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Abstract: Determining how the quadriceps femoris musculotendinous unit functions, according to
hip and knee joint angles, may help with clinical decisions when prescribing knee extension exercises.
We aimed to determine the effect of hip and knee joint angles on structure and neuromuscular
functioning of all constituents of the quadriceps femoris and patellar tendon properties. Twenty
young males were evaluated in four positions: seated and supine in both 20◦ and 60◦ of knee flexion
(SIT20, SIT60, SUP20, and SUP60). Peak knee extension torque was determined during maximal
voluntary isometric contraction (MVIC). Ultrasound imaging was used at rest and during MVIC to
characterize quadriceps femoris muscle and tendon aponeurosis complex stiffness. We found that
peak torque and neuromuscular efficiency were higher for SUP60 and SIT60 compared to SUP20
and SIT20 position. We found higher fascicle length and lower pennation angle in positions with
the knee flexed at 60◦. The tendon aponeurosis complex stiffness, tendon force, stiffness, stress, and
Young’s modulus seemed greater in more elongated positions (60◦) than in shortened positions (20◦).
In conclusion, clinicians should consider positioning at 60◦ of knee flexion rather than 20◦, regardless
if seated or supine, during rehabilitation to load the musculotendinous unit enough to stimulate a
cellular response.

Keywords: moment-angle relationship; muscle length; mechanical properties

1. Introduction

The quadriceps musculature weakness has been associated with the initiation, progres-
sion and severity of knee osteoarthritis [1]. Thus, strengthening exercise has been identified
as a powerful intervention to treat knee injuries, including following surgery. However,
pain and arthrogenic muscle inhibition are significant barriers to the generation of ade-
quate stimulus for improvement in muscle function [2,3]. Among the strategies to fasten
recovery, isometric training is often used in rehabilitation programs because it may increase
muscle force faster than dynamic exercise, with the benefit of lower joint shear stress [4] but
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the adaptations according to joint angle (i.e., muscle-tendon unit length) raise questions
regarding the most appropriate lower limb position according to training objectives.

The quadriceps femoris musculature is mainly responsible for the knee extension
torque. The aponeuroses of its four constituents are joined distally to form the quadriceps
tendon, and, lastly, the patellar tendon, as the final force-transmission structure [5,6]. Due
to origin and insertion characteristics of the quadriceps femoris musculature, changes in
both hip and knee joint angles have implications on force production [7] There is a general
consensus on the influence of knee joint angle on knee extensor torque during maximum
voluntary isometric contraction (MVICs), where knee extension torque is commonly greater
at knee flexion angles closer to 60◦ [7–9]. However, exercise prescription for knee extension
requires a full reporting of body mechanics, mainly the lower limbs, but the combined
effect hip and knee joint angles on force production is still a matter of debate [10]. When
comparing the supine and seated hip positions, voluntary torque may be reduced or not
change in supine for several knee joint angles (20◦–90◦) [11,12].

Although positions closer to 60◦ knee flexion are beneficial for greater force pro-
duction [8,10], patellofemoral and tibiofemoral compressive forces increase as the knee
flexes [13]. In contrast, in supine with the knee fully extended, there is minimal contact
between the femur and the patella [14]. Therefore, investigating lower limb positions that
reduce joint stress, without reducing force production may be helpful in cases of painful
knee, risk of accelerated knee osteoarthritis, or for bedridden patients. Considering that sev-
eral physiological parameters are involved in muscle force production and the adaptations
to exercise, the neural (electrical activity) and morphological (muscle-tendon structure)
adaptations must also be elucidated in the context of lower limb position [15].

In shortened positions, the quadriceps femoris musculature has greater activation
than in elongated positions [16] and a higher value for activation could be expected in the
seated versus supine position for the superficial quadriceps: vastus medialis (VM), vastus
lateralis (VL) and rectus femoris (RF) muscles [11] Compared to shortened, mid-range
and elongated positions allow greater fascicle length (Lf) [17] and lower pennation angle
(θp) [17]. These alterations directly imply that, under isometric conditions, a muscle with
longer fascicles may be expected to develop torque more quickly (i.e., higher shortening
velocity); and the decrease of the pennation angle, at the elongated positions, implies a
mechanical advantage for force generation [17].

Tendon mechanical properties are also of paramount importance for muscle func-
tion and integrity [18]. Thus, muscle work can be affected by reduced tendon function
due to connective tissue disorders [19], periods of insufficient tendon loading [18,19], or
positioning of the joint [20]. Tendon stiffness is greater at longer muscle length than at
shorter muscle length, after isometric training [20] and resistance training increase force
production capacity, stiffness, and resistance to stress [21], which is beneficial for tissue
remodeling. The tendon aponeurosis complex (TAC) stiffness shows the relationship be-
tween elongation of the deep aponeurosis to the distal free tendon in response to muscle
force to the bones [22]. It is well known that joint angles in elongated positions remove the
looseness of the TAC (increasing its stiffness), and optimize muscle length for greater force
production, seeming ideal for speeding up adaptation [23,24]. In addition, the tension of
the TAC is enlarged in strained situations allowing less muscle work due to better force
transmission [25–27].

Therefore, we aimed to investigate the influence of hip (0◦ or 85◦) and knee (60◦ or
20◦) joint angles on the knee extensor MVIC, along with surface electromyography (EMG),
neuromuscular activity, muscle architecture, TAC stiffness of the four quadriceps femoris
constituents, and patellar tendon properties in healthy male subjects. Specifically, we
hypothesized that: (1) peak knee extension torque during MVIC would be greater at 60◦ of
knee flexion compared to 20◦, as well as greater in seated compared to supine; (2) greater
quadriceps femoris muscle activity at 20◦ of knee flexion compared to 60◦; (3) a higher
neuromuscular efficiency on 60◦ positions; (4) at rest and during MVIC, the Lf would be
greater, and the θp would be lower when the knee is at 60◦; and (5) the TAC stiffness and
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the patellar tendon stiffness can be higher at more elongated positions in comparison to
shortened positions. This study is important because determining how the neuromuscular
and muscle-tendon unit acts according to lower limb position may help researchers and
exercise prescribers in the rationale for their choices.

2. Material and Methods
2.1. Trial Design

This was a study with randomized, single blinded, repeated measures. This is a
sub-study to a larger trial that is aimed at gaining a better understanding of muscle-
tendon adaptation based on hip and knee joint angles. The full protocol is available
on ClinicalTrials.gov (Identifier: NCT03822221). Participants were guided regarding the
purposes, benefits, and risks before recruitment, and all afforded written consent. Consent
was received (protocol number 94388718.8.0000.8093) from the Research Ethics Committee
at the University of Brasília/Faculty of Ceilândia following the Helsinki Declaration of
1975. This study was stated according to the Consolidated Standards of Reporting Trials
(CONSORT) Statement for Randomised Trials of Nonpharmacologic Treatments [28]. All
the procedures were performed in the Laboratory of Strength of the Faculty of Physical
Education at the University of Brasília.

2.2. Participants

Twenty male participants (age 24 ± 4.6 years; height 177 ± 6.3 cm, and body mass
77 ± 9.3 kg) were recruited through flyers and oral invite. They also had expected values of
quadriceps muscle thickness and subcutaneous tissue thickness on the anterior thigh (RF:
24.8 ± 3.97 mm; VL 22.6 ± 2.80 mm; VM 23.9 ± 4.5; vastus intermedius [VI] 19.6 ± 2.5 mm;
subcutaneous tissue: 4.32 ± 0.02 mm), which were obtained in supine with 20◦ of knee
flexion. The inclusion criteria were: healthy male, aged 18 to 30 years, and physically
active. The exclusion criteria were: involved in regular lower limb strengthening or sports
competitions in the prior six months, any musculoskeletal abnormality (including reduced
lower limb range of motion, deformity or amputation in any part of the lower limbs; history
of patellar dislocation or trauma to limbs or trunk that may interfere in the results), motor
control disorder, or systemic diseases that could affect performance or safety on tests.

2.3. Randomization, Allocation Concealment, and Blinding

Testing was performed in four positions (Figure 1). Supine and seated were considered
0◦ and 85◦ of hip flexion, respectively. A fully extended knee was considered as 0◦ of knee
flexion. Order of the testing positions was randomized for each participant. Randomization
was guaranteed by having participants blindly remove four small square paper sheets
from an opaque envelope. Participants were also blinded to study aims and hypotheses to
prevent expectancy affecting performance. Nevertheless, researchers and volunteers could
not be blinded to the assessment positions.
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at each visit. Legend: MVIC: Maximal Voluntary Isometric Contraction; SUP60: supine with 60◦ of
knee flexion; SIT60: seated with 60◦ of knee flexion; SUP20: supine with 20◦ of knee flexion; SIT20:
seated with 20◦ of knee flexion.

2.4. Experimental Procedures

The protocol consisted of five laboratory visits (Figure 1), including a familiarization
visit and four experimental visits. Each visit lasted 2–3 h and was performed seven
days after the previous visit. We instructed participants to abstain from alcohol and
stimulants (e.g., caffeine, chocolate, and performance supplements) for at least 24 h before
visits, avert hard exercise 36 h ahead of the visits, and keep their common diet. We
obtained anthropometrics (body mass and height) during the familiarization visit, and
participants practiced ramped MVICs in each position. The positions were tried apart in
each experimental session and composed of 12 MVICs to complete all ultrasound imaging
and electromyography exams (two for EMG, two for patellar tendon properties, and eight
for muscle architecture).

2.5. Outcomes

We measured the peak knee extension torque during MVIC in each position, along
with Root Mean Square (RMS) by EMG of the quadriceps musculature. Moreover, the
tendon-aponeurosis complex (TAC) stiffness and the muscle architecture (θp and Lf) were
measured from the four quadriceps femoris musculature, and the morphological (cross-
sectional area (CSA) and resting length) and, mechanical (stiffness, force, and elongation),
and material properties (Young’s Modulus and stress, strain,) were measured from the
patellar tendon.

2.5.1. Torque Evaluation

A computerized dynamometer (System 4; Biodex Medical Systems, Shirley, New York,
USA) was applied to collect knee extension torque during MVICs of the dominant limb
(i.e., the preferred limb to kick a ball). The mechanical axis of the dynamometer was visibly
in line with the flexion-extension axis of the knee and hip angles, which were adjusted
with a goniometer. The lever arm of the dynamometer transducer was attached 2–3 cm
superior the lateral malleolus with a girdle. Subjects were stabilized in the chair using
belts on the chest and pelvic girdle to reduce body movement. Seat height was adjusted to
each subject’s height to ensure a comfortable fit. Contact of the volunteer’s lumbar spine
with the back support was confirmed. A bench was provided to support the non-tested
leg during rest periods to avoid excessive hip flexor stretching in supine position and
discomfort while seated. A warming-up of submaximal isometric contractions was carried
out for muscle and tendon pre-conditioning: 50%: 3 contractions; 75%: 2 contractions;
and 90%: 1 contraction. Rest for 10 s was provided between submaximal contractions [8].
Following the warm-up, participants completed 12 MVICs and were encouraged verbally
to cross their arms with hands on shoulders and to perform maximum strength on ramping
contraction for 6–10 s and obtained visible feedback of the torque generated. A 2-min rest
was provided between MVICs.

2.5.2. EMG

The EMG of the VL, VM, RF, and most lateral portion biceps femoris was recorded
bipolarly with a sampling frequency of 1000 Hz by the data accession device New Myotool
(Miotec—Biomedical Equipment, Porto Alegre, Brazil®). The device was synchronized
with the dynamometer, and electrical activity was recorded. Passive electrodes (circular
silver-silver chloride electrodes with a 20 mm diameter) were positioned on the belly of the
muscles [29] with an inter-electrode range (center to center) of 20 mm. A referred electrode
was attached on the patella of the ipsilateral limb [30] Impedance reduction between the
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two electrodes was achieved through trichotomy and cleaning with alcohol. Raw EMG
signal was band-pass filtered (20–500 Hz) to remove artifacts, and a notch filter of 60 Hz
was applied. The raw RMS values were calculated within a 500 ms period in the most stable
part of the torque trace (the MVIC plateau). Neuromuscular efficiency was calculated by
dividing the peak knee extension torque by the RMS of the knee extensors [31] and then
transformed into a percentage multiplied by 100.

2.5.3. Muscle Architecture Assessment

We used an ultrasound system (M-turbo, Sonosite, Washington, USA) connected to a
linear transducer (40 mm, 7.5 MHz, depth 6.0 cm, acquisition frame of 30 Hz). A water-
based gel served as a coupling mean between the transducer and the skin surface. The
muscle fibers were visualized at their longitudinal plane, being the transducer in a right
angle with the skin at 50% (RF), 60% (VL), 75% (VM), and 80% (vastus intermedius [VI]),
from cranial to distal, considering the thigh length (between the medial landmark of the
anterior superior iliac spine and the patella base), as adjusted from prior comments [32,33].
These regions were chosen to allow a homogeneous muscle sonography, i.e., minimal
fiber and constraints [32]. The RF and VI were scanned on the anterior thigh, while
the VL and VM were scanned on the lateral and medial thigh surface, respectively. A
customized Styrofoam apparatus retained the transducer avoiding undesired movement.
The transducer alignment was also manually corrected to keep the superficial and deep
aponeuroses in parallel, so several fascicles could be observed [34,35]. With the ultrasound
set to record a 15-svideo, two recordings were made for each quadriceps femoris component
during MVIC. The resting state was also recorded prior and after the MVIC trial. The
recording with the best visualization of multiple fascicles was used for the measurement
of Lf and θp. The video files were transferred to a computer for processing. Frames were
selected at rest and at the MVIC plateau and stored as image files to be analyzed in ImageJ
software (v. 1.46; National Institutes of Health, Bethesda, USA) (Figure 2). The fascicle
that could be evidently delineated from the attachment point on the deep aponeurosis
to the transducer field-of-view limits was used for the measurements [35]. The θp is the
angle formed by the deep aponeurosis and the fascicle. The Lf is obtained by following
the fascial from the superficial to the deep aponeurosis. When the fascicle was greater
than the field-of-view boundaries, the insertion on the deep aponeurosis was kept, and
the remaining portion up to the superficial attachment was estimated by [36]. For all
ultrasound imaging results, the average of three measurements were used. A researcher
with extensive experience in ultrasonography performed all measurements. In addition,
we synchronized the MVIC and ultrasonographic recordings with a data acquisition device,
New Miotool (Miotec Biomedical Equipment Ltd., POA, Brazil®; sampling rate: 2000 Hz,
A/D converter: 14 bits, common rejection mode: 110 db at 60 Hz). The device was interfaced
with the computerized dynamometer, and with a high-definition camera positioned to
record the ultrasound system display. When the evaluator started the video ultrasound
video recording, a visual indicator appeared on the ultrasound screen, which allowed
the synchronization of all data on a torque-time trace generated on the New Miotool
software [37].
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Figure 2. Representative ultrasound image of the vastus lateralis at rest (A) and during a maximum
voluntary isometric contraction (B) in a seated position with the knee flexed at 60◦.

2.5.4. TAC Stiffness

The TAC displacement of RF, VL, VM, and VI were assessed using the same video
recordings obtained for the muscle architecture variables. During data collection, a custom-
made device held the probe, preventing it from moving. As mentioned above, care was
taken to avoid the slide of the transducer on the skin surface. However, if sliding occurred,
the TAC displacement was adjusted considering a hypoechoic shadow from an adhesive
tape. Moreover, ultrasonographic recordings obtained (two for each muscle belly) during
passive motion at 10◦/s of the knee from 60◦ to 0◦ in both seated and supine positions were
used to correct displacement overestimation due to any undesired angular rotation of the
knee. Only the corrected values were used to calculate each constituent’s stiffness [22].

The Tracker 4.87 software allowed the manual tracking of the fascicle-deep aponeurosis
attachment while it was displaced from rest to MVIC. If the deep insertion started outside
the probe’s field-of-view, we made a linear extrapolation as previously described [21,25].
Quadriceps femoris muscle force was obtained by dividing the knee extensor torque by the
patellar tendon moment arm, which was a fixed value according to the knee angle (60◦:
0.056 m; 20◦: 0.0475 m) [38]. To obtain a quadriceps femoris TAC stiffness of all quadriceps
femoris constituents, we used the delta force from 50% to 100% of the MVIC divided by the
mean delta displacement of each quadriceps femoris constituent also at 50% and 100% [33].

2.5.5. Patellar Tendon Properties

For all analysis of patellar tendon properties, participants then performed six 5-s
submaximal isometric knee extension MVICs for tendon pre-conditioning [39], which was
mentioned above in the torque assessment section. Following the submaximal MVICs,
the four MVIC were randomly performed to assess the patellar tendon with 120 s of rest
between each. For patellar tendon variables, two volunteers were excluded due to technical
problems in the analysis.

Morphological Properties

The same ultrasound system, settings, and synchronization method used for muscle
architecture were also used for the assessment of the patellar tendon properties. The resting
length was obtained with the ultrasound probe positioned longitudinally along the tendon,
from the patella’s apex to the deep insertion to the tibial tuberosity [40]. If the size of the
transducer did not allow the complete visualization of the patellar tendon, then it was
obtained using an overlapping images method adopted by [41] (Figure 3). The length
from the marker to each anatomical structure was measured with Tracker 4.87 software
(www.physlets.org/tracker/ (accessed on 13 December 2018)) and summed to determine
the patellar tendon length, according to [42].

Patellar tendon CSA was obtained with the ultrasound probe positioned perpendicular
to the long-axis of the tendon. The mean value from three images was obtained at three
locations (25%, 50%, and 75% of the tendon length) [43] to allow patellar tendon CSA to be
measured from these axial images using Image J software (v. 1.46; National Institutes of
Health, Bethesda, Maryland).

www.physlets.org/tracker/
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Figure 3. The overlapping images technique enables the measurement of patellar tendon length
at rest (A1 + A2) and in increments of 10% force up to maximum voluntary isometric contraction
(B1 + B2) when the entire length cannot be captured in a single frame due to the limited size of the
ultrasound probe. A skin marker (adhesive tape) that creates a hypoechoic shadow is used to define
the measurement bounds: the length from TI to the center of the skin marker in A1 and the length
from the center of the skin marker to PI in A2 are added. The same procedure is repeated for each
10% increase in force, leading to B1 and B2.

Mechanical Properties

Patellar tendon force was defined by the torque obtained during MVIC divided by the
patellar tendon moment arm, determined from previous literature as 0.056 m and 0.0475 m
at 60◦ and 20◦ of knee flexion, respectively [38]. Patellar tendon force was determined at
10% intervals of the MVIC (from 0 to 100%). The elongation was measured with cine-loop
ultrasound imaging during MVIC using the same landmarks described above for the
patellar tendon rest length. Patellar tendon elongation was defined as the length change
between the patellar tendon proximal and distal insertions. The patella’s apex and the
tendon’s deeper insertion to the tibial tuberosity were determined by manual tracking using
Tracker 4.87 (www.physlets.org/tracker/ (accessed on 13 December 2018)). Patellar tendon
strength and elongation were synchronized using the same technique mentioned above
in the muscle architecture assessment section, as proposed by Bojsen-Moeller, 2003 [37].
Force-elongation plots were fitted with a second-order polynomial forced through zero.
The slope of the stress-strain curve was used to calculate stiffness, based on the chosen
force levels for measuring tendon stiffness. Linear regression was employed to derive the
slopes of both the force-elongation and stress-strain curves, which were calculated from
50% to 100% MVIC [44].

Material Properties

Stresses and strains were obtained at 10% torque steps throughout the MVIC to assess
the patellar tendon stress-strain relationship and estimate patellar tendon material proper-
ties for each condition [44]. The patellar tendon stress was calculated by dividing tendon
force by CSA, and tendon strain was calculated by dividing tendon elongation by patellar
tendon resting length. Stress-strain plots were fitted with a second-order polynomial forced

www.physlets.org/tracker/
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through zero. Using the associated quadratic equations, Young’s modulus was determined
as the stress-strain relationship using the same relative (50–100%) force levels as selected
for determining tendon stiffness force.

2.6. Statistical Analysis and Sample Size

All outcomes are reported as geometric mean and 95% confidence intervals (95%
CI). To compare peak knee extension torque, RMS, efficiency neuromuscular, tendon-
aponeurosis complex stiffness, and patellar tendon properties between the different po-
sitions, we used repeated-measures one-way analysis of variance (ANOVA). For θp and
Lf, once we had valued at rest and during MVIC, a repeated measure two-way ANOVA
[position by condition (rest and MVIC)] was used. When a significant difference was
detected, a Tukey post-hoc test was applied to identify the differences. Effect sizes and
statistical power were calculated. The effect size was determined using partial eta squared
(ηρ

2), according to the following classification: small (ηρ
2 = 0.01), medium (ηρ

2 = 0.06), and
large (ηρ

2 = 0.14) effects [45].
For reliability assessment, the intra-class correlation (ICC) of torque (all eight MVIC

performed during muscle ultrasound imaging for each position) was obtained using a
mean of multiple measurements, absolute agreement, 2-way mixed-effects model. The
purpose of this ICC was to guarantee that all of the muscle structure assessments were per-
formed under stable conditions of contraction intensity. Moreover, a single-measurement,
absolute-agreement, 2-way mixed-effects model was used for the interrater ICC of muscle
architecture and the TAC displacement (two repeated analyses, seven to 14 between-days,
of 25 recordings for each quadriceps femoris constituents). To determine the reliability of
measuring tendon elongation, two repeated measurements of 25 random points (i.e., at any
force level) were obtained for each condition from the force-elongation curve and used to
calculate the ICC using a single-measurement, absolute-agreement, 2-way mixed-effects
model. Reliability was classified as: poor (<0.5), moderate (0.5–0.75), good (>0.75–0.9), and
excellent (>0.9). All statistical analyses used a significance level at p ≤ 0.05. All analyses
were performed using STATISTICA 23.0 (STATSOFT Inc., Tulsa, Oklahoma, USA), and the
software GraphPad PRISM 8.4.1 (San Diego, CA, USA) was used for graphic design.

The sample size was determined a priori using G*Power (version 3.1.3; University of
Trier, Trier, Germany) with the level of significance set at p = 0.05 and power (1-β) = 0.80
to detect a large effect size (ηρ

2 = 0.45). Based on Lanza et al. [8], we expected means and
standard deviations from knee extension torques to be approximately 125.93 ± 31.81 Nm,
249.3 ± 30.13 Nm, 267.1 ± 32.26, and 216.3 ± 36.25 Nm for knee flexion angles of 25◦,
50◦, 80◦, and 106◦, respectively. Based on these values, we found a combined standard
deviation of 63.62 Nm with a sample size of 20 participants.

3. Results
3.1. Reliability of Measurements

High test-retest reliability was observed from the ICC values for torque at SUP60
(0.92), SIT60 (0.94), SUP20 (0.92), and SIT20 (0.93). We obtained good reliability for the θp of
RF (0.75), VL (0.78), VM (0.82), and VI (0.77), Lf of RF (0.81), VL (0.80), VM (0.77), VI (0.79),
and tendon-aponeurosis complex displacement for RF (0.98), VL (0.95), VM (0.95), and VI
(0.86) and for maximal elongation of the patellar tendon (0.98).

3.2. MVIC, Raw RMS, and Quadriceps Femoris Neuromuscular Efficiency

A significant main effect of position was found for peak knee extension torque
(F 3, 57 = 87.57, p < 0.001, ηρ

2 = 0.82, power = 1.0). The post-hoc analysis showed that
knee flexed at 60◦ (SUP60 and SIT60) had higher MVIC (p < 0.001 for all analyses) than
SUP20 and SIT20 (Figure 2). There was a non-significant main effect of position for raw
RMS (F 3, 57 = 0.87, p = 0.460, ηρ

2 = 0.04, power = 0.22) (Figure 4). A significant main effect
of position was found for quadriceps femoris neuromuscular efficiency (F 3, 57 = 22.32,
p < 0.001, ηρ

2 = 0.54, power = 1.0). The post-hoc analysis showed that knee flexed at 60◦
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(SUP60 and SIT60) had higher values (p < 0.001 for all analyses) than SUP20 and SIT20
(Figure 4).
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Figure 4. MVIC knee extensor torque, Root Mean Square and neuromuscular efficiency of the
quadriceps femoris constituents according to hip and knee angles during contraction. (A) MVIC
knee extensor torque (N.m) (left y-axis) and different conditions (right x-axis). (B) Root Mean Square
of quadriceps femoris (µV) (left y-axis) and different conditions (right x-axis). (C) Neuromuscular
efficiency of the quadriceps femoris (%) (left y-axis) and different conditions (right x-axis). Data are
presented as geometric means and confidence intervals (CI 95%). Legend: MVIC: Maximal Voluntary
Isometric Contraction; RMS: Root Mean Square; QF: Quadriceps femoris; SUP60: supine with 60◦

of knee flexion; SIT60: seated with 60◦ of knee flexion; SUP20: supine with 20◦ of knee flexion;
SIT20: seated with 20◦ of knee flexion. Significant differences: a different from SUP60 at (p ≤ 0.05).
b different from SIT60 at (p ≤ 0.05).

For RF (Figure 5A,B), there was interaction between position and condition for the θp
(F 3, 57 = 3.65, p = 0.017, ηρ

2 = 0.16, power = 0.77). The post-hoc analysis showed that both
at rest and during contraction, SUP60 had lower θp compared to SIT60, SUP20, and SIT20
(p < 0.001–0.036), with no differences between other comparisons (p = 0.15–0.99). There was
no interaction of factors for Lf (F 3, 57 = 1.87, p = 0.140, ηρ

2 = 0.089, power: 0.46), but the
effect of position was significant (F 3, 57 = 24.89, p < 0.001, ηρ

2 = 0.56, power = 1.00), where
the post-hoc analysis showed greater Lf for SUP60 (p < 0.001; Figure 5B) than all positions,
with no differences between other comparisons (p = 0.46–0.97).

The VL (Figure 5C,D) presented a significant interaction between positioning and
condition for θp (F 3, 57 = 3.48, p = 0.021, ηρ

2 = 0.15, power = 0.75). The post-hoc analysis
showed that, at rest, there was lower θp for SUP60 compared to SUP20 (p = 0.012; Figure 5C)
and SIT20 (p < 0.001), and at SIT60 compared to SIT20 (p = 0.033), with no differences
between other comparisons (p = 0.31–0.97). Furthermore, during MVIC, θp was lower
(p < 0.001) at SUP60 and SIT60 compared to SUP20 and SIT20. No significant differences
were observed between SUP60 and SIT60 (p = 1.0), nor between SUP20 and SIT20 (p = 0.16).
Position factor was significant for the θp (F 3, 57 = 13.66, p < 0.001, ηρ

2 = 0.41, power = 0.99).
The post-hoc analysis indicated lower θp (p < 0.001) for SUP60 and SIT60 compared to
SUP20 and SIT20. No significant differences were observed between SUP60 and SIT60
(p = 0.90), nor between SUP20 and SIT20 (p = 0.37). There was no interaction for Lf (F 3,
57 = 0.56, p = 0.064, ηρ

2 = 0.02, power = 0.15), but there was a significant main effect of
positioning (F 3, 57 = 14.10, p < 0.001, ηρ

2 = 0.42, power = 0.99), with post-hoc analyses
showing higher Lf at SUP60 compared to SUP20 and SIT20 (p < 0.001), respectively. The
same was true at SIT60 when compared to SUP20 and SIT20 (p < 0.001), respectively.
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Figure 5. The pennation angle and fascicle length of the quadriceps femoris constituents according
to hip and knee angles during rest and contraction. Muscle (left y-axis) and different conditions
(right x-axis). Rest (closed circle line), main effect (closed triangle line) and during MVIC (closed
square line). The first column (pennation angle—θp (◦) and second column (fascicle length—Lf
(cm)). Data are presented as means and confidence intervals (CI 95%). (A,B) Rectus femoris;
(C,D) Vastus lateralis; (E,F) Vastus medialis; (G,H) Vastus intermedius. Legend: SUP60: supine
with 60◦ of knee flexion; SIT60: seated with 60◦ of knee flexion; SUP20: supine with 20◦ of knee
flexion; SIT20: seated with 20◦ of knee flexion; θp: pennation angle; Lf: fascicle length. Significant dif-
ferences: a different from SUP60 at (p ≤ 0.05); b different from SIT60 (p ≤ 0.05); * indicate significant
differences in intensity (p ≤ 0.05) between rest and MVIC.
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Only for VM (Figure 5E,F), there was no significant interaction between position and
condition for θp (F 3, 57 = 0.31, p = 0.812, ηρ

2 = 0.01, power: 0.10) and for Lf (F 3, 57 = 0.85,
p = 0.46, ηρ

2 = 0.043, power: 0.22). However, position factor was significant for both θp
(F 3, 57 = 37.40, p < 0.001, ηρ2 = 0.66, power: 1.00) and Lf (F 3, 57 = 13.06, p < 0.001,
ηρ

2 = 0.40, power: 0.99), with post-hoc analysis indicated lower θp (p < 0.001) and greater
Lf (p = 0.002–0.037) for SUP60 and SIT60 compared to SUP20 and SIT20.

Regarding VI (Figure 5G,H), there was a significant interaction effect between position
and condition for both θp (F 3, 57 = 2.82, p = 0.046, ηρ

2 = 0.12, power = 0.64) and Lf
(F 3, 57 = 6.24, p < 0.001, ηρ

2 = 0.24, power = 0.95). The post-hoc analysis showed that, at
rest, there was a lower θp for SUP60 compared to SUP20 (p = 0.003) and SIT20 (p = 0.02).
During MVIC a lower θp was found for SUP 60 and SIT60 when compared to SIT20
(p = 0.008; p = 0.027, respectively). Other pairwise comparisons at rest and during MVIC
were not significant (p = 0.26–0.99). A greater Lf was found at rest only for SUP60 and SIT60
(p < 0.0001 for all analyses) when compared to SUP20 and SIT20. For Lf, other pairwise
comparisons during rest were not significant (p = 0.56–0.99). However, during MVIC, Lf
was greater only at SUP60 compared to SIT20 (p = 0.005). The main effect of position was
also significant for both θp (F 3,57 = 4.40, p = 0.007, ηρ

2 = 0.18, power = 0.85) and Lf (F 3,
57 = 16.16, p < 0.001, ηρ

2 = 0.45, power = 0.99). The θp was lower at SUP60 compared to
SIT20 (p < 0.005) and, Lf was greater for SUP60 and SIT60 compared to SUP20 and SIT20
(p < 0.001 for all analyses).

3.3. TAC Stiffness

The TAC stiffness of quadriceps femoris is presented in Table 1. A significant main
effect of position was found for TAC (F 3,57 = 7.84, p = 0.001, ηρ

2 = 0.29, power = 0.98) and
the post-hoc analysis showed that TAC stiffness was greater in SUP60 (p = 0.001), SIT60
(p = 0.0004) and SUP20 (p = 0.01) compared to SIT20.

Table 1. Patellar tendon properties and tendon aponeurosis complex stiffness of quadriceps femoris at
different hip and knee angles measured during maximal voluntary isometric contraction. Geometric
mean (95% CI).

SUP60 SIT60 SUP20 SIT20

Morphological properties
Resting length (mm) 48.95 (46.79–51.53) 50.45 (47.92–53.64) 50,62 (48.40–53.29) 50,55 (47.94–53.86)
CSA (mm2) 103.33 (97.63–110.45) 107.18 (102.23–113.16) 104.03 (98.20–111.14) 107.12 (103.98–110.68)
Mechanical properties
Force (N) 3768.9 (3391.6–4353.1) 4341.37 (3913.85–5070.55) 2379.82 (2134.06–2807.60) a,b 2497.16 (2193.69–3025.21) a,b

Elongation (mm) 6.19 (5.44–7.64) 6.25 (5.49–7.98) 5.72 (5.07–7.20) 7.51 (6.53–9.54) c

Stiffness (N/mm) 771.75 (636.78–1112.95) 1008.33 (822.89–1674.57) 600.05 (511.31–816.29) b 579.92 (492.24–790.34) b

TAC Stiffness QF (N/mm) 174.17 (169.18–189.15) 176.22 (171.19–195.83) 158.77 (154.35–179.66) 114.00 (111.28–130.51) a,b,c

Material properties
Stress (MPa) 36.48 (32.61–42.42) 40.51 (36.32–47.92) 22.88 (20.65–26.62) a,b 23.43 (20.61–28.53) a,b

Strain (%) 12.68 (11.15–15.69) 12.40 (10.83–15.97) 11.29 (9.97–14.14) 14.85 (13.02–18.34)
Young’s Modulus (Mpa) 393.65 (320.31–589.37) 512.28 (434.07–845.60) 313.63 (271.71–426.35) b 303.84 (256.47–416.28) b

Legend: CI: confidence interval; SUP60: supine with 60◦ of knee flexion; SIT60: seated with 60◦ of knee flexion;
SUP20: supine with 20◦ knee flexion; SIT20: seated with 20◦ of knee flexion; CSA: Cross-sectional area, Stiffness
slope of the force-elongation curve from 50 to 100% of maximal voluntary contraction force; TAC: Tendon
aponeurosis complex; QF: Quadriceps femoris; Young’s modulus slope of the stress-strain curve obtained from 50
to 100% of maximal voluntary stress. a Significantly different from SUP60 at p < 0.05. b Significantly different from
SIT60 at p < 0.05. c Significantly different from SUP20 at p < 0.05.

3.4. Tendon Properties

The patellar tendon (morphological, mechanical, and material) properties for each
position are presented in Table 1. The tendon force-elongation (A) and stress-strain rela-
tionships (B) are shown in Figure 6.
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Figure 6. The patellar tendon force-elongation (A) and stress-strain (B) relationships according to
hip and knee angles during MVIC. SUP60 (closed square blue line); SIT60 (closed square green line);
SUP20 (closed circle red line) and SIT20 (closed circle purple line). Data are presented as mean (SD).
Legend: SUP60: supine with 60◦ of knee flexion; SIT60: seated with 60◦ of knee flexion; SUP20:
supine with 20◦ of knee flexion; SIT20: seated with 20◦ of knee flexion.

3.4.1. Morphological Properties

No changes were found in the patellar tendon resting length (p = 0.186) and CSA
(p = 0.563) for all conditions.

3.4.2. Mechanical Properties

The mechanical properties of the patellar tendon are shown in Table 1 and Figure 4A.
A significant main effect was found for patellar tendon force (F 3,51 = 33.90; p < 0.01;
ηρ

2 = 0.66; power = 1.00). In the post-hoc analysis both SUP60 and SIT60 showed a greater
force (p < 0.001) than SUP20 and SIT20, with no differences between positions with the
same knee angle: SUP60 vs. SIT60: p = 0.057; SUP20 vs. SIT20: p = 0.93. Maximal tendon
elongation presented main effect (F 3,51 = 3.29; p = 0.027; ηρ

2 = 0.16; power = 0.71) and
the post-hoc analyses showed SIT20 significantly higher than SUP20 (p = 0.022), but there
were no significant differences in comparison to SUP60 and SIT60 (p = 0.10, p = 0.19),
respectively. Significantly greater stiffness at SIT60 was found compared to SUP20 and
SIT20 (F 3,51 = 6.88; p < 0.01; ηρ

2 = 0.28; power = 0.96) with post-hoc analysis p < 0.001.

3.4.3. Material Properties

The material properties of the patellar tendon are shown in Table 1 and Figure 6B. The
stress at SUP60 and SIT60 was significantly higher than at SUP20 and SIT20 (F 3,51 = 30.10;
p < 0.01; ηρ

2 = 0.63; power: 1.00). However, no differences were found in tendon stress at
the same knee angle (SUP60 vs. SIT60 and SUP20 vs. SIT20). The tendon strain was not
changed (p = 0.057). We found a significant main effect for Young’s modulus (F 3,51 = 7.01;
p < 0.01; ηρ

2 = 0.29; power: 0.97). In the post-hoc analysis, SIT60 was higher than SUP20
(p = 0.001) and SIT20 (p = 0.001).

4. Discussion

To the best of our knowledge, this is the first study to assess different hip and knee joint
angles on torque generation, RMS activity, neuromuscular efficiency, muscle architecture,
and tendon-aponeurosis complex stiffness of the quadriceps muscle constituents and
patellar tendon properties in healthy adults. In general, we found: (1) higher torque and
neuromuscular efficiency at 60◦ of knee flexion compared to 20◦, regardless of hip position;
(2) no differences for RMS between positions; (3) RF showed a lower pennation angle and
greater fascicle length at SUP60 compared to all other positions, while VL, VM, and VI
showed lower pennation angle, and greater fascicle length at 60◦ of knee flexion when
compared to 20◦; (4) the TAC stiffness was greater at the more elongated position; and
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(5) tendon force, stiffness, stress and ‘Young’s modulus were greater with the knee flexed
at 60◦, compared to 20◦.

4.1. MVIC, RMS, and Quadriceps Neuromuscular Efficiency

We found greater MVIC at 60◦ of knee flexion compared to 20◦. According to Lanza
et al. 2017, the differences in torque production are due to the force-length relationship of
the muscle, in which changes in the joint’s angle and the muscle’s length affect the extent
of force generation [8]. Thus, the knee extensor torque reduction on positions closer to the
full extension could be partly attributed to mechanical factors, such as the reduced number
of cross-bridges attached subsequently to sarcomere beyond the optimal actin-myosin
overlap [6,14].

Our results demonstrated no differences in MVIC torque between supine and seated
positions and corroborated Bampouras et al. (2017) [46]. In contrast, Maffiuletti and Lerpes,
(2003) [11], and Ema et al. (2017) [12], found higher torque values in the seated position,
which may be due to the difference in the operated region of the force-length relationship of
RF between the two hip positions [12]. However, the choice of knee angle for Maffiuletti and
Lerpes, (2003) [11], and Ema et al. (2017) were 90◦ and 70◦, respectively. It is possible that
we did not find any differences in our study since 60◦ of knee flexion may not have been
enough to lengthen the RF and generate a considerable effect on torque output, showing a
disadvantage from one position to the other [12].

We demonstrated no differences in RMS activity between positions. Babault et al.
(2003) found higher activation values at short (i.e., 35◦ knee flexion) compared with long (i.e.,
75◦ knee flexion) quadriceps muscle length [16]. With a shortened position, lesser muscle
activation was expected [47,48]; higher activation was observed that would compensate for
the weaker torque observed at higher degrees of knee flexion [16]. Maffiuletti and Lerpes,
(2003) demonstrated greater activation in the seated position in comparison with the supine
position for VM, VL, and RF muscles [11]. However, it is noteworthy that Maffiuletti and
Lerpes, (2003), found the greatest neural activation of the knee extensors with the knee
positioned at 90◦, which may reflect a neurophysiological mechanism as compensation for
the neuromuscular transmission-propagation deficiency and/or mechanical disadvantage
of RF in a shortened position [11]. These results still fluctuate widely between these
two positions because the lack of significant effect of the hip joint angle on agonist and
antagonist muscle activations found by Ema et al. (2017) [12] suggests that neural factors
may not have a substantial effect on the difference in knee extension torque and need to be
further investigated.

Neuromuscular efficiency could be shown in several in vivo human studies, indicat-
ing optimized muscle function [49]. Aragão et al. (2015) consider those individuals as
sufficiently capable of producing greater strength with a lower magnitude of muscle activa-
tion [50]. We found greater efficiency for the quadriceps femoris muscle in positions with
the knee flexed at 60◦. Although the RMS did not present differences between the positions,
60◦ positions indicate an economic and efficient mechanism since it was not necessary
to increase muscle activation to generate greater torque, demonstrating the mechanical
advantage of this joint angle.

4.2. Muscle Architecture

The observable adaptations in the muscular architecture during a contraction are the
increase of the muscle thickness and the pennation angle and the decrease of the fascicle
length, which are determinants in the generation of strength, range of motion and velocity
of muscular shortening [17,51–53]. We found an increase in pennation angle of quadri-
ceps femoris constituents from rest to contraction, consistent with previous studies [33].
Therefore, fascicle length and pennation angle change depending on the shortening or
lengthening of the sarcomeres and the response to variations in tendon slack and total
muscle length. As a result, these changes have important functional relevance concerning
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the production of force that is modified by the sarcomere and changes in whole muscle
length [54].

We demonstrated an apparent effect of the hip angle on RF architecture, as expected for
the quadriceps femoris’ biarticular constituent. The pennation angle was lower, and fascicle
length was higher at SUP60 than in all other positions. The VL, VM, and VI operated
with lower pennation angle when the knee was flexed at 60◦ compared to 20◦. Placing
the quadriceps femoris in a better physiological architectural configuration for generating
torque favors a better transmission of muscle strength to the tendon and the ideal length of
the sarcomere/fiber [55,56]. Furthermore, our findings demonstrate that fascicle length was
shorter during VI contractions at SIT20, and the larger shortening would have been caused
by taking up the elongated series elastic component [17]. Therefore, positions at 60◦ set
the quadriceps femoris in a better architectural configuration, leading to a neuromuscular
economy. This can be included in the proposals for strength rehabilitation programs, since
an improvement was observed in the neuromuscular transmission of muscle strength to
the tendon.

4.3. TAC Stiffness

The TAC stiffness index of quadriceps femoris on SUP60 was higher than on all other
positions, similar to other studies [42], indicating an increased passive tension that limited
tendinous elongation during contraction [24]. Shortened positions limit the mechanical
stress and consequently lead the muscle to bear less force and generate less stress on the
tendon. The increased tension of the TAC in stretched conditions is known to allow stronger
contractions with less effort due to better force transmission [26,27].

4.4. Patellar Tendon Properties
4.4.1. Morphological Properties

Patellar tendon resting length and CSA did not differ between conditions. Similar
results were previously observed considering the changes in knee angle [57,58]. We showed
that the hip angle, from 85◦ of flexion to 0◦, also did not provide any lengthening of the
patellar tendon. This probably occurred because tendons designed to withstand high forces
should not suffer significant length change between relatively close knee angles (60◦ and
20◦), even with the additional stretch promoted by the hip extension [42]. The lack of
changes in patellar tendon length may reflect biomechanical implications since it is not
likely to attribute differences in stiffness to appreciable changes in the resting length, but
possibly to collagen molecule coiling/uncoiling [59], associated with crimp pattern, which
may imply transmission of force and load in tendons [60].

4.4.2. Mechanical and Material Properties

Stiffness presented higher values at SIT60 in comparison with SUP20 and SIT20
positions. It is probably due to higher levels of force being applied to the tendon and,
consequently, the higher level of tendon stiffness presented. It is possible to notice that a
longer position generates greater tendon stiffness, in agreement with Kubo et al. (2006) [22]
during an isometric training protocol. According to these results, it seems preferable to
load the patellar tendon at voluntary contractions using the knee at 60◦. Simultaneously,
the hip angle variation may affect how tensile loads are transmitted through the tendon.
The increase of stiffness in positions at 60◦ can provide an advantage in rehabilitation since
it promotes more significant tension generation in the muscle-tendon unit. As tendon
stiffness increases with high-intensity training [56,61], the high load achieved by muscle
contractions in this angle can lead to higher tendon adaptations than training programs
with lower loads. A remarkable finding was that patellar tendon stress supports the force
results (i.e., significant stress with the knee at 60◦ without the hip’s influence). Therefore, we
cannot attribute these results to differences in the CSA average, but rather to the different
higher strength levels in positions at 60◦ of knee flexion. Stress and Young’s modulus were
greater with the knee flexed at 60◦ compared to 20◦.
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A potential limitation of this study was the lack of estimated contributions of each
muscle for the total quadriceps muscle force. Therefore, tendon-aponeurosis complex
stiffness of each quadriceps muscle constituent was calculated considering the total force.
These calculations may lead to errors due to changes in contribution according to both
force and muscle length levels. However, if we do not perform comparisons between the
constituents, our values may be useful as a snapshot. Another limitation was restricted to
the healthy young male population used in this study. More broadly, research is also needed
to determine these properties in clinical populations and other muscles and tendons. Finally,
although the participants were carefully examined (verbal interview, visual inspection,
palpation, passive and active movement) before inclusion in the study to check for any
visible musculoskeletal abnormality, we did not perform objective measures that could
better inform the volunteers’ physical characteristics, such as the Q angle, somatotype, and
arches of the foot. This information may be important for future research to better qualify
the healthy populations and improve understanding of their specificities.

5. Conclusions

Torque generation, neuromuscular efficiency, a greater fascicle length and lower
pennation angle, the patellar tendon force, stiffness, stress and ‘Young’s Modulus were
higher with the knee flexed at 60◦ compared to 20◦. Elongation was higher at SIT20
compared to the SUP20 position. All quadriceps femoris constituents presented higher
tendon-aponeurosis complex stiffness in more elongated positions, indicating a higher
capacity to support tension and expose the tendon to greater stress. In this way, our results
suggest the superiority of the knee angle at 60◦ for isometric contractions compared to 20◦

comes with significant physiological and structural characteristics, which may be important
factors guiding the adaptation to regular training/rehabilitation on the muscle-tendon unit.
Furthermore, the hip angle was involved in changes in the quadriceps muscle (not only
the rectus femoris) which may be explored in further studies. These findings are essential
for understanding the quadriceps femoris muscle-tendon unit’s behavior in detrimental
hip-knee angle positions and should be brought to the attention of rehabilitation programs
since they could be related to force transmission. It is possible to suggest that clinicians
preferably use SUP60 or SIT60 conditions for strengthening and remodeling purposes since
these positions seemed to provide a mechanical advantage for generating greater strength.
Gaining a better understanding of the possible physiological mechanisms that underlie
muscle and tendon efficiency can provide a framework to develop strengthened protocols to
produce more effective contractions and improve the outcomes of rehabilitation programs.
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Abbreviations

MVIC Maximal voluntary isometric contraction
RF Rectus femoris
VM Vastus medialis
VL Vastus lateralis
VI Vastus intermedius
Lf fascicle length
Θp pennation angle
TAC Tendon aponeurosis complex
EMG surface electromyography
CONSORT Consolidated Standards of Reporting Trials
SUP60 supine with 60◦ of knee flexion
SIT60 seated with 60◦ of knee flexion
SUP20 supine with 20◦ of knee flexion
SIT20 seated with 20◦ of knee flexion
RMS Root mean square
CI Confidence interval 95%
ANOVA Analysis of variance
ηρ2 eta squared
ICC Intra-class correlation
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