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The relatively young field of Brain-Computer Interfaces has promoted the use

of electrophysiology and neuroimaging in real-time. In the meantime, cognitive

neuroscience studies, which make extensive use of functional exploration techniques,

have evolved toward model-based experiments and fine hypothesis testing protocols.

Although these two developments are mostly unrelated, we argue that, brought together,

they may trigger an important shift in the way experimental paradigms are being

designed, which should prove fruitful to both endeavors. This change simply consists in

using real-time neuroimaging in order to optimize advanced neurocognitive hypothesis

testing. We refer to this new approach as the instantiation of an Active SAmpling Protocol

(ASAP). As opposed to classical (static) experimental protocols, ASAP implements

online model comparison, enabling the optimization of design parameters (e.g., stimuli)

during the course of data acquisition. This follows the well-known principle of sequential

hypothesis testing. What is radically new, however, is our ability to perform online

processing of the huge amount of complex data that brain imaging techniques provide.

This is all the more relevant at a time when physiological and psychological processes

are beginning to be approached using more realistic, generative models which may be

difficult to tease apart empirically. Based upon Bayesian inference, ASAP proposes a

generic and principled way to optimize experimental design adaptively. In this perspective

paper, we summarize the main steps in ASAP. Using synthetic data we illustrate its

superiority in selecting the right perceptual model compared to a classical design. Finally,

we briefly discuss its future potential for basic and clinical neuroscience as well as some

remaining challenges.

Keywords: adaptive sampling protocol, brain-computer interface, adaptive design optimization, generative

models, sequential hypothesis testing, dynamic causal modeling, bayesianmodel comparison, bayesian inference
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INTRODUCTION

A major goal in any empirical science is alternative hypothesis
testing1. Hypothesis testing is also at the heart of individual
evaluations such as clinical diagnoses or school exams. Applied
statistics provide the methods to design such tests, to compare
hypotheses and to eventually estimate parameters of interest with
the aim of making the best decisions.

This process entails the following main steps:

(1) Stating the alternative hypothesis (or hypotheses);
(2) Designing the experiment;
(3) Acquiring the data;
(4) Analyzing the data;
(5) Concluding.

In neuroscience, step (1) pertains to the question of
interest regarding brain functions, mental processes and
neurophysiological phenomena. Note that hypotheses in step (1)
are sometimes and deliberately not precisely defined, following
what is often referred to as an exploratory approach. However,
the more refined the initial hypotheses, the more straightforward
the design of the experiment.

Step (2) consists of setting all the acquisition parameters.
This implies defining the measures to be performed (behavioral,
electrophysiological or neuroimaging. . . ), the population from
which to sample (healthy individuals or patients, young or elderly
people, females or males. . . ), the sample size, the stimulations to
be used, the task that will be assigned to the participants, the
instructions that will be given, as well as the timing and length
of the experiment.

Importantly, step (2) becomes increasingly crucial as
experimental cost increases, which is the case when scanning
time is expensive, when the sample size needs to be high, or
when it is difficult to recruit from the targeted population (e.g.,
patients with rare pathologies). Therefore, step (2) often includes
a piloting phase which consists of testing a couple of participants
in order to confirm or adjust the experimental design before
moving to step (3).

After data acquisition, step (4) typically consists of
preprocessing and model fitting. Finally, step (5) concludes
from formal model comparison and parameter estimation based
on the best model or best model family, if any.

At the end of this serial process, the worst case scenario
occurs when the experiment concludes in favor of an
incorrect hypothesis. Another undesirable scenario is
when the whole experiment is inconclusive, as when there
is not enough evidence to favor one hypothesis over the
others.

One of those two scenarios can arise from at least two possible
and mutually non-exclusive explanations, namely that:

- The design was not optimal for disentangling the competing
hypotheses;

1As is common in the field of neuroimaging, we use the terms hypothesis testing

and model comparison interchangeably throughout the paper. In the context of

ASAP, however, it is important to note that models are formulated mathematically

and compared in a Bayesian framework.

- The amount of data acquired was insufficient (e.g., more trials
from a given participant, or more participants from a given
population were necessary).

Crucially, in cognitive neuroscience, two factors may contribute
and even interact tomake this pitfall particularly acute. First, both
the within- and between- subject variability are potentially large
and difficult to estimate. Second, as our field progresses and the
hypotheses to be tested become more subtle and complex, it can
be very difficult to foresee how much their respective predictions
do or do not differ. In other words, in the absence of any prior
information or measure, the noisy nature and incompleteness of
the data together with model complexity, can make the task of
optimizing the experimental design particularly difficult.

These general considerations highlight the main decision
criterion that governs experimental design, namely optimizing
our chances of concluding, or in other words, minimizing the risk
of hypothesis testing errors.

Interestingly, this criterion can now be optimized during an
experiment, using the principle of sequential hypothesis testing
pioneered by Wald (1947) and its modern instantiations such as
the one proposed by Myung and Pitt in the Cognitive Science
field (Myung et al., 2013).

This simple idea could trigger a methodological change in
cognitive neuroscience for at least two reasons:

- It is now possible to implement such a sequential optimization
process, thanks to our ever-growing ability to process large
neuroimaging and electrophysiological datasets online. This is
promoted by the development of real-time brain imaging and
the field of brain-computer interfaces.

- Bayesian inference and Bayesian decision theory provide a
generic and flexible framework which enables online model
comparison as well as online design optimization, for a large
variety of complex (dynamical, non-linear) hypotheses.

In what follows, we briefly review these two aspects which are the
building blocks of ASAP.We then illustrate the potential of ASAP
on a toy example that concerns disentangling alternative models
of perception when observing a sequence of stimulations. Finally,
we briefly discuss some challenges and perspectives for the future
development of ASAP.

BRAIN-COMPUTER INTERFACES AND
REAL-TIME NEUROIMAGING

The term Brain-Computer Interface (BCI) was coined by Jacques
Vidal, a visionary engineer (Vidal, 1973). However, the field only
emerged two or three decades after it was named, when computer
power and brain acquisition techniques enabled the real time
processing of brain signals. Since then, and although BCI is still
in its infancy (an international society has only just been created),
the community has grown tremendously, and applications have
widened accordingly (e.g., Moxon and Foffani, 2015), and there
is now a demand for the development of advanced wearable
acquisition devices (Mullen et al., 2015). Today, BCI requires not
only engineers but also neuroscientists and clinicians to tackle its
multidisciplinary challenges.
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Less than a year ago, a European consortium of BCI experts
drew a roadmap for the field (Brunner et al., 2015). They
defined BCI as a system which (i) converts brain signals into an
estimated brain state or command for a machine, (ii) operates
online, and (iii) provides (explicit or implicit) feedback to
the user. This consortium also listed the main categories of
applications that BCI is targeting. These includes “replacing”
a lost function (e.g., with neuroprosthetics), “restoring” a
lost function (e.g., through brain-controlled functional-electric-
stimulation), “improving” rehabilitation protocols by including
direct brain measures in the loop (e.g., for biofeedback-
based rehabilitation after stroke), “enhancing” an interaction,
for instance a learning path, by monitoring states such as
vigilance and mental work-load. Finally, they acknowledge a
last but not least scenario which is the usefulness of BCI for
research.

Since the aim of BCI is to decode brain activity, it is
tightly bound to research studies on the neural correlates of
various mental states. Exploring how BCI decoding performance
evolves with the nature, the number, the size, and the
variety of the recorded neuronal populations thus provides
important insights into how the brain encodes information
(Nicolelis and Lebedev, 2009).

More importantly, at least for us, is that the BCI loop
instantiates a dyadic system in which the brain not only
adapts to the ongoing interaction, but the machine also adjusts
its behavior online (Mattout, 2012). This adjustment should
be driven by the objective of the BCI and based on the
sequence of brain states that can be inferred online from
brain activity. Whereas typical BCIs have the clear objective
to optimize the interaction for a given patient (e.g., autonomy
of movement, communication. . . ), ASAP offers a generic and
principled way to optimize another objective: neurocognitive
hypothesis testing.

ASAP relies on Bayesian inference for model fitting andmodel
comparison. This corresponds to the perceptual and learning part
of the Active Sampling process. The Bayesian framework and the
type of models ASAP can deal with are summarized in the next
section.

Adjusting the experimental design online relies on a Bayesian
decision-theoretic criterion which prescribes the maximization
of design efficiency or, equivalently, the minimization of the error
risk in model comparison. This step corresponds to the action
part of the Active Sampling process. It is described in the next
section.

COMPUTATIONAL NEUROSCIENCE AND
MODEL-BASED NEUROIMAGING

Functional neuroimaging has evolved toward the use of more
and more advanced models to refine the types of neurocognitive
hypotheses that can be tested with either PET, fMRI, EEG, or
MEG (Friston, 2009). These models are generative models of how
brain responses are shaped and modulated by incoming sensory
inputs and contextual factors. In their most generic form, they are
referred to as dynamic causal models (DCM; Friston et al., 2003;

Stephan et al., 2007) and write

ẋ = f (x, θ, u) (1)

y = g (x, ϕ, u) + ε

where unobserved or hidden state variables x evolve in time as
prescribed by function f , depending on current state x, unknown
parameters θ and external inputs or contextual factors u. States
x map onto observed data y through function g which depends
on unknown parameters ϕ. Data y are usually corrupted by some
additive noise ε.

Let us consider the modeling of EEG or MEG signals. Then
x typically describes some neuronal states in a network of
interacting brain regions. θ typically refers to the connection
strength between brain regions, while u may indicate the nature
of the stimulus. y corresponds to measured signals in space
and time. A few examples of DCM include characterizing
differences in evoked (David et al., 2006), induced (Chen et al.,
2008), or steady-state responses (Moran et al., 2009) in terms
of modulations of effective connectivity in a cortical network.
For instance, it has been used to explain mismatch responses
to deviant auditory stimuli and has helped distinguish between
minimally conscious patients and patients in a vegetative state
(Boly et al., 2011).

Interestingly, the same kind ofmodels can be used to represent
mental processes such as learning and decision making (Mathys
et al., 2014). In these cases, the evolution function f embodies
the learning process which updates the hidden cognitive variable
x (e.g., the probability of getting a reward when faced with
a two alternative choice u), depending on parameters θ (e.g.,
the confidence in predicting the reward associated with each
alternative). Then state x predicts the observable outcome y (e.g.,
the participant’s choice). This kind of model predicts behavior
but can also be used in model-based neuroimaging to distinguish
between learning styles in certain contexts (Behrens et al., 2008).

These models mentioned above pertain to how an
experimenter represents the physiological or psychological
processes at play in the subject’s brain. Importantly, one can
assume that the subject entertains the same kind of models
to represent the generative process a computer program is
implementing, so that he can predict future sensory inputs
and optimize his behavior (Daunizeau et al., 2010). This view
is in line with the so-called Bayesian brain hypothesis and
the Free-energy principle (Friston et al., 2011), whereby, in
a common framework, perceptual learning and inference are
necessary to induce prior expectations about the observable
data. Furthermore, action is engaged to resample the world to
fulfill expectations. This places perception and action in intimate
relation and accounts for both with the same principle.

In contrast with the above examples, the meanings of variables
u and y are swapped here. Indeed, the subject now entertains
a model of its environment whose outcome is the displayed
stimulation y, which may or may not depend on some earlier cue
u (possibly incorporating the subject’s earlier actions).

In the above example of monitoring probability x of
getting a reward by selecting a particular action, the way
the subject updates x over trials relies itself on inverting a

Frontiers in Human Neuroscience | www.frontiersin.org 3 July 2016 | Volume 10 | Article 347

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Sanchez et al. Active SAmpling Protocol (ASAP)

DCM predicting how the computer is generating those rewards.
This is referred to as a meta-Bayesian approach in the sense
that a probabilistic model of how the subject is perceiving
the task is encapsulated in a probabilistic model of how the
measured (physiological or psychological) data are generated
from the hidden perceptual variables (Daunizeau et al., 2010).
In this sense, the meta-Bayesian approach incorporates all
the previously-mentioned model-based approaches that are
used in neuroimaging nowadays and which are at the heart
of the new field of computational psychiatry in particular
(Adams et al., 2016).

PRINCIPLES OF ACTIVE SAMPLING
PROTOCOL (ASAP)

DCMs can be inverted and compared using Bayesian techniques.
Moreover, variational techniques and the Laplace assumption
(Friston et al., 2007) provide robust approximate inference on
models and model parameters which can be performed online
(Sanchez et al., 2014). Here are the main computational aspects
of this online inference process.

Consider K alternative models {Mk}k∈[1,K]. At each trial t, the
posterior probability of each model will be updated based on
prior knowledge and new observation yt following Bayes rule

p
(

Mk

∣

∣ yt, ut
)

∝ p
(

yt
∣

∣ Mk, ut
)

pt (Mk) (2)

under the constraint

∑

k∈[1,K]

p
(

Mk

∣

∣ yt, ut
)

= 1 (3)

At the beginning of the experiment, prior to any observation, all
models are usually considered as equally likely

∀ k ∈ [1,K] , p0 (Mk) = 1/K (4)

then Bayesian learning relies on updating the prior over models
with the latest posterior

∀ k ∈ [1,K] , pt (Mk) = p
(

Mk

∣

∣ yt−1, ut−1

)

(5)

Finally, model log-evidence log p
(

yt
∣

∣ Mk, ut
)

is approximated
by the variational free energy Fk,t . In variational Bayes, the free
energy is maximized iteratively. At convergence, it can be used
for model comparison since it expresses a trade-off between the
quality of fit and model complexity (Penny, 2012).

Importantly for ASAP, the free energy of each model and
hence model posteriors depend on design variable ut . This means
that at each trial, after having updated our belief from past
observations, one could choose the next design parameter ut so
as to optimize some criterion over model-free energies. Since
we are interested in optimizing model comparison, the most
natural criterion is the minimization of the risk of a model
selection error. For general DCMs, as described above, it has been
shown that this risk Qe can be approximately minimized with
respect to design variable ut by maximizing the Jensen-Shannon

divergence, also referred to as the design efficiency (Daunizeau
et al., 2011)

DJS (ut) = H





∑

k∈[1,K]

p
(

yt
∣

∣ Mk, ut
)

pt (Mk)





−
∑

k∈[1,K]

pt (Mk)H
(

p
(

yt
∣

∣ Mk, ut
))

(6)

where H indicates Shannon’s entropy.
At trial t, design optimization consists in selecting the design

variable ut that maximizes the above Jensen-Shannon entropy.
At each trial, ASAP thus alternates between optimizing the free
energy for each model and computing the design efficiency for
each possible design value ut . This is the principle of Active
Sampling or Active Inference (Friston et al., 2011), whereby
action is guided by online inference and vice versa. It is depicted
in Figure 1, in contrast to classical (offline) experimental design.

We have previously shown in earlier simulations that ASAP
can yield more accurate and faster experiments (Sanchez et al.,
2014). Using a new toy example, we here illustrate the type of
adaptive design ASAP may come up with in order to disentangle
alternative models of perception.

SYNTHETIC EXAMPLE: DISENTANGLING
BETWEEN ALTERNATIVE PERCEPTUAL
MODELS

We consider a virtual task where subjects are passively observing
a sequence of stimulations which can only take two values: a
frequent and a rare one. What may vary in the design (variable
u) is the number of frequent stimuli in between two rare stimuli.
This theoretical situation is reminiscent of oddball paradigms
where a component known as the mismatch negativity (MMN)
can be measured with EEG and has been linked to prediction
error in perceptual learning (Lecaignard et al., 2015). In our
example, we assume we capture a noisy measure of prediction
error (the data y) after each rare stimulus has been perceived.

We consider 3 alternative models. For each model, the
following equations give the outcome of the predicted response,
namely the proxy yt for the evoked response at trial t:

The “Null” model (NM) simply predicts noisy data with no
dependency on the sequence of stimuli.

yt = C0 + ε (1)

ε ∼ N (0, σ )

The “Change Detection” model (ChangeD) produces a binary
output reflecting the detection of a change in the number of
preceding frequent stimuli, from one rare stimulus to the next.

yt =

{

C0 + ε, if ut = ut−1

C1 + C0 + ε, if ut 6= ut−1
(2)

The “Learning” model (LM) updates a prediction of the exact
number of preceding frequent stimuli. Similar models have
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FIGURE 1 | Active SAmpling Protocol (ASAP). General principles of ASAP (right red panel) vs. classical (left green panel) designs as enabled by applying principles

from Brain-Computer Interfaces (BCI), namely processing human electrophysiological or neuroimaging data online to optimize basic or clinical neurocognitive

hypothesis testing.

been explored to explain trial-to-trial changes in EEG evoked
responses in oddball paradigms (Ostwald et al., 2012).

yt = BS
(

p (xt | ut) , p (xt−1)
)

∗ C1 + C
0
+ ε (3)

where







x ∼ Gamma (G,D)

Gt = exp
(

− 1
τ

)

∗ Gt−1 + ut
Dt = exp

(

− 1
τ

)

∗ Dt−1 + 1

Where BS indicates the Bayesian surprise or Kullback-Leibler
divergence between the prior and posterior distributions over
state xt which is the predicted number of preceding frequent
stimuli. xt is updated following Bayes rule but assuming a
forgetting mechanism with single parameter τ as in (Ostwald
et al., 2012).

In our simulations, parameters C0 and C1 were set to 0.7 and
0.5, respectively. τ was set to 5 and the noise precision or inverse
variance was fixed at 10.

We compare ASAP with a classical roving-type design
which introduces volatility in stimulus presentation and has
been already used with success to reveal implicit perceptual
learning processes (Ostwald et al., 2012). With each design,
we simulated 50 different subjects under (true) model LM
or ChangeD, in 200-trial experiments. These simulations
were performed with the VBA toolbox (Daunizeau et al.,
2014).

Figure 2 illustrates our main results. Bottom panels in
Figures 2A,B enable us to compare ASAP with a classical (static)
design, on average.

Interestingly, when LM is the true model (Panel A), that is
a fairly complex dynamical model whose behavior will depend
upon the history of stimulations, ASAP proves able to conclude
much more often than the classical design after 200 trials
(in ∼80% and less than 20% of the simulated experiments,
respectively). In contrast, when ChangeD is the true model
(Figure 2B), that is the most common model used to study
deviance responses, the classical design is sufficient to conclude.
However, ASAP proves significantly faster, enabling to shorten
the experiment by more than a quarter.

These results emphasize two important strengths of ASAP. On
the one hand, even though appropriate designs could be defined
in a static fashion, prior to any data acquisition, like when having
to identify a fairly simple (static) model, ASAP proves faster in
concluding. On the other hand, when no obvious design can be
defined in advance, especially in the case of complex dynamical
true models, ASAP proves able to reach conclusion by coming up
with an appropriate and more complex design, while the classical
design simply fails to conclude.

Although somewhat anecdotal, the two detailed simulation
examples (Figures 2A,B, top and middle) do highlight these two
aspects in a useful way. Remember that the same roving classical
design is used in both cases (see green curves on top panels A
and B).
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FIGURE 2 | Results of synthetic experiments comparing ASAP with a classical (static) design (see main text for details). (A) True model used for

simulation = “Learning” model (LM). (B) True model used for simulation = “Change Detection” model (ChangeD). Top panel: single example of a stimulation sequence

produced by ASAP (red) and by a roving-type classical design (green). Middle panel: dynamics of model posterior probabilities over trials, for the example shown in the

top panel. For each experimental design, the plain, dashed and dotted lines correspond to models LM, ChangeD, and NullM, respectively. Bottom panel: Proportion

of correct conclusions over the 50 simulated experiments for each design.

Interestingly, when ChangeD is the true model (the model for
which a roving paradigm is well-suited, Figure 2B), the correct
conclusion is eventually reached with the classical design, after
enough data have been acquired in order to reject the null
model (NullM). Model LM is appropriately discarded due to
its higher complexity and its inadequacy compared to ChangeD
in accounting for trial wise observations. ASAP exhibits the
same kind of dynamics in model comparison but is much faster
in reaching the correct conclusion. On top Figure 2B (ASAP’s
design, red line), it can be seen that a first and short phase consists
of a highly volatile design, followed by a longer phase made of
a fairly stable one. The first phase is efficient in discarding LM
while the following phase is efficient in disentangling between
ChangeD and NullM.

Now when LM is the true model (Figure 2A), the classical
design succeeds in discarding ChangeD but fails in disentangling
LM from NullM. This is because in presence of noisy data, this
design is not volatile enough to conclude in favor of a complex
model like LM. In contrast, ASAP is successful in picking up
LM as the right model. Again, ASAP seems to follow two phases

in this example. In the first short phase, ASAP uses a fairly
stable design that is efficient in discarding ChangeD, while the
second and long phase exhibits a complex volatile pattern which
enables to conclude in favor of the true complex dynamical
model (LM).

CONCLUSION

Active SAmpling Protocol (ASAP) builds on advances in
real-time neuroimaging, brought about by Brain-Computer
Interfaces. ASAP aims to optimize neurocognitive hypothesis
testing. This optimization rests on the principle of sequential
hypothesis testing, namely adaptive design optimization (Myung
et al., 2013). In the Bayesian framework, this optimization can
be generalized to one of the most generic forms of generative
models, namely dynamic causal models (Daunizeau et al., 2011).
On simulations, we showed earlier (Sanchez et al., 2014), and
confirmed here, that ASAP can conclude better and faster than
classical designs.
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Here we highlight the importance of ASAP for adaptively
optimizing hypothesis testing. The same principle, however,
applies to the optimization of parameter estimation and ASAP
can also be extended to the comparison of families of models
(Daunizeau et al., 2011). Beyond the optimization of experiments
at the level of each individual, it can also be used to better design
group-based clinical trials (Wathen and Thall, 2008).

The ideas behind ASAP have recently attracted attention
in various fields. For instance adaptive designs were used
to optimize parameter estimation of psychophysical functions
(Kujala and Lukka, 2006) or single neuron responses (Lewi et al.,
2009). In the latter, the authors also use an information theoretic
measure to select the most appropriate stimuli. Although ASAP
could also optimize the estimation of model parameters, we here
emphasize another and broader objective, namely hypothesis
testing, which calls for a different optimization criterion.

In the field of functional neuroimaging (fMRI), a few studies
have also used dynamical design approaches. Only to mention
the most related ones, those studies aimed at efficiently exploring
a large stimulus space in the aim of identifying the stimulus
subspace that best maps onto some given brain state (e.g., the
activity pattern in a given brain region) (Cusack et al., 2012;
Lorenz et al., 2016). Importantly, while these approaches are
informative in revealing the existence of a particular mapping
between stimulus space and some targeted brain responses,
they do not consider explicit hypothesis about the mapping
between the two. In contrast, ASAP provides a formal way
of optimally comparing alternative generative models, relating
incoming inputs or instructions with observations (neuronal,
behavioral or both).

We showed that ASAP can be applied in a generic fashion to a
wide range of mathematically-defined hypotheses. We advocate
that its application may trigger a paradigm shift in cognitive
neuroscience by promoting hypothesis-driven and individually-
tailored experiments that will be optimized both in terms of
their conclusions and durations. Furthermore, because they
are based on explicit mathematical models, these experiments
should be easier to reproduce. They may also enable inter-
subject variability to be formally addressed. Clinically, they may
prove particularly useful in developing quantitative and specific
diagnostic approaches, which is a highly relevant objective in
modern psychiatry. Finally, optimizing the experiment’s length
and the total number of subjects required for group studies may
prove economically advantageous.

However, some important challenges need to be addressed
before ASAP could be used routinely. One of the most important
is the need to deal with artifacts online. Clearly, this is not a
trivial task, as one has to correct or reject data based on only
a few observations and under tight time pressure. Our current

simulations consider noisy but artifact-free data. Empirically,
it is important to compare ASAP to the traditional offline
approach on real (artifacted) data. Depending on the task and
features of interest, the predicted advantage to ASAP might be
overestimated in such simulations. Several arguments suggest
that its advantage should remain significant, however, even
though artifact correction or rejection might not be as efficient
as in off-line data processing. First, this challenge is being shared
with all BCI applications and a lot of progress has already
been made in this direction (see for example Barachant et al.,
2013). Second, since ASAP is an hypothesis-driven approach,
only part of the data features are processed online which helps
to reduce the nuisance of artifacts, simply because only part
of the data in space, time, and frequency will be analyzed.
Finally, even when some physiological responses have to be
discarded ASAP can still update the subject’s belief given the
presented stimulus, the hypothesized model, and the possible
behavioral response. Of course, the cost of this will be a longer
experiment.

Another aspect is the computational burden. Depending on
the task, its timing, the number and complexity of the alternative
hypotheses, and the number of alternative design values, ASAP
might or might not be able tomake the required computation fast
enough. This will have to be explored empirically and optimized
as much as possible.

Finally, important extensions include applying the principle
of Adaptive Design Optimization not only to single subjects
but also at the population level (Kim et al., 2014), as well
as questions like what horizon in time should be considered
for online design optimization. Provided that those crucial
points can be addressed, we envisage that ASAP may prove
particularly useful for diagnosis, especially as the field progresses
toward the identification of functional markers of psychiatric and
neurological diseases.
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