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Stability and bifurcations in transportation networks with

heterogeneous users

Leonardo Cianfanelli, Giacomo Como and Tommaso Toso, Member, IEEE

Abstract— A critical aspect in strategic modeling of trans-
portation systems is user heterogeneity. In many real-world
scenarios, e.g., when tolls are charged and drivers have different
trade-offs between time and money, or when they get informed
about current congestion by different routing apps, modeling
users as rational decision makers with homogeneous utility
functions becomes too restrictive. While global asymptotic
stability of user equilibria in homogeneous routing games is
known to hold for a broad class of evolutionary dynamics, the
stability analysis of user equilibria in heterogeneous routing
games is a largely open problem. In this work we study the logit
dynamics in heterogeneous routing games on arbitrary network
topologies. We show that the dynamics may exhibit bifurcations
as the noise level of the dynamics varies, and provide sufficient
conditions for asymptotic stability of user equilibria.

Index Terms— Transportation networks, Logit dynamics,
Wardrop equilibrium, Heterogeneous routing games.

I. INTRODUCTION

Due to the rising congestion level of urban areas and the
fast-increasing pervasiveness of novel intelligent technology
that is having a huge impact on the transportation system, the
analysis, design, and control of traffic networks have received
renewed attention. A key aspect to be properly addressed
in this research is the fact that routing apps and other
information technology systems are completely reshaping
users’ behaviour. Given the increasing amount of available
information and the selfish and often competing objectives of
the users, it is natural to incorporate game-theoretic aspects
in traffic models.

An important aspect in game-theoretic traffic models is
concerned with the user preferences. The most popular model
assumes homogeneity, i.e., that all users make decisions
based on identical utility functions, given their available
information [1]. However, this assumption may prove too
restrictive to model many real-world scenarios of inter-
est, e.g., when drivers use different routing apps [2], [3],
when fuel consumption or monetary tolls constitute a non-
negligible fraction of the cost and users have different trade-
offs between time and money [4], [5], or when users have
different knowledge on the available routes [6]. Homoge-
neous models have been first generalized in [7] to account
for heterogeneity of the utility functions. From now on,
we shall refer to heterogeneous routing games to denote
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game-theoretic models that incorporate user heterogeneity,
in contrast with homogeneous routing games, which do not
consider this aspect.

Besides user heterogeneity, another crucial aspect in game-
theoretic models is the evolution of network flows under
evolutionary dynamics, which describe how users revise
their strategies. The distinction between homogeneous and
heterogeneous routing games has several implications on the
properties of the game, in particular on the stability of the
user equilibria under evolutionary dynamics. While global
asymptotic stability of user equilibria in homogeneous rout-
ing games is known to hold for a broad class of evolutionary
dynamics [8], their stability in heterogeneous routing games
is a largely open issue. Besides the theoretical interest, stabil-
ity of equilibria has practical implications and paves the way
for control applications. Indeed, since heterogeneous routing
games may admit multiple user equilibria [9], understanding
whether the network flows will converge to an equilibrium,
and identifying which one will be selected by the dynamics
in case of non-uniqueness, are fundamental questions for
a system planner that aims at optimizing the transportation
network performance.

In most of the literature dealing with user heterogeneity,
a big effort is spent to analyse the static properties of the
equilibria, but the stability of such equilibria is typically not
investigated [2], [3], [4], [10], [11], implicitly assuming that
the network flows converge to the equilibria of the game.
However, this assumption is not always justified and requires
to be further motivated. To the best of our knowledge, the
only stability result in heterogeneous routing games states
that a sufficient condition for global asymptotic stability of
the equilibria is that the graph has parallel routes, or it is the
series composition of graphs with parallel routes [12].

In this work we investigate the behaviour of the logit
dynamics, which models users that aim at choosing optimal
routes, but due to imperfect information or incomplete ratio-
nality may sometimes select suboptimal ones. We establish
novel results that hold for every heterogeneous routing game,
independently of the network topology. Our contribution is
the following. We first characterize the set of fixed points
of the logit dynamics (the expression fixed points is used
in this context to avoid any source of confusion between
equilibrium points of the logit dynamics and user equilibria
of the routing game), and prove that such a set approaches
a subset of the Wardrop equilibria of the game (called limit

equilibria) in the vanishing noise limit. We then show that
all the strict equilibria of the game (i.e., equilibrium flows
under which every population uses a single route and all the
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other routes are strictly suboptimal) belong to the set of limit
equilibria, and prove their local asymptotic stability under the
logit dynamics. We also show that, in the large noise limit,
the logit dynamics admits a globally asymptotically stable
equilibrium in every heterogeneous routing games. Finally,
we conduct numerical simulations to validate our theoretical
results, and show that the dynamics may exhibit bifurcations
as the noise varies, in contrast with the behaviour observed
in homogeneous routing games.

The rest of the paper is organized as follows. In Section
II we define heterogeneous routing games, introduce the
logit dynamics, and discuss a motivating example. In Section
III we establish our novel results on the logit dynamics
in heterogeneous routing games. Finally, in the conclusive
Section IV, we summarize the results and discuss future
research lines.

Notation

Let R and R+ denote the set of real numbers and non-
negative reals. Given a finite set X , we let RX the space of
real-valued vectors whose elements are indexed by X , and
|X | denote the cardinality of X . Let δ(i), 1, 0, and I denote
the vector with 1 in position i and 0 in all the other positions,
the vector of all ones, the matrix of all zeros, and the identity
matrix, respectively, where the size may be deduced from
the context. The distance between a point y in Rn and a set
X ⊆ Rn is defined as

dist(y,X ) = inf{||y − x|| : x ∈ X} ,

II. MODEL

In this section we define the model and discuss a motivat-
ing example. Specifically, in Section II-A we describe hetero-
geneous routing games. Then, in Section II-B, we introduce
the logit dynamics and provide numerical simulations of the
dynamics in a heterogeneous routing game.

A. Heterogeneous routing games

We model the transportation network as a directed multi-
graph G = (N , E), with node set N and link set E .
We consider a finite set P of users populations. Let each
population p in P have an origin-destination pair (op, dp) in
N ×N and let vp ≥ 0 denote the throughput of population
p. We then stack all throughput values in a vector v ∈ RP

+.
Let Rp denote the set of routes from op to dp,

Zp = {zp ∈ R
Rp

+ : 1′zp = vp}

indicate the set of the admissible route flows for population
p, and Z denote the product of such sets. Every route flow
z ∈ Z induces a unique link flow via

f =
∑

p∈P

Apzp, (1)

where Ap ∈ RE×Rp is the link-route incidence matrix, with
entries Ap

er = 1 if the link e belongs to the route r, or
0 otherwise. The populations differ in the origin-destination
pair and in the delay functions according to which they make

decisions. Let τpe : R+ → R+ denote the delay function of
link e ∈ E for population p ∈ P , which is assumed a non-
decreasing function of fe to take into account congestion
effects. We also assume that τpe ∈ C1. The cost of a route
r is defined as the sum of the delay functions of the links
belonging to the route, i.e.,

cpr(z) =
∑

e∈E

Ap
erτ

p
e (fe), (2)

where, given z ∈ Z , the link flow f is computed via (1).
Definition 1: A heterogeneous routing game is a quadru-

ple (G, P , τ, v), where τ is the vector collecting the delay
functions of every link and population.

We assume that the users behave as players in a game-
theoretic setting, taking route with minimal cost. This be-
haviour is captured by the notion of Wardrop equilibrium.

Definition 2 (Wardrop equilibrium): A Wardrop equilib-
rium is an admissible route flow z ∈ Z such that for every
population p ∈ P and route r ∈ Rp

zpr > 0 ⇒ cpr(z) ≤ cpq(z) ∀q ∈ Rp. (3)

A Wardrop equilibrium z is called strict if zp = vpδ(r) for
a route r ∈ Rp and cpr(z) < cps(z) for every s ∈ Rp \ {r}.

In other words, under Wardrop equilibrium flow, no user
can unilaterally decrease her cost by changing route, because
every used route by a population is optimal for that popula-
tion. An equilibrium is called strict if every population uses
one route only and the other routes are strictly suboptimal.
We let Z∗ and Z∗

s denote the set of Wardrop equilibria and
strict Wardrop equilibria of a routing game, respectively. It
is proved in [8, Theorem 2.1.1] that Z∗ is never empty,
i.e., there exists at least a Wardrop equilibrium. Moreover,
standard arguments allow to state that Z∗ is also compact.

B. Logit dynamics

While the description made so far is completely static,
we now endow routing games with evolutionary dynamics.
These are continuous-time dynamical systems that describe
how users revise their decisions. In this work we focus
on the logit dynamics. The logit dynamics arises from the
mean-field limit (in the spirit of Kurtz’s theorem [13]) of
the noisy best response dynamics of classical game theory,
which describes users that aim at choosing optimal routes,
but sometimes select suboptimal ones due to the presence of
noise. Formally, the logit dynamics reads, for every p ∈ P
and i ∈ Rp,

żpi = vp
exp(−cpi (z)/η))

∑

j∈Rp
exp(−cpj (z)/η)

− zpi , (4)

where η ∈ (0,+∞) is the noise level. We refer to logit(η)

to denote the continuous-time dynamical system (4) for a
given value of η. The value of η describes how suboptimal
the choices of the users are. As η → +∞, the users select
routes with uniform probability distribution, independently
of the route cost, i.e.,

żpi =
vp
|Rp|

− zpi .
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p vp τp1 (f1) τp2 (f2) τp3 (f3) τp4 (f4) τp5 (f5) τp6 (f6)
1 1.2 19+f1 19+f2 100 19+f4 100 19+f6
2 1 19+f1 20f2 100 19+f4 21+f5 100
3 1 19+f1 100 21+f3 19+f4 100 20f6

Fig. 1. A heterogeneous routing games possessing multiple Wardrop
equilibria [14].

As the noise η decreases, the users tend to assign a larger
probability to routes with smaller cost. In the limit of
vanishing η, the dynamics converge to the best response
dynamics, where users sample uniformly random among
the optimal routes and choose suboptimal ones with zero
probability.

It is known that, for homogeneous routing games, i.e.,
when |P| = 1, for every η > 0 the logit dynamics admit a
globally asymptotically stable fixed point zη and that such
zη converges to the set of Wardrop equilibria as η tends to
vanish, i.e.,

lim
η→0+

dist(zη,Z
∗) = 0 .

In contrast, the following example illustrates how much more
complex behaviors can emerge in case of heterogeneous
congestion games, i.e., when |P| ≥ 2.

Example 1: Consider the heterogeneous routing game in
Figure 1 (due to [14]). We assume that all the populations
have the same origin-destination pair (o, d), and let

r1 = (e1, e2), r2 = (e1, e3), r3 = (e4, e5), r4 = (e4, e6)

the routes from o to d. By some computations, one can
prove the existence of the following Wardrop equilibria:

1)











z11 = 1.2, z14 = 0

z21 = 0, z23 = 1

z32 = 0, z34 = 1

2)











z11 = 0, z14 = 1.2

z21 = 1, z23 = 0

z32 = 1, z34 = 0

3)











z11 = 3/5, z14 = 3/5

z21 = 10/21, z23 = 11/21

z32 = 11/21, z34 = 10/21.

By plugging the equilibria flows in the cost functions one
can show that the first two equilibria are strict. Figure 2
provides numerical simulations of the logit dynamics for this
example. The simulations are conducted with four different
values of η, and two trajectories corresponding to different
initial conditions are illustrated, projected onto the space of
the aggregate route flows w =

∑

p z
p (notice that w is well
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Fig. 2. Numerical simulations of the logit dynamics for heterogeneous
routing game in Example 1. For every value of η, we plot two trajectories
corresponding to different initial conditions. The trajectories are projected
in the space of the aggregate route flow w.
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Fig. 3. Bifurcation diagram of logit(η) of Example 1. For simplicity we
plot the first component of link flow only, but similar diagrams may be
shown for the other components.

defined in this example, since all the populations have same
origin-destination pair and route set). As η = 106 (large noise
limit) both the trajectories converge to a fixed point in which
all the populations distribute uniformly over the route set. As
the noise decreases (η = 1/2), the asymptotic state of the
system varies, but the trajectories still converge to a unique
fixed point. For smaller η, the system exhibits a bifurcation.
Specifically, the two trajectories converge to different fixed
points, which approach the two strict equilibria of the game
as η decreases. We observe from Figure 3 that the system
exhibits a pitchfork bifurcation. By numerical simulations
one can observe that the critical value for the bifurcation is
η∗ + 0.31. If η > η∗, the system admits a globally asymp-
totically stable fixed point. If η < η∗, such a fixed point
becomes unstable, and two stable fixed points approaching
the strict equilibria arise. The unstable fixed point converges
to the third Wardrop equilibrium as η tends to vanish, thus
showing that all the Wardrop equilibria are accumulation
points of sequence of fixed points of the dynamics, despite
the third one being unstable. In the next section we shall
provide our theoretical results, which formalize some of the
observations of this section.

III. MAIN RESULTS

In this section we present our main results characterizing
the fixed points of the logit dynamics and their stability in
heterogeneous routing games.

Our first result shows that the set of the fixed points is
non-empty and compact for every noise level, and that the
fixed points approach a subset of Wardrop equilibria of the
game (called limit equilibria) in the limit of vanishing noise.
Moreover, we show that every strict equilibrium belongs to
the set of the limit equilibria. In order to formulate the results
properly, for every η ∈ (0,+∞) we let Ωη ⊆ Z denote the
set of fixed points of logit(η), and let Ω0 denote the set of
accumulation points of convergent sequences of fixed points

of the logit dynamics as the noise vanishes, i.e.,

Ω0 = {z ∈ Z : ∃ (ηn)n, ηn → 0, zn ∈ Ωηn
, zn → z} .

Theorem 1: Let Z∗ ⊆ Z be the set of Wardrop equilibria
of a heterogeneous routing game, and consider the associated
dynamics logit(η) defined in (4). Then:

(i) Ωη is non-empty and compact for every η > 0;
(ii) Ω0 is a non-empty compact subset of the Wardrop

equilibria, i.e.,

Ω0 ⊆ Z∗;

(iii) all strict Wardrop equilibria (if any) belong to Ω0, i.e.,

Z∗
s ⊆ Ω0.

Moreover, for every strict equilibrium z∗ ∈ Z∗
s , there

exists η̃ > 0 and a family of vectors (zη)η<η̃ ⊆ Z
such that

lim
η→0+

zη = z∗,

with zη asymptotically stable fixed point of logit(η).
Proof: See Appendix I.

Throughout the paper, we shall refer to Ω0 as the set of
limit equilibria of the routing game. Theorem 1 states that
the set of limit equilibria is a nonempty compact subset of
Wardrop equilibria that includes all strict Wardrop equilibria
(if any). Moreover, in addition to being approximated by
fixed points of the logit dynamics, strict equilibria are also
locally asymptotically stable under the dynamics in the
vanishing noise limit.

Remark 1: This result must be compared with the existing
literature. It is known that interior evolutionary stable states z
of populations game admit a neighborhood of z such that, for
large enough η, there exists one and only one fixed point of
logit(η) [8, Theorem 8.4.6]. Moreover, such fixed points are
locally asymptotically stable in the limit of vanishing noise.
Although strict equilibria are evolutionary stable states, they
are not interior, thus violating one of the assumptions of [8,
Theorem 8.4.6] and making our result original.

In the next part of this section we investigate the asymp-
totic behaviour of the logit dynamics in the large noise limit.
The next result states that in this regime the logit dynamics
admits a globally exponentially stable fixed point for every
routing game.

Theorem 2: Let (G, P , τ, v) be a heterogeneous routing
game, and consider the corresponding logit(η) defined in (4).
Then, there exists η > 0 such that logit(η) admits a globally
exponentially stable fixed point for every η ∈ (η,+∞).

Proof: See Appendix II.

The results established in Theorems 1-2 characterize the
behaviour of the logit dynamics in heterogeneous routing
games independently of the network topology, and explain
the numerical simulations of Example 1. In particular, the
theorems suggest that, if a heterogeneous routing game
admits multiple strict equilibria, then the logit dynamics
admit a bifurcation, as shown in Example 1. We conclude
this section with some remarks.



Remark 2: The behaviour of the logit dynamics in het-
erogeneous routing games must be compared with stabil-
ity results in homogeneous routing games. The asymptotic
global stability of equilibria in homogeneous routing games
relies on the fact that homogeneous routing games admit a
convex potential function V (z) [15], i.e., Wardrop equilibria
z̃ correspond to solutions of the convex program

z̃ ∈ argmin
z∈Z

V (z).

The existence of a convex potential implies that

Vη(z) := V (z) + η
∑

i∈R

zi log
(zi
v

)

,

is a strictly convex Lyapunov function of logit(η), hence
the unique minimizer of Vη , denoted by zη, is glob-
ally attractive for the dynamics. As η tends to vanish,
limη→0+ dist(zη,Z∗) = 0, i.e., the asymptotically globally
stable fixed of the dynamics converges to the set of the
Wardrop equilibria of the game. Observe that, since the
potential V (z) is convex, the set of the Wardrop equilibria
is convex. However, as stated for heterogeneous routing
games in Theorem 1-(ii), the fixed points of the dynamics
approach the set of the Wardrop equilibria of the game as
the noise vanishes, but not every Wardrop equilibrium is an
accumulation point of fixed points of the logit dynamics.
Strict equilibria play a special role also in homogeneous
routing games. Indeed, if a homogeneous routing game game
admits a strict equilibrium z̃, then z̃ is isolated and Z∗ is a
singleton. Therefore, if a homogeneous routing game admits
a strict equilibrium z̃, then z̃ is globally asymptotically stable
in the vanishing noise limit. Observe that the local asymptotic
stability of strict equilibria in heterogeneous routing games
established in Theorem 1-(iii) is a weaker result compared to
the global asymptotic stability established for homogeneous
routing games. We remark that this limitation is an intrinsic
property of heterogeneous routing games. Indeed, as illus-
trated in Example 1, heterogeneous routing games may admit
multiple strict equilibria, hence global asymptotic stability of
strict equilibria does not hold in general.

Remark 3: Similar considerations as in Remark 2 apply to
heterogeneous routing games that admit a convex potential.
While in general heterogeneous routing games do not admit
a potential function [8], [16], if the delay functions satisfy
the symmetry condition

∑

e∈i∩j

(τpe )
′ =

∑

e∈i∩j

(τqe )
′ ∀p, q ∈ P , i ∈ Rp, j ∈ Rq, (5)

then the game admits a potential function. Such a condition
is satisfied for instance if the populations differ only in the
origin-destination pair, or if constant tolls are charged and
the populations differ in the toll sensitivity, i.e., the delay
functions (including tolls) are in the form

τpe (fe) = τe(fe) + αpωe. (6)

Indeed, one can prove that

V (z) =
∑

e∈E

∫

∑
p(A

pzp)e

0
τe(s)ds+

∑

p∈P

∑

e∈E

αpωe(A
pzp)e

is a convex potential function for this class of games. While
in [4], [5] the existence and characterization of optimal
tolls for this class of heterogeneous games are provided,
the existence of a convex potential function guarantees that
optimal flows are globally asymptotically stable under the
logit dynamics when optimal tolls are charged. The existence
of a potential function is lost if tolls are in feedback form
instead of constant.

IV. CONCLUSIONS AND FUTURE RESEARCH

In this paper we investigate the asymptotic behaviour of
the logit dynamics in heterogeneous routing games. We show
that fixed points of the logit dynamics converge to a subset of
Wardrop equilibria (called limit equilibria) in the vanishing
noise limit, and that the set of the limit equilibria include
all the strict equilibria of the game. Additionally, we show
that strict equilibria are locally asymptotically stable in the
vanishing noise limit. Finally, we show that the dynamics
admits a globally asymptotically stable fixed point in the
large noise limit. Those results together suggest that if a
heterogeneous routing game admits multiple strict equilibria,
then the logit dynamics exhibits a bifurcation as the noise
varies, as shown in the numerical example of Example 1.

Future research lines include the complete characterization
of the limit equilibria in the vanishing noise limit. Our
conjecture is that every connected component of equilibria
admits one and only one limit equilibrium of the logit
dynamics. While strict equilibria have been proven to be
locally asymptotically stable, another open issue is a com-
plete characterization of the asymptotically stable equilibria
of heterogeneous routing game.

Another interesting direction is the application of our
theoretical results for the analysis of multi-scale dynamics,
the design of dynamic feedback tolls, and the optimization
of network interventions in heterogeneous congestion games.
While these problems have been addressed, e.g., in [17], [18],
and [19], respectively, for homogeneous preferences, we are
not aware of extensions of these results to the heterogeneous
case.
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APPENDIX I
PROOF OF THEOREM 1

(i) Consider the function G : Z × (0,+∞) → Z , with
components

Gp
r(z, η) = vp

exp(−cpr(z)/η)
∑

s∈Rp
exp(−cps(z)/η)

∀p ∈ P , r ∈ Rp.

Notice that logit(η) reads

żpr = Gp
r(z, η)− zpr , (7)

hence elements of Ωη coincide with fixed points of G(·, η).
Observe also that for every η > 0, G(·, η) is continuous and

maps the non-empty compact convex set Z in itself. Hence,
Brouwer’s fixed point theorem guarantees that G(·, η) admits
at least one fixed point in Z [20], i.e., the set of fixed points
Ωη is non-empty for every η > 0. Notice that Ωη is bounded
because Z is bounded and Ωη ⊆ Z . Moreover, since it is the
level set of a continuous function, Ωη is closed. Therefore,
the set Ωη is compact for every η > 0.

(ii) First, observe that Ω0 is non-empty because Z is
bounded, thus every sequence of elements in Z admits a
converging subsequence. Consider z̃ ∈ Ω0, and the cor-

responding sequences ηn (with ηn
n→+∞
−→ 0) and zn ∈

Ωηn
(with zn

n→+∞
−→ z̃). Consider a suboptimal route r

for population p under z̃, i.e., a route r ∈ Rp such that
cps(z̃) < cpr(z̃) for some s ∈ Rp. Then,

lim
n→+∞

Gp
r(zn, ηn) = 0. (8)

From (7) and (8) it follows

z̃pr = lim
n→+∞

(zn)
p
r = lim

n→+∞
Gp

r(zn, ηn) = 0.

Hence, z̃ is a Wardrop equilibrium according to Definition
1. This implies in particular that Ω0 ⊆ Z∗. Since Ω0 is
bounded, to establish compactness of Ω0 we need to prove
that Ω0 is closed. To this end, consider a converging sequence
(zk)k with zk ∈ Ω0 for every k, and let z̃ denote the limit

of the sequence, i.e., zk
k→+∞
−→ z̃. Our goal is to prove

that z̃ ∈ Ω0. By definition of Ω0, for every k, there exist

two convergence sequences (ηm)m (with ηm
m→+∞
−→ 0) and

(zmk )m (with zmk ∈ Ωηm
) such that zmk

m→+∞
−→ zk. This

implies the existence of mk such that

|zmk

k − zk| <
1

k
.

We now prove that zmk

k
k→+∞
−→ z̃. For every ε > 0, we take

k such that |zk − z̃| < ε/2 and k > 2/ε. Then,

|zmk

k − z̃| ≤ |zmk

k − zk|+ |zk − z̃| <
1

k
+

ε

2
< ε. (9)

Since zmk

k is by construction a fixed point of logit(ηmk
), (9)

shows that z̃ is an accumulation point of fixed points of the
logit dynamics and thus is contained in Ω0, concluding the
proof.

(iii) Consider a strict equilibrium z̃ ∈ Z∗
s , and let rp denote

the optimal route for population p, i.e., z̃p = vpδ(rp) for
every p ∈ P . For every ε ≥ 0, let

Oε = {z ∈ Z : zprp ≥ vp(1− ε) ∀p ∈ P},

be the set of route flows such that at least a fraction 1− ε of
agents of every population p use its optimal route rp. Note
that z̃ ∈ Oε for every ε ≥ 0. Let

α := min
p∈P

min
s∈Rp\{rp}

[cps(z̃)− cprp(z̃)] > 0.

Note that α > 0 is a consequence of z̃ being strict. We then
define ε to be the largest ε such that for every z ∈ Oε, for
every population p and route s ∈ Rp \ {rp}, the difference



between the cost of route s and the cost of route rp is at
least α/2, i.e.,

ε = max
{

ε ≥ 0 : min
z∈Oε

min
p∈P

min
s∈Rp\{rp}

[cps(z)−cprp(z)] ≥
α

2

}

.

Note that ε > 0, since the equilibrium is strict. We now show
that for every ε ∈ (0, ε] there exists ηε such that, for every
η ∈ (0, ηε], G(·, η) maps Oε in itself. To this end, observe
that for every ε ∈ (0, ε] and population p ∈ P , the route
rp is strictly optimal for every flow z ∈ Oε by construction
(recall the definition of ε), i.e.,

crp(z) < cs(z) ∀z ∈ Oε, p ∈ P , s ∈ Rp \ {rp}. (10)

Thus, for every z ∈ Oε and population p ∈ P

lim
η→0+

Gp
i (z, η) =

{

vp if i = rp,

0 if i ∈ Rp \ {rp}.
(11)

Note that the right term of (11) corresponds to z̃. since Oε

tends to z̃ as ε → 0, this implies by continuity of G in η
that for every ε ∈ (0, ε] there exists a small enough ηε such
that for η ∈ (0, ηε], G(·, η) maps Oε in itself. Since Oε is
compact and convex, Brower’s fixed point theorem ensures
the existence of at least a fixed point of G(·, η) in Oε for
every η ∈ (0, ηε]. Since the argument holds for every small
enough ε, then there exists a sequence of fixed points zn
such that limn→+∞ zn = z̃, showing that z̃ ∈ Ω0. To prove
the second part of (iii), let us write the logit dynamics in the
form

ż = G(z, η)− z,

with G : Z × (0,+∞) → Z . We now extend G to include
the limit value η = 0, while restricting z ∈ Oε. Formally, let
us define G : Oε × [0,+∞) → Z as

G(z, η) =

{

G(z, η) if η > 0

z̃ if η = 0.

We now show that G ∈ C1. The continuity follows from
(10), which implies that limη→0+ G(z, η) = z̃ for every
z ∈ Oε (see (11) for details). Restricting the route flow
space from Z to Oε is needed to ensure that the optimal
route is unique and independent of z for all populations, thus
avoiding discontinuities of G(z, 0) in z. To prove continuous
differentiability, let us define ∆p

si(z) = cps(z) − cpi (z), and
let JG,z(z, η) denote the Jacobian of G(z, η) with respect to
z. Since G ∈ C1, to prove that G ∈ C1 we must investigate
its differentiability in η = 0. We first show that G(z, η) is
continuously differentiable with respect to z. To this end, our
goal is to prove that

lim
η→0+

JG,z(z, η) = 0, ∀z ∈ Oε, (12)

where the components of JG,z(z, η) read

∂Gp
i (z, η)

∂zqj
=

vp
η

e−cpi (z)/η
∑

s∈Rp\{i}
∂∆p

si(z)
∂zq

j
e−cps(z)/η

(
∑

r∈Rp
e−cpr(z)/η)2

.

(13)

Observe that for every p, q ∈ P , i ∈ Rp \ {rp}, s ∈ Rp and
z ∈ Oε it follows from (10) that

lim
η→0+

e−cpi (z)/ηe−cps(z)/η

(
∑

r∈Rp
e−cpr(z)/η)2

= 0.

The previous equation implies by (13) that for every z ∈ Oε,
if i ∈ Rp \ {rp}, then

lim
η→0+

∂Gp
i (z, η)

∂zqj
= 0, ∀p, q ∈ P , i ∈ Rp \ {rp}, j ∈ Rq.

(14)
On the other hand, since for every p, q ∈ P , s ∈ Rp \ {rp}
and z ∈ Oε it holds

lim
η→0+

e−crp(z)/ηe−cps(z)/η

(
∑

r∈Rp
e−cpr(z)/η)2

= 0,

it follows from (13) that

lim
η→0+

∂Gp
rp(z, η)

∂zqj
= 0, ∀p, q ∈ P , j ∈ Rq, z ∈ Oε. (15)

Eq. (14) and (15) prove (12), which in turn implies that
G(z, η) is continuously differentiable with respect to z for
every z ∈ Oε and η ∈ [0,+∞). We now prove the
continuous differentiability of G(z, η) with respect to η for
every z ∈ Oε and η ∈ [0,+∞), i.e., we prove that

lim
η→0+

∂Gp
i (z, η)

∂η
= 0, ∀p ∈ P , i ∈ Rp, z ∈ Oε.

Since G ∈ C1 we just need to discuss the continuous
differentiability in η = 0. To this end, let us write the
components of the Jacobian in the form

∂Gp
i (z, η)

∂η
= −

vp
∑

s)=i ∆
p
si(z)e

−∆p
si(z)/η

η2(1 +
∑

r )=i e
−∆p

ri(z)/η)2
. (16)

Again, we split the analysis in two parts. If i = rp, then we
have ∆p

si(z) > 0 for every s -= i and z ∈ Oε, which implies
by (16) that

lim
η→0+

∂Gp
rp(z, η)

∂η
= 0, ∀p ∈ P , z ∈ Oε. (17)

Instead, for every i -= rp we get that, as η → 0+, the numer-
ator and the denominator in (16) are dominated respectively
by term with s = rp and r = rp, with ∆rpi(z) < 0 for every
z ∈ Oε, yielding

lim
η→0+

∂Gp
i (z, η)

∂η
= 0 ∀i ∈ Rp \ {rp}, z ∈ Oε. (18)

Eq. (17) and (18) imply that G(z, η) is continuously dif-
ferentiable with respect to η, proving that G ∈ C1. To
conclude the proof, let us define g(z, η) = G(z, η)− z and
g(z, η) = G(z, η) − z. Notice that zeros of g(·, η) coincide
with elements in Ωη and g(z̃, 0) = 0. The existence of a
family of fixed points (zη)η<η̃ such that

lim
η→0+

zη = z̃,



follows from the implicit function theorem applied to the
function g in (z̃, 0) [21]. To prove the asymptotic stability
of this family of fixed points, notice that

Jg,z(z, η) = JG,z(z, η)− I.

Since for every ε ∈ (0, ε] there exists ηε such that zη ∈ Oε

for every (0, ηε], it follows from (12) that

lim
η→0+

Jg,z(zη, η) = −I,

which implies linear stability (and then local asymptotic
stability)) of zη as η → 0+.

APPENDIX II
PROOF OF THEOREM 2

We first establish a result on contractive systems. The
result is not original and may be found in [22]. Still, we
provide an alternative and more intuitive proof. Our proof
borrows techniques from [23, Lemma 5], where the authors
prove that every monotone diagonally dominant system is
l1-contractive. Proposition 1 generalizes this result, proving
that the Jacobian with negative diagonally dominant columns
is a sufficient condition for l1-contractivity.

Proposition 1: Let ẋ = g(x) be a continuous-time dy-
namical system. Assume that g : Rn → Rn is continuously
differentiable in X ⊆ Rn. Let J(x) denote the Jacobian of
g, and let

max
j∈{1,...,n}



Jjj(x) +
∑

i:i)=j

|Jij(x)|



 ≤ −c ∀x ∈ X .

Assume that X is g-invariant, and let x(t) and y(t) denote
the trajectories at time t corresponding to initial conditions
x(0) = x0 ∈ X and y(0) = y0 ∈ X , respectively. Then,

1) for every t ≥ 0

||x(t) − y(t)||1 ≤ e−ct||x0 − y0||1, (19)

2) There exists a globally exponentially stable fixed point
in X .

Proof: For simplicity of notation we omit the depen-
dence on t. By definition of the l1-norm and the linearity of
the derivative, we get

d

dt
‖x− y‖1 =

d

dt

∑

i

|xi − yi| =
∑

i

d

dt
|xi − yi|

=
∑

i

sign(xi − yi)(ẋi − ẏi)

=
∑

i

sign(xi − yi)(gi(x) − gi(y))

=
∑

i

sign(xi − yi)(gi(y + h)− gi(y)),

(20)

where x = y + h. From

gi(y + h)− gi(y) =

∫ 1

0

dgi(y + τh)

dτ
dτ

=

∫ 1

0

∑

j

∂gi
∂yj

hjdτ,

thus (20) is equal to
∫ 1

0

∑

i

sign(hi)
∑

j

∂gi
∂zj

hjdτ.

It holds that
∑

i sign(hi)
∑

j
∂gi
∂yj

hj is equal to

∑

i





∑

j )=i

∂gi
∂yj

hjsign(hi) +
∂gi
∂yi

|hi|





≤
∑

i





∑

j )=i

∣

∣

∣

∣

∂gi
∂yj

∣

∣

∣

∣

|hj |+
∂gi
∂yi

|hi|





=
∑

j

∑

i)=j

∣

∣

∣

∣

∂gi
∂yj

∣

∣

∣

∣

|hj |+
∑

j

∂gj
∂yj

|hj |

=
∑

j

|hj |





∑

i)=j

∣

∣

∣

∣

∂gi
∂yj

∣

∣

∣

∣

+
∂gj
∂yj





≤− ||h||1c = −||x− y||1c.

Plugging this in (20), we get

d

dt
‖x− y‖1 ≤ −c||x− y||1, (21)

which implies (19). For point 2) we refer to [22, Theorem
13].
We can now proceed to the proof of Theorem 2. Similarly to
what done in the proof of Theorem 1-iii), we write logit(η)
in the form ż = g(z, η) = G(z, η) − z, and the Jacobian of
g as

Jg,z(z, η) = JG,z(z, η)− I.

Observe from (13) that JG,z(z, η)
η→+∞
−→ 0 for every z ∈ Z

independently of the considered routing game. It thus follows
that

lim
η→+∞

Jg,z(z, η) = −I ∀z ∈ Z. (22)

With a slight abuse of notation, let from now on J denote
Jg,z . From (22), it follows

lim
η→+∞

max
j

(

Jjj(z, η) +
∑

i:i)=j

|Jij(z, η)|
)

= −1 ∀z ∈ Z.

Since J(z, η) is continuously differentiable in η, it follows
that for every k ∈ (0, 1] there exists ηk ≥ 0 such that for
every z ∈ Z and η ∈ [ηk,+∞),

max
j

(

Jjj(z, η) +
∑

i:i)=j

|Jij(z, η)|
)

≤ −k ∀ z ∈ Z.

Let η0 be the largest η > 0 such that

max
z∈Z

max
j



Jjj(z, η) +
∑

i)=j

|Jij(z, η)|



 = 0.

Thus, the existence of a globally exponentially stable fixed
point for every η ∈ (η,+∞) follows from Proposition 1 and
from identifying η with η0.
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