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Abstract: In this paper, we introduce a large class of (so-called) condi-
tional indicators, on a complete probability space with respect to a sub
σ-algebra. A conditional indicator is a positive mapping, which is not
necessary linear, but may share common features with the conditional
expectation, such as the tower property or the projection property. Sev-
eral characterizations are formulated. Beyond the definitions, we provide
some non trivial examples that are used in finance and may inspire new
developments in the theory of operators on Riesz spaces.
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1. Introduction

In mathematical finance, the positive expectation operator and, more gener-
ally, the conditional expectation operator, is certainly the indicator the most
used by the practitioners. It provides the best estimation E(X), say today,
of any future wealth or price X, modeled as a random variable, that is only
revealed at some horizon date. Actually, there exists a large variety of indi-
cators that are used in statistics, economics but, also, in finance, in order to
control for example the risk of financial strategies.

The conditional expectation is the key tool when estimating the portfolio
process replicating a contingent claim in a complete financial market model
under the usual no-arbitrage condition, see [13], [7]. Under this condition, the
price process is a martingale under the so-called risk-neutral probability mea-
sure, which is fundamental to identify the unique replicating portfolio process
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from its terminal value, see [26]. This notion of martingale is generally de-
fined with respect to the expectation operator, which is made possible by the
well-known tower and projection properties. But we may find generalizations
to other operators, such as in [4]. Actually, the expectation operator appears
naturally in the classical theory because of the financial models themselves
that are conic by definition. In particular, the no-arbitrage condition which is
imposed appears to be equivalent to the existence of a risk-neutral probabil-
ity measure, by virtue of the Hahn-Banach separation theorem with respect
to the σ(L∞, L1) weak topologie, see for example [10] and [16] in discrete
time.

Nevertheless, as soon as we consider more realistic financial markets with
transaction costs, the models are not necessary conic and, worst, they are not
convex if there are fixed costs, see [21] . In that case, the usual arguments
derived from the standard duality of the convex analysis, see [25], can not
be used. In the recent papers [6] and [12], a new approach is proposed. Not
only there is no need to impose a no-arbitrage condition which is, in general,
difficult to verify in practice but it is possible to compute numerically the
super-hedging prices backwardly thanks to new results on random optimiza-
tion, see [11]. To do so, the fundamental operator we use (called indicator in
this paper as it is not linear) is the conditional essential supremum, both with
its dual indicator, i.e. the conditional essential infimum, see [21], [22], [24].
Similarly to the conditional expectation operator, it satisfies the tower prop-
erty and other common features. In particular, this is possible to consider
martingales w.r.t. such an indicator.

In our paper, we define conditional indicators I with respect to a sub σ-
algebra H as mappings that map real-valued random variables X into the
subset of H-measurable random variables. Precisely, I(X) is supposed to
belong to the convex hull of the conditional support of a all possible values
of X, and satisfies I(X) = X if X isH-measurable. In particular, I is positive
i.e. I(X) ≥ 0 if X ≥ 0. This is the usual projection property. In finance, a σ-
algebra H is generally interpreted as an available information on the market.
Then, a conditional indicator is an indicator whose value is updated thanks
to the information H. Classical indicators in finance, but also in statistics,
are the quantiles, e.g. the Value At Risk [20], in the domain of risk measures
for banking and insurance regulation, see [8] and [9] among others.

In Section 2, we introduce the main definitions and we give some typical
examples of conditional indicators. In Section 3, we consider and characterize
the conditional indicators I that are said regular, i.e. they equivalently satisfy
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the property I(X1H) = I(X)1H for all H ∈ H. This property is observable
in many examples of conditional indicators and used to define the projection
property related to the tower property of Section 5. In Section 4, the dual
of a conditional indicator is naturally introduced and we give an example we
meet in finance. Natural questions arise such as identifying the set of all self-
dual conditional indicators. In Section 6, we make a link between conditional
indicators and the conditional risk measures of financial regulation, see also
[14]. At last, Section 7 is devoted to the conditional expectation defined on
the whole space L0(R,F). We also provide some minimal conditions under
which a conditional indicator is necessarily a conditional expectation under
some absolutely continuous probability measure.

We expect that the notion of conditional indicators may be extended to
the general setting of Riesz spaces. Some interesting problems are open such
as characterizing the linear conditional indicators, studying the indicators
satisfying the tower property and the associated notion of martingales but,
also, identifying the stochastic indicators which are uniquely defined by the
projection property, see a first result in that direction given by Proposition
5.4.

Actually, the notion of conditional expectation in the field of Riesz spaces
and positive operators is very popular and has given rise to new developments
recently, see [3] for an overview on positive operators and the papers [17]
and [15] on conditional expectation, among others. Naturally, the concept of
martingale has been introduced, see [17] and [15]. As mentioned above, some
non linear positive operators are also needed in finance and we think that
they may inspire interesting problems for the community of people working
on positive operators and Riesz spaces, see for example [2].

2. Conditional indicators

We consider a probability space (Ω,F ,P) where the σ-algebra F is supposed
to be complete. Let H be a sub σ-algebra of F which is also supposed to be
complete. In the whole paper, we use the following notations.

Notations and conventions:

1) For any r ∈ R, we adopt the conventions that r±∞ = ±∞,∞−∞ = 0,
and ∞+∞ =∞ and 0×±∞ = 0.
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By virtue of our notational conventions, we deduce that α(a−b) = αa−αb
for all α ∈ R and a, b ∈ R.

2) For any random subset G(ω) ⊆ R, we denote by L0(G,F) (resp.
L0(G,H)) the set of all F -measurable (resp. H-measurable) random vari-
ables X such that X(ω) ∈ G(ω) a.s..

3) We define the extended real line R = R ∪ {−∞,∞}.
We recall the concept of conditional supremum and infimum, see [19][Section

5.3.1], [18]:

Theorem 2.1. Let Γ be a family of F-measurable random variables with
values in R and let H be a sub σ-algebra of F . There exists a unique H-
measurable random variable ess supH Γ such that:

1) ess supH Γ ≥ γ, for all γ ∈ Γ,
2) If γ̂ is H-measurable and γ̂ ≥ γ, for all γ ∈ Γ, then γ̂ ≥ ess supH Γ.

Note that ess supH Γ is smallest H-measurable variable that dominates
the family Γ. Symmetrically, we define ess infH Γ := − ess supH(−Γ) as the
largest H-measurable variable that is dominated by the family Γ.

Definition 2.2. Let DI be a subset of L0(R,F) containing 0. We say that a
mapping

IH : DI −→ L0(R,H).

X 7−→ IH(X)

is a Conditional Indicator (C.I.) if the following properties hold:

(P1) IH(X) ∈ c-suppH(X) := [ess infH(X), ess supH(X)] a.s.

(P2) DI + L0(R,H) ⊆ DI .

Remark 2.3. For the sake of simplicity, we write I instead of IH when H
is fixed without any possible confusion. Note that, for all X ∈ L0(R,H),
I(X) = X, i.e. I is idempotent. We also observe that it is always possible to
extend a conditional indicator to the whole set L0(R,F). Indeed, it suffices
to define for example I(X) = ess supH(X) for X ∈ L0(R,F) \ DI . In the
following, the domain of definition of any conditional indicator is always
denoted by DI .

Remark 2.4. The natural extension of Definition 2.2 to multi-varied ran-
dom variables is to suppose that IH(X) belongs a.s. to the convex hull of the
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conditional support c-suppH(X), see the definition in [11], which is no more
an interval. This possible generalization is an open problem beyond the scope
of this paper.

Lemma 2.5. Let H be a sub-σ-algebra of F , and let I be a C.I. w.r.t. H.
Then, I is a positive indicator, i.e. I(X) ≥ 0, for all X ∈ DI such that
X ≥ 0. In particular, if I is linear, then I is increasing.

Proof. Let X ∈ D+
I . As I(X) ∈ c-suppH(X), then IH(X) ≥ essinfH(X) ≥ 0

and the conclusion follows.

Definition 2.6. Let I be a C.I. Then,

1) I is said increasing if, for all X, Y ∈ DI such that X ≤ Y , we have
I(X) ≤ I(Y ).

2) I is said H-translation invariant if I(X + YH) = I(X) + YH for all
X ∈ DI and YH ∈ L0(R,H) such that X + YH ∈ DI .

3) I is said H-positively-homogeneous if, for every αH ∈ L0(R+,H), we
have αHDI ⊂ DI and for any X ∈ DI , I(αHX) = αHI(X).

4) I is said H-linear if, for all αH ∈ L0(R,H), αHDI + DI ⊂ DI , and for
every X, Y ∈ DI , I(αHX + Y ) = αHI(X) + I(Y ).

5) If I(lim supnXn) ≥ lim supn I(Xn) (resp. I(lim infnXn) ≤ lim infn I(Xn)),
for any sequence (Xn)n ∈ DI such that lim supnXn ∈ DI (resp. lim infnXninDI),
we say that I satisfies the upper (resp. lower) Fatou property.

6) I is said conditionally convex if, for any αH ∈ L0([0, 1],H), we have
αHDI + (1− αH)DI ⊂ DI and for all X ∈ DI ,

I(αHX + (1− αH)Y ) ≤ αHI(X) + (1− αH)I(Y ).

Remark 2.7.

The conditional expectation operator I1(X) = E(X|H) is a well known
example of conditional indicator which is H-linear, H-translation invariant
and increasing on DI1 = L1(R,F) ∪ L0(R,H), where L1(R,F) is the set of
all integrable random variables.

The conditional supremum I2(X) = ess supH(X) is another exemple de-
fined on DI2 = L0(R,F). Note that I2 is increasing, H-translation invariant,
H-positively-homogeneous and sub-additive.

If I : DI −→ L0(R,H) is increasing and satisfies I(XH) = XH for all
XH ∈ L0(R,H), then I is a C.I.
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Lemma 2.8 (lower and upper extensions of a conditional indicator). Con-
sider a conditional indicator I defined on some domain DI which is mono-
tone. Suppose that EI is a subset of DI containing L0(R,H). Let us define:

IL(X) : = ess supH{I(Y ) : Y ∈ EI andY ≤ X}, (2.1)

IU(X) : = ess infH{I(Y ) : Y ∈ EI andY ≥ X}. (2.2)

Then, IL and IU are two monotone conditional indicators defined on L0(R,F)
that coincide with I on EI and satisfies IL ≤ I ≤ IU on DI . We say that IL

and IU are lower and upper extensions of I on EI . If EI +EI ⊆ EI , then IL

and IU are respectively super and sub-additive.

Proof. First observe that, if Y ∈ EI is such that Y ≤ X, then we have
I(Y ) ≤ ess supH(Y ) ≤ ess supH(X) hence, taking the essential supremum,
we get that J(X) ≤ ess supH(X). Moreover, if X ∈ DI , Y ≤ X implies,
by assumption, that I(Y ) ≤ I(X) hence J(X) ≤ I(X) ≤ for X ∈ DI . On
the other hand, as ess infH(X) ≤ X, we deduce that J(X) ≥ ess infH(X).
At last, if XH ∈ L0(R,H), then XH ∈ EI hence J(XH) ≥ XH. Moreover,
J(XH) ≤ I(XH) = XH so that J(XH) = XH. Note that, if X ∈ EI , then
J(X) ≥ I(X). As J(X) ≤ I(X), we conclude that J(X) = I(X). The same
types of argument hold for K.

Remark 2.9. If (Ik)k∈K is a family of conditional indicators w.r.t. the σ-
algebra H, then I1(X) = ess infk∈K Ik(X) and I2(X) = ess supk∈K Ik(X) are
still conditional indicators w.r.t. to H on DI1 = DI2 = ∩k∈KDIk . As Lemma
2.8 proves the existence of upper and lower extensions, we then deduce the
following corollary.

Corollary 2.10. Consider a conditional indicator I, w.r.t. the σ-algebra H,
defined on some domain DI , which is monotone. Suppose that EI is a subset
of DI containing L0(R,H). There exists a (unique) smallest conditional in-
dicator I+ (resp. a largest conditional indicator I−) which coincides with I
on EI and such that I− ≤ I ≤ I+ on DI .

Proof. By Lemma 2.8, there exists conditional indicators J,K, defined on
L0(R,F) such that J ≤ I ≤ K on DI . By Lemma 2.9, it suffices to define
the indicator I−(X) = ess supk∈K Jk(X) where (Jk)k∈K is the non empty
family of conditional indicators that is dominated by I on DI and coincides
with I on EI and the indicator I+(X) = ess infk∈K Kk(X) where (Kk)k∈K is
the family of non empty conditional indicators that dominate I on DI and
coincides with I on EI .
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3. Regularity

Definition 3.1. A subset E of L0(R,F) is said H-decomposable if, for all
H ∈ H, and X, Y ∈ E, we have X1H + Y 1Ω\H ∈ E.

Lemma 3.2. Let H be a sub σ-algebra of F and let I be a C.I. w.r.t. H,
which is defined on an H-decomposable subset DI . Then, for all X ∈ DI and
H ∈ H, I(X1H)1Hc = 0. Therefore, we have I(X1H) = I(X1H)1H .

Proof. Consider X ∈ DI and H ∈ H. As I(X1Hc)1H ∈ c-suppH(X1Hc)1H
and c-suppH(X1Hc)1H = c-suppH(X1Hc1H) = {0} by the properties satisfied
by the essential infimum and supremum, we get I(X1H)1Hc = 0. Therefore,
we have the equality I(X1H) = I(X1H)1H + I(X1H)1Hc = I(X1H)1H .

Definition 3.3. Consider H a sub σ-algebra of F . A conditional indicator I
w.r.t. H is said regular if DI is H-decomposable and, for all X, Y ∈ DI and
H ∈ H, we have:

X1H = Y 1H ⇒ I(X)1H = I(Y )1H .

The proof of the following lemma is trivial:

Lemma 3.4. Let I be a C.I. w.r.t. H, which is defined on an H-decomposable
subset DI . The following statements are equivalent.

1. I is regular.
2. I(X1H) = I(X)1H , for all X ∈ DI and H ∈ H.
3. I(X1H + Y 1Hc) = I(X)1H + I(Y )1Hc, for all X, Y ∈ DI and H ∈ H.

Proposition 3.5. Let H be a sub σ-algebra of F and let I be a regular
and H-positively-homogeneous conditional indicator w.r.t. H. Then, for all
X ∈ DI and h ∈ L0(R,H), we have

I(hX) = h+I(X) + h−I(−X).

Proof. Let X ∈ DI and h ∈ L0(R,H). By Propostion 3.4, we get that

I(hX) = I(hX1{h≥0}) + I(hX1{h<0})

= I(h+X) + I(−h−X)

= h+I(X) + h−I(−X)
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Proposition 3.6. If a conditional indicator is conditionally convex and DI

is H-decomposable, then it is regular.

Proof. Let us consider H ∈ H and X ∈ L0(R,F). Since 1H ∈ L0([0, 1],H)
and 1Hc = 1− 1H , the conditional convexity of I implies that

I(1HX) = I(1HX + 1Hc0) ≤ 1HI(X) + 1HcI(0) = 1HI(X).

Similarly, we have

I(X) = I(1H(1HX) + 1Hc(1HcX)) ≤ 1HI(1HX) + 1HcI(1HcX).

By Lemma 3.2, we deduce that 1HI(X) ≤ 1HI(1HX) = I(1HX). Therefore,
I(1HX) = 1HI(X). The conclusion follows by Lemma 3.4.

Lemma 3.7. Let I be a C.I. w.r.t. the σ-algebra H. If I is sub-additive and
DI is H-decomposable, then we have 1HI(X) ≤ I(1HX) for all H ∈ H and
X ∈ L0(R,F). Moreover, if I is additive, then I is regular.

Proof. Consider H ∈ H and X ∈ L0(R,F). If I is sub-additive, then by
Lemma 3.2, we have:

1HI(X) = 1HI(1HX + 1HcX) ≤ 1HI(1HX) + 1HI(1HcX)

≤ 1HI(1HX) = I(1HX).

If I is additive, then

1HI(X) = 1HI(1HX + 1HcX) = 1HI(1HX) + 1HI(1HcX)

= 1HI(1HX) = I(1HX).

Proposition 3.8. Let IL and IU be the extensions of I defined by (2.1) and
(2.2) in Lemma 2.8 when EI = DI . Suppose that I is regular. Then, IL and
IU are regular.

Proof. Let H ∈ H and X ∈ L0(R,F). Consider any Y ≤ X1H where
Y ∈ DI . Let us define Z = Y 1H + (ess infHX)1Ω\H . Then, Z ≤ X and
Z ∈ DI so that I(Z) ≤ IL(X). As I is regular by assumption, we deduce
that I(Y )1H + (ess infHX)1Ω\H ≤ IL(X). Therefore, I(Y )1H ≤ IL(X)1H .
Taking the essential supremum, we deduce that IL(X1H)1H ≤ IL(X)1H . On
the other hand, for any Y ≤ X such that Y ∈ DI , we have Y 1H ≤ X1H
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and Y 1H ∈ DI . Therefore, J(X1H) ≥ I(Y 1H) = I(Y )1H . Taking the essen-
tial supremum, we deduce that J(X1H) ≥ J(X)1H . With the first part of
the proof, we deduce that J(X1H)1H = J(X)1H for any X ∈ L0(R,F) and
H ∈ H. Replacing X by X1H and H by Ω \ H, we then deduce the equal-
ity J(X1H)1Ω\H = J(X1H1Ω\H)1Ω\H = J(0)1Ω\H = 0. Therefore, we have
J(X1H) = J(X1H)1H hence J(X1H) = J(X)1H . The conclusion follows by
Lemma 3.4. The reasoning is similar for IU .

Corollary 3.9. Consider a conditional indicator I, w.r.t. the σ-algebra H,
defined on some domain DI , which is monotone and regular. Suppose that
EI is a subset of DI containing L0(R,H). There exists a (unique) smallest
regular conditional indicator I+ (resp. a largest regular conditional indicator
I−) which coincides with I on EI and such that I− ≤ I ≤ I+ on DI .

Proof. It suffices to repeat the proof of Corollary 2.10 by restricting the
families to the regular indicators. Indeed, existence holds by Proposition
3.8.

Lemma 3.10. Consider the conditional expectation I(X) = E(X|H) for
X ∈ DI where DI = L0(R,H)∪L1(R,F)∪L0(R+,F)∪L0(R−,F). Suppose
that EI = DI , see Corollary 3.9. Then, there exits regular extensions I− and
I+ of the conditional expectation to the whole set L0(R,F).

Proof. Consider X = X+ −X−, supposed to be integrable, where we recall
that X+ = max(X, 0) ≥ 0 and X− = −min(X, 0) ≥ 0. Then, X+ = limnX

n

where Xn = X+ ∧ n, n ≥ 1, is an increasing sequence of integrable random
variables. Then, we get that Xn−X+ ∈ EI = DI and Xn ≤ X hence we get
that I−(X) ≥ I(Xn). Taking the limit, we get that I−(X) ≥ I(X) so that
I−(X) = I(X) for all X = X+−X− where X− is integrable. More generally,
if E(X−|H) <∞ a.s., by regularity of I−, we get that

I−(X) =
∞∑
k=0

I−(X)1{k≤E(X−|H}<k+1}

=
∞∑
k=0

I−(X1{k≤E(X−|H}<k+1})1{k≤E(X−|H}<k+1}.

As X1{k≤E(X−|H}<k+1} is of the form X+ − X− where X− is integrable, we
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deduce by above that

I−(X1{k≤E(X−|H}<k+1}) = I(X1{k≤E(X−|H}<k+1})

= (E(X+|H)− E(X−|H))1{k≤E(X−|H}<k+1}

and, finally I−(X) = E(X+|H) − E(X−|H) for every X such that we have
E(X−|H) <∞. Similarly, we have I+(X) = E(X+|H)−E(X−|H) for every
X such that E(X+|H) < ∞. Note that I− and I+ are natural extensions
of the conditional expectation with the conventions +∞−R = {+∞} and
R−∞ = {−∞}.

4. Dual indicators

Definition 4.1. Let I be a C.I. on a domain DI . The dual indicator I∗ of I
is defined on DI∗ = −DI as I∗(X) = −I(−X), X ∈ DI∗ . If I = I∗, we say
that I is self-dual.

Proposition 4.2. The dual I∗ of a C.I. I is still a C.I. such that (I∗)∗ = I
and we have:

1) If I is monotone, then I∗ is monotone.
2) If I is H-translation invariant, then I∗ is H-translation invariant.
3) If I is super-linear, then I∗ is sub-linear.

Example 4.3. If I1(X) = E(X|H) is defined for X ∈ DI1 = L1(R,F), then
I∗1 = I1. The indicator I2(X) = ess supH(X), X ∈ DI2 = L0(R,F), admits
the dual I∗2 (X) = ess infH(X). Let I be any C.I.. Then, T = 1

2
I+ 1

2
I∗, defined

on DT = DI ∩ DI∗, is self-dual and is still a C.I.. Reciprocally, any self-dual
indicator T is of the form T = 1

2
I + 1

2
I∗. Indeed, it suffices to choose I = T .

The proof of the following is left to the readers:

Lemma 4.4. Consider the lower and upper conditional indicators IL = IL(E)

and IU = IU(E) with respect to a subset E of the domain of definition DI of a
conditional indicator I, as defined in Lemma 2.8. Then, we have the following
equalities: (IL(E))∗ = (I∗)U(−E) and (IU(E))∗ = (I∗)L(−E).

Theorem 4.5. Let H be a sub σ-algebra of F , and let I be a C.I. w.r.t.
H, defined on a vector space DI of L0(R,F) such that I∗ = I. Then, I is
additive if and only if I is H-linear.

Proof. As I is additive, we deduce that I is regular by lemma 3.7, i.e.
I(X1H) = I(X)1H , for all X ∈ DI and H ∈ H. Consider X ∈ DI and
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nH ∈ L0(N,H). By additivity, I(kX) = kI(X), for all k ∈ N, so that we
have:

IH(nHX) =
∞∑
k=0

1{nH=k}I(nHX)

=
∞∑
k=0

1{nH=k}IH(nHX1{nH=k})

=
∞∑
k=0

1{nH=k}I(kX)

=
∞∑
k=0

1{nH=k}kI(X) = nHI(X).

Also, we get that I(−nHX) = nHI(−X) = −nHI∗(X) = −nHI(X). We
then deduce that I(nHX) = nHI(X) for all nH ∈ L0(Z,H). Let us consider
rH ∈ L0(Q,H). By Lemma 8.1, there exists pH , qH ∈ L0(Z,H) × L0(N∗,H)
such that rH = pH/qH . By the first step, we get that

pHI(X) = I(qHpH/qHX) = qHI(pH/qHX).

Therefore, I(rHX) = rHI(X). Finally, consider α ∈ L0(R,H). By lemma
8.2, there exists two sequences (rn)n, (qn)n ∈ L0(Q,H) such that

α− 1/n ≤ rn ≤ α ≤ qn ≤ α + 1/n.

By the properties above, we deduce that I is increasing. We deduce by the
second step that

I(rnX) ≤ I(αX) ≤ I(qnX),

rnI(X) ≤ I(αX) ≤ qnI(X).

We conclude that I(αX) = αI(X), as n→∞.

5. Stochastic indicators: tower property and projection w.r.t. a
filtration

Let (Ft)t∈[0,T ] be a complete filtration, i.e. a sequence of complete σ-algebras
such that Fs ⊂ Ft for any s ≤ t. Consider a family (It)t∈[0,T ] of adapted
conditional indicators in the sense that It is a conditional indicator w.r.t. Ft,
for every t ∈ [0, T ]. We say that I = (It)t∈[0,T ] is a stochastic indicator.
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Definition 5.1. Consider a stochastic indicator I = (It)t∈[0,T ]. We say that
(It)t∈[0,T ] satisfies the tower property if, for any s ≤ t, It(DIs) ⊆ DIs ⊆ DIt

and
Is(It(X)) = Is(X), for allX ∈ DIs .

Example 5.2. The conditional essential supremum indicator satisfies the
tower property. In particular, we have

ess supF0
(ess supFt

(X)1Ft) = ess supF0
(X1Ft), ∀Ft ∈ Ft, ∀X ∈ L0(R,F).

Note that, if a stochastic indicator I = (It)t∈[0,T ] satisfies the tower property,
so does its dual I∗ = (I∗t )t∈[0,T ].

Definition 5.3. Let I0 be a conditional indicator w.r.t. F0 such that DI0 is
Ft-decomposable for every t ≥ 0. We say that Zt ∈ L0(R,Ft) satisfies the
projection equality at time t w.r.t. I0 if the following condition holds:

Pr : I0(X1Ft) = I0(Zt1Ft), for allFt ∈ Ft.

Proposition 5.4. Suppose that the stochastic indicator I = (It)t∈[0,T ] is such
that I0 is super-additive, It(X) satisfies the projection property at given time
t for some X ∈ DIt and, for every Y ∈ L0(R+,FT ), we have I0(Y ) ≤ 0 if
and only if Y = 0. Then, It(X) is the unique Ft-measurable random variable
satisfying the projection equality ( Pr).

Proof. Suppose that there exists Zt ∈ L0(R,Ft) such that, for all Ft ∈ Ft,

I0(X1Ft) = I0(Zt1Ft). (5.3)

Let us show that Zt = It(X). Take Ft = {Zt > It(X)}. By the projection
property (Pr) for It(X) and (5.3), I0(It(X)1Ft) = I0(Zt1Ft). It follows by the
super-additivity of I0 that I0((Zt− It(X))1Ft) ≤ 0. Since (Zt− It(X))1Ft ≥ 0
then (Zt − It(X))1Ft = 0 by assumption. So 1Ft = 0 and Zt ≤ It(X) a.s..
Analogously Zt ≥ It(X) a.s.. The conclusion follows.

Proposition 5.5. Suppose that the stochastic indicator I = (It)t∈[0,T ] is
such that I0 is linear, It(X) satisfies the projection property at time t for all
X ∈ L0(R,FT ) and, for all Y ∈ L0(R+,FT ), we have I0(Y ) ≤ 0 if and only
if Y = 0. Then, the following statements hold:

1. It is Ft-linear, for all t ∈ [0, T ].
2. It is increasing, for all t ∈ [0, T ].
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3. It is regular, for all t ∈ [0, T ].
4. The stochastic indicator I = (It)t∈[0,T ] satisfies the tower property.

Proof. Let us show that It is linear. Consider X, Y ∈ L0(R,FT ), α ∈ R and
Ft ∈ Ft. By linearity and the projection property, we get that

I0((αIt(X) + It(Y ))1Ft) = αI0(It(X)1Ft) + I0(It(Y )1Ft)

= αI0(X1Ft) + I0(Y 1Ft)

= I0((αX + Y )1Ft).

By Proposition 5.4, we deduce It((αX + Y )) = αIt(X) + It(Y ). By Theorem
4.5, It is then Ft-linear. The second statement is an immediate consequence of
the first one. The third one is also direct consequence by Proposition 5.4. At
last, consider X ∈ L0(R,FT ) and let Fs ∈ Fs where s ≤ t. By the projection
property, we have

I0(Is(It(X))1Fs) = I0(It(X)1Fs) = I0(X1Fs).

We conclude by Proposition 5.4 that Is(It(X)) = Is(X).

The conditional expectation E(X|Ft), X ∈ L1(R+,FT ), is the unique Ft-
measurable random variable such that we have E(X1Ft) = E(E(X|Ft)1Ft),
for all Ft ∈ Ft. As soon as a stochastic indicator I = (It)t∈[0,T ] satisfies
the tower property and is such that It is Ft-regular, for all t ≤ T , we have
I0(X1Ft) = I0(It(X1Ft)) = I0(It(X)1Ft), for all Ft ∈ Ft. The natural ques-
tion is whether It(X) is the unique Ft-measurable random variable satisfying
the projection property. Below, we study the case of the stochastic essential
supremum indicator.

Theorem 5.6. Let X ∈ L0(R+,FT ) such that ess supF0
(X) ∈ R, i.e. X is

bounded. There exists a unique Zt ∈ L∞(R+,Ft) that satisfies the projection
property

ess supF0
(Zt1Ft) = ess supF0

(X1Ft),∀Ft ∈ Ft.
Proof. Suppose that there exists Zt ∈ L∞(R+,Ft) such that

ess supF0
(Zt1Ft) = ess supF0

(X1Ft),∀Ft ∈ Ft.

Let us show that Zt = ess supFt
(X). To do so, let us denoteXt = ess supFt

(X).
Consider, for any ε > 0, the set F ε

t = {ess supFt
(X) ≤ Zt − ε} ∈ Ft. Then,

X1F ε
t
≤ (Zt − ε)1F ε

t
. Moreover, by assumption, we have

ess supF0
(Zt1F ε

t
) = ess supF0

(X1F ε
t
) ≤ ess supF0

((Zt − ε)1F ε
t
) ≤ ess supF0

(Zt1F ε
t
).

13



Therefore, we have:

ess supF0
((Zt − ε)1F ε

t
) = ess supF0

(Zt1F ε
t
).

Suppose that P(F ε
t ) > 0. We claim that ess supF0

(Zt1F ε
t
) 6= 0. Otherwise,

Zt1F ε
t
≤ 0 and so X ≤ −ε on F ε

t in contradiction with X ≥ 0 a.s.. As
ess supF0

(Zt1F ε
t
) ≤ ess supF0

(Zt) ∈ R, then ess supF0
(Zt1F ε

t
) ∈ R \ {0}.

By Corollary 8.4, ε = 0 in contradiction with the assumption that ε > 0.
Therefore, P(F ε

t ) = 0 hence P(F
1/n
t ) = 0, for any n ≥ 1. We deduce that

P(
⋂
n≥1(Ω \ F 1/n

t )) = 1, which means that, a.s., aZt − 1/n < ess supFt
(X)

for any n ≥ 1. As n → ∞, we get that Zt ≤ Xt. Now consider the sets
Gε
t = {Zt ≤ Xt − ε}. Similarly, we obtain that

ess supF0
((Xt − ε)1Gε

t
) = ess supF0

(Xt1Gε
t
).

As ess supF0
(Xt) 6= 0 if P(Gε

t) > 0. We apply again Corollary 8.4 and de-
duce that ε = 0, i.e. a contradiction. We deduce that Xt ≤ Zt a.s. and the
conclusion follows.

Corollary 5.7. Let X ∈ L∞(R,FT ) such that X > 0 a.s.. Then, there
exists a unique Zt ∈ L0(R,Ft) such that ess supF0

(Zt) ∈ R that satisfies the
projection property

ess supF0
(Zt1Ft) = ess supF0

(X1Ft),∀Ft ∈ Ft.

Proof. Suppose that there exists Zt ∈ L0(R,Ft) such that

ess supF0
(Zt1Ft) = ess supF0

(X1Ft),∀Ft ∈ Ft.

Let us show that Zt ≥ 0. Consider Ft = {0 ≥ Zt}. Then, we have
ess supF0

(X1Ft) = ess supF0
(Zt1Ft) ≤ 0. Therefore, X1Ft ≤ 0 on Ft hence

P(Ft) = 0. The conclusion follows by Theorem 5.6.

Corollary 5.8. Consider X ∈ L∞(R−,FT ) (resp. s.t. X < 0). There exists
a unique Zt ∈ L∞(R−,Ft) (resp. Zt ∈ L0(R−,Ft) bounded from below) that
satisfies the projection property

ess infF0(Zt1Ft) = ess infF0(X1Ft),∀Ft ∈ Ft.

The following counter-example shows that uniqueness does not hold in
general for the essential supremum indicator.
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Example 5.9. Consider Ω = R, F = B(R) and P the probability mesure
defined by its density dP/dx = α/(1+x2), α > 0, w.r.t. the Lebesgue measure
dx. We consider X = 0 and we define Z(ω) = −exp(w) for all ω ∈ Ω.

We claim that 0 = ess supF0
(Z). First, as Z ≤ 0, ess supF0

(Z) ≤ 0.
Secondly, as limω→−∞ Z(ω) = 0, for any α < 0, there exists x ∈ R such that
for any ω ≤ x, 0 ≥ Z(ω) ≥ α. So 0 ≥ ess supF0

(Z) ≥ α for any α ∈ R−.
Therefore, ess supF0

(Z) = 0.

Let A = {Z ≤ −1} and F1 = σ(1A), i.e. F1 = {A,Ac,Ω, ∅}. Let us
introduce Z1 = ess supF1

(Z). Note that Z11A = ess supF1
(Z1A) = −1A and

Z11Ac = ess supF1
(Z1Ac) = 0, i.e. Z1 = −1A.

Let us now consider any F1 ∈ F1. Of course, ess supF0
(X1F1) = 0. On the

other hand, we have by the tower property and by sub-additivity:

0 = ess supF0
(Z) = ess supF0

(Z1)

≤ ess supF0
(Z11F1) + ess supF0

(Z11F c
1
) ≤ 0.

We deduce that ess supF0
(Z11F1) = ess supF0

(Z11F c
1
) = 0. Therefore,

ess supF0
(Z11F1) = 0 = ess supF0

(X1F1), ∀F1 ∈ F1.

This means that the projection property for X = 0 is both satisfied by
ess supF0

(X) = 0 and Z1, i.e. uniqueness does not hold. Note that, with
F2 = B(R) and Z2 = ess supF2

(Z) = Z, we have, for any F2 ∈ F2,
ess supF0

(X1F2) = 0 = ess supF0
(Z21F2). However, Z2 = Z 6= 0.

6. Risk measures derived from conditional indicators

Let I be a C.I. w.r.t. a σ-algebra H. We define the positive elements of I as
the set

D+
I := {X ∈ DI : I(X) ≥ 0}.

In the setting of risk measures in finance, the elements of D+
I are interpreted

as the acceptable financial positions. We then define:

MI(X) := (D+
I −X) ∩ L0(R,H), X ∈ L0(R,F).

Note thatMI(X) may be empty and we haveMI(X +αH) =MI(X)−αH
for all αH ∈ L0(R,H). Moreover, YH ∈ MI(X) if and only if YH + X is
acceptable. We then define:
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ρI(X) := ess infMI(X), X ∈ L0(R,F), (6.4)

with the convention ess inf ∅ = +∞. Here, we use the usual notation ess inf Γ
without mentioning the σ-algebra when this one is shared with the elements
of Γ, i.e. H = F in the definition. We denote by Dom ρI the set of all
X ∈ L0(R,F), such that MI(X) 6= ∅.

The proof of the following lemma, being simple, is left to the readers.

Lemma 6.1. Let I be a conditional operator w.r.t. H. We have the following
properties:

1. If I is H-positively homogeneous, then αHX ∈ Dom ρI for every X in
Dom ρI and αH ∈ L0(R+,H).

2. If I is super-additive, then X1+X2 ∈ Dom ρI for any X1, X2 ∈ Dom ρI .
3. If I is non decreasing, then X1 ∈ Dom ρI for any X1 ≥ X2 such that

X2 ∈ Dom ρI .
4. If D+

I is H-convex (e.g. if I is H-convex) then Dom ρI is H-convex.

We now recall the definition of a risk measure, see [14] for example.

Definition 6.2. Let D be a subset of L0(R,F) containing 0 and such that
D + L0(R,H) ⊂ D. We say that a mapping

ρH : D −→ L0(R,H).

X 7−→ ρH(X)

is an H-conditional risk measure if the following properties hold:

(P1) Normalization: ρH(0) = 0.

(P2) Monotonicity: ρH(X1) ≤ ρH(X2), for any X1, X2 ∈ D such that we
have X1 ≥ X2.

(P3) Cash invariance: for all X ∈ D and αH ∈ L0(R,H), we have the
equality ρH(X + αH) = ρH(X)− αH.

Recall that we say that D ⊆ L0(R,F) is H-convex if, for all X1, X2 ∈ D
and αH ∈ L0([0, 1],H), we have αHX1 + (1 − αH)X2 ∈ D. When αHX ∈ D
for all X ∈ D and αH ∈ L0(R+,H), we say that D is positively homogenous.

Definition 6.3. An H-conditional risk measure ρ on Dρ is said:
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1. conditionally convex if Dρ is H-convex and, for all X1, X2 ∈ Dρ and
αH ∈ L0([0, 1],H), we have:

ρ(αHX1 + (1− αH)X2) ≤ αHρ(X1) + (1− αH)ρ(X2).

2. conditionally positively homogeneous if D is positively homogenous and,
for all X ∈ Dρ and αH ∈ L0(R+,H), ρ(αHX) = αHρ(X).

A conditional convex risk measure which is positively homogeneous is called
a conditional coherent risk measure.

The proof of the following lemma is standard:

Proposition 6.4. Let I be a non decreasing conditional operator. Consider
the mapping ρI defined by (6.4) and the associated domain Dom ρI . We have
the following properties:

1. The mapping ρI is a conditional risk measure on DomρI .
2. If D+

I is H-convex (for example if I is H-convex), then ρI is H-convex.
3. If I is H-positively homogeneous, then ρI is H-positively homogeneous.
4. If I is super-additive, then ρI is sub-additive.

Lemma 6.5. Let us consider a C.I. I and let us define ρ(X) = I(−X).
Then, ρ is a conditional risk-measure if and only if I is increasing and H-
translation invariant.

Lemma 6.6. Let us consider a C.I. I and let us define ρ(X) = −I(X).
Then, ρ is a conditional risk-measure if and only if I is increasing and H-
translation invariant.

Under some conditions, we may show that a risk-measure admits a dual
representation at least on L1(R,FT ), see [14] and the recent result on L0(R,FT )
in [23]. The open question is whether a conditional indicator may have such
a characterization, at least if it is convex.

7. The conditional expectation indicator

The conditional expectation knowing H ⊆ F is defined on L0(R,F) with
the conventions introduced in the beginning of the paper by:

E(X|H) := E(X+|H)− E(X−|H).
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Lemma 7.1. The mapping I(X) = E(X|H) is a conditional indicator on
X ∈ DI = L0(R,F). Moreover, if X ∈ L0(R,F), we have:

1HI(X) = I(X1H), for allH ∈ H, (7.5)

I(X + αH) = I(X) + αH, on the set {E(X+|H) 6= +∞ orE(X−|H) 6= +∞}, (7.6)

I(αHX) = αHI(X), for allαH ∈ L0(R,H). (7.7)

Proof. Note that (X1H)+ = 1HX
+ and (X1H)− = 1HX

− so that (7.5) holds
by the property satisfied by the usual conditional expectation defined on the
non negative random variables. Therefore, we may show the next properties
on each subset of a H-measurable partition of Ω. Actually, the equality (7.6)
is a particular case of Lemma 7.2 we show below.

To show (7.7), it suffices to consider the cases αH ≥ 0 and αH < 0.
When, αH < 0, we have (αHX)+ = |αH|X− and (αHX)− = |αH|X+. We
deduce that E(αHX|H) = |αH|E(X−|H) − |αH|E(X+|H) and we conclude
that E(X|H) = −αHE(X−|H) + αHE(X+|H) = αHE(X|H).

At last, X ≤ αH = ess supH(X) and it is clear that E(X|H) ≤ αH when
αH = +∞. Otherwise, as E(X+|H) ≤ (ess supH(X))+, αH 6= +∞ implies
that E(X+|H) 6= +∞ hence (7.6) applies. So, E(X−αH|H) = E(X|H)−αH.
As, X−αH ≤ 0, we get that E(X−αH|H) ≤ 0 hence E(X|H)−αH ≤ 0 and,
finally, E(X|H) ≤ αH. Indeed, it suffices to observe that E(X|H) 6= +∞.

As X ≥ αH = ess infH(X), we conclude similarly and the conclusion
follows.

Lemma 7.2. Let us consider the operator I(X) = E(X|H) on DL = L0(R,F).
If X, Y ∈ L0(R,F), then we have I(X + Y ) = I(X) + I(Y ) on the set
F =

⋃
i∈[1,5] Fi ∈ H where

F1 = {E(|X||H),E(|Y ||H) ∈ R},
F2 = {E(X+|H) = +∞, (E(X−|H),E(Y −|H)) ∈ R2},
F3 = {E(X−|H) = +∞, (E(X+|H),E(Y +|H)) ∈ R2},
F4 = {E(Y +|H) = +∞, (E(X−|H),E(Y −|H)) ∈ R2},
F5 = {E(Y −|H) = +∞, (E(X+|H),E(Y +|H)) ∈ R2}.

Proof. In the following, we shall use the convexity and positive homogeneity
of the mappings x 7→ x+ = max(x, 0) and x 7→ x− = max(−x, 0). This
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implies that (x + y)+ ≤ x+ + y+ and (x + y)− ≤ x− + y− for all x, y ∈ R.
Consider X, Y ∈ L0(R,F). We then have:

E((X + Y )+|H) ≤ E(X+|H) + E(Y +|H), (7.8)

E((X + Y )−|H) ≤ E(X−|H) + E(Y −|H),

E(X+|H) ≤ E((X + Y )+|H) + E(Y −|H),

E(X−|H) ≤ E((X + Y )−|H) + E(Y +|H).

Note that the inequalities above are obvious as soon as one of the terms in
the r.h.s. is +∞. Otherwise, we may argue as if the random variables were
integrable.

1rst case: On the set F1, X and Y are integrable so the result holds by
linearity of the conditional expectation for integrable random variables.

2nd case: On the set F2, by (7.8), we have E((X + Y )−|H) ∈ R and E((X +
Y )+|H) = +∞. Therefore, L(X+Y ) = L(X)+L(Y ) = +∞ and the equality
holds.

3rd case: On the set F3, by (7.8), we have E((X + Y )−|H) = +∞ and
E((X + Y )+|H) ∈ R. Therefore, L(X + Y ) = L(X) + L(Y ) = −∞.

By symmetry, the same conclusion holds on the subsets F4 and F5.

Proposition 7.3. Let H be a sub σ-algebra of F and let I be a C.I. w.r.t.
H such that DI = L1(R,F) and

1) I∗ = I
2) I is sub-additive (respectively super-additive).
3) E(|I(X)|) ≤ E(|X|).

Then I = E(.|H) on L1(R,F).

Proof. By Proposition 4.5, I is a linear indicator. As 1 ∈ L0(R,H), I(1) = 1.
Moreover, I is contractive by assumption. We conclude by Douglas Theorem,
see [1], that I = E(.|G) where G is the σ-algebra generated by the fixed points
of I. It is clear that G = H hence I = E(.|H).

Theorem 7.4. Suppose that I is a conditional indicator defined on the do-
main DI = L1(R,F) and satisfies the following properties:

1) I is self-dual.
2) I(X + Y ) = I(X) + I(Y ) for all X, Y ∈ L1(R,F).
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3) I satisfies the Fatou property i.e., for any sequence (Xn)n of L1(R,F),
we have I(lim infnXn) ≤ lim inf I(Xn).

Then, there exists a probability measure µ << P, with ρ = dµ/dP ∈ L1(R+,F)
such that I(X) = Eµ(X|H) = E(ρX|H), for all X ∈ L1(R,H).

Proof. Since L is sub-additive and self-dual, we deduce by Lemma 4.5 that
L is H-linear. Moreover, L is increasing by Lemma 2.5. Let us define the
mapping µ(A) = E(I(1A)), for any A ∈ F . Let us prove that µ is a probability
measure.

As 1A ∈ [0, 1], then I(1A) ∈ [0, 1] a.s. hence µ(A) ∈ [0, 1]. Moreover,
I(1Ω) = I(1) = 1. So µ(Ω) = 1. Also µ(∅) = E(I(0)) = 0. Consider a
partition (An)n∈N of Ω. We have

∞∑
n=0

1An = lim
N→∞

N∑
n=0

1An ≥
N∑
n=0

1An .

Therefore,

I

(
∞∑
n=0

1An

)
≥ lim

N→∞
I

(
N∑
n=0

1An

)
= lim

N→∞

N∑
n=0

I(1An).

We deduce that µ (
∑∞

n=0 1An) ≥
∑∞

n=0 µ(1An). Moreover, by the Fatou
property, we have

I

(
lim
N→∞

↑
N∑
n=0

1An

)
≤ lim

N→∞
↑ I

(
N∑
n=0

1An

)
= lim

N→∞

N∑
n=0

I(1An).

So, µ(
∑∞

n=0 1An) ≤
∑∞

n=0 µ(1An). We conclude that µ is a probability mea-
sure. Note that, if P(N) = 0, then I(1N) = I(0) = 0, i.e. µ(N) = 0. Therefore
µ is absolutely continuous w.r.t. P . Let ρ = dµ/dP be the Radon-Nikodym
derivative. We aim to show that I = Eµ[.|H].

Consider A ∈ H. In one hand, µ(A) = E(I(1A)) = E(1A) by definition
of µ and I. In the other hand, µ(A) = E(ρ1A) as ρ = dµ/dP. Therefore,
E(ρ1A) = E(1A) for any A ∈ H hence E(ρ|H) = 1. Moreover, for any A ∈ F ,
as I(1A) is H-measurable, we get that

Eµ(I(1A)) = E(ρI(1A)) = E(I(1A)) = µ(A) = Eµ(1A).
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So, for any A ∈ F and B ∈ H, we have:

Eµ(1A1B) = Eµ(I(1A1B)) = Eµ(1BI(1A)).

This implies that Eµ[1A|H] = I(1A), for all A ∈ F .
Consider now X ∈ L0(R+,F). We use the standard arguments, i.e. we

have X = limn ↑ Xn where Xn =
∑n

i=0 α
n
i 1An

i
, (Ani )i is a partition of Ω in F

and αni ∈ R. By the Fatou property, I(X) ≤ limn ↑
∑n

i=0 α
n
i I(1An

i
). On the

other hand, X ≥
∑n

i=0 α
n
i 1An

i
. implies that I(X) ≥

∑n
i=0 α

n
i I(1An

i
) for any

n. Therefore, I(X) ≥ limn ↑
∑n

i=0 α
N
i I(1An

i
). We deduce that:

I(X) = lim
n
↑

n∑
i=0

αni I(1An
i
) = lim

n
↑

n∑
i=0

αni Eµ[1An
i
|H] = Eµ[X|H].

Finally, for any X ∈ L1(R,F), we have:

I(X) = I(X+)− I(X−) = Eµ[X+|H]− Eµ[X−|H] = Eµ[X|H].

Since E(ρ|H) = 1, we finally deduce that I(X) = E(ρX|H).

In the following, we construct linear indicators that are not conditional
expectations.

Counter-example The following is standard. Consider the space Ω = N
of all non negative integers endowed with the σ-algebra F of all subsets of
N. The probability measure is defined as P (A) =

∑∞
n=0 2−n−1δn(A) where

δn is the Dirac measure at point n. Let F0 = {∅,Ω} be the trivial sub
σ-algebra. Each random variable w.r.t. (Ω,F , P ) is identifiable with the se-
quence (X(n))n∈N and we have Xk converges a.s. to X when k → ∞ if and
only if Xk(n) → X(n), for all n ∈ N. The L∞ norm is ‖X‖∞ = supn |X(n)|
and we have ess supF0

= supnX(n) and ess infF0 = infnX(n). In the follow-
ing, we consider the set D of all X ∈ L0(R,F) such that limnX(n) exists in
R. We define the linear positive operator T (X) = limnX(n) on the domain
D. Note that X ∈ L0(R,F0) if and only if X is a constant sequence so that
X ∈ D. In particular, T (X) = X for any X ∈ L0(R,F0) and T is a C.I. w.r.t.
F0. As |T (X)| ≤ ‖X‖∞ for all X ∈ L∞(R,F), the Hahn-Banach theorem
states the existence of a (continuous) linear mapping T̄ defined on the whole
space L∞(R,F) ⊃ D such that T̄ = T on D, see [5][Chapter 2].

For every A ∈ F , consider the random variable

XA(ω) =
card(A ∩ [0, n])

n+ 1
,
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where card designates the number of elements that contains a subset. We
have XA ∈ L∞[0, 1],F). Let us define m(A) = T̄ (XA). We may show that
m(∅) = 0, m(Ω) = 1 and m(

∑n
i=1Ai) =

∑n
i=1m(Ai) if (Ai)

n
i=1 is a finite

partition.
Moreover, suppose that T̄ is an expectation on L∞(R,F), i.e. there exists

an integrable random variable Y ∈ L1(R+,F) such that T̄ (X) = E(Y X) for
any X ∈ L∞(R,F). In that case, if (Ai)

n
i=1 is an infinite partition, we get

that

1 = m(Ω) =
∞∑
i=1

m(Ai).

With Ai = {i}, i ≥ 0, we get that T̂ (XAi) = T (XAi) = 0, i.e. m(Ai) = 0 for
all i ∈ N. This is in contradiction with the equality above.

Another example is to consider F1 = {∅,Ω, I, Ic} where Ic = Ω \ I and
I = 2N + 1. Le us introduce the indicator:

T1(X) = T̂ (X̃)1I + E(X|F1)1Ic , X ∈ L∞(R,F),

X̃(n) = X(n)1I(n) +X(n+ 1)1Ic(n).

We observe that T1 is linear, T1(X) is F1-measurable for any X ∈ L∞(R,F),
i.e. T1(X) is constant on I and Ic respectively and, moreover, T1(X) = X
if X ∈ L∞(R,F). Therefore, we deduce by monotony that T1 is a linear
conditional indicator. By the same arguments, we then prove that T1 is not
a conditional expectation of the form T1(X) = E(XY |F1), X ∈ L∞(R,F),
for some Y ∈ L∞(R,F). Indeed, otherwise, we get the equality 1 = 0 on the
non null set I.

8. Appendix

Lemma 8.1. For rH ∈ L1(Q,H). There exist pH , qH ∈ L1(Z,H)×L1(N∗,H)
such that rH = pH/qH .

Proof. Consider the random set Γ(ω) = {(p, q) ∈ Z × N∗ : rHq = p}. We
observe that its graph GraphΓ = {(ω, p, q) : (p, q) ∈ Γ(ω)} is a measurable
set of H×B(Z)×B(N∗), σ-algebra product of H and the Borel σ-algebras of
Z and N∗ respectively and Γ(ω) is non empty. Indeed f : ω 7→ rH(ω)q − p is
measurable. Therefore, we conclude by a measurable selection argument, see
[19][Section A.4], that there exists a measurable selector (pH , qH) of Γ.
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Lemma 8.2. For any α ∈ L1(R,H), there exist (rn)n, (qn)n ∈ L1(Q,H)
such that

α− 1/n ≤ rn ≤ α ≤ qn ≤ α + 1/n.

Proof. Consider Γ(ω) = {(rn, qn) ∈ Q2 : α− 1/n ≤ rn ≤ α ≤ qn ≤ α+ 1/n}.
It is non empty a.s. and its graph is a measurable set of H×B(Z)× B(N∗).
We then conclude by a measurable argument, see [19][Section A.4].

Lemma 8.3. Consider Ft ∈ Ft such that P(Ft) > 0 and X ∈ L0(R,FT )
such that X = X1Ft and ess supF0

(X) 6= 0. If, for some ε ∈ R+, we have

ess supF0
(X − ε1Ft) = ess supF0

(X), (8.9)

then ε = 0.

Proof. A first case is when 1Ft = 1. In that case ess supF0
(X)−ε = ess supF0

(X),
thus ε = 0. Suppose that 1Ft < 1, i.e. P(Ω\Ft) > 0. As ess supF0

(X) ≥ X a.s.,
we deduce that ess supF0

(X) ≥ 0 on Ω \ Ft 6= hence ess supF0
(X) ≥ 0. Note

that (8.9) is equivalent to α0 := ess supF0
(X+ε1Ω\Ft) = ess supF0

(X)+ε. We
observe that α0 ≥ ess supF0

(X)∨ ε and, also, ess supF0
(X)∨ ε ≥ X + ε1Ω\Ft

on Ω \ Ft.

On the other hand, on the set Ft, we also have

α0 ≥ ess supF0
(X) ∨ ε ≥ X = X + ε1F c

t
.

Therefore, a.s. we have α0 ≥ ess supF0
(X) ∨ ε ≥ ess supF0

(X + ε1Ω\Ft). We
deduce that ess supF0

(X) ∨ ε = α0. This implies that (8.9) is equivalent to

ess supF0
(X) ∨ ε = ess supF0

(X) + ε.

If ess supF0
(X) ≥ ε, then ess supF0

(X) = ess supF0
(X) + ε and thus ε = 0.

If ess supF0
(X) < ε, we get that ess supF0

(X) = 0 in contradiction with the
assumption.

Corollary 8.4. Consider Ft ∈ Ft such that P(Ft) > 0 and X ∈ L0(R,FT )
such that ess supF0

(X1Ft) 6= 0. If, for some ε ≥ 0,

ess supF0
((X − ε)1Ft) = ess supF0

(X1Ft),

then ε = 0.
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[13] Föllmer H. and A. Schied. Stochastic Finance: An introduction in dis-
crete time. 2nd. Ed., de Gruyter Studies in Mathematics, Walter de
Gruyter, Berlin-New York, 2004.
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