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Abstract – Physical attacks are becoming a major security 

issue in IOT applications. One of the main vectors of attacks 

on processors is the corruption of the execution flow. Fault 

injections allow the modification of instructions, in particular 

jumps and branches. The proposed approach involves making 

a RISC-V processor’s instruction path more resistant by 

introducing dependencies between succeeding instructions. 

The signals extracted from the instruction decoding stage is 

used to unmask the following instruction. Whereas all 

instructions have been previously masked during compilation 

with the expected mask. We show that this solution has a very 

low hardware overhead of 3.25% and power consumption of 

4.33%. But also overhead software of 1.8% in code size and 

1.11% in execution time. An instruction corruption or a jump 

will be detected on average in fewer than 2 cycles after the 

fault while making disassembling from side-channel leakages 

becomes more difficult. 

 

Keywords – Fault injection attack, countermeasures, 

masking, fault detection 

I. INTRODUCTION  

 

 Embedded applications require hardware that is both 

lightweight and secure in order to preserve the confidentiality 

and integrity of the executed code. Physical and observation 

attacks are growing against IoT processors and the proposed 

countermeasures often have a significant overhead. Solutions 

to protect each of the stages in the most efficient way must be 

found by taking advantage of their specificities. The CPU 

front end, in particular, is sensitive to fault injection attacks, 

as it is the center of instruction management. Indeed, fault 

injections are particularly effective on instructions, especially 

faults generating instruction jumps [1], [2] which allow 

overriding many algorithmic securities by changing the 

computation result or the execution flow. The latter focuses 

in particular on the modification of branching or instruction 

modification to be able to make jumps in the code. But these 

are not the only threats that are identified. The intellectual 

property of source code can also be challenged with, for 

example, side channel disassembly [3]. 

 

 To ensure the security and safety of the instruction’s 

execution against previous threats, four properties must be 

respected:  

—The current instruction is well preceded by the previous 

instruction in the execution flow. This means avoiding jumps 

and instruction modifications. 

—The instruction decoding stage (DECOD stage) performs 

the instructions decoding without errors. 

—The processor must execute the right branch. 

—The value of each bit of the instructions must not be 

directly accessible by side channel analysis. 

 In the state of the art, those four properties are never 

addressed efficiently at the same time. The most common 

solutions to protect the execution flow are control flow 

integrity (CFI) units [4], [5] which can guarantee the integrity 

of instructions up to the first stages of the pipeline [6] and can 

avoid leakage through side-channels in the memory hierarchy 

if encryption methods are implemented [7]. However, these 

countermeasures do not protect instruction decoding and thus 

branching. This type of countermeasure has a significant 

overhead, because it addresses other attack vectors on the 

execution flow than physical attacks. In reliable processors, 

such as Klessydra [8], we find spatial duplication of the 

DECOD stage to secure decoding. In addition, temporal 

duplication makes it possible to avoid instruction skipping 

[9]. The main problem of duplication-based solutions is the 

hardware and time overhead. Finally, to counter side-channel 

attacks, masking solutions are the most used, it consists of 

applying a random variable with a function, in the most 

classical case it is the function xor. However, the 

implementation costs are significant, especially with the 

duplication of the instruction size to store the mask. 

 Our contribution is to give two close solutions, but with 

different implementation implications. However, these two 

solutions do ensure the security of the instruction path against 

perturbation and observation attacks. The first solution has a 

negligible hardware and instruction memory size overhead, 

but induces a dependency of the compiled code with 

microarchitectural constraints. The second solution is free of 

these constraints, but involves a decoding redundancy. These 

solutions lead to modifications in the compiler backend, but 

they are simple to implement and are adaptable to different 

types of compilation. 
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 This paper is structured as follows: Section II presents our 

security model that we use in this work and the attacker 

model that we seek to defend against. Section III presents the 

detection method of our solutions as well as the generation of 

masks. Section IV presents the securing of DECOD stage and 

reasons for proposing two countermeasures that are quite 

similar, but with different implementation constraints. 

Section V presents the problems generated during 

compilation and how they are solved for the proper 

functioning of our solution. Section VI details the 

implementation of one of the solutions in a RISC-V core with 

its overhead. Finally, Section VII evaluates the detection 

capability of our countermeasure and discusses the resistance 

against disassembly by side channels. 

II. ATTACKER MODEL 

 This work concerns processors mainly intended for the 

IoT that are easily accessible to attackers to perform physical 

attack. This processor can be in a complex platform [10] with 

an arbitrary memory hierarchy without affecting our security 

model. 

 These physical attacks involve direct access to the device 

to corrupt instructions, dump and manipulate external 

memory or force signals. In addition, side-channel attacks are 

also considered. This attacker only has the instruction path as 

an attack surface, i.e. the instructions in the entire memory 

hierarchy until the end of their decoding in the processor core. 

Thus, probing and fault injections on stage other than the 

fetch instruction and DECOD instruction are not considered.  

Thus, the entire instruction path is considered sensitive to 

attacks. The attacker has the whole memory hierarchy, but 

also the processor pipeline until the instruction decoding to 

realize his attack. 

 Our attacker is thus limited to attacks by perturbations 

(fault injection) and by observations (attacks by side 

channels). Thus, cold boot attacks [11] are not taken into 

account as well as software attacks, such as code injection 

with, for example, the overwriting of the return address on 

the stack. For this reason, encryption and control flow 

methods allow a better response to this type of threat. The 

attacker’s objectives in this type of attack are to extract 

industrial property using side channel disassembly [3], and to 

bypass security by skipping instructions or corrupting 

instructions, in other words, to compromise the 

confidentiality and integrity of the code executed by the 

device. 

III. PRESENTATION OF OPERATION 

A. Proposed countermeasure description  

 This paper proposes a countermeasure to the previously 

presented attack model which consists of using signals 

generated by the previous instruction to mask the current 

instruction. It is a non-random Boolean masking, because it 

depends on the previous instruction. To do this, a mask is 

generated at cycle N which will be used in the DECOD stage 

at cycle N+1 to unmask the incoming instruction. We can 

choose to get signals before the decoder, see Figure 1, it will 

be the instruction itself, and we call this solution pre-decoder. 

It is also possible to take the signals after the decoder, see 

Figure 2, this solution is called post-decoder. Thus the 

instruction must be masked when it arrives in the DECOD 

stage. To apply this mask, additional compilation passes must 

be added in the compiler backend. As a consequence, all 

instructions depend on the instruction that precedes it. Thus,   

if a fault occurs at cycle N the unmasking of the instruction 

in the decoding stage at cycle N+1 would be different from 

the decoding without faults. This solution thus allows to 

check that the present instruction is executed after the 

instruction which precedes it in the machine code, therefore, 

one avoids the jumps of instructions and the modifications of 

instructions. When branching, two paths are possible. Thus, 

it is common to try during a fault injection campaign to make 

the processor take the wrong branch to execute unwanted 

code. The proposed solution makes it possible to differentiate 

the two branches by assigning them different masks 

according to the branch taken. In fact, even if the output 

signals of the DECOD stage are identical, whatever the 

branch chosen, the outputs of the EXEC stage are different. 

The final choice of branch is determined when the conditions 

of the branch are verified. The choice is therefore made when 

the result of the branch condition is available, which is 

normally the case at the end of the EXEC stage. Thus, 

contrary to the existing CFI which is at least sensitive during 

the decoding of the instruction, the validity of the branch is 

ensured by the entire instruction path. The only way to make 

a branch take the wrong branch is to fault the EXEC stage. 

This is a case outside of our attacker model, however, 

duplication or verification solutions of the comparison 

operations of the EXEC stage to secure the branches [12]. 

B. Proposed fault detection method 

 The proposed fault detection method is based on the 

ability of the processor to detect an invalid instruction. 

Indeed, it is not possible with this method to detect the fault 

 

Figure 1: Signals Pre-Decoder 

 

Figure 2: Signals Post-Decoder 



 

 

in itself. The detection is made on the errors of decoding 

induced by this fault. A fault on the instruction to decode, or 

on its mask, induces a modification of the decoding. If this 

decoding is invalid, an "invalid instruction" exception is 

raised and the error will be detected. However, even if this 

faulted instruction is valid (i.e. part of the instructions set), 

the mask generated by this instruction will be different from 

the instruction that is not faulty. Hence, the more the 

instruction set is sparse, the more effective this detection. 

method is.  

 If a large part of the opcodes is invalid, the detection only 

takes a few cycles. Figure 3 shows the propagation of a fault 

through the different stages, fetch instruction (IF), decoded 

instruction (DEC) and EXEC of a general-purpose processor. 

Thus, if a fault occurs at time 𝑡 =  − 1 it generates a false 

mask which is propagated to the following cycle, but without 

error detection at the DECOD stage. The same is true of the 

DECOD stage at cycle 0. However, at cycle 1 the DECOD 

stage detects an invalid instruction and raises an invalid 

instruction exception and the corresponding stop signal, so in 

the example of the Figure 3, the processor takes 2 cycles to 

detect the fault.  

 For this work, the proposed countermeasure is 

implemented in a RISCY RISC-V processor, but the 

approach is, of course, transposable to another ISA or 

architecture. It is therefore necessary to see where the errors 

must be placed to be likely to be identified. In our case, it is 

the opcode bits, funct3 and funct7. It is, however, to be noted 

that these bits do not allow the detection of the faults of all 

the types of instruction. Indeed as one can see in Figure 4, 

there are several types of instruction, only the type R has 3-

field opcode, func3, func7. These are arithmetic and logical 

instructions. Moreover, the bits of registers (rd, rs1, rs2) 

because they correspond to the registers or to immediate are 

always valid and do not allow to detect faults. So, the main 

sources of fault detection are the opcodes.  

C. Mask choice 

 In order for this detection to be as fast as possible, i.e. for 

a fault to result in an invalid instruction as quickly as possible, 

two complementary approaches can be followed. The first is 

to make the bits interdependent. If a fault occurs, it must lead 

to a maximum number of modifications to the bits capable of 

causing a decoding error. This is more precisely the opcode 

bits and to a lesser extent func3 and func7. The other 

approach is the propagation of faults in each new cycle. 

 For an efficient detection if a modification occurs, the 

generated mask must be very different from the legitimate 

mask, but also give a more important place to the opcode bit. 

To do this, we will generate two masks using the 4-bit sbox 

from the Piccolo light encryption [13] presented Table ,  for 

its lightness of implementation in hardware. The first mask 

takes blocks of 4 consecutive bits to create dependency, the 

second mask takes 4 bits at index I, i+8, i+16, i+24 with i ∈
⟦0,7⟧. As a consequence, almost all bits become dependent 

on the opcode bits. 

The propagation of the faulty bits in case of a valid 

decoding succession is ensured by a permutation of the mask 

which has no hardware overhead. Indeed, it is intended that 

the faults propagate on the whole mask if the instructions 

remain valid after several decoding cycles. For diffusion 

properties, the 32-bit permutation of the DES encryption 

algorithm, presented in Table , is chosen.  

 Therefore, if a fault occurs before the entry of the DECOD 

stage, it will cause multiple faults in the generation of the 

mask thanks to the different sboxes. The combination of a 

permutation and sbox ensures the diffusion of the faults to all 

the bits of the instruction in a few cycles. 

IV. SECURING THE DECOD 

 To ensure the integrity of the instruction path, it is also 

necessary to ensure the integrity of the decoding. It can also 

be the target of the attacker. Two approaches have been 

studied to solve this problem. 

 

x 0 1 2 3 4 5 6 7 8 9 A B C D E F 

S [x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2 

Table 1: Piccolo Sbox 

  

 

 

Figure 3: Propagation and detection of a faulted instruction 

 

Figure 4: RISC-V instruction type 
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16 7 20 21 29 12 28 17 

1 15 23 26 5 18 31 10 

2 8 24 14 32 27 3 9 

19 13 30 6 22 11 4 25 

Table 2: DES Permutation 

 



 

 

A. Generation of the mask with post-decoder signals 

 This solution uses the post decoder signals to generate the 

masks. The signals used are the register index, the immediate, 

multiplexer selector and enable signals. It is difficult to make 

generalizations because these signals are specific to each 

architecture but with these we can ensure that the decoding is 

correct in the case of RISCY. With the solution of the 

previous instruction, one protects against faults only up to the 

beginning of the decoding stage just before the decoder, as 

shown in Figure 1. If the output signals of the decoder are 

used, it is assured that the decoding has taken place without 

errors. 

 In terms of hardware or instruction memory size, this 

technique has relatively low overhead. However, due to the 

fact that the masks are generated from the decoding signals, 

the critical path of this stage is lengthened and can therefore 

lead to a decrease in the frequency of the processor. 

Moreover, the compilation is made more complex, because 

the decoding signals must be generated in a software way. 

Thus, a decoder similar to the one present in the DECOD 

stage of the processor must be added to the compiler. These 

two decoders must generate the same signals so that decoding 

is possible. The main disadvantage of this solution is to make 

the compiled code depend not only on the ISA but also on 

implementation specificities, in our case the decoding of 

instructions.  

 To make the implementation of the countermeasure at the 

compilation level simpler, the choice was made to use 

directly the previous instructions and not their decoding 

signals. 

B. Mask regeneration 

 If we use the previous instruction, it is no longer possible 

to ensure the security of decoding natively. It is therefore 

necessary to take advantage of the various elements already 

added. The main one is the recording of the generated mask. 

It would therefore be interesting to check it at the next cycle 

to ensure decoding. 

 The input signals of the EXEC stage can be used as input 

for an instruction encoder. Indeed, there is no loss of 

information during decoding, only a change of form. It is 

hence possible to encode the decoding output signals in the 

form of the original instruction. Once the instruction has been 

encoded, the mask can be generated and compared with the 

one contained in the register, Figure 5. 

This solution can be compared to a duplication of the 

DECOD stage, but it has advantages compared to a simple 

duplication. Indeed, the first advantage is to use the signals 

leaving the register between the DECOD stage and EXEC 

stage. By using these signals, we also secure this register. 

Beyond securing the register, it also allows using a simple 

duplication which is only sensitive to double injection 

attacks. Multiple fault injections are still considered more 

difficult to implement [14]. Moreover, compared to simple 

duplication, a mask generation is used which leads to the 

diffusion of faults through the whole mask, which further 

complicates fault detection. The encoding overhead is of the 

same order as the decoding and is performed in parallel, 

which does not lead to a lengthening of the critical path 

compared to duplication. 

 If we compare with the solution of masks generated from 

decoding signals, several advantages can be noted. First of 

all, the detection is no longer limited by the decoding errors 

and thus allows faster detection of the faults during this one. 

However, the hardware overhead is more important in this 

solution with the addition of an encoder and a mask 

generation, but the critical path is not lengthened. 

 However, other problems arise if a mask is created from 

the previous instruction or from the decoding signals. Indeed, 

the source code of a program is not perfectly linear: jumps are 

possible at different indexes of the code. Therefore, the 

previous instruction in the execution thread is not necessarily 

the previous instruction in the compiled code. 

V. COMPILATION PROBLEMS  

 

This masking can only be done at compile time, the only 

place where the meaning of the assembly code and the 

sequence of instructions are known. The main difficulty is 

then to manage the different possible branches of the 

execution flow. There are two cases, the first is when a basic 

block has several blocks that can follow each other 

(Figure 6), and this is the case of branching. To solve this 

problem, we must be able to generate two different masks 

from the same instruction. The second case arises if several 

basic blocks point to the same following basic block as shown 

 

Figure 5: basic block with two successors 

 

Figure 6: basic block with two predecessors 

 

Figure 7: Mask regeneration 

 



 

 

in Figure 7. Thus an instruction can have several previous 

instructions and therefore have several possible masks. As the 

knowledge of the basic block which is at the origin of the 

preceding instruction in the pipeline of the processor is 

difficult, one cannot select among the possible masks. In 

general, only one mask is used per instruction. So, if an 

instruction has several antecedents, they must all generate the 

same mask or this instruction must not ask for any mask.  

A. Resolving difficulties 

1) Jump 

The first instructions that can generate multiple 

antecedents are jumps, whether direct or indirect, because 

two jump instructions can arrive at the same address. For this 

particular case, the mask of the jump instructions must be 

identical whether the jump is direct or indirect. But it must 

not depend on the offset or on a register either. Jump 

instructions with different offsets can arrive at the same 

instruction.  

Another problem is that a jump instruction can also be 

reached by the standard incrementing of the program. Here 

the problem is more complex, because any instruction can 

precede a jump destination. It is therefore necessary that the 

instruction preceding the masked instruction generates a 

jump mask. To do this, the solution adopted was to add a 

jump instruction with the following instruction as a 

destination before each jump destination. So, a jump 

destination is only accessible by jumps and the generated 

mask is always a mask_JUMP, Figure 8. 

2) Branch 

A problem similar to the one raised for jumps remains for 

branches. Indeed, when the branch is taken, it is comparable 

to a jump, all the other possible paths to access this instruction 

must produce the same mask. Adding branches before each 

branch destination does not make sense, because a branch 

means a conditional jump, which would be unconditional 

here. The addition of a jump instruction is therefore 

recommended. So before each branch destination a jump 

instruction must be added. Moreover, the mask 

"mask_DEC0’ ", see Figure 9, is replaced by the mask used 

for jumps, "mask_JUMP", because it is this branch that can 

be assimilated to a jump.  

So, all the instructions causing a jump in the assembly 

code produce the same mask. Moreover, each jump 

destination is preceded by a jump, thus allowing having a 

unique mask, whatever the path to get there. Finally, it is 

possible to differentiate whether a branch is taken or not by 

using a different mask in each case. 

3) Solving context switching and interrupt problems 

 When switching context one of the first steps is to save 

the mask to unmask the next instruction, otherwise it will not 

be possible to unmask the instruction at the return address. A 

step of saving the mask is added at the beginning of the 

context switch and one of restoring the mask at the end of the 

context switch. This step is analogous to the PC switch. In the 

case of an interruption, the mask that should have been used 

in the next cycle if the interruption had not taken place is 

automatically saved. In the case of RISC-V, this backup is 

managed automatically at the level of the command and 

status registers during an interruption. 

4) stall solving 

 A processor for various reasons, data dependency, 

calculation of the branch to take, etc. can freeze its execution 

the time that calculations advance in the pipeline to resolve 

these dependencies. During these cycles, the processor keeps 

in an internal register during the freeze cycles the mask to use 

for the next instruction. 

B. Compilation modification 

 The changes in the compiler have been made on both 

GCC and LLVM. Indeed, as previously stated, any 

instruction that is accessible by a jump or branch must only 

be accessible by jump instructions. A pass takes all basic 

blocks with multiple antecedents and checks that each one 

ends with a jump or branch instruction. If it does not, a jump 

instruction is added. 

 Then a pass adds the masks to all the instructions. This 

pass must be the final pass, because it fixes the order of 

execution of the program, so the code must not be modified 

after this pass. This pass is quite simple, because it takes the 

previous instruction, generates the mask and then applies it to 

the current instruction. The mask is only a composition of the 

previous instruction using Sbox and permutation, so it is easy 

to perform these transformations in software. 

 The use of constant mask during jumps makes this 

solution sensitive to instruction jump. Indeed, each JUMP 

destination instruction has the same mask. Thus, if during an 

instruction to JUMP, a jump of instruction is carried out and 

that this one points on another destination of JUMP then the 

mask is valid. It is impossible with our solution to detect the 

fault. Although this case exists, it is in fact rather difficult to 

 

Figure 9: Mask during a branch 

 

Figure 8: Mask during JUMP 

 



 

 

implement because it is necessary to target the precise jump 

cycle, but also to determine a new valid JUMP destination. 

VI. IMPLEMENTATION 

 In this part, only the feasibility of implementing one of 

the countermeasures in the pipeline of a processor will be 

studied. For reasons of simplicity at compilation, it was 

chosen to use the method requiring only the previous 

instruction. However, in order to have a representative idea 

of the two solutions only the unmasking and mask generation 

has been added. The decoding verification part has not been 

implemented to show that it is possible to achieve a 

satisfactory level of security against physical attacks with a 

negligible overhead. 

A. Hardware realization 

 To realize our solution, we place ourselves in the case of 

a 4-stage in-order RISC-V processor. Our solution is 

therefore added to the decode stage of the pipeline. The 

"Decod_output" register is added to store the output signals 

of the decoder, it is updated at each cycle except during the 

freeze cycles. The freeze cycles are indicated to the processor 

by the "freeze_sig" signal. In addition, the mask used for all 

jumps and branches is saved in the "jump_mask". The choice 

of "jump_mask" or "DEC_mask" is determined by the 

"Jump_controller". The Jump_controller uses the instruction 

decoding signals and the output signals of the execution stage 

to determine whether the "jump_mask" should be used. This 

includes direct and indirect jump cases, but also branches 

taken.  

 The solution can be activated or deactivated using the 

"ACT_DEC_mask" signal. In the case of our implementation, 

this is an input signal from the processor. This signal is 

controlled by a register, accessible by JTAG, outside the core. 

This signal allows taking either the incoming instruction with 

the application of the mask or without the application of the 

mask. The problem of the first mask to be used must be 

solved. Indeed, the first instruction by definition has no 

preceding instruction. In this case, the jump mask is used. It 

is therefore necessary to ensure that the first instruction 

executed is well masked by this mask. 

 For more activation possibilities, a start signal can be 

added. This adds an attack vector as well as complexity which 

has not found any advantage in our use. It should be noted 

that this signal does not allow to deactivate the 

countermeasure, it only applies to the mask or not. 

 The two solutions are quite close to implementation, 

however, to have the verification of the DECOD stage with 

pre-decoder it is necessary to add an encoder and a mask 

verification, as presented Figure 10, but also to add the 

missing signals to reconstruct the instruction, see III.C. 

 We implemented our RTL architectures based on RISCY 

CV32E40P processors and synthesized it with the GF22FDX 

(GlobalFoundries 22nm FD-SOI) Standard Cells RVT 

library. 

The overhead of this solution is quite low from a hardware 

point of view. Only mask register, masks applications with a 

xor and mask generation are added. The results showed that 

15,295 GEs were required for the post-decoder and 17,729 

GEs for pre-decoder. There are respectively 3.71% and 

16.93% additional area required and an increase in total 

power consumption of 4.33% and 19.16% over the original 

RISCY core which has an area of 14,727 GEs. 

 The figure gives the overhead of code size but also in 

execution time induced by the modifications made by the 

compiler. These results have been realized in cycle accurate 

simulation with the Embench1.0 benchmark. The overhead in 

code size is 1.61% and 1.12% for the execution time. This 

overhead is low because there are few modifications of 

compiler and instruction flow, only jump instructions are 

sometimes added before jump destinations. 

VII. SECURITY 

 The advantages of our solution are, on the one hand, its 

great lightness, it is enough to store 32 bits of masks and to 

xorize them at the incoming instruction of the next cycle. On 

the other hand, it has a very low overhead in terms of code 

size and execution time. Indeed, we only add a jump 

instruction before each jump destination when it is required. 

Moreover, the simplicity of our solution can be adapted to 

"just-in-time" compilations or self-modifying codes, the only 

difficulty being the insertion of jump instructions. Moreover, 

it secures against instruction jumps in an efficient way. As 

pointed out by A. Menu et al. [1], jumps of not one, but 

several instructions can occur. No matter how many 

instructions are skipped, our solution is still effective, unlike 

temporal redundancy, for example. 

 

 One of the main difficulties with countermeasures against 

fault injection is to measure their efficiency. Indeed, no 

metric allows to account for the security of a circuit in front 

 

Figure 11: Integration into the CV32E40P pipeline 

 

Figure 10: Overhead in execution time and code size of 
Embench benchmark with this solution 

 



 

 

of all the possibilities available to the attacker. However, our 

attacker model being limited to the instruction path, we can 

assimilate all faults as a modification of the machine code. 

Indeed, a fault in the memory hierarchy is effectively a 

corruption of the binaries, and a jump of instruction can be 

assimilated to the suppression of its instruction. For the faults 

at the level of the IFETCH and DECOD stage, they can also 

be perceived as corruptions of the instructions. Thus, it is 

possible in our case to test exhaustively all the possible faults 

on the binaries. Because the errors propagate from cycle to 

cycle, we are sure that the fault will be detected in a cycle, 

except in case of valid jump. Thus the detection rate is not 

relevant but the number of cycles before a decoding error 

allows us to compare the different mask creation methods. 

With these presuppositions, an exhaustive test campaign for 

the detection time of a faulty instruction can be realized. 

 It should be noted that it is not necessary to have a 

hardware platform or even to execute the instructions to 

verify the proper functioning of our solution. Only the 

sequence of instructions matters. To evaluate the mask, we 

have developed a software tool to simulate the decoding of 

RISC-V instructions. To simplify the creation of the mask, 

we use the pre-decoder solution which only requires the 

instruction to generate the mask. To save computation time 

we execute the generated binaries a first time and then in a 

second time we exhaustively modify the instructions which 

will be effectively touched in the code. We execute 50 tests 

of functional verification of RISC-V architecture to ensure 

that all the instruction types are well used.  

We have removed from our results the faults that lead to 

a valid jump to another jump destination. Indeed, due to the 

exhaustiveness of our fault injection campaign, these are 

inevitable cases. It is not relevant to take them into account, 

because they are unrealistic cases from the attacker’s point of 

view. 

1) One bit faulty  

  The first check is to verify that the proposed mask is 

sufficient for a simple fault injection. Figure 12 compare the 

pre-decoder solution (complete) with a 32bit mask generated 

with the hash function ASCON. But also with the two sub-

masks which compose it, the one of the sboxes with 

consecutive blocks (linear_sbox) and the one with interleaved 

blocks (mix_sbox) see III. C. Finally, the instruction without 

transformation (identity). 

The first thing to take into account is that the detection of 

cycle 0 is identical for all the types of masks, because this one 

does not intervene yet and in view of the exhaustiveness of 

our test method there is no random character. With the 

instruction only 35% of the remaining faults are detected in 

the second cycle, 45% with only 1 type of sbox, 75% of the 

complete mask and finally 90% with the hash generated by 

ASCON. Table 3 shows the average number of cycles before 

a fault leads to a decoding error. Thus, a hash of the 

instruction allows detection of the fault in 2 cycles, our 

solution which consists of only 16 hardware sboxes allows 

detecting 97% of faults within 2 cycles. Since 99% are 

detected in fewer than 3 cycles, we can reasonably assume 

that these faults have not corrupted data memory, so by 

disabling the pipeline and the register bank the processor is 

in a safe state. 

2) Multiple bits faulty 

 Multiple faults are more and more used attacks [14] and 

allow to bypass the security set up against single faults. 

However, our solution, as can be seen in Figure 13, provides 

better protection as the number of faults increases. Thus an 

attacker has no interest in passing on more complex faults 

except if she wants to modify very precisely an instruction to 

jump to a valid jump destination, which seems precision out 

of reach of current attacks. 

3) Instruction skip 

 Beyond the modification of instructions, it is also 

common that fault injections cause instruction skips that can 

be single or multiple, some solutions are sensitive to the 

number of instructions skipped. Our solution as can be seen 

in Figure 14 detects jumps in fewer than 2 cycles and those 

regardless of whether the skip is 1, 2 or 4 instructions. 

 

Figure 12: Mask comparison 

 

Figure 13: Multiple fault 

 

 

Figure 14: Instruction skip 

 Identity Linear_sbox Mix_sbox Complete ASCON 

Average 

cycle 

detection 

1.52 1.20 1.23 0.99 0.81 

Table 1: comparison of the average number of detection 
cycles 



 

 

As a consequence, our solution remains effective against fault 

attacks on the entirety of the instructions path. The more 

complex the attack with faults and skips of multiple 

instruction, the more our approach is effective. 

B. Security against side channel attacks 

 Finally, beyond the protection against fault attacks, the 

fact that a mask is added to the instructions makes it possible 

to reinforce the resistance against attacks by side channels. 

However, this is not a countermeasure that formally prevents 

leaks by side channels, but only makes it more difficult to 

disassemble, which is done before the DECOD stage [3], 

which is to our knowledge the only attack that targets the 

instruction path by side channels. Even if the mask is not 

random, it allows reducing many heuristics such as 

impossible opcodes, most likely instruction sequences and 

dependencies between opcodes, funct3 and funct7. Without 

making this type of attack impossible, our countermeasure 

makes them much more complex. 

 

VIII. CONCLUSION 

 This paper proposes two solutions to protect the 

instruction path against faulty and side-channel attacks. 

These solutions propose to generate masks either directly 

with the previous instructions or with the decoding signals of 

the previous instruction. The advantage of this type of 

countermeasure is that it allows to deal with all the problems 

of fault injection on instructions with a very low overhead. 

By using decoding signals we have an overhead of 3.25%, we   

ensure fault detection in 1 cycle on average, but makes the 

compilation dependent on micro architectural constraints. By 

taking only pre-decoder information, we ensure security 

against fault injection attacks on the instruction path at the 

cost of doubling DECOD stage. But the generated source 

code becomes only dependent on the instruction set. 

 The software overhead is very low because of the few 

changes made to the compiler. Indeed, we have an overhead 

of 1.61% in code size and 1.12% in execution time.  

 This solution proposes a security against the attacks by 

observation and physical on the instruction path, it is thus 

complementary to the security solution of the control flow 

and the data path. 
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