
HAL Id: hal-04004062
https://hal.science/hal-04004062

Submitted on 4 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SecDec : Secure Decode Stage thanks to masking of
instructions with the generated signals

Gaetan Leplus, Olivier Savry, Lilian Bossuet

To cite this version:
Gaetan Leplus, Olivier Savry, Lilian Bossuet. SecDec : Secure Decode Stage thanks to masking of
instructions with the generated signals. 2022 25th Euromicro Conference on Digital System Design
(DSD), Aug 2022, Maspalomas, Spain. pp.1, �10.1109/DSD57027.2022.00080�. �hal-04004062�

https://hal.science/hal-04004062
https://hal.archives-ouvertes.fr

XXX- X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

SecDec: Secure Decode Stage with Instructions

Masking

Gaëtan Leplus

Univ. Grenoble Alpes

CEA, Leti,

F-38000 Grenoble, France

gaetan.leplus@cea.fr

Olivier Savry

Univ. Grenoble Alpes

CEA, Leti,

F-38000 Grenoble, France

olivier.savry@cea.fr

Lilian Bossuet

Laboratoire Hubert Curien

Jean Monnet University

F-42000 Saint-Etienne, France

lilian.bossuet@univ-st-etienne.fr

Abstract – Physical attacks are becoming a major security

issue in IOT applications. One of the main vectors of attacks

on processors is the corruption of the execution flow. Fault

injections allow the modification of instructions, in particular

jumps and branches. The proposed approach involves making

a RISC-V processor’s instruction path more resistant by

introducing dependencies between succeeding instructions.

The signals extracted from the instruction decoding stage is

used to unmask the following instruction. Whereas all

instructions have been previously masked during compilation

with the expected mask. We show that this solution has a very

low hardware overhead of 3.25% and power consumption of

4.33%. But also overhead software of 1.8% in code size and

1.11% in execution time. An instruction corruption or a jump

will be detected on average in fewer than 2 cycles after the

fault while making disassembling from side-channel leakages

becomes more difficult.

Keywords – Fault injection attack, countermeasures,

masking, fault detection

I. INTRODUCTION

 Embedded applications require hardware that is both

lightweight and secure in order to preserve the confidentiality

and integrity of the executed code. Physical and observation

attacks are growing against IoT processors and the proposed

countermeasures often have a significant overhead. Solutions

to protect each of the stages in the most efficient way must be

found by taking advantage of their specificities. The CPU

front end, in particular, is sensitive to fault injection attacks,

as it is the center of instruction management. Indeed, fault

injections are particularly effective on instructions, especially

faults generating instruction jumps [1], [2] which allow

overriding many algorithmic securities by changing the

computation result or the execution flow. The latter focuses

in particular on the modification of branching or instruction

modification to be able to make jumps in the code. But these

are not the only threats that are identified. The intellectual

property of source code can also be challenged with, for

example, side channel disassembly [3].

 To ensure the security and safety of the instruction’s

execution against previous threats, four properties must be

respected:

—The current instruction is well preceded by the previous

instruction in the execution flow. This means avoiding jumps

and instruction modifications.

—The instruction decoding stage (DECOD stage) performs

the instructions decoding without errors.

—The processor must execute the right branch.

—The value of each bit of the instructions must not be

directly accessible by side channel analysis.

 In the state of the art, those four properties are never

addressed efficiently at the same time. The most common

solutions to protect the execution flow are control flow

integrity (CFI) units [4], [5] which can guarantee the integrity

of instructions up to the first stages of the pipeline [6] and can

avoid leakage through side-channels in the memory hierarchy

if encryption methods are implemented [7]. However, these

countermeasures do not protect instruction decoding and thus

branching. This type of countermeasure has a significant

overhead, because it addresses other attack vectors on the

execution flow than physical attacks. In reliable processors,

such as Klessydra [8], we find spatial duplication of the

DECOD stage to secure decoding. In addition, temporal

duplication makes it possible to avoid instruction skipping

[9]. The main problem of duplication-based solutions is the

hardware and time overhead. Finally, to counter side-channel

attacks, masking solutions are the most used, it consists of

applying a random variable with a function, in the most

classical case it is the function xor. However, the

implementation costs are significant, especially with the

duplication of the instruction size to store the mask.

 Our contribution is to give two close solutions, but with

different implementation implications. However, these two

solutions do ensure the security of the instruction path against

perturbation and observation attacks. The first solution has a

negligible hardware and instruction memory size overhead,

but induces a dependency of the compiled code with

microarchitectural constraints. The second solution is free of

these constraints, but involves a decoding redundancy. These

solutions lead to modifications in the compiler backend, but

they are simple to implement and are adaptable to different

types of compilation.

mailto:gaetan.leplus@cea.fr

 This paper is structured as follows: Section II presents our

security model that we use in this work and the attacker

model that we seek to defend against. Section III presents the

detection method of our solutions as well as the generation of

masks. Section IV presents the securing of DECOD stage and

reasons for proposing two countermeasures that are quite

similar, but with different implementation constraints.

Section V presents the problems generated during

compilation and how they are solved for the proper

functioning of our solution. Section VI details the

implementation of one of the solutions in a RISC-V core with

its overhead. Finally, Section VII evaluates the detection

capability of our countermeasure and discusses the resistance

against disassembly by side channels.

II. ATTACKER MODEL

 This work concerns processors mainly intended for the

IoT that are easily accessible to attackers to perform physical

attack. This processor can be in a complex platform [10] with

an arbitrary memory hierarchy without affecting our security

model.

 These physical attacks involve direct access to the device

to corrupt instructions, dump and manipulate external

memory or force signals. In addition, side-channel attacks are

also considered. This attacker only has the instruction path as

an attack surface, i.e. the instructions in the entire memory

hierarchy until the end of their decoding in the processor core.

Thus, probing and fault injections on stage other than the

fetch instruction and DECOD instruction are not considered.

Thus, the entire instruction path is considered sensitive to

attacks. The attacker has the whole memory hierarchy, but

also the processor pipeline until the instruction decoding to

realize his attack.

 Our attacker is thus limited to attacks by perturbations

(fault injection) and by observations (attacks by side

channels). Thus, cold boot attacks [11] are not taken into

account as well as software attacks, such as code injection

with, for example, the overwriting of the return address on

the stack. For this reason, encryption and control flow

methods allow a better response to this type of threat. The

attacker’s objectives in this type of attack are to extract

industrial property using side channel disassembly [3], and to

bypass security by skipping instructions or corrupting

instructions, in other words, to compromise the

confidentiality and integrity of the code executed by the

device.

III. PRESENTATION OF OPERATION

A. Proposed countermeasure description

 This paper proposes a countermeasure to the previously

presented attack model which consists of using signals

generated by the previous instruction to mask the current

instruction. It is a non-random Boolean masking, because it

depends on the previous instruction. To do this, a mask is

generated at cycle N which will be used in the DECOD stage

at cycle N+1 to unmask the incoming instruction. We can

choose to get signals before the decoder, see Figure 1, it will

be the instruction itself, and we call this solution pre-decoder.

It is also possible to take the signals after the decoder, see

Figure 2, this solution is called post-decoder. Thus the

instruction must be masked when it arrives in the DECOD

stage. To apply this mask, additional compilation passes must

be added in the compiler backend. As a consequence, all

instructions depend on the instruction that precedes it. Thus,

if a fault occurs at cycle N the unmasking of the instruction

in the decoding stage at cycle N+1 would be different from

the decoding without faults. This solution thus allows to

check that the present instruction is executed after the

instruction which precedes it in the machine code, therefore,

one avoids the jumps of instructions and the modifications of

instructions. When branching, two paths are possible. Thus,

it is common to try during a fault injection campaign to make

the processor take the wrong branch to execute unwanted

code. The proposed solution makes it possible to differentiate

the two branches by assigning them different masks

according to the branch taken. In fact, even if the output

signals of the DECOD stage are identical, whatever the

branch chosen, the outputs of the EXEC stage are different.

The final choice of branch is determined when the conditions

of the branch are verified. The choice is therefore made when

the result of the branch condition is available, which is

normally the case at the end of the EXEC stage. Thus,

contrary to the existing CFI which is at least sensitive during

the decoding of the instruction, the validity of the branch is

ensured by the entire instruction path. The only way to make

a branch take the wrong branch is to fault the EXEC stage.

This is a case outside of our attacker model, however,

duplication or verification solutions of the comparison

operations of the EXEC stage to secure the branches [12].

B. Proposed fault detection method

 The proposed fault detection method is based on the

ability of the processor to detect an invalid instruction.

Indeed, it is not possible with this method to detect the fault

Figure 1: Signals Pre-Decoder

Figure 2: Signals Post-Decoder

in itself. The detection is made on the errors of decoding

induced by this fault. A fault on the instruction to decode, or

on its mask, induces a modification of the decoding. If this

decoding is invalid, an "invalid instruction" exception is

raised and the error will be detected. However, even if this

faulted instruction is valid (i.e. part of the instructions set),

the mask generated by this instruction will be different from

the instruction that is not faulty. Hence, the more the

instruction set is sparse, the more effective this detection.

method is.

 If a large part of the opcodes is invalid, the detection only

takes a few cycles. Figure 3 shows the propagation of a fault

through the different stages, fetch instruction (IF), decoded

instruction (DEC) and EXEC of a general-purpose processor.

Thus, if a fault occurs at time 𝑡 = − 1 it generates a false

mask which is propagated to the following cycle, but without

error detection at the DECOD stage. The same is true of the

DECOD stage at cycle 0. However, at cycle 1 the DECOD

stage detects an invalid instruction and raises an invalid

instruction exception and the corresponding stop signal, so in

the example of the Figure 3, the processor takes 2 cycles to

detect the fault.

 For this work, the proposed countermeasure is

implemented in a RISCY RISC-V processor, but the

approach is, of course, transposable to another ISA or

architecture. It is therefore necessary to see where the errors

must be placed to be likely to be identified. In our case, it is

the opcode bits, funct3 and funct7. It is, however, to be noted

that these bits do not allow the detection of the faults of all

the types of instruction. Indeed as one can see in Figure 4,

there are several types of instruction, only the type R has 3-

field opcode, func3, func7. These are arithmetic and logical

instructions. Moreover, the bits of registers (rd, rs1, rs2)

because they correspond to the registers or to immediate are

always valid and do not allow to detect faults. So, the main

sources of fault detection are the opcodes.

C. Mask choice

 In order for this detection to be as fast as possible, i.e. for

a fault to result in an invalid instruction as quickly as possible,

two complementary approaches can be followed. The first is

to make the bits interdependent. If a fault occurs, it must lead

to a maximum number of modifications to the bits capable of

causing a decoding error. This is more precisely the opcode

bits and to a lesser extent func3 and func7. The other

approach is the propagation of faults in each new cycle.

 For an efficient detection if a modification occurs, the

generated mask must be very different from the legitimate

mask, but also give a more important place to the opcode bit.

To do this, we will generate two masks using the 4-bit sbox

from the Piccolo light encryption [13] presented Table , for

its lightness of implementation in hardware. The first mask

takes blocks of 4 consecutive bits to create dependency, the

second mask takes 4 bits at index I, i+8, i+16, i+24 with i ∈
⟦0,7⟧. As a consequence, almost all bits become dependent

on the opcode bits.

The propagation of the faulty bits in case of a valid

decoding succession is ensured by a permutation of the mask

which has no hardware overhead. Indeed, it is intended that

the faults propagate on the whole mask if the instructions

remain valid after several decoding cycles. For diffusion

properties, the 32-bit permutation of the DES encryption

algorithm, presented in Table , is chosen.

 Therefore, if a fault occurs before the entry of the DECOD

stage, it will cause multiple faults in the generation of the

mask thanks to the different sboxes. The combination of a

permutation and sbox ensures the diffusion of the faults to all

the bits of the instruction in a few cycles.

IV. SECURING THE DECOD

 To ensure the integrity of the instruction path, it is also

necessary to ensure the integrity of the decoding. It can also

be the target of the attacker. Two approaches have been

studied to solve this problem.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S [x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 1: Piccolo Sbox

Figure 3: Propagation and detection of a faulted instruction

Figure 4: RISC-V instruction type

P

16 7 20 21 29 12 28 17

1 15 23 26 5 18 31 10

2 8 24 14 32 27 3 9

19 13 30 6 22 11 4 25

Table 2: DES Permutation

A. Generation of the mask with post-decoder signals

 This solution uses the post decoder signals to generate the

masks. The signals used are the register index, the immediate,

multiplexer selector and enable signals. It is difficult to make

generalizations because these signals are specific to each

architecture but with these we can ensure that the decoding is

correct in the case of RISCY. With the solution of the

previous instruction, one protects against faults only up to the

beginning of the decoding stage just before the decoder, as

shown in Figure 1. If the output signals of the decoder are

used, it is assured that the decoding has taken place without

errors.

 In terms of hardware or instruction memory size, this

technique has relatively low overhead. However, due to the

fact that the masks are generated from the decoding signals,

the critical path of this stage is lengthened and can therefore

lead to a decrease in the frequency of the processor.

Moreover, the compilation is made more complex, because

the decoding signals must be generated in a software way.

Thus, a decoder similar to the one present in the DECOD

stage of the processor must be added to the compiler. These

two decoders must generate the same signals so that decoding

is possible. The main disadvantage of this solution is to make

the compiled code depend not only on the ISA but also on

implementation specificities, in our case the decoding of

instructions.

 To make the implementation of the countermeasure at the

compilation level simpler, the choice was made to use

directly the previous instructions and not their decoding

signals.

B. Mask regeneration

 If we use the previous instruction, it is no longer possible

to ensure the security of decoding natively. It is therefore

necessary to take advantage of the various elements already

added. The main one is the recording of the generated mask.

It would therefore be interesting to check it at the next cycle

to ensure decoding.

 The input signals of the EXEC stage can be used as input

for an instruction encoder. Indeed, there is no loss of

information during decoding, only a change of form. It is

hence possible to encode the decoding output signals in the

form of the original instruction. Once the instruction has been

encoded, the mask can be generated and compared with the

one contained in the register, Figure 5.

This solution can be compared to a duplication of the

DECOD stage, but it has advantages compared to a simple

duplication. Indeed, the first advantage is to use the signals

leaving the register between the DECOD stage and EXEC

stage. By using these signals, we also secure this register.

Beyond securing the register, it also allows using a simple

duplication which is only sensitive to double injection

attacks. Multiple fault injections are still considered more

difficult to implement [14]. Moreover, compared to simple

duplication, a mask generation is used which leads to the

diffusion of faults through the whole mask, which further

complicates fault detection. The encoding overhead is of the

same order as the decoding and is performed in parallel,

which does not lead to a lengthening of the critical path

compared to duplication.

 If we compare with the solution of masks generated from

decoding signals, several advantages can be noted. First of

all, the detection is no longer limited by the decoding errors

and thus allows faster detection of the faults during this one.

However, the hardware overhead is more important in this

solution with the addition of an encoder and a mask

generation, but the critical path is not lengthened.

 However, other problems arise if a mask is created from

the previous instruction or from the decoding signals. Indeed,

the source code of a program is not perfectly linear: jumps are

possible at different indexes of the code. Therefore, the

previous instruction in the execution thread is not necessarily

the previous instruction in the compiled code.

V. COMPILATION PROBLEMS

This masking can only be done at compile time, the only

place where the meaning of the assembly code and the

sequence of instructions are known. The main difficulty is

then to manage the different possible branches of the

execution flow. There are two cases, the first is when a basic

block has several blocks that can follow each other

(Figure 6), and this is the case of branching. To solve this

problem, we must be able to generate two different masks

from the same instruction. The second case arises if several

basic blocks point to the same following basic block as shown

Figure 5: basic block with two successors

Figure 6: basic block with two predecessors

Figure 7: Mask regeneration

in Figure 7. Thus an instruction can have several previous

instructions and therefore have several possible masks. As the

knowledge of the basic block which is at the origin of the

preceding instruction in the pipeline of the processor is

difficult, one cannot select among the possible masks. In

general, only one mask is used per instruction. So, if an

instruction has several antecedents, they must all generate the

same mask or this instruction must not ask for any mask.

A. Resolving difficulties

1) Jump

The first instructions that can generate multiple

antecedents are jumps, whether direct or indirect, because

two jump instructions can arrive at the same address. For this

particular case, the mask of the jump instructions must be

identical whether the jump is direct or indirect. But it must

not depend on the offset or on a register either. Jump

instructions with different offsets can arrive at the same

instruction.

Another problem is that a jump instruction can also be

reached by the standard incrementing of the program. Here

the problem is more complex, because any instruction can

precede a jump destination. It is therefore necessary that the

instruction preceding the masked instruction generates a

jump mask. To do this, the solution adopted was to add a

jump instruction with the following instruction as a

destination before each jump destination. So, a jump

destination is only accessible by jumps and the generated

mask is always a mask_JUMP, Figure 8.

2) Branch

A problem similar to the one raised for jumps remains for

branches. Indeed, when the branch is taken, it is comparable

to a jump, all the other possible paths to access this instruction

must produce the same mask. Adding branches before each

branch destination does not make sense, because a branch

means a conditional jump, which would be unconditional

here. The addition of a jump instruction is therefore

recommended. So before each branch destination a jump

instruction must be added. Moreover, the mask

"mask_DEC0’ ", see Figure 9, is replaced by the mask used

for jumps, "mask_JUMP", because it is this branch that can

be assimilated to a jump.

So, all the instructions causing a jump in the assembly

code produce the same mask. Moreover, each jump

destination is preceded by a jump, thus allowing having a

unique mask, whatever the path to get there. Finally, it is

possible to differentiate whether a branch is taken or not by

using a different mask in each case.

3) Solving context switching and interrupt problems

 When switching context one of the first steps is to save

the mask to unmask the next instruction, otherwise it will not

be possible to unmask the instruction at the return address. A

step of saving the mask is added at the beginning of the

context switch and one of restoring the mask at the end of the

context switch. This step is analogous to the PC switch. In the

case of an interruption, the mask that should have been used

in the next cycle if the interruption had not taken place is

automatically saved. In the case of RISC-V, this backup is

managed automatically at the level of the command and

status registers during an interruption.

4) stall solving

 A processor for various reasons, data dependency,

calculation of the branch to take, etc. can freeze its execution

the time that calculations advance in the pipeline to resolve

these dependencies. During these cycles, the processor keeps

in an internal register during the freeze cycles the mask to use

for the next instruction.

B. Compilation modification

 The changes in the compiler have been made on both

GCC and LLVM. Indeed, as previously stated, any

instruction that is accessible by a jump or branch must only

be accessible by jump instructions. A pass takes all basic

blocks with multiple antecedents and checks that each one

ends with a jump or branch instruction. If it does not, a jump

instruction is added.

 Then a pass adds the masks to all the instructions. This

pass must be the final pass, because it fixes the order of

execution of the program, so the code must not be modified

after this pass. This pass is quite simple, because it takes the

previous instruction, generates the mask and then applies it to

the current instruction. The mask is only a composition of the

previous instruction using Sbox and permutation, so it is easy

to perform these transformations in software.

 The use of constant mask during jumps makes this

solution sensitive to instruction jump. Indeed, each JUMP

destination instruction has the same mask. Thus, if during an

instruction to JUMP, a jump of instruction is carried out and

that this one points on another destination of JUMP then the

mask is valid. It is impossible with our solution to detect the

fault. Although this case exists, it is in fact rather difficult to

Figure 9: Mask during a branch

Figure 8: Mask during JUMP

implement because it is necessary to target the precise jump

cycle, but also to determine a new valid JUMP destination.

VI. IMPLEMENTATION

 In this part, only the feasibility of implementing one of

the countermeasures in the pipeline of a processor will be

studied. For reasons of simplicity at compilation, it was

chosen to use the method requiring only the previous

instruction. However, in order to have a representative idea

of the two solutions only the unmasking and mask generation

has been added. The decoding verification part has not been

implemented to show that it is possible to achieve a

satisfactory level of security against physical attacks with a

negligible overhead.

A. Hardware realization

 To realize our solution, we place ourselves in the case of

a 4-stage in-order RISC-V processor. Our solution is

therefore added to the decode stage of the pipeline. The

"Decod_output" register is added to store the output signals

of the decoder, it is updated at each cycle except during the

freeze cycles. The freeze cycles are indicated to the processor

by the "freeze_sig" signal. In addition, the mask used for all

jumps and branches is saved in the "jump_mask". The choice

of "jump_mask" or "DEC_mask" is determined by the

"Jump_controller". The Jump_controller uses the instruction

decoding signals and the output signals of the execution stage

to determine whether the "jump_mask" should be used. This

includes direct and indirect jump cases, but also branches

taken.

 The solution can be activated or deactivated using the

"ACT_DEC_mask" signal. In the case of our implementation,

this is an input signal from the processor. This signal is

controlled by a register, accessible by JTAG, outside the core.

This signal allows taking either the incoming instruction with

the application of the mask or without the application of the

mask. The problem of the first mask to be used must be

solved. Indeed, the first instruction by definition has no

preceding instruction. In this case, the jump mask is used. It

is therefore necessary to ensure that the first instruction

executed is well masked by this mask.

 For more activation possibilities, a start signal can be

added. This adds an attack vector as well as complexity which

has not found any advantage in our use. It should be noted

that this signal does not allow to deactivate the

countermeasure, it only applies to the mask or not.

 The two solutions are quite close to implementation,

however, to have the verification of the DECOD stage with

pre-decoder it is necessary to add an encoder and a mask

verification, as presented Figure 10, but also to add the

missing signals to reconstruct the instruction, see III.C.

 We implemented our RTL architectures based on RISCY

CV32E40P processors and synthesized it with the GF22FDX

(GlobalFoundries 22nm FD-SOI) Standard Cells RVT

library.

The overhead of this solution is quite low from a hardware

point of view. Only mask register, masks applications with a

xor and mask generation are added. The results showed that

15,295 GEs were required for the post-decoder and 17,729

GEs for pre-decoder. There are respectively 3.71% and

16.93% additional area required and an increase in total

power consumption of 4.33% and 19.16% over the original

RISCY core which has an area of 14,727 GEs.

 The figure gives the overhead of code size but also in

execution time induced by the modifications made by the

compiler. These results have been realized in cycle accurate

simulation with the Embench1.0 benchmark. The overhead in

code size is 1.61% and 1.12% for the execution time. This

overhead is low because there are few modifications of

compiler and instruction flow, only jump instructions are

sometimes added before jump destinations.

VII. SECURITY

 The advantages of our solution are, on the one hand, its

great lightness, it is enough to store 32 bits of masks and to

xorize them at the incoming instruction of the next cycle. On

the other hand, it has a very low overhead in terms of code

size and execution time. Indeed, we only add a jump

instruction before each jump destination when it is required.

Moreover, the simplicity of our solution can be adapted to

"just-in-time" compilations or self-modifying codes, the only

difficulty being the insertion of jump instructions. Moreover,

it secures against instruction jumps in an efficient way. As

pointed out by A. Menu et al. [1], jumps of not one, but

several instructions can occur. No matter how many

instructions are skipped, our solution is still effective, unlike

temporal redundancy, for example.

 One of the main difficulties with countermeasures against

fault injection is to measure their efficiency. Indeed, no

metric allows to account for the security of a circuit in front

Figure 11: Integration into the CV32E40P pipeline

Figure 10: Overhead in execution time and code size of
Embench benchmark with this solution

of all the possibilities available to the attacker. However, our

attacker model being limited to the instruction path, we can

assimilate all faults as a modification of the machine code.

Indeed, a fault in the memory hierarchy is effectively a

corruption of the binaries, and a jump of instruction can be

assimilated to the suppression of its instruction. For the faults

at the level of the IFETCH and DECOD stage, they can also

be perceived as corruptions of the instructions. Thus, it is

possible in our case to test exhaustively all the possible faults

on the binaries. Because the errors propagate from cycle to

cycle, we are sure that the fault will be detected in a cycle,

except in case of valid jump. Thus the detection rate is not

relevant but the number of cycles before a decoding error

allows us to compare the different mask creation methods.

With these presuppositions, an exhaustive test campaign for

the detection time of a faulty instruction can be realized.

 It should be noted that it is not necessary to have a

hardware platform or even to execute the instructions to

verify the proper functioning of our solution. Only the

sequence of instructions matters. To evaluate the mask, we

have developed a software tool to simulate the decoding of

RISC-V instructions. To simplify the creation of the mask,

we use the pre-decoder solution which only requires the

instruction to generate the mask. To save computation time

we execute the generated binaries a first time and then in a

second time we exhaustively modify the instructions which

will be effectively touched in the code. We execute 50 tests

of functional verification of RISC-V architecture to ensure

that all the instruction types are well used.

We have removed from our results the faults that lead to

a valid jump to another jump destination. Indeed, due to the

exhaustiveness of our fault injection campaign, these are

inevitable cases. It is not relevant to take them into account,

because they are unrealistic cases from the attacker’s point of

view.

1) One bit faulty

 The first check is to verify that the proposed mask is

sufficient for a simple fault injection. Figure 12 compare the

pre-decoder solution (complete) with a 32bit mask generated

with the hash function ASCON. But also with the two sub-

masks which compose it, the one of the sboxes with

consecutive blocks (linear_sbox) and the one with interleaved

blocks (mix_sbox) see III. C. Finally, the instruction without

transformation (identity).

The first thing to take into account is that the detection of

cycle 0 is identical for all the types of masks, because this one

does not intervene yet and in view of the exhaustiveness of

our test method there is no random character. With the

instruction only 35% of the remaining faults are detected in

the second cycle, 45% with only 1 type of sbox, 75% of the

complete mask and finally 90% with the hash generated by

ASCON. Table 3 shows the average number of cycles before

a fault leads to a decoding error. Thus, a hash of the

instruction allows detection of the fault in 2 cycles, our

solution which consists of only 16 hardware sboxes allows

detecting 97% of faults within 2 cycles. Since 99% are

detected in fewer than 3 cycles, we can reasonably assume

that these faults have not corrupted data memory, so by

disabling the pipeline and the register bank the processor is

in a safe state.

2) Multiple bits faulty

 Multiple faults are more and more used attacks [14] and

allow to bypass the security set up against single faults.

However, our solution, as can be seen in Figure 13, provides

better protection as the number of faults increases. Thus an

attacker has no interest in passing on more complex faults

except if she wants to modify very precisely an instruction to

jump to a valid jump destination, which seems precision out

of reach of current attacks.

3) Instruction skip

 Beyond the modification of instructions, it is also

common that fault injections cause instruction skips that can

be single or multiple, some solutions are sensitive to the

number of instructions skipped. Our solution as can be seen

in Figure 14 detects jumps in fewer than 2 cycles and those

regardless of whether the skip is 1, 2 or 4 instructions.

Figure 12: Mask comparison

Figure 13: Multiple fault

Figure 14: Instruction skip

 Identity Linear_sbox Mix_sbox Complete ASCON

Average

cycle

detection

1.52 1.20 1.23 0.99 0.81

Table 1: comparison of the average number of detection
cycles

As a consequence, our solution remains effective against fault

attacks on the entirety of the instructions path. The more

complex the attack with faults and skips of multiple

instruction, the more our approach is effective.

B. Security against side channel attacks

 Finally, beyond the protection against fault attacks, the

fact that a mask is added to the instructions makes it possible

to reinforce the resistance against attacks by side channels.

However, this is not a countermeasure that formally prevents

leaks by side channels, but only makes it more difficult to

disassemble, which is done before the DECOD stage [3],

which is to our knowledge the only attack that targets the

instruction path by side channels. Even if the mask is not

random, it allows reducing many heuristics such as

impossible opcodes, most likely instruction sequences and

dependencies between opcodes, funct3 and funct7. Without

making this type of attack impossible, our countermeasure

makes them much more complex.

VIII. CONCLUSION

 This paper proposes two solutions to protect the

instruction path against faulty and side-channel attacks.

These solutions propose to generate masks either directly

with the previous instructions or with the decoding signals of

the previous instruction. The advantage of this type of

countermeasure is that it allows to deal with all the problems

of fault injection on instructions with a very low overhead.

By using decoding signals we have an overhead of 3.25%, we

ensure fault detection in 1 cycle on average, but makes the

compilation dependent on micro architectural constraints. By

taking only pre-decoder information, we ensure security

against fault injection attacks on the instruction path at the

cost of doubling DECOD stage. But the generated source

code becomes only dependent on the instruction set.

 The software overhead is very low because of the few

changes made to the compiler. Indeed, we have an overhead

of 1.61% in code size and 1.12% in execution time.

 This solution proposes a security against the attacks by

observation and physical on the instruction path, it is thus

complementary to the security solution of the control flow

and the data path.

ACKNOWLEDGMENT

 This work was supported by the French National

Research Agency in the framework of the "Investissements

d’avenir” program (IRT Nanoelec, ANR-10-AIIX.RT-05).

REFERENCES

[1] A. Menu, J.-M. Dutertre, O. Potin, J.-B. Rigaud, et J.-

L. Danger, « Experimental Analysis of the

Electromagnetic Instruction Skip Fault Model », in

2020 15th Design Technology of Integrated Systems in

Nanoscale Era (DTIS), avr. 2020, p. 1‑7. doi:

10.1109/DTIS48698.2020.9081261.

[2] J.-M. Dutertre, T. Riom, O. Potin, et J.-B. Rigaud,

« Experimental Analysis of the Laser-Induced

Instruction Skip Fault Model », in Secure IT Systems,

Cham, 2019, p. 221‑237. doi: 10.1007/978-3-030-

35055-0_14.

[3] V. Cristiani, M. Lecomte, et T. Hiscock, « A Bit-Level

Approach to Side Channel Based Disassembling »,

Prague, Czech Republic, nov. 2019. Consulté le: 6

décembre 2021.

[4] S. Sayeed, H. Marco-Gisbert, I. Ripoll, et M. Birch,

« Control-Flow Integrity: Attacks and Protections »,

Appl. Sci., vol. 9, no 20, Art. no 20, janv. 2019, doi:

10.3390/app9204229.

[5] R. Clercq et I. Verbauwhede, « A survey of Hardware-

based Control Flow Integrity (CFI) », juin 2017.

[6] M. Werner, T. Unterluggauer, D. Schaffenrath, et S.

Mangard, « Sponge-Based Control-Flow Protection

for IoT Devices », in 2018 IEEE European Symposium

on Security and Privacy (EuroS P), avr. 2018, p.

214‑226. doi: 10.1109/EuroSP.2018.00023.

[7] O. Savry, M. El-Majihi, et T. Hiscock, « Confidaent:

Control FLow protection with Instruction and Data

Authenticated Encryption », in 2020 23rd Euromicro

Conference on Digital System Design (DSD), août

2020, p. 246‑253. doi:

10.1109/DSD51259.2020.00048.

[8] L. Blasi, F. Vigli, A. Cheikh, A. Mastrandrea, F.

Menichelli, et M. Olivieri, « A RISC-V Fault-Tolerant

Microcontroller Core Architecture Based on a

Hardware Thread Full/Partial Protection and a Thread-

Controlled Watch-Dog Timer », in Applications in

Electronics Pervading Industry, Environment and

Society, Cham, 2020, p. 505‑511. doi: 10.1007/978-3-

030-37277-4_59.

[9] N. Moro, K. Heydemann, E. Encrenaz, et B. Robisson,

« Formal verification of a software countermeasure

against instruction skip attacks », J. Cryptogr. Eng.,

vol. 4, no 3, p. 145‑156, sept. 2014, doi:

10.1007/s13389-014-0077-7.

[10] A. Traber, S. Stucki, F. Zaruba, M. Gautschi, A.

Pullini, et L. Benini, « PULPino: A RISC-V based

single-core system »

[11] M. Gruhn et T. Müller, « On the Practicability of Cold

Boot Attacks », in 2013 International Conference on

Availability, Reliability and Security, sept. 2013, p.

390‑397. doi: 10.1109/ARES.2013.52.

[12] R. Schilling, M. Werner, et S. Mangard, « Securing

conditional branches in the presence of fault attacks »,

in 2018 Design, Automation Test in Europe

Conference Exhibition (DATE), mars 2018, p.

1586‑1591. doi: 10.23919/DATE.2018.8342268.

[13] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T.

Akishita, et T. Shirai, « Piccolo: An Ultra-Lightweight

Blockcipher », in Cryptographic Hardware and

Embedded Systems – CHES 2011, vol. 6917, B.

Preneel et T. Takagi, Éd. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011, p. 342‑357. doi:

10.1007/978-3-642-23951-9_23.

[14] B. Colombier et al., « Multi-Spot Laser Fault Injection

Setup: New Possibilities for Fault Injection Attacks »,

in Smart Card Research and Advanced Applications,

vol. 13173, V. Grosso et T. Pöppelmann, Éd. Cham:

Springer International Publishing, 2022, p. 151‑166.

doi: 10.1007/978-3-030-97348-3_9.

