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Droplet deformation and breakup are important phenomena in the
atomization process due to their impact in the final distribution of droplet
size. For many applications such as spray painting, coating or fuel
injection, it is desirable to be able to obtain appropriate fragmentation
sizes. Turbulence is one of the main mechanisms through which secondary
breakup occurs. Several authors relate the turbulent droplet breakup to a
resonant mechanism reached by their free oscillations.

A theoretical framework for the droplet oscillations for each individual
mode using a spherical harmonic decomposition is considered [1], with
the help of the library PySthools [2]. This is appraised from direct
numerical simulation (DNS) data using the in-house code archer and
the spherical_harmonics library of the post-processing tool pyarcher.
The present report aims to document the developed numerical tool and its
appropriateness on a number of test cases.

a) Temporal evolution of the amplitude coefficients a2,n for degrees n=−2 to n=+2,
where R0 is the initial radius of the droplet, t is time and f2 corresponds to the theoretical
angular frequency associated to mode 2. b) Snapshot of the droplet at tf2 = 1.
c) Snapshot of the droplet at tf2 = 5.1.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.&domain=pdf&date_stamp=
https://hal.archives-ouvertes.fr/hal-04004128
mailto:ignacio.roa-antunez@coria.fr
mailto:jorge.brandle@coria.fr
mailto:alexandre.poux@coria.fr


2

I.R
oa

A
ntúnez,J.C

.B
rändle

de
M

otta,A
.Poux.

S
phericalharm

onic
decom

position.
.........................................................................................

Contents
1 Context and objectives 3

1.1. Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Objectives of the present work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The archer solver and the pyarcher.spherical_harmonics library 4
2.1. The archer solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Reading and pre-processing archer files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. The spherical_harmonics pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Computation of spherical harmonic expansion for a sphere 6
3.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2. Description of the validation test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Decomposition of spherical harmonic modes 7
4.1. Description of the validation test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Spherical harmonic decomposition for a droplet in a turbulent flow 8
5.1. Description of the case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Order of convergence and sources of error 9

7 Conclusion 11

List of Figures

1 Drop deformation: sketch and definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Radius mapping and reconstruction of a spherical droplet with a mesh size of 643, using the cubic

interpolation method with a DH grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Spherical harmonics spectrum and power spectrum of a sphere for degrees m= 0 to m= 6. . . . . . 7
4 Radius mapping and reconstruction of a sphere of radius 1 plus a Y 0

3 with a mesh size of 643, using
the cubic interpolation method with a DH grid and its center of mass as origin. . . . . . . . . . . . . . . 8

5 Decomposition in spherical harmonics of validation cases (left) with modes Y 0
2 , Y

0
3 , Y

0
4 for a grid of

643. On the right, the error of said decomposition by degree m. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6 Evolution of the spherical harmonic coefficients of a droplet immersed in a turbulent flow. . . . . . . 9
7 Comparison of the power spectrum of a deformed droplet for three different reference frames . . . 9
8 Interface reconstruction comparison between the linear and cubic interpolation method. On the

right, we show the error on the calculation of the radius using the same method. . . . . . . . . . . . . . 10
9 Computation of the center with different methods for a droplet with a deformation Y 0

3 of amplitude
η= 0.2. On the right, a plot demonstrating the difference in the decomposition using the available
methods for computing the center. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

10 Limitation due to non-convex-set domain. Here, the red dotted line represents the time were the
droplet breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11



3

I.R
oa

A
ntúnez,J.C

.B
rändle

de
M

otta,A
.Poux.

S
phericalharm

onic
decom

position.
.........................................................................................

1. Context and objectives

1.1. Spherical harmonics
Any shape that is star shaped (radially convex set) can be described in a spherical coordinate basis. The function f(θ, ϕ)
that describes the shape, evaluated over the surface of a sphere can be expressed as an expansion of spherical harmonics
functions known as Laplace series [3]:

f(θ, ϕ) =

∞∑
m=0

m∑
l=−m

am,lY
l
m(θ, ϕ), (1.1)

where am,l corresponds to the spherical harmonic coefficient, Y lm is the spherical harmonic function, θ is the polar
angle (co-latitude) and ϕ is the azimuthal angle (longitude). Finally m and l correspond to the spherical harmonic
degree and order respectively, with m≥ 0 and −m≤ l≤m. The spherical harmonic degree describes the number of
lobes across the interface of the droplet, whilst the order defines its orientation. The spherical harmonic functions can
be defined as

Y lm(θ, ϕ) =

√
(2m+ 1)

(m− l)!

(m+ l)!
P lm(cosθ)eilϕ, (1.2)

with P lm(cosθ) corresponding to an axisymmetric description, also known as Legendre polynomials

P lm(x) =
(−1)l

2mm!
(1− x2)l/2

dm+l

dxm+l
(x2 − 1)m. (1.3)

The spherical harmonic functions are orthonormal for all degrees m and orders l:

<Y lm, Y
l∗
m >=

∫
Y lm(θ, ϕ)Y l∗m (θ, ϕ) dΩ = δmm∗δl l∗ (1.4)

where dΩ corresponds to the differential of the surface area of the unit sphere sinθ dθ dϕ. Then, by multiplying
equation 1.1 by Y l∗m and integrating over the surface, we can show that the spherical harmonic coefficients of a function
can be calculated as

am,l =

∫
Ω
f(θ, ϕ)Y lm(θ, ϕ) dΩ. (1.5)

Parseval’s theorem relates the integral of a function with the sum of the squares if the function’s Fourier coefficients.
Using the orthogonality properties of the spherical harmonics functions, this relation can be then extended to the
spherical geometry. Since we aim to relate the spherical harmonic expansion with the surface deformation, we can
express the total deformation as the integral over the surface of the body:

η2Ω =

∫
Ω
η2dΩ (1.6)

Which, due to the orthogonality of spherical harmonics (equation 1.4) can be expressed as

η2Ω =

∞∑
m=0

m∑
l=−m

a2m,l (1.7)

From the link of the spherical harmonic expansion with the total deformation of the surface, we can extrapolate to
obtain another parameter defined as the power spectrum. The power spectrum a2m is related to the spherical harmonic
coefficients by

a2m =

m∑
l=−m

a2m,l (1.8)

The expansion will be directly dependent on the reference frame of the system. This means that the results from the
expansion will be directly affected by the center of the coordinate system and the reference frame in which we define
the angles θ and ϕ. This in turn will result in the spherical harmonic coefficients varying depending on the before
mentioned parameters.

1.2. Objectives of the present work
The objectives of the present technical report are the following:

• Firstly, in §2, a presentation of the archer solver and the pyarcher.spherical_harmonics library is
provided.
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Figure 1: Drop deformation: sketch and definitions.

• A test case providing an example of the use of the implemented library towards the analysis of drops and
bubbles deformation is presented in 5.

• Lastly, the order of convergence and the sources of error of the spherical harmonic decomposition with respect
to the mesh size are presented in §6.

2. The archer solver and the pyarcher.spherical_harmonics
library

Before proceeding with the validation of the numerical tools used to compute the spherical harmonic decomposition,
we start by providing a short description of the archer code, the pyarcher.spherical_harmonics library and its
main functionalities.

2.1. The archer solver
The High-Performance-Computing code archer developed at the CORIA laboratory is used to obtain the data here
used to apply in the spherical harmonic analysis.Archer was one of the first codes undertaking the simulation of
liquid-jet atomization under a realistic diesel injection configuration [4]. It solves on a staggered cartesian mesh the
one-fluid formulation of the incompressible Navier-Stokes equation

∂t ρu+∇ · (ρu⊗ u) =−∇p+∇ · (2µD) + f + γκδsn (2.1)

where ρ is the density, p the pressure field, µ the dynamic viscosity, D the strain rate tensor, f a source term, γ
the surface tension, n the unit normal vector to the liquid-gas interface, κ its mean curvature and δs is the Dirac
function characterizing the locations of the liquid gas interface. For solving Eq. (2.1), the convective term is written
in conservative form and solved using the improved Rudman’s technique [5] presented in Ref. [6]. The latter allows
mass and momentum to be transported in a consistent manner thereby enabling flows with large liquid/gas density
ratios to be simulated accurately. The viscosity term is computed following the method presented by Ref. [7]. To ensure
incompressibility of the velocity field, a Poisson equation is solved. The latter accounts for the surface tension force and
is solved using a Multi Grid preconditioned Conjugate Gradient algorithm (MGCG) [8] coupled with a Continuum
Surface Force method [9].

For transporting the interface, a coupled level-set and volume-of-fluid (CLSVOF) solver is used, in which the level-
set function accurately describes the geometric features of the interface (its normal and curvature) and the volume-of-
fluid function ensures mass conservation. The density is calculated from the volume-of-fluidψ as ρ= ρLψ + ρG(1− ψ),
where ρL, ρG is the density of the liquid and gas phase. The dynamic viscosity (µL or µG) depends on the sign of the
level-set function. In cells containing both a liquid and gas phase, a specific treatment is performed to evaluate the
dynamic viscosity, following the procedure of Ref. [7]. For more information about the archer solver, the reader can
refer to the ARCHER HAL website.

2.2. Reading and pre-processing archer files
Results from archer simulations are written in hdf5 format with one time series per processor and multiple time-step
per file. For visualization purposes using e.g. paraview, archer further writes xmf files which contain information
about the geometry (e.g. origin, grid spacing) and topology (connectivity between MPI blocks) of the simulation’s
domain.
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pyarcher reads such data using the dask library and store them in a xarray.Dataset. All the time-steps and all
the processors are merged into a 4D array, with coordinates "x", "y", "z", "t". These coordinates can be either
specified by the user or read in the xmf files. The minimal blocks (one processor and one time-step) are called chunks
and are the unit of work for dask.

archer is a staggered CFD code following the MAC discretization. For some post-computations, the velocity field
and scalar field (e.g. the volume-of-fluid, the level-set) should be known at the same point. This is not initially the case
due to the staggered nature of the archermesh. In this situation, one needs to interpolate the velocity field at the center
of the cells. In pyarcher, this is done with the interp function of xarray which proceeds by linear interpolation.
This function has been extended to work with chunked data. It is embedded in the method .to_cell_center().

The data written by archer contain ghost cells for boundary conditions and processors interface. The latter
are removed during the previously mentioned merging operation, but not the former which can be removed with
the method .without_ghost(). Boundary conditions (periodic, symmetric) can be prescribed with the method
.add_boundary_conditions().

2.3. The spherical_harmonics pipeline
The computation of the spherical harmonic coefficients can be done in one line of code through the use of the
spherical_harmonics method of the pyarcher.spherical_harmonics library:

decomp = spherical_harmonics.sh_decomp ( levelset, vof, center, lmax , ref_radius,
reference_frame, recenter, interp_method, normalization, grid_format)

Since the decomposition is done in spherical coordinates, the library can only be used for three-dimensional shapes.
The function sh_decomp takes ten input arguments:

• levelset of type CenteredScalarField is the scalar field containing the levelset, used to compute the
spherical harmonic decomposition.

• vof of type CenteredScalarField, is the scalar field containing the volume-of-fluid field. This optional
argument is only used to compute the center of mass.

• center of type Union[Dict[string, float], string] can either be a dictionary with the position of
the center of the reference frame or a string indicating the desired method to compute the center of the body
studied. The methods available are “cartesian_mean”, “mass_center” and “surface_center”.

• lmax of type integer is the number of desired spherical harmonic degrees to obtain from the decomposition.
It defaults to lmax= 6.

• ref_radius of type float is the radius of reference of the body. It defaults to ref_radius= 1.
• reference_frame of type ndarray corresponds to the reference frame in matrix form. This input determines

the orientation of the spherical coordinate system angles r(θ, φ). It defaults to reference_frame=

([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).
• recenter of type bool. If recenter=True, the levelset will be centered in the domain using as a reference the

center computed or given in the center argument before computing the decomposition.
• interp_method of type string corresponds to the interpolation method to use for estimating the radius of

the body. Methods “linear” and “cubic” are supported and taken from the scipy library, defaulting to
interp_method = “linear”.

• normalization of type string corresponds to the normalization method of the spherical harmonic
expansion. Supports “4pi”, “schmidt”, “unnorm” and “ortho”. By default normalization = “4pi”.

• grid_format of type string of type str that indicates the format of the sample grid. Supports “DH” and
“GLQ”.

The function sh_decomp creates a pipeline constituted of 3 consecutive steps described below:

(i) if the center of the body has not been defined previously and instead a method of computation has been stated
as an input, the function get_center will be used. This takes as input arguments center, levelset, vof to
compute the center of the body using the method available desired. It returns a dictionary with the coordinates
of the center in the domain. This center will correspond to the origin of the reference frame. If a dictionary has
been defined as input for center then this step will be skipped.

(ii) center_fields, takes as input argument levelset and the output center of the get_center function
described above and positions the center of the body at the center of the domain. In case centering the spheroid
does not maintain it inside the domain, it will force the shape to be between its bounds.

(iii) find_radius_arbitrary_coordinate_system, takes as input argument the output levelset and
center of the center_fields function described above, as well as theta≡ θ, phi≡ϕ, reference_frame
and interp_method. This function returns a value of type float corresponding to the radius r(θ, ϕ) of the
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spheroid from the computed center to the interface in the angles θ and ϕ. This pipeline corresponds to a loop
which computes the values of the radius following the spherical coordinates reference frame over an array of
angles r(θ, φ), which size is given by the lmax input from the function sh_decomp.

sh_decomposition returns a merged xarray.Dataset containing the spherical harmonic coefficients arranged
by degree and order.

3. Computation of spherical harmonic expansion for a sphere

3.1. Definition
As seen in section 1, the spherical harmonic decomposition corresponds to an expansion of the function that describes
the surface over a sphere. With the intent of testing and validating the mentioned framework, a test is performed in
a spherical droplet generated using ARCHER. This means that for this first validation test, corresponding to a perfect
sphere, the result of the expansion should resemble the surface of a unit sphere. This means:∫

Ω
f(θ, ϕ)Y lm(θ, ϕ) dΩ = 1 (3.1)

3.2. Description of the validation test case
With the aim of showing the accuracy obtained by the spherical harmonic decomposition, we use the following
benchmark:

• A level-set function field representing a sphere of radius Rs = 1 is set. The numerical domain contains Nx ×
Ny ×Nz = 643 points and the grid spacing is ∆x=∆y=∆z = 3×Rs/Nx. The sphere is placed at the center
of the numerical domain.

• The spherical_harmonics library of pyarcher is then used to compute the center and radius of the sphere,
and the spherical harmonic expansion of the 3D body.

• We show the errors obtained due to the computation of the radius using the three different available methods,
as well as plotting the grid of obtained radius from the find_radius_arbitrary_coordinate_system
function.

3.3. Results
As previously mentioned, to compute the spherical harmonic expansion of a three-dimensional body, we first fill out
a grid with the radius of the spheroid at given angles θ, ϕ. With this information, it will be possible to reconstruct the
shape of the body and do the corresponding expansion. In figure 2 it is possible to observe the mapping of the radius
of the spherical shape. It is noticeable that there are numerical errors up to an order of 1E − 8, which shows on the
mapping of the radius grid. This has consequences when estimating the spherical harmonic coefficients am,l.

Figure 2: Radius mapping and reconstruction of a spherical droplet with a mesh size of 643, using the cubic
interpolation method with a DH grid.

Results of spherical harmonic decomposition for a sphere up until degree m= 6 are presented in fig 3. As expected,
since we are doing the expansion for a sphere, we simply obtain the value of the spherical harmonic coefficient
corresponding to a degree and order of m= 0, l= 0 respectively. It is also possible to graph the power per degree
of spherical harmonic, as a way to note the errors in the decomposition. We may considerate the values accompanying
the modes m≥ 1 to be numerical error.



7

I.R
oa

A
ntúnez,J.C

.B
rändle

de
M

otta,A
.Poux.

S
phericalharm

onic
decom

position.
.........................................................................................

Figure 3: Spherical harmonics spectrum and power spectrum of a sphere for degrees m= 0 to m= 6.

4. Decomposition of spherical harmonic modes
This second validation example corresponds to the decomposition of a droplet in which we insert a perturbation of
small amplitude, corresponding to a spherical harmonic function Y lm, with the goal of portraying the accuracy of the
decomposition for symmetric and asymmetric cases, using for this the most prominent eigen-modes.

When taking the analysis to a real-case scenario, where a droplet or bubble oscillates due to the effect of its
environment, the most significant ones correspond to orders 2≤m≤ 4 being the influences of m> 4 negligible, while
m= 1 is associated with transport, making it desirable to neglect the coefficients a1,l to be able to correlate the surface
change with purely its deformation.

4.1. Description of the validation test case
With the aim of showing the accuracy of the spherical harmonic decomposition pipeline, we use the following
benchmark:

• A level-set function field representing a sphere of radius Rs = 1 plus the insertion of a spherical harmonic
function Y lm of amplitude η= 0.2 for m= 2, 3, 4 is set. The numerical domain contains Nx ×Ny ×Nz = 643

points and the grid spacing is ∆x=∆y=∆z = 4.5×Rs/Nx. The body is placed at the center of the numerical
domain.

• The spherical_harmonics library of pyarcher is then used to compute the center and radius of the body,
and its spherical harmonic decomposition.

• We show the errors associated with an inaccurate computation of the body’s center and the accuracy of the
method.

4.2. Results
As portrayed with the spherical case, we display the radius mapping for the studied modes. For this particular
validation case the reference center is computed using the “mass_center” method, as it is the most accurate for
asymmetric geometries (this will be discussed in section 6). We expect the function to properly decompose the droplet
into the inserted perturbation as to be able to expand this formulation into an oscillating drop. From the computation
we can preliminary observe that the shape of a droplet perturbed with an eigen-mode 3 is very well portrayed in
the reconstruction of the grid (figure 4). Once the mapping has been done, the spherical_harmonics function will
proceed to compute the decomposition.

In figure 5 the results of the expansion in spherical harmonics as well as the error in accuracy are shown. It
is observable that, the more complex the geometry is, the more inaccurate the results will be. As seen for the
decomposition for the drop initialized with a deformation of amplitude η= 0.2Y 0

3 , the error can reach values of an
order of magnitude close to 102.
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Figure 4: Radius mapping and reconstruction of a sphere of radius 1 plus a Y 0
3 with a mesh size of 643, using the

cubic interpolation method with a DH grid and its center of mass as origin.

Figure 5: Decomposition in spherical harmonics of validation cases (left) with modes Y 0
2 , Y

0
3 , Y

0
4 for a grid of 643.

On the right, the error of said decomposition by degree m.

5. Spherical harmonic decomposition for a droplet in a turbulent flow

5.1. Description of the case
With the aim of showing the results obtained by the spherical harmonic decomposition in a droplet immersed in a
turbulent flow, we use the following parameters:

• A level-set function field representing a sphere of radius Rs = 3.5E − 5 is set. The numerical domain contains
Nx ×Ny ×Nz = 643 points and the grid spacing is ∆x=∆y=∆z =Lx/Nx. The body is placed at the center
of the numerical domain.

• The spherical_harmonics library of pyarcher is then used to compute the center and radius of the body,
and its spherical harmonic decomposition.

• We show the errors associated with an inaccurate computation of the body’s center and the accuracy of the
method.

5.2. Results
For this particular example case the interest is focused on the droplet oscillations product of the ambient turbulent flow,
thus the temporal evolution of the spherical harmonic decomposition is studied for a sphere initially unperturbed. For
this, a cubic interpolation method is used, along with the “mass_center” method to compute the center at each time
step. The temporal evolution of the computation of the power spectrum and the spherical harmonic coefficients a2,l
are shown in figure 6. The pyarcher.spherical_harmonics library does a good job of computing the spherical
harmonic decomposition for each time step of the droplet oscillations up until shortly before the breakup, where the
deformation its too high and the convex-set domain constraint is not satisfied anymore.
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Figure 6: Evolution of the spherical harmonic coefficients of a droplet immersed in a turbulent flow.

6. Order of convergence and sources of error
Firstly, due to the orthogonality properties of the spherical harmonics, the power spectrum of the Laplace expansion
should remain constant for any given rotation of the reference frame. As a mean of making sure this mathematical
property is maintained by the current framework in figure 7 we present the power spectrum of a time-step of the
droplet immersed in the turbulent background flow, showing that the power spectrum is conserved for three different
reference frames, in which we rotate the spherical coordinate changing the reference polar and azimuthal angles such
that for each reference i

θrefi = π ∗ i/4 + π/2

φrefi = 2π ∗ i/2

Figure 7: Comparison of the power spectrum of a deformed droplet for three different reference frames

From figure 2 it is possible to notice that the radius is not even throughout the sphere, having a slight numerical
error in the computation. This is due to the reconstruction of the levelset and computation of the distance between
center and interface at angles θ, ϕ. For this reason, we perform a simple sensibility analysis to evaluate the error in the
calculation of the radius using both available interpolation methods, for each different method for finding the center of
the sphere of the validation case presented in section 3. We can observe from the results presented in figure ?? that the
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Figure 8: Interface reconstruction comparison between the linear and cubic interpolation method. On the right, we
show the error on the calculation of the radius using the same method.

error for the radius using a linear interpolation method is quite big, even for finer mesh sizes. The resolution improves
greatly with a cubic interpolation. We can observe that already for grids of size 643 the convergence is good.

We must also consider that for a proper computation of the spherical harmonic expansion it is of upmost importance
to correctly select the body’s center. This aspect is quite challenging because we aim to reduce the influence of the
eigen-mode 1, while also maintaining coherence of the center as the droplet deforms. To show the difference in the
computation of the coefficients am,l we perform the spherical harmonic decomposition of the droplets presented in
4 using the different available methods of setting the center. It is expected that for spherical droplets affected by a
symmetric deformation (e.g. Y 0

0 , Y
0
2 , Y

0
4 ) the computation of the center is quite straight forward, obtaining similar

results for the three methods given the symmetry of the body. In contrast, if the perturbation is asymmetrical (e.g. Y 0
3 ),

the "cartesian_mean" method will give different result.
We can observe in figure 9 the difference in the decomposition for a droplet shaped as a mode 3 (Y 0

3 ). It is
noticeable that doing the decomposition without an appropriate center can greatly alter the result. Nonetheless, it
is important to note that this does not mean that the calculation is wrong. Since the Laplace expansion over the
surface of the sphere depends on its reference frame, where the center is placed will affect directly the way the
find_radius_arbitrary_coordinate_system generates the grid.

Figure 9: Computation of the center with different methods for a droplet with a deformation Y 0
3 of amplitude

η= 0.2. On the right, a plot demonstrating the difference in the decomposition using the available methods for
computing the center.
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As mentioned earlier, this framework is limited to convex-set domains. This in consequence does not allow the user
to characterize the high deformation encountered shortly before the breakup

Figure 10: Limitation due to non-convex-set domain. Here, the red dotted line represents the time were the droplet
breaks

7. Conclusion
This report provides an in-depth description of the pyarcher.spherical_harmonics library, aiming at
documenting the built-in functionalities as well as providing some validation test cases allowing to show the accuracy
of the numerical procedures for computing the center of a three-dimensional body and its spherical harmonic
decomposition, the impact of spatial resolution and the constraints and points to consider when working with it. An
example case of applications for the study of droplet oscillations is also provided, showing that this kind of analysis can
be useful for further digging into atomization related topics. To summarize the present analysis, three different points
are presented:

SUMMARY

(1) This procedure for computing the spherical harmonic decomposition is developed thanks to the PySthools
library [2] and proves to be an efficient method for computing the spherical harmonic expansion of any three-
dimensional star-convex set body.

(2) Computing the spherical harmonic decomposition with an accurate center of the body is critical when
performing the numerical calculation. Failing to do so will lead to inaccurate results, as seen in figure 9. It
is important to use the appropriate center, or in the other hand, select the most effective method to compute it
depending on the estimated shape of the body. In any case, it is advised to work with "mass_center" as the
default option.

(3) This method for computing the spherical harmonic decomposition composes an useful tool for studying the
evolution of a three-dimensional body deformation, as seen in the example shown in section 5. This gives a
quick and accurate description of the shape and the modes of spherical harmonics present, allowing us to
identify the oscillations of the different modes of deformation.
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