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Abstract: In this paper, we introduce a large class of (so-called) condi-
tional indicators, on a complete probability space with respect to a sub
o-algebra. A conditional indicator is a positive mapping, which is not
necessary linear, but may share common features with the conditional
expectation, such as the tower property or the projection property. Sev-
eral characterizations are formulated. Beyond the definitions, we provide
some non trivial examples that are used in finance and may inspire new
developments in the theory of operators on Riesz spaces.
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1. Introduction

In mathematical finance, the positive expectation operator and, more gener-
ally, the conditional expectation operator, is certainly the indicator the most
used by the practitioners. It provides the best estimation F(X), say today,
of any future wealth or price X, modeled as a random variable, that is only
revealed at some horizon date. Actually, there exists a large variety of indi-
cators that are used in statistics, economics but, also, in finance, in order to
control for example the risk of financial strategies.

The conditional expectation is the key tool when estimating the portfolio
process replicating a contingent claim in a complete financial market model
under the usual no-arbitrage condition, see [13], [7]. Under this condition, the
price process is a martingale under the so-called risk-neutral probability mea-
sure, which is fundamental to identify the unique replicating portfolio process

1



from its terminal value, see [26]. This notion of martingale is generally de-
fined with respect to the expectation operator, which is made possible by the
well-known tower and projection properties. But we may find generalizations
to other operators, such as in [4]. Actually, the expectation operator appears
naturally in the classical theory because of the financial models themselves
that are conic by definition. In particular, the no-arbitrage condition which is
imposed appears to be equivalent to the existence of a risk-neutral probabil-
ity measure, by virtue of the Hahn-Banach separation theorem with respect
to the o(L>, L') weak topologie, see for example [10] and [16] in discrete
time.

Nevertheless, as soon as we consider more realistic financial markets with
transaction costs, the models are not necessary conic and, worst, they are not
convex if there are fixed costs, see [21] . In that case, the usual arguments
derived from the standard duality of the convex analysis, see [25], can not
be used. In the recent papers [6] and [12], a new approach is proposed. Not
only there is no need to impose a no-arbitrage condition which is, in general,
difficult to verify in practice but it is possible to compute numerically the
super-hedging prices backwardly thanks to new results on random optimiza-
tion, see [11]. To do so, the fundamental operator we use (called indicator in
this paper as it is not linear) is the conditional essential supremum, both with
its dual indicator, i.e. the conditional essential infimum, see [21], [22], [24].
Similarly to the conditional expectation operator, it satisfies the tower prop-
erty and other common features. In particular, this is possible to consider
martingales w.r.t. such an indicator.

In our paper, we define conditional indicators I with respect to a sub o-
algebra H as mappings that map real-valued random variables X into the
subset of H-measurable random variables. Precisely, I(X) is supposed to
belong to the convex hull of the conditional support of a all possible values
of X, and satisfies I(X) = X if X is H-measurable. In particular, I is positive
ie. I(X) > 0if X > 0. This is the usual projection property. In finance, a o-
algebra H is generally interpreted as an available information on the market.
Then, a conditional indicator is an indicator whose value is updated thanks
to the information H. Classical indicators in finance, but also in statistics,
are the quantiles, e.g. the Value At Risk [20], in the domain of risk measures
for banking and insurance regulation, see [8] and [9] among others.

In Section 2, we introduce the main definitions and we give some typical
examples of conditional indicators. In Section 3, we consider and characterize

the conditional indicators I that are said regular, i.e. they equivalently satisfy
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the property [(X1y) = I(X)1y for all H € H. This property is observable
in many examples of conditional indicators and used to define the projection
property related to the tower property of Section 5. In Section 4, the dual
of a conditional indicator is naturally introduced and we give an example we
meet in finance. Natural questions arise such as identifying the set of all self-
dual conditional indicators. In Section 6, we make a link between conditional
indicators and the conditional risk measures of financial regulation, see also
[14]. At last, Section 7 is devoted to the conditional expectation defined on
the whole space L°(R,F). We also provide some minimal conditions under
which a conditional indicator is necessarily a conditional expectation under
some absolutely continuous probability measure.

We expect that the notion of conditional indicators may be extended to
the general setting of Riesz spaces. Some interesting problems are open such
as characterizing the linear conditional indicators, studying the indicators
satisfying the tower property and the associated notion of martingales but,
also, identifying the stochastic indicators which are uniquely defined by the
projection property, see a first result in that direction given by Proposition
5.4.

Actually, the notion of conditional expectation in the field of Riesz spaces
and positive operators is very popular and has given rise to new developments
recently, see [3] for an overview on positive operators and the papers [17]
and [15] on conditional expectation, among others. Naturally, the concept of
martingale has been introduced, see [17] and [15]. As mentioned above, some
non linear positive operators are also needed in finance and we think that
they may inspire interesting problems for the community of people working
on positive operators and Riesz spaces, see for example [2].

2. Conditional indicators

We consider a probability space (€2, F,P) where the o-algebra F is supposed
to be complete. Let H be a sub g-algebra of F which is also supposed to be
complete. In the whole paper, we use the following notations.

Notations and conventions:

1) For any r € R, we adopt the conventions that r+o00 = +00, co—o0 = 0,
and co + 0o =00 and 0 X o0 = 0.



By virtue of our notational conventions, we deduce that a(a—b) = aa—ab
for all « € R and a,b € R.

2) For any random subset G(w) C R, we denote by L°(G,F) (resp.
L°(G,H)) the set of all F-measurable (resp. H-measurable) random vari-
ables X such that X (w) € G(w) a.s..

3) We define the extended real line R = R U {—00, 00}.

We recall the concept of conditional supremum and infimum, see [19][Section
5.3.1], [18]:

Theorem 2.1. Let I' be a family of F-measurable random variables with
values in R and let H be a sub o-algebra of F. There exists a unique H-
measurable random variable ess supy I' such that:

1) esssupy I' >, for all v €T,

2) If 4 is H-measurable and 5 > v, for all v € T, then 4 > ess supy I

Note that ess sup,, I' is smallest H-measurable variable that dominates
the family I'. Symmetrically, we define ess infy I' := —ess supy (—1I") as the
largest H-measurable variable that is dominated by the family I'.
Definition 2.2. Let D; be a subset of L°(R, F) containing 0. We say that a
mapping

IHZ]D] — LO(E,H)
X — Iy(X)

is a Conditional Indicator (C.1.) if the following properties hold:
(P1) I34(X) € c-suppy (X) := [ess infy (X), ess supy (X)] a.s.
(P2) D; + L°(R,H) C Dy.

Remark 2.3. For the sake of simplicity, we write I instead of Iy; when H
is fized without any possible confusion. Note that, for all X € LR, H),
I(X) =X, i.e. I is idempotent. We also observe that it is always possible to
extend a conditional indicator to the whole set L°(R, F). Indeed, it suffices
to define for example I(X) = ess supy(X) for X € L°(R,F) \ D;. In the
following, the domain of definition of any conditional indicator is always
denoted by Dy.

Remark 2.4. The natural extension of Definition 2.2 to multi-varied ran-
dom wvariables is to suppose that I3(X) belongs a.s. to the convexr hull of the
4



conditional support c-suppy (X), see the definition in [11], which is no more
an interval. This possible generalization is an open problem beyond the scope
of this paper.

Lemma 2.5. Let H be a sub-o-algebra of F, and let [ be a C.I. w.r.t. H.
Then, I is a positive indicator, i.e. I1(X) > 0, for all X € D; such that
X > 0. In particular, if I is linear, then I is increasing.

Proof. Let X € D}. As I(X) € c-suppy(X), then I;(X) > essinfy(X) > 0
and the conclusion follows. O

Definition 2.6. Let I be a C.1. Then,

1) I is said increasing if, for all X,Y € D; such that X <Y, we have
I(X) < I(Y).

2) I is said H-translation invariant if I(X + Yy) = I(X) + Yy for all
X € Dy and Yy € LY(R,H) such that X + Yy € Dy.

3) I is said H-positively-homogeneous if, for every ay € LO(Ry,H), we
have ayD; C Dy and for any X € Dy, I(ayX) = ayl(X).

4) I is said H-linear if, for all ay € L°(R,H), ayD; +D; C Dy, and for
every X,Y € Dy, Iay X +Y) = ayl(X)+ I(Y).

5) If I(limsup,, X,,) > limsup,, [(X,,) (resp. I(liminf, X,,) < liminf, I(X,)),
for any sequence (X,,),, € Dy such thatlimsup,, X,, € D (resp. liminf,, X, inD;),
we say that I satisfies the upper (resp. lower) Fatou property.

6) I is said conditionally convex if, for any ay € LY([0,1],H), we have
ayDr 4+ (1 — ay)Dy C Dy and for all X € Dy,

Remark 2.7.

The conditional expectation operator I'(X) = E(X|H) is a well known
ezample of conditional indicator which is H-linear, H-translation invariant
and increasing on Dp = LY R, F) ULY(R, H), where L'(R, F) is the set of
all integrable random variables.

The conditional supremum I*(X) = ess supy(X) is another evemple de-
fined on D2 = LO(R, F). Note that I? is increasing, H-translation invariant,
‘H-positively-homogeneous and sub-additive.

IfI:Dr — LR, H) is increasing and satisfies 1(X#) = Xy for all
Xy € LYR,H), then I is a C.I.



Lemma 2.8 (lower and upper extensions of a conditional indicator). Con-
sider a conditional indicator I defined on some domain Dy which is mono-
tone. Suppose that Ey is a subset of D; containing L°(R,H). Let us define:

I"(X): = esssupy{I(Y): Y € ErandY < X}, (2.1)
IY(X): = essinfu{I(Y): Y € E;andY > X}. (2.2)

Then, I* and IV are two monotone conditional indicators defined on L°(R, F)
that coincide with I on E; and satisfies I < I < IY on D;. We say that I*
and IV are lower and upper extensions of I on E;. If Er + E; C Ey, then I*
and IV are respectively super and sub-additive.

Proof. First observe that, if Y € FEj is such that Y < X, then we have
I(Y) < ess supy(Y) < ess supy (X) hence, taking the essential supremum,
we get that J(X) < esssupy(X). Moreover, if X € D7, Y < X implies,
by assumption, that I(Y) < I(X) hence J(X) < I(X) < for X € D;. On
the other hand, as ess infy(X) < X, we deduce that J(X) > ess infy(X).
At last, if X3 € L°%(R,H), then Xy € E; hence J(X3) > Xy. Moreover,
J(X3) < I(Xy) = Xy so that J(Xy) = Xy. Note that, if X € Ej, then
J(X) > 1(X). As J(X) < I(X), we conclude that J(X) = I(X). The same
types of argument hold for K. O

Remark 2.9. If (Iy)kex is a family of conditional indicators w.r.t. the o-
algebra H, then I;(X) = ess infrer I (X) and Io(X) = ess supye 1(X) are
still conditional indicators w.r.t. to H on Dy, = Dy, = NgexDy, . As Lemma
2.8 proves the existence of upper and lower extensions, we then deduce the
following corollary.

Corollary 2.10. Consider a conditional indicator I, w.r.t. the o-algebra H,
defined on some domain Dy, which is monotone. Suppose that Ey is a subset
of Dy containing L°(R,H). There exists a (unique) smallest conditional in-
dicator It (resp. a largest conditional indicator I~ ) which coincides with I
on E; and such that I= < I < IT on Dj.

Proof. By Lemma 2.8, there exists conditional indicators J, K, defined on
]LO(E, F) such that J < I < K on D;. By Lemma 2.9, it suffices to define
the indicator I~ (X) = ess supyex Ji(X) where (Ji)ker is the non empty
family of conditional indicators that is dominated by I on ID; and coincides
with I on E; and the indicator I7(X) = ess infyex Kj(X) where (Ky)rer is
the family of non empty conditional indicators that dominate I on ID; and

coincides with I on FEj. O
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3. Regularity

Definition 3.1. A subset E of L°(R, F) is said H-decomposable if, for all
HeH, and XY € E, we have X1y +Y1o\y € E.

Lemma 3.2. Let ‘H be a sub o-algebra of F and let I be a C.I. w.r.t. H,
which is defined on an H-decomposable subset Dy. Then, for all X € D; and
HeH, (X1g)lye =0. Therefore, we have I(X1y) = I(X1g)1ly.

Proof. Consider X € Dy and H € H. As I(X1pge)ly € c-suppy(Xlpye)ly
and c-suppy, (X 1pge)ly = c-suppy (X1pe1ly) = {0} by the properties satisfied
by the essential infimum and supremum, we get I(X 1)1y = 0. Therefore,
we have the equality [(X1gy) = [(X1y)ly + [(X1g)lge = [(X1g)ly. O

Definition 3.3. Consider H a sub o-algebra of F. A conditional indicator [
w.r.t. H is said regular if Dy is H-decomposable and, for all X,Y € D; and
H € H, we have:

The proof of the following lemma is trivial:

Lemma 3.4. Let I be a C.1. w.r.t. H, which is defined on an H-decomposable
subset D;. The following statements are equivalent.

1. I 1s regular.
2. I(X1y) =I1(X)1ly, for all X € Dy and H € H.
3. [<X1H+Y1Hc> :I(X)lH—i-I(Y)ch, fO’I” GHX,YEDI and H € H.

Proposition 3.5. Let H be a sub o-algebra of F and let I be a reqular
and H-positively-homogeneous conditional indicator w.r.t. H. Then, for all

X € Dy and h € L°(R,H), we have
I(hX)=htI(X)+h I(-X).
Proof. Let X € Dy and h € L°(R,H). By Propostion 3.4, we get that

I(hX) = I(hX1pse)+ I1(hX1gc0)
= I(h"X)+I(—h"X)
= WTI(X)+h I(-X)



Proposition 3.6. If a conditional indicator is conditionally convex and Dy
15 H-decomposable, then it is regqular.

Proof. Let us consider H € H and X € L°(R,F). Since 15 € £°([0,1],H)
and 1ye =1 — 1p, the conditional convexity of I implies that

I(1gX)=I(1gX +150) < 145I1(X) + 151(0) = 15 1(X).
Similarly, we have
I(X)=I1g1gX) 4+ 1ge(1gX)) < 1gl(1gX) + 1yl (1g.X).

By Lemma 3.2, we deduce that 151(X) < 15I(15X) = I(15X). Therefore,
I(15X) = 15I(X). The conclusion follows by Lemma 3.4. O

Lemma 3.7. Let I be a C.I. w.r.t. the o-algebra H. If I is sub-additive and
Dy is H-decomposable, then we have 1xI1(X) < I(1yX) for all H € ‘H and
X € LR, F). Moreover, if I is additive, then I is reqular.

Proof. Consider H € H and X € L°(R,F). If I is sub-additive, then by

Lemma 3.2, we have:

< 1xI(1pX) = I(1xX).

If I is additive, then

1gl(X) = 1gI(1gX + 15 X) = 1gI(1gX) + 1T (15 X)
= 1gl(1gX) = I(14X).

O

Proposition 3.8. Let IY and IV be the extensions of I defined by (2.1) and
(2.2) in Lemma 2.8 when E; = Dy. Suppose that I is reqular. Then, I* and
IY are reqular.

Proof. Let H € H and X € LR, F). Consider any ¥ < X1y where

Y € ;. Let us define Z = Y1py + (ess infy X)lgg. Then, Z < X and

Z € Dy so that I(Z) < I*(X). As I is regular by assumption, we deduce

that I(Y)1y + (ess infy X)1lg\y < I*(X). Therefore, I(Y)ly < I*(X)1p.

Taking the essential supremum, we deduce that I*(X15)1y < I*(X)1g. On

the other hand, for any ¥ < X such that Y € D;, we have Y1y < X1y
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and Y1y € D;. Therefore, J(X1y) > [(Y1y) = I(Y)1y. Taking the essen-
tial supremum, we deduce that J(X1g) > J(X)1gy. With the first part of
the proof, we deduce that J(X1)1y = J(X)1g for any X € L°(R, F) and
H € H. Replacing X by X1y and H by 2\ H, we then deduce the equal-
ity J(X1up)lownw = J(X1ulow)log = J(0)lgg = 0. Therefore, we have
J(X1g) = J(X1g)ly hence J(X1g) = J(X)1y. The conclusion follows by
Lemma 3.4. The reasoning is similar for Y. [

Corollary 3.9. Consider a conditional indicator I, w.r.t. the o-algebra H,
defined on some domain D7, which is monotone and reqular. Suppose that
E; is a subset of D; containing L°(R,H). There exists a (unique) smallest
reqular conditional indicator I (resp. a largest reqular conditional indicator
I~ ) which coincides with I on E; and such that I= <1 <IT on Dy.

Proof. Tt suffices to repeat the proof of Corollary 2.10 by restricting the
families to the regular indicators. Indeed, existence holds by Proposition
3.8. O

Lemma 3.10. Consider the conditional expectation I(X) = E(X|H) for
X € D; where D; = LY(R,H)ULY(R, F)UL*(R, F)UL’(R_, F). Suppose
that E; = Dy, see Corollary 3.9. Then, there exits reqular extensions I~ and
I of the conditional expectation to the whole set L°(R, F).

Proof. Consider X = X — X~ supposed to be integrable, where we recall
that X* = max(X,0) > 0 and X~ = —min(X,0) > 0. Then, Xt = lim,, X"
where X™ = X An, n > 1, is an increasing sequence of integrable random
variables. Then, we get that X" — Xt € E; = D; and X" < X hence we get
that I=(X) > I(X™). Taking the limit, we get that I~ (X) > I(X) so that
I7(X) =I(X) for all X = X* — X~ where X~ is integrable. More generally,
if E(X~|H) < oo a.s., by regularity of I~ we get that

o0
I"(X) = ZF(X)l{kgE(X—mkkﬂ}
k=0
= Z I (X1 h<p(x-py<ieny) Lp<B(X- [y <kt 1)-
k=0

As X1p<p(x-my<k+1y is of the form X+ — X~ where X~ is integrable, we



deduce by above that

I (XLp<px-py<n+y) = I XLp<px-py<niy)
(E(XTH) — E(X7|H)) L k< p(x -y <ki1)

and, finally I7(X) = E(XT|H) — E(X|H) for every X such that we have
E(X™|H) < oco. Similarly, we have I (X) = E(X1|H) — E(X~|H) for every
X such that E(XT|H) < oo. Note that I~ and IT are natural extensions

of the conditional expectation with the conventions +00 — R = {400} and
R — o0 = {—o0}. O

4. Dual indicators

Definition 4.1. Let [ be a C.1. on a domain D;. The dual indicator I* of 1
is defined on Dy« = =Dy as I"(X) = —I1(—=X), X € Dp. If [ = I*, we say
that I s self-dual.

Proposition 4.2. The dual I* of a C.1. I is still a C.1. such that (I*)* =1
and we have:

1) If I is monotone, then I* is monotone.
2) If I is H-translation invariant, then I* is H-translation invariant.
3) If I is super-linear, then I* is sub-linear.

Example 4.3. If [,(X) = E(X|H) is defined for X € D;, = LY(R, F), then
I; = I,. The indicator I(X) = ess supy(X), X € Dy, = LR, F), admits
the dual I3(X) = ess infy(X). Let I be any C.I.. Then, T = LI+ 11", defined
on Dy = D; N Dy«, is self-dual and is still a C.1.. Reciprocally, any self-dual
indicator T is of the form T = %I + %I*. Indeed, it suffices to choose I =T.

The proof of the following is left to the readers:

Lemma 4.4. Consider the lower and upper conditional indicators I* = T

and IV = IV(E) with respect to a subset E of the domain of definition D; of a
conditional indicator I, as defined in Lemma 2.8. Then, we have the following
equalities: (I"))* = (I*)VE) gnd (TVE))* = (1*)L=5),

Theorem 4.5. Let H be a sub o-algebra of F, and let I be a C.I w.r.t.
H, defined on a vector space Dy of LY(R, F) such that I* = I. Then, I is
additive if and only if I is H-linear.

Proof. As I is additive, we deduce that I is regular by lemma 3.7, i.e.
I(X1g) = I(X)1y, for all X € D; and H € H. Consider X € D; and
10



ng € L°(N,H). By additivity, I(kX) = kI(X), for all k € N, so that we
have:

k=0

= > L= Do X, -iy)
k=0

= > Lpng=n I (kX)

k=0
= D Lpng=eykI(X) = nuI(X).
k=0

Also, we get that I(—ngX) = ngl(—X) = —nygl*(X) = —nygl(X). We
then deduce that I(ngX) = ngl(X) for all ng € L°(Z,H). Let us consider
rg € LY(Q,H). By Lemma 8.1, there exists py, g € LY(Z, H) x LO(N*, H)
such that ry = py/qu. By the first step, we get that
pul(X) = I(qupu/auX) = qul(pa/quX).
Therefore, I(rgX) = ryl(X). Finally, consider @ € L%(R,H). By lemma
8.2, there exists two sequences (7, )n, (¢n)n € L°(Q,H) such that
a—1/n<r,<a<qg <a+l/n

By the properties above, we deduce that [ is increasing. We deduce by the
second step that

(aX) < I(g:.X),

(aX) < ¢, I(X).

n

I(r,X) < I
rd(X) <1
We conclude that I(aX) = al(X), as n — oo. O

5. Stochastic indicators: tower property and projection w.r.t. a
filtration

Let (F)tcjo,r) be a complete filtration, i.e. a sequence of complete o-algebras
such that F, C F; for any s < t. Consider a family (I)cjor) of adapted
conditional indicators in the sense that [; is a conditional indicator w.r.t. F;,
for every ¢t € [0,T]. We say that I = (I;)cjo,r) is a stochastic indicator.

11



Definition 5.1. Consider a stochastic indicator I = ([t)te[o,T}~ We say that
(It)tco,m satisfies the tower property if, for any s < t, I;(D;,) C Dy, C Dy,
and

I,(I(X)) = I,(X), forall X € Dy,.

Example 5.2. The conditional essential supremum indicator satisfies the
tower property. In particular, we have

ess supy, (ess supz, (X)1g,) = ess supz, (X1g), VF; € F, VX € L°(R, F).

Note that, if a stochastic indicator I = (I;)wco,r) satisfies the tower property,
so does its dual I* = (I} )ieo,m)-

Definition 5.3. Let Iy be a conditional indicator w.r.t. Fy such that Dy, is
Fi-decomposable for every t > 0. We say that Z; € L°(R, F;) satisfies the
projection equality at time t w.r.t. Iy if the following condition holds:

Pr I]()(let> = ]O(ZtlFt)a fOI'aHE S ]:t

Proposition 5.4. Suppose that the stochastic indicator I = (I;)cio,1] 5 such
that Iy is super-additive, I;(X) satisfies the projection property at given time
t for some X € Dy, and, for every Y € LORT, Fr), we have I,(Y) < 0 if
and only if Y = 0. Then, I;(X) is the unique F;-measurable random variable
satisfying the projection equality ( Pr).

Proof. Suppose that there exists Z; € L°(R, F;) such that, for all F; € F;,
Iy(X1g,) = Io(Z1R,). (5.3)

Let us show that Z; = [(X). Take F; = {Z; > I,(X)}. By the projection
property (Pr) for I,(X) and (5.3), Io({4(X)1g) = Io(Zi1p,). It follows by the
super-additivity of Iy that Io((Z; — I;(X))1g,) < 0. Since (Z; — I;(X))1g >0
then (Z; — I,(X))1r, = 0 by assumption. So 1p, = 0 and Z; < [;(X) a.s..
Analogously Z; > I;(X) a.s.. The conclusion follows. O

Proposition 5.5. Suppose that the stochastic indicator I = (Ii)icjor) 45
such that Iy is linear, I,(X) satisfies the projection property at time t for all
X € LR, Fr) and, for all Y € LO(RT, Fr), we have IH(Y) < 0 if and only
if Y = 0. Then, the following statements hold:

1. 1, is Fy-linear, for all t € [0,T].
2. Iy is increasing, for all t € [0,T].
12



3. Iy is reqular, for all t € [0,T].
4. The stochastic indicator I = (I;)icpo,r) satisfies the tower property.

Proof. Let us show that I; is linear. Consider X,Y € L°(R, Fr), a € R and
F, € F;. By linearity and the projection property, we get that

Lo((aly(X) + L(Y)1R) = alo(L(X)1g) + L(L(Y)1R)
= Oé]o(XlFt)—F]Q(YlFt)
= T((aX +Y)1g).

By Proposition 5.4, we deduce I;((aX +Y)) = aly(X) + I,(Y). By Theorem
4.5, I; is then F;-linear. The second statement is an immediate consequence of
the first one. The third one is also direct consequence by Proposition 5.4. At
last, consider X € L°(R, Fr) and let Fy € F, where s < t. By the projection
property, we have

I (LX) TR) = To(L(X)15) = To(X1).
We conclude by Proposition 5.4 that I([;(X)) = I;(X). O

The conditional expectation F(X|F;), X € L*(R™, Fr), is the unique F;-
measurable random variable such that we have F(X1z,) = E(E(X|F)1lx),
for all Fy € F;. As soon as a stochastic indicator I = (Iy)cjor] satisfies
the tower property and is such that I, is F;-regular, for all ¢ < T, we have
In(X1g,) = In(I(X1x)) = Lh(1:(X)1x), for all F; € F;. The natural ques-
tion is whether I;(X) is the unique F;-measurable random variable satisfying
the projection property. Below, we study the case of the stochastic essential
supremum indicator.

Theorem 5.6. Let X € LO(R,, Fr) such that ess supz, (X) € R, i.e. X is
bounded. There exists a unique Z; € L>(R,, F;) that satisfies the projection
property

ess supz, (Zilp,) = ess supy (X1p,), VE, € F.

Proof. Suppose that there exists Z; € L>°(R., F;) such that
ess sup, (Zi1p,) = ess supg (X1g,), VF € F.

Let us show that Z; = ess supz, (X). To do so, let us denote X; = ess supz, (X).
Consider, for any € > 0, the set Fy = {ess supz,(X) < Z; — e} € F;. Then,
X1ps < (Z; — €)1gs. Moreover, by assumption, we have

ess supx, (Z;1ps) = ess supx, (X1ps) < ess supy, ((Zy — €)1ps) < ess supg, (Zi1rs).
13



Therefore, we have:

ess supr, ((Z; —€)1ps) = ess supx, (Z;1pe).

Suppose that P(Fy) > 0. We claim that ess supz, (Zi1ps) # 0. Otherwise,
Zlps <0 and so X < —e on Fy in contradiction with X > 0 a.s.. As
ess supz, (Z1ps) < esssupg (Z;) € R, then esssupg (Z;1r:) € R\ {0}.
By Corollary 8.4, ¢ = 0 in contradiction with the assumption that ¢ > 0.
Therefore, P(Ff) = 0 hence P(Ftl/") = 0, for any n > 1. We deduce that
P(),>, 2\ Ftl/")) = 1, which means that, a.s., aZ; — 1/n < ess sup, (X)
for any n > 1. As n — oo, we get that Z; < X;. Now consider the sets
G5 = {Z; < X; — €}. Similarly, we obtain that

ess supx, ((Xy — €)lg:) = ess supx, (Xelge).

As ess supg (X¢) # 0 if P(G) > 0. We apply again Corollary 8.4 and de-
duce that ¢ = 0, i.e. a contradiction. We deduce that X; < Z; a.s. and the
conclusion follows. O

Corollary 5.7. Let X € L*(R, Fr) such that X > 0 a.s.. Then, there
exists a unique Z; € LO(R, Fy) such that ess supx, (Z;) € R that satisfies the
projection property

ess supz, (Zilp,) = ess supy (X1g,),VF, € F.
Proof. Suppose that there exists Z; € L°(R, F;) such that
ess supz, (Zilp,) = ess supy (X1g),VE, € F.

Let us show that Z; > 0. Consider F; = {0 > Z;}. Then, we have
ess supz, (X1p,) = esssupg (Z;1p,) < 0. Therefore, X1p, < 0 on F, hence
P(F;) = 0. The conclusion follows by Theorem 5.6. O

Corollary 5.8. Consider X € L>®°(R_, Fr) (resp. s.t. X <0). There exists
a unique Z; € L®(R_, F;) (resp. Z; € L°(R_, F;) bounded from below) that
satisfies the projection property

ess infz, (Z;1p,) = ess infx (X1p,),VE, € F.

The following counter-example shows that uniqueness does not hold in

general for the essential supremum indicator.
14



Example 5.9. Consider 2 = R, F = B(R) and P the probability mesure
defined by its density dP/dx = a/(1+2?), a > 0, w.r.t. the Lebesque measure
dz. We consider X =0 and we define Z(w) = —exp(w) for all w € Q.

We claim that 0 = esssupg, (Z). First, as Z < 0, esssupg (Z) < 0.
Secondly, as lim,,_, o, Z(w) =0, for any a < 0, there exists x € R such that
forany w < x, 0 > Z(w) > a. So 0 > esssupx, (Z) > «a for any o € R~
Therefore, ess supz,(Z) = 0.

Let A = {Z < =1} and Fy = o(la), i.e. F1 = {A, A, Q,0}. Let us
introduce Zy = ess supg, (Z). Note that Z,14 = esssupz, (Z14) = —14 and
Zilge = ess supg, (Z14e) =0, i.e. Zy = —14.

Let us now consider any Iy € Fy. Of course, ess supg, (X1p) = 0. On the
other hand, we have by the tower property and by sub-additivity:

0 =esssupy (Z) = esssupg (Z1)
< esssupg, (Zi1lp) +ess supg, (Z11pe) <0.

We deduce that ess supz,(Z11r,) = ess supx,(Z11re) = 0. Therefore,
ess supz, (Z11p,) = 0 = ess supg (X1p, ), VF1 € Fi.

This means that the projection property for X = 0 is both satisfied by
esssupz, (X) = 0 and Zi, i.e. uniqueness does not hold. Note that, with
Fy = B(R) and Zy = esssupg,(Z) = Z, we have, for any Fy € Fs,
ess supz, (X1p,) = 0 = ess supz, (Z21p,). However, Zy = Z # 0.

6. Risk measures derived from conditional indicators

Let I be a C.I. w.r.t. a g-algebra H. We define the positive elements of I as
the set
D} :={X eD;: I(X) >0}

In the setting of risk measures in finance, the elements of D} are interpreted
as the acceptable financial positions. We then define:

M;(X) =D - X)NLYR,H), X eL’R,F).

Note that M;(X) may be empty and we have M (X + ag) = M (X) — ay
for all ay; € L°(R,H). Moreover, Yy € M;(X) if and only if Yy + X is
acceptable. We then define:
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pr(X) :=ess inf M;(X), X € LR, F), (6.4)

with the convention ess inf ) = +o00. Here, we use the usual notation ess inf I'
without mentioning the o-algebra when this one is shared with the elements
of I', i.e. H = F in the definition. We denote by Dom p; the set of all
X € LR, F), such that M;(X) # 0.

The proof of the following lemma, being simple, is left to the readers.

Lemma 6.1. Let I be a conditional operator w.r.t. H. We have the following
properties:

1. If I s H-positively homogeneous, then ay X € Dom p; for every X in
Dom pr and ay € LO(R,,H).

2. If I is super-additive, then X1+ Xo € Dom p; for any X1, Xo € Dom p;.

3. If I 1s non decreasing, then Xy € Dom p; for any X1 > X5 such that
Xy € Dom py.

4. If D} is H-convex (e.g. if T is H-convex) then Dom p; is H-convez.

We now recall the definition of a risk measure, see [14] for example.

Definition 6.2. Let D be a subset of L°(R, F) containing 0 and such that
D+ LYR,H) C D. We say that a mapping

pr:D — LR, H).

1s an H-conditional risk measure if the following properties hold:
(P1) Normalization: py(0) = 0.

(P2) Monotonicity: pu(X1) < pn(Xa), for any X1, Xs € D such that we
have X; > X,.

(P3) Cash invariance: for all X € D and ay € L°(R,H), we have the
equality pr(X + az) = pu(X) — ay.

Recall that we say that D C LO(R, F) is H-convex if, for all X;, X, € D
and ay € L2([0,1],H), we have ayX; + (1 — ay)Xs € D. When ay X € D
for all X € D and ay € L°(R,, H), we say that D is positively homogenous.

Definition 6.3. An H-conditional risk measure p on D, is said:
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1. conditionally convex if D, is H-convex and, for all X;, Xy € D, and
ay € LY([0,1],H), we have:

plan X1+ (1 — ay)Xa) < ayp(X1) + (1 — ay)p(Xa).

2. conditionally positively homogeneous if D is positively homogenous and,
for all X € D, and az € L°(Ry, H), playX) = ayp(X).
A conditional convex risk measure which is positively homogeneous is called
a conditional coherent risk measure.

The proof of the following lemma is standard:

Proposition 6.4. Let I be a non decreasing conditional operator. Consider
the mapping p; defined by (6.4) and the associated domain Dom p;. We have
the following properties:

1. The mapping pr is a conditional risk measure on Domp;.

2. If Df is H-convex (for example if I is H-convez), then p; is H-convez.
3. If I is H-positively homogeneous, then pr is H-positively homogeneous.
4. If I is super-additive, then p; is sub-additive.

Lemma 6.5. Let us consider a C.1. I and let us define p(X) = I(—X).
Then, p is a conditional risk-measure if and only if I is increasing and H-
translation imvariant.

Lemma 6.6. Let us consider a C.I. I and let us define p(X) = —I(X).
Then, p s a conditional risk-measure if and only if I is increasing and H-
translation invariant.

Under some conditions, we may show that a risk-measure admits a dual
representation at least on L' (R, Fr), see [14] and the recent result on L°(R, Fr)
in [23]. The open question is whether a conditional indicator may have such
a characterization, at least if it is convex.

7. The conditional expectation indicator

The conditional expectation knowing H C F is defined on L°(R,F) with
the conventions introduced in the beginning of the paper by:

E(X|H) :=E(X"|H) - E(X|H).

17



Lemma 7.1. The mapping I(X) = E(X|H) is a conditional indicator on
X e D; =L°R, F). Moreover, if X € L°(R, F), we have:

1ul(X) = I(X1y), forall H € H, (7.5)
I(X +ay) = I(X)+ ay,ontheset {E(XT|H) # +oocor E(X ™ |H) # o0}, (7.6)
I(apX) = apl(X), forallay € L°(R,H).

Proof. Note that (X1y)t =15 X" and (X1g)~ = 15X~ so that (7.5) holds
by the property satisfied by the usual conditional expectation defined on the
non negative random variables. Therefore, we may show the next properties
on each subset of a H-measurable partition of §2. Actually, the equality (7.6)
is a particular case of Lemma 7.2 we show below.

To show (7.7), it suffices to consider the cases ayy > 0 and ay < 0.
When, ay; < 0, we have (axX)t = |ayx|X ™ and (axX)™ = |ay|X+. We
deduce that E(ayX|H) = |ay|E(X|H) — |ax|E(XT|H) and we conclude
that E(X|H) = —ayE(X~|H) + ayE(XT|H) = oy E(X|H).

At last, X < ay = ess supy(X) and it is clear that E(X|H) < ay when
ay = +o00. Otherwise, as E(XT|H) < (esssupy(X))", ay # +oo implies
that E(X"|H) # 400 hence (7.6) applies. So, E(X —ay|H) = E(X|H) — ay.
As, X —ay <0, we get that E(X —ay|H) < 0 hence E(X|H) —ay < 0 and,
finally, E(X|H) < ay. Indeed, it suffices to observe that E(X|H) # +oc.

As X > ay = essinfy(X), we conclude similarly and the conclusion
follows. O

Lemma 7.2. Let us consider the operator [(X) = E(X|H) on Dy = L°(R, F).
If X,)Y € LR, F), then we have (X +Y) = I(X) + I(Y) on the set
F= Uie[1,5] F;, € H where

Fyo= {E(X[[H),E(JY]|H) € R},

F, = {E(XT|H) =400, (B(X"|H),E(Y"|H)) € R*},
Fy = {E(X"|H) = +oo, (E(XF|H),E(YT|H)) € R?},
Fy, = {E(Y'|H) = o0, E(X|H),E(Y|H)) € R?},
Fy = {E(Y |H) = +oo,(E(XTH),E(Y"|H)) € R?}.

Proof. In the following, we shall use the convexity and positive homogeneity
of the mappings * — 27 = max(x,0) and x — 2~ = max(—z,0). This
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implies that (z +y)" <27 +y" and (x +y)” <z~ +y~ for all z,y € R.
Consider X,Y € LR, F). We then have:

E(X +Y)"H) <EXTH)+E(YTH), (7.8)
E(X+Y) |H) <EX |H)+EY |H),
E(XTH) <E(X +Y)"'H)+E(Y|H),
E(X|H) <E(X+Y) |H)+EYT|H).

Note that the inequalities above are obvious as soon as one of the terms in
the r.h.s. is +00. Otherwise, we may argue as if the random variables were
integrable.

lrst case: On the set Fy, X and Y are integrable so the result holds by
linearity of the conditional expectation for integrable random variables.

2nd case: On the set Fy, by (7.8), we have E((X +Y)"|H) € R and E((X +
Y)"|H) = 4o00. Therefore, L(X+Y) = L(X)+ L(Y) = +o0 and the equality
holds.

3rd case: On the set Fj, by (7.8), we have E((X + Y)"|H) = +oo and
E((X +Y)"|H) € R. Therefore, L(X +Y) = L(X) + L(Y) = —oc.

By symmetry, the same conclusion holds on the subsets Fj; and F5. O
Proposition 7.3. Let H be a sub o-algebra of F and let I be a C.I. w.r.t.
H such that D; = LY(R, F) and

) Ir=1

2) 1 is sub-additive (respectively super-additive).

3) E(1(X)]) < E(]X]).

Then I =E(.|H) on L*(R,F).
Proof. By Proposition 4.5, I is a linear indicator. As 1 € L°(R,H), I(1) = 1.
Moreover, [ is contractive by assumption. We conclude by Douglas Theorem,

see [1], that I = E(.|G) where G is the o-algebra generated by the fixed points
of I. It is clear that G = H hence I = E(.|H). O

Theorem 7.4. Suppose that I is a conditional indicator defined on the do-
main D; = LY (R, F) and satisfies the following properties:

1) I is self-dual.
2) (X +Y)=I(X)+I(Y) for all X,Y € LY R, F).

19



3) I satisfies the Fatou property i.e., for any sequence (X,), of LY(R, F),
we have I(liminf, X,,) < liminf I(X,,).

Then, there exists a probability measure u << P, with p = du/dP € LY (R, F)
such that I1(X) = E,(X|H) = E(pX|H), for all X € LY(R, H).
Proof. Since L is sub-additive and self-dual, we deduce by Lemma 4.5 that
L is H-linear. Moreover, L is increasing by Lemma 2.5. Let us define the
mapping p(A) = E(I(14)), for any A € F. Let us prove that p is a probability
measure.

As 14 € [0,1], then I(14) € [0 1] a.s. hence u(A) € [0, ] Moreover,
I(1g) = I(1) = 1. So u(Q2) = 1. Also u(@) = E(I(0)) = 0. Consider a
partition (A, )nen of 2. We have

ZlAn:Nan;,ZlA >Z1A

Therefore,

[e's) N N
I (Z 1,4”) > lim [ (Z 1,4") :]&iinm;nun).

We deduce that p (D" 1a,) > > oo p(la,). Moreover, by the Fatou
property, we have

N N
O A
So, (D70 1a,) < D02 i(La,). We conclude that y is a probability mea-
sure. Note that if P(N) =0, then I(1y) = I(0) = 0, i.e. u(N) = 0. Therefore
i is absolutely continuous w.r.t. P. Let p = du/dP be the Radon-Nikodym
derivative. We aim to show that I = E,[.|H].

Consider A € H. In one hand, u(A) = E(I(14)) = E(14) by definition
of g and I. In the other hand, u(A) = E(pla) as p = du/dP. Therefore,
E(pla) =E(1,4) for any A € H hence E(p|H) = 1. Moreover, for any A € F,
as I(14) is H-measurable, we get that

Eu(I(14)) = E(pI(14)) = E(I(14)) = p(A) = Ep(1a).
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So, for any A € F and B € H, we have:
Eu(1alp) = E.(I(14lp)) = E.(151(14)).

This implies that E,[14|H] = I(14), for all A € F.

Consider now X € LR, F). We use the standard arguments, i.e. we
have X = lim,, T X,, where X" = 37" ja7'lan, (A}); is a partition of Q in F
and o} € R. By the Fatou property, I(X) < lim, 131" ;a7 I(142). On the
other hand, X > »7" jai'lan. implies that I(X) > 37" ajl(14n) for any
n. Therefore, I(X) > lim, 1 Y% (Y I(14n). We deduce that:

[(X)=lm1 ) afl(ly)=lm1 Y aofE,[l|H] = E,[X|H].
=0 =0

Finally, for any X € L'(R,F), we have:
I(X) = I(XT) = I(X7) = E,[XT[H] = Bu[X ™ [H] = E,[X[H].
Since E(p|H) = 1, we finally deduce that I(X) = E(pX|H). O

In the following, we construct linear indicators that are not conditional
expectations.

Counter-example The following is standard. Consider the space 2 = N
of all non negative integers endowed with the o-algebra F of all subsets of
N. The probability measure is defined as P(A) = > 77 27"71§,(A) where
0, is the Dirac measure at point n. Let Fo = {0,Q} be the trivial sub
o-algebra. Each random variable w.r.t. (2, F, P) is identifiable with the se-
quence (X (n))neny and we have X}, converges a.s. to X when k — oo if and
only if Xi(n) — X(n), for all n € N. The L*> norm is || X ||« = sup,, | X (n)|
and we have ess supz, = sup,, X(n) and ess infz, = inf, X(n). In the follow-
ing, we consider the set D of all X € L°(R, F) such that lim,, X (n) exists in
R. We define the linear positive operator T'(X) = lim,, X (n) on the domain
D. Note that X € L°(R, Fp) if and only if X is a constant sequence so that
X € D. In particular, T(X) = X for any X € L°(R, ) and T is a C.I. w.r.t.
Fo. As |[T(X)| < || Xl for all X € L*(R,F), the Hahn-Banach theorem
states the existence of a (continuous) linear mapping T defined on the whole
space L°(R, F) D D such that T =T on D, see [5][Chapter 2].
For every A € F, consider the random variable

_ card(AN[0,n])

n+1
21
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where card designates the number of elements that contains a subset. We
have X4 € L>[0,1], F). Let us define m(A) = T(X4). We may show that
m(0) = 0, m(Q) =1 and m(>_;, A) = >, m(A;) if (A;)7, is a finite
partition.

Moreover, suppose that T is an expectation on L®(R, F), i.e. there exists
an integrable random variable Y € L'(R., F) such that T(X) = E(Y X) for
any X € L>*(R,F). In that case, if (A;)!, is an infinite partition, we get
that

1=m(Q) = Zm(A@-).

With 4; = {i}, i > 0, we get that T(X4) = T(X4) =0, i.e. m(4;) = 0 for
all © € N. This is in contradiction with the equality above.

Another example is to consider F; = {(),Q, I, I°} where I¢ = Q\ I and
I = 2N + 1. Le us introduce the indicator:

~ ~

T(X) = T(X)1;+ E(X|Fi)l, X eL*R,F),
X(n) = X(n)l;(n)+ X(n+1Dle(n).

We observe that T} is linear, 77 (X) is Fj-measurable for any X € L*(R, F),
i.e. T1(X) is constant on I and I¢ respectively and, moreover, T1(X) = X
if X € L*(R,F). Therefore, we deduce by monotony that 7; is a linear
conditional indicator. By the same arguments, we then prove that 7} is not
a conditional expectation of the form T}(X) = E(XY|F), X € L*(R,F),
for some Y € L>*°(R, F). Indeed, otherwise, we get the equality 1 = 0 on the
non null set /.

8. Appendix

Lemma 8.1. Forry € LY(Q,H). There exist py, qu € LY (Z, H) x L} (N*, H)
such that ry = py/qu-

Proof. Consider the random set I'(w) = {(p,q) € Z x N* : ryq = p}. We
observe that its graph Graphl’ = {(w,p,q) : (p,q) € I'(w)} is a measurable
set of H x B(Z) x B(N*), g-algebra product of H and the Borel o-algebras of
Z and N* respectively and I'(w) is non empty. Indeed f : w — ry(w)q —p is
measurable. Therefore, we conclude by a measurable selection argument, see
[19][Section A.4], that there exists a measurable selector (pg,qy) of I'. [
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Lemma 8.2. For any o € LYR,H), there exist (rp)n, (gn)n € L' (Q,H)
such that
a—1/n<r,<a<g¢g <a+l/n

Proof. Consider T'(w) = {(7,q,) € Q*:a—1/n<r, <a<g, <a+1/n}.
It is non empty a.s. and its graph is a measurable set of H x B(Z) x B(N*).
We then conclude by a measurable argument, see [19][Section A.4]. O

Lemma 8.3. Consider F, € F; such that P(F,) > 0 and X € L°(R, Fr)
such that X = X1p, and ess supg, (X) # 0. If, for some e € Ry, we have

ess supz, (X —elp,) = ess supz, (X), (8.9)

then € = 0.

Proof. A first case is when 15, = 1. In that case ess supz, (X)—¢ = ess supz, (X),
thus e = 0. Suppose that 15, < 1,i.e. P(Q\F}) > 0. Asess supz (X) > X ass.,
we deduce that ess supz (X) > 0 on Q \ F; # hence ess supz, (X) > 0. Note
that (8.9) is equivalent to a := ess supz, (X +elayp,) = ess supg (X)+e. We
observe that o > ess supz (X) Ve and, also, ess supz, (X) Ve > X +elog\p,
on Q\ F;.

On the other hand, on the set F};, we also have
g > esssupr (X)Ve> X = X +elpe.

Therefore, a.s. we have ag > ess supx (X) Ve > ess supz (X + clayr,). We
deduce that ess supx (X) Ve = ag. This implies that (8.9) is equivalent to

ess supz, (X) Ve =ess supg (X) +e.

If ess supx (X) > ¢, then ess supy (X) = ess sup (X) + ¢ and thus € = 0.
If ess supz, (X) < &, we get that ess supz (X) = 0 in contradiction with the
assumption. O

Corollary 8.4. Consider Fy € F; such that P(F;) > 0 and X € L°(R, Fr)
such that ess supz, (X1g,) # 0. If, for some ¢ > 0,

ess sup, (X — €)15,) = ess sup, (X1,).

then € = 0.
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