3: Structure reduction

Discarding �rst samples. M �rst samples are discarded, so as to initialize the
structure of the sampler. After that, N samples are sampled and returned.

Setup. The algorithms are rather simple to set up. Except for the choice of ω,
which is structural, r, M and σ are the only parameters to be de�ned.

Parallelization. This paragraph gives additional information on how incremen-
tal algorithm 4 is implemented with parallelization. Data structures cuts, omg

and lev deal rather well with parallel processing, so that our implementation is
multithread. Nevertheless, the practical implementation needs some work.

In our implementation, the dictionaries cuts, omg and lev are stored in a
same structure. This structure is composed of shared references to vertices which
are stored within a Slab allocation [2]. Slab allocation is a structure, which
allows easy and e�cient deallocation and reallocation, while reducing the risk
of framentation of the memory. A vertex is an element of the history of the
sampling process, which contains the following �elds:
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� A box [x] with its weight omg([x]) and its level v = lev([x]), which is an
indicator that omg([x]) has been computed from g1:v and [ε1:v],

� The type of vertex: a node or a leaf? Is property [g1:v]([x]) ⊂ [ε1:v] true?
� When vertex is a node and box [x] has a cut ([l], [r]) = cuts([x]), then the
vertex is completed with weak references to the vertices related to boxes [l]
and [r] respectively.

Shared references allow multiple threads to access a same data; moreover, the
existance of a shared reference will prevent the erasure of referenced data. Weak
references are derived from shared references and also allow threads to access the
data, but they do not prevent the erasure of referenced data. By restricting the
shared references to the Slab allocation, we prevent the possibility of memory
leak, especially when the sampling structure is reduced by a thread. Since the
structure is shared among threads, the access to the vertices are protected by
memory locks: the locks allow either many read-only accesses or only one read-
write access to the data.

This data structure allowed some fair performance increase in comparison
to conference paper [4]. The memory management is now smoother and more
e�cient. In particular, we no longer have process freezing phenomena following
heavy memory management.

The de�nition of an e�cient data structure is a main achievement when
designing a multithread implementation. Now, we give some clari�cation on how
the sampling process is shared between the threads:

� Multiple instances (usually as many as the number of processor threads) of
the sampling loop are run simultaneously. This includes descending through
the sampling structure, possible extension of this structure, possible sam-
pling of box and point if conditions are met, and backward reconstruction
of weights and restructuring of the sampling structure,

� If a vertex currently processed by an instanced loop has been deleted by
another instance, then the vertex subtree is �rst deleted by the process, and
afterward, the loop is restarted.

� Processes are stop when the desired number of samples is obtained,

4 Application to Bayesian optimization

Bayesian optimization is a key technique for black-box optimization, and it is
actually a great motivation for this work.

Assume that one needs to optimize a function which is not well known, and
which may be computed by a highly costly process (a heavy simulation, tests
made by human teams on the grounds, etc.). Of course the optimization should
be made by sparing at best the number of calls to the costly evaluation.

In [8], Jones, Schonlau and Welch proposed the e�cient global optimization
method (EGO) for addressing such kind of problem. The idea is to use a surrogate
model under the form of a functional random variable. This functional random
variable is described by means of a Gaussian process with correlation depending
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on spatial distance (kriging). Based on such modelling, the construction of an
optimal parameter sequence to be evaluated is obtained by iterating:

� Compute the posterior law of the functional random variable, according to
the past evaluations,

� Compute the expected improvement function, in regards to the posterior
law and the already best computed value. This expected improvement is an
indicator of the next parameter to be evaluated,

� Find parameter optimizing the expected improvement and evaluate it.

The approach relies on the construction of the Gaussian modelling, and it tends
to be less e�cient when the dimension of the optimization space increases. Works
have been made in order to deal with this dimensional issue and improve the
modelling; e.g. [6]. But this issue is still a true challenge.

Beside, EGO itself is a form of Bayesian optimization introduced by Mockus
[10, 9, 13]. We proposed in [3] a Bayesian optimization approach in the context of
a nonlinear function depending on a model noise; the realization of the noise was
the unknown information of the problem. We hoped by a nonlinear approach to
better handle some of the di�culty induced by the dimension. The work was not
complete, since we were not able to build a good conditional sampling at that
time. The purpose of this paper and of [4] was to build such sampler.

It is beyond the scope of this chapter to detail the seminal works of Mockus,
or those of Jones, Schonlau and Welch. We will introduce the subject by a short
description of EGO algorithm. Then, we present our nonlinear approach.

Formalization: Function γ 7→ g(γ,xo) is to be minimized. Parameter xo is
unknown, but xo is a realization of random vector X, whose law FX is known.
In order to optimize γ, we are allowed to request an evaluator for computing
g(γ,xo), but each call to this evaluator is costly. The objective is then to solve
γo ∈ argminγ g(γ,x

o) by optimizing at the same time the sequence of evaluated
cases γu and of their evaluations eu = g(γu,x

o).

EGO method: Main idea of EGO consists in approximating g(γ,X) by a
Gaussian process (GP) γ 7→ G(γ). Given past evaluated cases γu and evalua-
tions eu = g(γu,x

o) for u ≤ v, posterior variable [G(γ) |∀u ≤ v,G(γu) = eu ] is
Gaussian and mathematically computed. This conditional variable is a main in-
gredient for computing the expected improvement, EI(γ), which is an indicator
of value γ for which next evaluation of g(γ,xo) is promizing:

EI(γ) = EG(γ)|∀u≤v,G(γu)=eu max{mγ −G(γ), 0} where mγ = min
1≤u≤v

eu . (24)

It is computed mathematically. Since EI(γ) indicates where evaluations are
promising, it is maximized in order to chose next case γv+1 ∈ argmaxγ EI(γ)
and request its evaluation ev+1 = g(γv+1,x

o).
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Nonlinear algorithm: We took inspiration of EGO, but now, random function
g(·,X) is used directly instead of GP approximation. Parameters γv and eval-
uations ev = g(γv,x

o) are optimized by iterating algorithm 5. While EI(γ) is
formed di�erently in this algorithm, it is essentially the same as in de�nition (24)
modulo an a�ne transform. It is theoretically de�ned by:

EI(γ) = EX|∀u≤v,g(γu,X)=eu min{g(γ,X),mγ} with mγ = min
1≤u≤v

eu . (25)

In practice, EI(γ) is obtained by a Monte Carlo derived from an approximated
sampling of [X |∀u ≤ v, g(γu,X) = eu ]. As a crucial ingredient:

� Vector [X |∀u ≤ v, g(γu,X) = eu ] is approximated by [X |g1:v(X) ∈ [ε1:v] ],
where gu = g and εu is a small box around eu.

� The sampling is done by the way of this approximation.

This approximated random vector, conditional to a subvariety, incorporates in-
crementally all constraints related to the past evaluations. The sampling is done
by algorithm 3 or preferably by incremental algorithm 4.

Algorithm thus consists of:

1. Generating samples of
posterior random vector
[X |g1:v(X) ∈ [ε1:v] ],

2. Building a Monte Carlo
approximation of EI(γ),

3. Choosing parameter γv+1

by minimizing EI(γ) and
evaluating it.

1 Function Process next measure

input : γu and eu , g(γu,x
o) for 1 ≤ u ≤ v

output: γv+1 and ev+1 , g(γv+1,x
o)

2 Make samples of [X |g1:v(X) ∈ [ε1:v] ]
3 Compute mγ = min1≤u≤v eu and:

EI(γ) ' EX|g1:v(X)∈[ε1:v ] min{g(γ,X),mγ}
4 Compute γv+1 ∈ argminγ EI(γ)

5 Compute ev+1 , g(γv+1,x
o)

6 end
Algorithm 5: Sampler-based Bayesian optimizer

Implementations of step 4 are not detailed here. Essentially, we used a meta-
heuristic method, the cross-entropy algorithm for optimization [12], for this task;
this method is related to parameterized rare-event simulation.

5 Examples and tests

Regarding the conference publication [4], all the results presented here have been
recomputed or supplemented by recent implementations of the algorithms.

5.1 Simulation: test cases

The tests presented here are performed for sampling algorithm 3 or its incre-
mental version 4. The algorithms have been implemented in Rust language
(www.rust-lang.org) and were processed on 7 threads. The algorithms are
tested on mathematically simple simulation problems, in order to make the
statistics of the results clear enough to analyze.
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Parameters. All simulations have been achieved with the following parameters:

� r = 0.001 is the radius bound for second while stop condition,
� M = 5000 is the number of samples discarded during sampler initialization,
� N = 50000 is the number of sampled particles,
� σ = 10 on all tests.

Test Cases. Thorough the section, it is assumed that X follows the uniform
law on b = [−2, 2]n with n ∈ {2, 3, · · · , 11} . Three cases are investigated:
Case (a): Are de�ned ga(x) = ||x||2 =

√∑n
j=1 x

2
j and [εa] = [0.95, 1.05] . Then

g−1a ([εa]) is a hyper-spherical shell, which approximates the unit hypersphere
of dimension n− 1.

Case (b): For n = 11 and 0 ≤ v ≤ 9, it is considered:

gb(x) =
[
||x||2 x3 . . . x2+v

]
and [εb] = [εa]× [z]v , (26)

with [z] = [−0.05, 0.05] . Similarly to (a), but with additional constraints,
g−1b (εb) approximates a hypersphere of dimension n−1−v. When v = 0, we
are back to case (a) with n = 11. When v = 9, then g−1b (εb) approximates the
unit circle C within the �rst two dimensions, related to coordinates x1, x2 .

Case (c): For n = 11 and 0 ≤ v ≤ 9, it is considered:

gc(x) =
[
||x||2 min(|x1|, |x2|) x3 . . . x2+v

]
, (27)

and [εc] = [εa] × [α] × [z]v with [α] = [0, 0.5] . Thus, this case is obtained by
adding constraint 0 ≤ min(|x1|, |x2|) ≤ 0.5 to subcases of (b). For subcase
v = 9 especially, we are approximately sampling on the (disjoint) union of the 4
subsegments A1, . . . ,A4 of the unit circle C, de�ned by:

Aj =
{[
x1, x2

]
∈ C
/

arg
([
x1, x2

])
∈ j π

2
+
[
−π
6
,
π

6

]
mod 2π

}
. (28)

These 4 subsegments have the same size so that their probabilities are the same
in regard to X.

Purpose of the Test Cases. Subsequently, case (a) is used in order to evaluate
the performance of the sampling process both in accuracy and in e�ciency for
di�erent dimensions. Case (b) is used in order to evaluate the e�ciency of the
sampling when the number of constaints increases; algorithm 3 and incremental
algorithm 4 are also compared. Case (c) is used in order to evaluate the accuracy
of the sampling in case of complex constaints which introduce disjoint modes.

5.2 Simulation: case (a)

This case is mathematically easy to predict. In [5], Dezert and Musso proposed a
method, which may be used for uniformly sampling on an ellipsoid shell. What-
ever, one must keep in mind that our approach is generic and can be applied to
an in�nite number of con�gurations.
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Histograms. Figure 4 presents some histograms for case (a). For each subcase
n ∈ {3, 7, 11}, we have computed the radius of all samples x and built the
associated histograms � sub�gures (1), (3) and (5). For each n ∈ {3, 7, 11} and
for all 1 ≤ i < j ≤ n, we have computed the angle of all samples (xi, xj) and

built the associated histograms. From these n(n−1)
2 histograms of each subcase,

we have computed the minimal, mean and maximal histograms. The results are
shown in blue, green and red, respectively, and provide an hint on the error of
the estimation � sub�gures (2), (4) and (6).

(1) n = 3 � radius (2) n = 3 � angle

(3) n = 7 � radius (4) n = 7 � angle

(5) n = 11 � radius (6) n = 11 � angle

Fig. 4: Case (a) � histograms � 20 divisions

By symmetry, the theoretical angle histograms are uniform. The errors should

be of the order of
√

20
50000 = 0, 02 . In comparison, the errors �gured in the

angular histograms are quite acceptable, even for the highest dimension. The
most interesting point is that there is no rupture in the histogram, which shows
that the sampler does manage the subvariety structure. We do not have an
error estimation for the radius histograms. Actually, the local probability should
theoretically increase with the radius, this property being accentuated with the
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dimension. This is what is obtained on the histograms. It is noteworthy however
that the sides of these histograms are subject to additional errors implied by the
border of the subvariety.

Process Statistics: Figure 5 presents some statistics graphs for case (a).

(1) omg([b]) versus P (ga(X) ∈ [ε]) (2) Evolution of loop retry

(3) Evolution of cpu time (s) (4) Cumulative cpu time (s)

Fig. 5: Case (a) � statistics � n = 3, 7, 11

Results are plotted against the number of generated samples k = 1 : 55000.
Cases n = 3, 7, 11 are drawn with respective colors, red, blue and green.

Sub�gure (1) shows how value − log2(omg([b])) evolves and approximates
− log2(P (ga(X) ∈ [ε])) . Each curve increases to theoretical value (same color
line), but performance decreases with dimension.

Sub�gures (3) and (4) present the cumulative cpu-time per thread and the
evolution of the cpu-time per sample and per thread consumed by the process
(expressed in second). In comparison to [4], there is no more time discontinuity
caused by intermittent memory allocations. Our memory management has been
improved as shown in section 3.3. We notice clearly that the sampling e�ciency
increases with the number of generated samples. However, the cumulative cpu
time still increases dramatically with the dimension (the memory use evolves
similarly). Although the curse of dimension has been delayed by our approach,
it is still there.

The number of loop retries during the sampling is plotted in sub�gure (2).
It is an interesting indication of the achievement of the sampling structure. It
decreases with the number of samples and becomes small, even for the high-
est dimension (around 28 for n = 11). This result should be compared to the
probability of the subvariety (around 10−6 for n = 11).
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5.3 Simulation: case (b)

Figure 6 presents synthetic performance curves, as well as comparative histogram
examples for algorithm 3 and algorithm 4 on case (b).

(1) Final cpu time (ms); v = 0 : 9 (2) Total cpu time (s); v = 0 : 9

algorithm 3 in blue � algorithm 4 in red

(3) Angle histogram � v = 5 (4) Angle histogram � v = 5

Fig. 6: Case (b) � speed and histograms

Sub�gures (1) and (2) are plotted against the number of additional con-
straints v = 0 : 9. Sub�gure (1) presents �nal cpu-time (in ms) per sample and
per thread consumed by algorithm 3 (in blue) and algorithm 4 (in red). Both
curves decrease and approach to zero. Sub�gure (2) presents total cpu-time (in s)
per thread consumed by these algorithms. Both curves decrease. Red curves are
dominated by blue curves, which means better e�ciency of algorithm 4 against
algorithm 3.

Sub�gure (3) presents angle histogram for subcase v = 5 from computations
by algorithm 3. Sub�gure (4) presents angle histogram for same subcase from
computations by algorithm 4. Both results are comparable in terms of accuracy.
The theoretical histogram is uniform, which conforms to these results.

As a conclusion here, the performance of the sampler is likely to increase
with the number of constraints, and this is a useful quality. Incremental algo-
rithm 4 is more e�cient than algorithm 3, while ensuring equivalent accuracy.
Algorithm 4 must therefore be favored for incremental constraints. In last exam-
ple of section 5.5 on Bayesian optimisation, implementation of algorithm 4 was
even necessary for an acceptable computation time.
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5.4 Simulation: case (c)

Figure 7 presents computed radial histograms and angular histograms (for co-
ordinates x1 and x2 � there is only one) for subcases v = 6 and v = 9.

(1) Radius histogram � v = 6 (2) Angle histogram � v = 6

(3) Radius histogram � v = 9 (4) Angle histogram � v = 9

Fig. 7: Case (c) � histograms � radius: 20 divisions; angle: 100 divisions

Sub�gure (3) presents radial histogram for �nal case v = 9. Sub�gure (4)
presents angle histogram for �nal case v = 9. The quality of the histograms is
comparable to what was observed previously. Due to the constraint con�guration
of subcase v = 9, the theoretical radius histogram is uniform, and the theoretical
angular histogram is uniform around each subsegment, A1 to A4 , with a gradual
decrease on the borders. The generated histograms actually comply with these
properties.

Sub�gures (1) and (2) present intermediate subcase v = 6. Since some other
coordinates than x1 and x2 are relaxed, contraint x21 + x22 ' 1 is also relaxed.
Actually, theoretical angular histogram is even no longer discontinuous around
subsegments, Ai , for this reason.

��������

As a preliminary conclusion, we consider that our sampling method is globally
performant in sampling conditionally to subvarieties. A future issue will be to
increase the dimension of the sampling space.

5.5 Bayesian optimization

A simple geometric problem. We intend to �nd the isobarycenter γ = (a, b)
of 4 unknown points Mi = (xo2i−1, x

o
2i) ∈ [−5, 5]2 with i ∈ {1, 4}. The only
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approach that is possible for us is to test some solutions by requesting for a
costly measurement; for requirement γu = (au, bu), this measurement evaluates:

eu = g(γu,x
o) = ||γu − h(xo)||2 with h(xo) =

1

4

4∑
i=1

Mi =
1

4

4∑
i=1

(xo2i−1, x
o
2i) .

(29)

Our purpose is to optimize (a, b) by minimally requesting evaluation g(γ,xo).

Geometric solution. Each measure restricts the solution to a circle. After 2
measures, we usualy have to choose between two points, and the solution is
found equiprobably at step 3 or 4.

Tests and Results. Points M1, . . . ,M4 are (2,−1), (3, 2), (− 3
2 , 4), (

1
2 , 3). Their

isobarycenter is (1, 2). We used a sampler with M = 5000, N = 10000 and
[ε] = [− 1

100 ,
1

100 ]
u . VariableX is considered uniform on [−5, 5]8. Table 1 presents

a typical optimized sequence for parameters γu = (au, bu). Optimization of EI
is done the cross-entropy method [12] and is thus near-optimal. In this example,

Table 1: Exemple of optimization sequence

u 1 2 3 4 5 6 7 8 9 10 11 12 13

au 0.01 −0.41 0.84 0.97 0.99 1.00 0.98 1.02 −3.79 0.98 0.98 −0.39 1.03

bu 0.02 −1.94 2.05 1.99 2.02 1.98 2.02 1.99 6.49 2.00 1.99 5.40 2.00

eu 2.21 4.19 0.16 0.03 0.02 0.02 0.03 0.02 6.57 0.02 0.03 3.67 0.03

best value for eu is 0.02. Best values are generally found around 0.02: this is a
consequence of error interval [ε], which is not zero size.

Table 2: Results for 100 runs

uo 1 2 3 4 5 6 7 8 9 10 11 12 13

euo ≤ 0.02 0% 0% 26% 40% 10% 9% 2% 3% 3% 3% 1% 1% 1%
euo ≤ 0.04 0% 0% 36% 57% 6% 1% 0% 0% 0% 0% 0% 0% 0%
euo ≤ 0.09 0% 0% 40% 57% 3% 0% 0% 0% 0% 0% 0% 0% 0%

Table 2 presents the results for 100 runs. For these runs, the mean cpu time is
2627s, where non-incremental algorithm 3 has been used for simulation. Three
convergence conditions, eu ≤ econd with econd ∈ {0.02, 0.04, 0.09}, are consid-
ered for these runs. Value uo = min{u/eu ≤ econd} is the �nal step for which
convergence condition is met. Percentage is given for each �nal step value uo.
In all cases, we notice that most optimal values are found at steps 3 or 4. The
result tends to be equilibrated on 3 and 4 when stopping criterion is relaxed.
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EGO method. For the sake of comparison, we apply EGO to our problem. Gaus-
sian process G with covariance cov(G(γ), G(γ′)) = 1

4 exp
(
− 1

2 ||γ − γ
′||2
)
and

mean 0 is used. Table 3 summarizes the results of 100 tests. Each test imple-

Table 3: Results for EGO method

econd 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001

% : uo ≤ 100 91% 74% 69% 64% 55% 46% 42% 29% 14%

worse(uo) 55 78 96 97 97 84 93 93 99
mean(uo) 11.8 19.4 23.1 25.5 30 31.3 37.5 56.3 60.5
best(uo) 1 1 8 8 8 15 15 19 19

ments 100 successive evaluations. Convergence conditions are eu ≤ econd with
di�erent values for econd ranging from 0.5 to 0.001. Again, value uo is the �nal
step for which convergence condition is met. For each value econd, the table indi-
cates the percentage of tests which succeeded to reach convergence with less than
100 evaluations. In case of convergence, the worse, mean and best �nal steps are
given. EGO is outperformed here. However, EGO is able to achieve more re�ned
results � e.g. econd = 0.001 � if the evaluation budget is relaxed: indeed, EGO is
based on exact mathematical computation of the expected improvement.

Decision space of higher dimension. Variable X is uniform on [−5, 5]8
with realization xo = (2,−1, 3, 2,− 3

2 , 4,
1
2 , 3). Points Mi,j = (mi,j,k)1≤k≤28 with

1 ≤ j < i ≤ 8 are built fromX by setting mi,j,k = XiXj if k = j+ (i−2)(i−1)
2 and

mi,j,k = 0 else. Function g(γ,X) is de�ned by g(γ,X) = ||γ − h(X)||2 where

h(X) = 1
28

∑8
i=2

∑i−1
j=1Mi,j . The problem is thus of much higher dimension.

We had some theoretical issues on this example. The Bayesian estimation was
unable to resolve some remaining ponctual cases for zero dimension subvarieties.
This di�culty has been overcome by adding exclusion constraints around already
tested cases. Table 4 gives an example of run (progress is in bold). Incremental

Table 4: Example in a space of higher dimension

u 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

eu 1.02 1.04 1.18 0.77 0.68 0.68 0.61 1 0.33 0.12 0.18 0.21 0.09 0.09 0.09 0.09 0.05 0.10 0.09 0.12

algorithm 4 were needed for simulation, and optimization has been performed
within a day. On the other hand, algorithm 3 was far too slow in this case for
optimizing in reasonable time.

6 Conclusion

We proposed an original dichotomous method for sampling a random vector con-
ditionally to a subvariety. This method has been parallelized, and we proposed
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non-incremental and incremental implementations. This generic approach, in-
spired from interval analysis, is accurate and e�cient up to a space of dimension
11. We have shown how it could be applied e�ciently to Bayesian optimization
problems. The work is promizing from theoretical and applicative point of view
and o�ers some improvement perspectives. A main issue is to enhance the e�-
ciency of the approach with respect to higher dimensions. With this perspective
in mind, some relaxation techniques applied to the subvariety may be considered.
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