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ABSTRACT: The current European (EU) policies, that is, the Green Deal, envisage safe and sustainable practices for chemicals,
which include nanoforms (NFs), at the earliest stages of innovation. A theoretically safe and sustainable by design (SSbD)
framework has been established from EU collaborative efforts toward the definition of quantitative criteria in each SSbD dimension,
namely, the human and environmental safety dimension and the environmental, social, and economic sustainability dimensions. In
this study, we target the safety dimension, and we demonstrate the journey toward quantitative intrinsic hazard criteria derived from
findable, accessible, interoperable, and reusable data. Data were curated and merged for the development of new approach
methodologies, that is, quantitative structure−activity relationship models based on regression and classification machine learning
algorithms, with the intent to predict a hazard class. The models utilize system (i.e., hydrodynamic size and polydispersity index) and
non-system (i.e., elemental composition and core size)-dependent nanoscale features in combination with biological in vitro
attributes and experimental conditions for various silver NFs, functional antimicrobial textiles, and cosmetics applications. In a
second step, interpretable rules (criteria) followed by a certainty factor were obtained by exploiting a Bayesian network structure
crafted by expert reasoning. The probabilistic model shows a predictive capability of ≈78% (average accuracy across all hazard
classes). In this work, we show how we shifted from the conceptualization of the SSbD framework toward the realistic
implementation with pragmatic instances. This study reveals (i) quantitative intrinsic hazard criteria to be considered in the safety
aspects during synthesis stage, (ii) the challenges within, and (iii) the future directions for the generation and distillation of such
criteria that can feed SSbD paradigms. Specifically, the criteria can guide material engineers to synthesize NFs that are inherently
safer from alternative nanoformulations, at the earliest stages of innovation, while the models enable a fast and cost-efficient in silico
toxicological screening of previously synthesized and hypothetical scenarios of yet-to-be synthesized NFs.
KEYWORDS: safe and sustainable by design, nanoforms, nanoparticles, quantitative structure−activity relationship, machine learning,
Bayes rules, intrinsic hazard criteria

1. INTRODUCTION
The current paradigm of European (EU) policies, that is, the
Green Deal, envisage safe and sustainable practices for
chemicals, which include nanoforms (NFs), at the earliest
stages of innovation to prevent and/or minimize safety and
sustainability impacts.1 To meet those policy goals, novel
frameworks are required such as the safe and sustainable by
design (SSbD) notion. The SSbD concept is under the
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spotlight of science, regulation, and engineering to achieve the
goals foreseen by EU policies.2 Commission has funded several
projects on nanotechnologiesa in the frame of Horizon 2020
(H2020) which, through industrial case studies, will offer to
various stakeholders digital products to facilitate (i) the
selection of alternative design options and (ii) the decision-
making process when having to weight criteria along the life
cycle of a NF and once integrated in nano-enabled products
(NEPs). In relation to the aforementioned criteria, the Joint
Research Center (JRC) published a theoretical SSbD frame-
work for the description of such criteria.3 The framework
provides guiding principles on the SSbD dimensions to
support the design phase and aspects and indicators in each
dimension to establish criteria that will guide researchers
toward SSbD practices. The SSbD dimensions are shown in
Figure 1 demonstrating the re-design phase supported by a
hypothesis formulation and the dimensional targets of
functionality, human, and environmental safety containing
intrinsic hazards, human occupational safety (process stage)
and human/environmental health (use phase), and the two
final steps of sustainability (environmental and economic).
The first principle stressed by ref 4 that supports the SSbD

framework is the need of findable, accessible, interoperable,
and reusable (FAIR) data: each dimension is driven by criteria
based on data (experimental or modeled) to promote safe and
sustainable research and innovation. A cornerstone aspect of
the implementation and reproducibility of the SSbD concept is
data quality and availability, that is, data FAIRness. Data needs
to be treated according to FAIR principles to safeguard its
long-term use and access.5,6 The data management plan has
been added as an inherent deliverable of any project that
generates, assembles, or processes data according to the
guidelines on FAIR data management. The Anticipating Safety
Issues at the Design Stage of NAno Product Development
(ASINA) project is generating data across the life cycle of NFs
with the aim to develop a data-driven decision-making strategy
based on the manufacturing of two types of enhanced
antimicrobial NEPs, namely, functional textiles and cosmetics

applications.7 These data are currently being curated by the
data shepherdb.8−10 In this study, we show one of the fruits of
the FAIR data management process and how such an action
accelerates the development of new approach methodologies
(NAMs).
The second principle underlined by ref 4 is the need of

NAMs: an umbrella of various applications such as computa-
tional, that is, in chemico, in silico, and other in vitro,
approaches that allow multiple investigations at the same time
and are expected to accelerate the implementation and
validation of the SSbD conceptc.11−13 Machine learning
(ML) is a subfield of artificial intelligence (AI) and represents
the definitive implementation of the 3R principles (replace-
ment, reduction, and refinement of animal testing). In the field
of computational (nano)toxicology, one of the most essential
methods are the quantitative structure−activity relationships
(QSARs, “nano-QSARs”, when applied to NFs). In QSAR, the
activity (e.g., toxicity) is predicted from a set of descriptors by
using various ML algorithms (e.g., supporting vector machines,
random forests, and artificial neural networks).14 QSARs have
been widely used in the field of nanotoxicology,15−18 and with
the blooming of the ML applications, the interpretability has
become an integral part so that their reasoning processes are
more understandable and easier to be used in practice.19

Bayesian networks (BNs) are ML graphical models that merge
probabilistic analysis, automated reasoning, and expert judg-
ment. Such an amalgamation is essential in a challenging
domain, such as nanosafety, which faces conflicting and
uncertain knowledge.20,21 Expert reasoning structures are
interpretable, re-usable by humans, and differ from the ones
generated solely by automated reasoning from data.22

Numerous studies have employed BNs in the nanosafety
domain to support risk assessment and prioritize NF hazard
assessment.16,23−27

The third principle for a successful SSbD implementation is
the extraction of quantitative criteria: during the EU high-level
roundtable on chemicals strategy for sustainability,c it was
mentioned that the design criteria for chemicals will move

Figure 1. SSbD framework dimensions, following a hierarchical approach in which safety aspects are contemplated first, followed by environmental
sustainability, and socioeconomic aspects (image adapted from the JRC framework).
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“from qualitative to quantitative assessments, with more data
becoming available”. Recent stakeholder webinarsd, network-
ing eventse, and nanosafety expert trainingsf stressed that a
well-defined and straightforward approach to derive quantita-
tive criteria guiding a SSbD is missing and required. The BNs
fulfill the expectations of such criteria by providing a set of
discrete and mutually dependent interpretable rules from the
conditional probability tables (CPTs). These rules have been
used to guide decision-making processes by providing experts a
series of IF statements [IF X satisfies (condition A AND
condition B) OR (condition C) OR..., Then Y = 1].28,29 In the
nanosafety domain,30 BNs were developed from the data
derived from a meta-analysis of cellular viability of quantum
dot NFs. In the supplementary material of the ibid study, the
authors provide such rules derived from the CPTs of the BN
structure.
To respond to the above challenges, we focused on step 1�

hazard assessment of the SSbD framework3 concerning the
assessment of the physicochemical (pchem) properties of
materials in order to derive criteria that lead to intrinsically
safer materials, before proceeding further in the SSbD
execution. In this context, the term “by design” refers to a
set of nanoscale features that can be modified by material
designers toward synthesizing/re-designing less hazardous
NFs. In this manner, our efforts align with the overall
objectives of the chemicals strategy for sustainabilityg, for
example, “ensure that all materials placed on the market are in
themselves safe”. The methodology followed is shown in
Figure 2. We combined FAIR data with NAMs comprising
QSAR approaches and explainable ML techniques for the
extraction of interpretable rules from BNs. Data collection:
first, nanodescriptors related to silver nanoforms (AgNFs) such
as system-dependent pchem properties (extrinsic properties
influenced by the surrounding environment or experimental
conditions aka the system) and non-system-dependent pchem
properties (intrinsic), biological in vitro attributes, exposure

conditions, and the hazard outcome were collected (Figure 2,
left). Dataset: in a second step, data is curated, merged, and
processed with various techniques (such as missing value
imputations and one hot encoding). Data is analyzed for
visualization and insight purposes. ML explorations for QSAR
development: various ML models were explored, from
regression and classifications algorithms to the construction
of a constrained BN based on expert judgment. Models are
trained and validated to reveal predictive performance metrics.
Rules extraction: finally, the quantitative intrinsic hazard
criteria (rules) applicable to the safety dimension of the
SSbD framework were extracted from the BN structure (Figure
2, right). From now on, in this manuscript, the interpretable
rules refer to the quantitative intrinsic hazard criteria.
This work demonstrates for the first time how QSAR models

in combination with FAIR data can support the development
and implementation of SSbD paradigm by supporting the
knowledge establishment for criteria definition.

2. EXPERIMENTAL SECTION
2.1. Data Collection. The data gathered for this study refers to

AgNFs, which are currently under investigation as SSbD alter-
natives.31,32

2.1.1. Silver NFs. Based on the intended application, data of two
alternative AgNFs coated with hydroxyethylcellulose (HEC), either as
powder form or suspended into a solution, are gathered. The powder
is intended for incorporation into cosmetics to provide functionalities
such as antimicrobial creams or lotions, while the solution is
incorporated into textiles as coating for increased antimicrobial/
antiviral efficiency.33,34 In addition to the alternative AgNFs, reference
data are used to facilitate the NAM approach. Commission4 mentions
the need of reference materials data for the validation of NAMs
derived from harmonized protocols. Below, we describe the NFs
along with their European Registry of Materials (ERM) identifiers
which guarantee that internal documentation can be later connected
to data and expertise for the particular NFs or variants35

(1) ERM00000559: AgHEC water-based solution (AgHEC sol)
reduced from AgNO3 solution by HEC catalyzed by sodium

Figure 2. Interpretable rule extraction workflow. From the data collection, to dataset curation, and exploration of ML tools for the QSAR
development to the final extrapolation of interpretable rules.
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hydroxide (NaOH). From a sustainability perception, the one-
step synthesis process utilized is an environment-friendly, sol−
gel-based technology obtainable at room temperatureh.

(2) ERM00000552: Powder AgHEC (AgHEC pwd) is derived by
spray-freeze-drying the solution without affecting the organic
layer producing microparticles with highly porous nanostruc-
tures (final composition of 11% Ag and 89% wt HEC). Both
solution and powder contain a molar ratio of HEC/Ag = 5.5
and NaOH/Ag = 2.8.

(3) ERM00000549: Reference uncoated material�Sigma-Aldrich
(Ag ref).

(4) ERM00000548: Reference material coated with PVP�Sigma-
Aldrich (AgPVP ref) in a powder form.

(5) ERM00000575: A variant AgHEC with a HEC/Ag: 6.4 and
NaOH/Ag: 1.4 molar ratio (AgHEC 6.4/1.4 sol) as a SSbD
alternative. Formulation obtained by tweaking two synthesis
parameters that affect the antimicrobial effectiveness (i)
concentration of HEC, acting as both reducing and chelating
agents, and (ii) concentration of NaOH, acting as a catalyst.
Such reagents play a fundamental role in the nucleation and
growth processes, colloidal stability,36 and reduction of
metals,37 driving the formation of the non-aggregated NFs.

(6) ERM00000580: AgNFs with curcumin solution (AgCUR)
which is a proven antibacterial/antiviral phytocompound as a
SSbD alternative.38

2.1.2. Input Features. It is of fundamental importance to define the
nanoscale features−nanodescriptors used in the QSAR modeling
since a subtle alteration may influence the output to be predicted (i.e.,
cellular viability). Nanodescriptors should reflect not only the
substance elemental composition but also other characteristics
requested by regulation when reporting a NF, for example, size
distribution and other morphological characterization such as crystal
structure.39 Moreover, nanodescriptors should reflect the influence of
the system (surrounding environment or experimental conditions) on
those properties. One can differentiate between system-independent
(intrinsic properties) and system-dependent (extrinsic properties)
nanodescriptors.40 In this study, both are considered. It is worth to
notice that the dataset solely refers to AgNFs, rendering those
descriptors collectively unique, acting as a fingerprint. This enables
NFs belonging in the same elemental composition group to be
differentiated.40 Commission4 remarks the development of substance-
specific hazard assessments and the exploration of the determinants
that drive the toxicity.
2.1.2.1. System-Independent Nanodescriptors. Those descriptors

contain the (i) quantification of the atomic concentrations of
elemental compositions derived by X-ray photoelectron spectroscopy
(XPS) analysis, a technique for analyzing material’s surface
chemistry,41 (ii) core size and morphology by transmission electron
microscopy (TEM), and (3) crystallographic structure-related
information by X-ray diffraction analysis (XRD).42 System-dependent
nanodescriptors: a crucial aspect of NF toxicity exploration is their
characterization in relevant biological media since properties could
change in relation to the environment, influencing their cytotoxicity
potential. Therefore, NFs should be characterized as pristine (system
independent) and as applied in biological fluids,43,44 which in this case
is the cell culture medium [Dulbecco’s modified Eagle’s medium
(DMEM) and 1% fetal bovine serum (FBS) with pH = 7, 2−7, and
4]. The nanodescriptors contain particle’s hydrodynamic size (z-
average and peak maximum value) and polydispersity indexes (PdI),
which represent the sample’s heterogeneity, derived from dynamic
light scattering (DLS). DLS analysis is recommended from the ISO
standardi and from the OECD’s Working Party on Manufactured
Nanomaterials (WPMN) testing programmej. Since DLS measure-
ments of size distribution depend on sample dispersion, PdI should be
considered.45 PdI values vary from 0.01 to 0.5−0.7 (monodispersed
particles) and PdI >0.7 (broad particle size distribution).46 Moreover,
size distribution could change at time 0 (t0) and the time after in vitro
exposure (in our case 24 h, for cell viability assessment, t24). To

account for alterations of properties in time,47 we considered
measurements (hydrodynamic size and PdIs) performed at t0 and t24.
2.1.2.2. Biological Attributes. The criteria definition in the SSbD

framework was based on hazard categories established within the CLP
[no. 1272/2008 (EU, 2008)] and REACH (no. 1907/2006 (EU,
2006)] regulations containing carcinogenicity, reproductive toxicity,
target organ toxicity, and so forth. However, those endpoints are
assessed with in vivo testing. In our case, the in vitro lines represent
different target organs, alveolar lung cells (A549, human adenocarci-
noma), and intestinal (HCT-116, human colon carcinoma) at a
cellular level of biological representation. The cell lines represent
different exposure routes, that is, inhalation and ingestion. Inhalation
is a major route of human exposure to airborne NFs, and it may occur
at workplaces, and A549 cells are a well-established line used for
inhalation toxicological testing,48 including AgNFs.49 Ingestion is
another important route of exposure,50 and with regard to intestinal
exposure, ingested NFs pass through various environments before
reaching the intestinal cells, such as saliva, gastric, and intestinal
fluids.51,52 Due to the complex nature of these fluids such as acidic
conditions, the presence of salts and biomolecules, the pchem
properties of NFs could be altered before, during, and after passing
the gastrointestinal tract, affecting their bioactivity.53,54 To mimic the
fate of NFs, simulated digestive fluids were prepared based on ref 55,
and NF preparation in simulated digestion cascade was performed
according to ref 56. Finally, digested and non-digested NFs were
exposed to HCT-116 cells, a well-accepted model for testing NF
intestinal cytotoxicity.57

2.1.2.3. Outcome and Exposure Conditions. Hazard evaluation
was performed via cytotoxic measurements based on cell viability, a
means to a preliminary hazard screening in a quick, cheap, and
efficient manner.58 Several in vitro assays are available to assess cell
viability, including the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide (MTT), Alamar blue, and WST-1 tests, which are
rapid, high-throughput, and low-cost assays.59 The cell viability for the
lung cells (%) was estimated with MTT and Alamar blue protocols
(ISO10993-5:2009) at various concentrations (0.1−100 ppm). MTT
is used in several ISO standards (ISO10993-5:2009) and OECD test
guidelines (OECD 431, 439, 492). The inclusion of the different
assays as output-related features is also relevant since NFs could
interfere with the tests and the final outcome.60,61 Intestinal cells are
exposed with either digested or non-digested AgNFs at concentrations
ranging from 1.25 to 100 ppm with the WST-1 assay. All experiments
refer to a 24 h duration of exposure.
2.2. Dataset. 2.2.1. Dataset Curation. The three different

datasets are as follows: toxicological attributes in (i) lung and (ii)
intestinal cell lines along with system-dependent features and (iii)
system-independent pchem properties were merged. Each row
represents one set of experimental testing conditions and related
system-dependent nanodescriptors based on the exposure dose and
NF pre-treatment (for intestinal assessments). The system-independ-
ent inputs are NF specific and independent of experimental
conditions. Data is captured via FAIR principles where the reader
can find the origin (institution) of each data, the responsible data
creators (experimentalists), the raw measurements, the protocols
followed, and the instrumentations used for each experiment. More
information regarding the worksheet used for data capturing can be
found here.8

2.2.2. Data Preprocessing. Missing value imputation methodology
is commonly used for ML studies since it is a basic assumption that
(i) certain relationship exists between the different attributes and (ii)
missing value fill-in is a learning process.62 Missing value imputation:
for the missing values of system-dependent nanodescriptors,
imputation was performed by linearly interpolating data in cases
where the corresponding variable was known in a smaller and larger
dose; for example, if the hydrodynamic size at t0 was known for a 10
and 50 ppm solution, interpolation for the 20 and 40 ppm solution
was feasible (neighboring points according to the corresponding
values). The cases above and below those known values were left
blank. The missing value interpolation was performed on a dose, cell
line, and NF’s pretreatment-reliant manner. Meaning, if the
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hydrodynamic size at a 50 ppm solution for one specific digested NF
was known, the same value did not apply for the non-digested NFs at
the same 50 ppm solution. In this manner, we kept the missing value
imputation uncertainty at minimum levels. For the system-
independent missing values and for the ones left blank from the
interpolation, an iterative sequential imputation process was executed
via regression with the Light Gradient Boosting Machine (lightgbm)
algorithm.63 Each feature is modeled as a function of the other
features, allowing prior values to be used into predicting subsequent
features. The dataset with the ML-based imputed values can be found
in the supplementary material (Supporting Information: tab v01 in
the excel). It is worth to notice that during the ML imputation, the
ERM codes of the NFs were left in the dataset (dropped after for
modeling) since it is the only feature that distinguishes the dataset
into fragments, greatly easing the lightgbm algorithm with targeted
imputations, lowering the uncertainties.
2.2.2.1. One Hot Encoding. One hot encoding was performed on

the categorical attributes for the ML regression models and the BNs.
This technique converts categorical features into numerical dummy
variables with values 0/1 indicating the absence or presence of the
originally feature.64

2.2.2.2. SMOTE. For the ML classifiers and BNs, the outcome was
discretized into three classes: safe, toxic, and very toxic depending on
the corresponding values of cell viability. A challenge in the criteria
development is the threshold definition for deciding when a material
is deemed safe.1 The lower the viability value, the higher the cytotoxic
potential. Thus, safe were the data points with cell viability ≥70%,
toxic where the viability ranged from 30 to 70% in a precautionary
manner, and very toxic where the viability was <30% (ISO10993-5).
However, discretizing the outcome leads to unbalanced classes. To
address this issue, we adjusted the relative frequency of the instances
by applying SMOTE (synthetic minority oversampling technique), a
supervised algorithm that uses the k-nearest neighbors algorithm in
the training set (80%) to oversample minority instances.65

2.2.2.3. Discretization. In the case of BNs, a quantile-based
discretization function was performed on the numerical inputs to
discretize them into three equal-sized bins to facilitate the
interpretation of the rules. Instead of utilizing the actual numeric
edges of the bins, the function defines the bins using percentiles based
on the data distribution.
2.2.3. Data Analysis and Visualization. 2.2.3.1. UMAP and

MAPPER. Uniform manifold approximation and projection (UMAP),
like principal component analysis methodology, is a dimension
reduction technique for 3D data structure visualization. UMAP is
constructed from a theoretical framework based in Riemannian
geometry and algebraic topology.66 Prior to patching together their
local fuzzy simplicial set representations, it first builds a topological
representation of the high-dimensional data with local manifold
approximations.67 Similarly, the Mapper algorithm was used for
visualization purposes, a method for extracting simple descriptions of
the dataset in the forms of simplicial complexes.68 The methodology
is qualitative based on topological ideas and on partial clustering
guided by a set of functions defined on the min−max scaled data.
Mapper is essentially providing a simplified version of the UMAP
scatterplot via topology.69

2.2.3.2. Correlation. Spearman’s was performed on numerical−
numerical correlations which ranks correlation coefficient (ρ) as a
measure of monotonic correlation between −1 and +1, where −1
indicates the negative correlation, 0 denotes the absence of
association, and 1 shows the positive correlation.70 Crameŕ’s V, an
association measure for categorical variables,71 was utilized for
numerical−categorical and categorical−categorical features with
coefficients ranging from 0 to 1, with 0 denoting independence and
1 indicating perfect correlation.
2.3. QSAR Development. 2.3.1. ML Exploration. Several QSAR

models were developed exploring various ML algorithms via PyCaret,
a low-code AutoML-augmented Data Pipeline library implemented in
Python version 3.7.72 Regression algorithms include lightgbm,
random forest regressor (rfr), extra trees regressor (etr), Lasso
regression (lasso), elastic net (en), linear regression (lr), AdaBoost

regressor (ada), and so forth; classification algorithms include
gradient boosting classifier (gbc), random forest classifier (rf), extra
trees classifier (et), decision tree classifier (dt), ridge classifier (ridge),
linear discriminant analysis (lda), and so forth. All models are trained
with a randomly split sample containing 80% of the initial dataset,
with 20% withheld for an out-of-sample validation.
2.3.2. BNs and Rules Extraction. BNs are directed acyclic graphical

models where features are nodes and connections are arrows, each of
which denotes a conditional reliance of a child to a parent node. The
Bayes’ rule updates the probabilities in light of new data, and the
network as a whole represents the joint probability distribution of
features.73−75 The probability distribution of all nodes is specified by
the artifact of all CPTs in the BN model. For the development of the
BN structure and the CPTs, we utilized an open source ML package
for probabilistic modeling in Python, pomegranate.76 We initialized
the BN structure development in a two-fold manner. First, the optimal
unconstrained structure was built on the basis of the exact algorithm
with knowledge learned directly from data without interference.
Second, the structure was then refined by guidance upon expert
judgment and inclusion of enforced expected dependencies.77 The
BN constructed in this manner encodes the expert’s reasoning process
and allows the system to explain the inference through interpretable
rules.22,78

Structure learning and rules extraction are independent with the
latter being described as an explainability method.77 Each rule is
followed with a certainty factor (CF), which is the likelihood ratio for
and against an outcome (T) when presented with evidence (X): that
is, IF (X = 0) THEN T = 0 with CF = 0.25. By adding CF to rules, we
reveal model’s uncertainty in the nanosafety domain.22

2.3.3. Models Validation. QSAR models were validated based on
the OECD guiding principles, containing a defined endpoint
(biological effect can be measured and modeled, i.e., cellular
viability); unambiguous algorithms and measurements of goodness-
of-fit, robustness (internal 10-fold cross-validation, 80%), and
predictivity (external validation, 20%).79,80 Since the focus of this
study is QSAR based on the BN algorithm, the domain of applicability
is defined solely for this case. Regression QSAR models were validated
with various performance metrics such as the mean absolute error
(MAE), which is the mean value of individual prediction errors over
all instances, root-mean-square error (RMSE), the standard deviation
of residuals (prediction errors), and the coefficient of determination
(R2) that measures how well a model predicts an outcome.
Classification QSAR models and BNs were validated via multiclass
classification metrics81 such as balanced accuracy (overall measure of
correctly predicted instances with classes having the same weight),
precision (true negative rate or specificity), recall (true positive rate or
sensitivity), F1 score (weighted average of precision and recall), and
Mathews correlation coefficient (MCC), a metric that accounts all
confusion matrix categories. In the case of multiclass outcome, those
metrics are calculated per class, for example, the metrics for the toxic
class consider toxic as true and the union of the remaining classes as
false.

3. RESULTS
3.1. Data Merging and Pre-processing. Table 1 shows

the information related to the nanodescriptors and toxico-
logical data. System-independent variables contain information
derived by XPS, TEM, and XRD analysis. System-dependent
variables contain DLS measurements in two different times.
The toxicological data contain information related to (1) in
vitro characteristics such as the cell line exposed, the cell type,
cell origin, and cell number; (2) exposure conditions such as
the exposure dose and duration; and (3) output-related
information such as the assay for the cellular viability
determination. The FAIR dataset is enriched and annotated
with information of the origin of the data, the protocols, and
instrumentation and can be found in the Supporting
Information and in the open repository Zenodok.
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3.2. Data Analysis. In Figure 3, UMAP and Mapper
topological network projecting data into lower dimensional
spaces demonstrating the structure of the data. Even with
missing value imputations, the experimental data are quite
sparse with relatively low variance, with the local dimension
varying across the data and the dataset uniformly distributed
on the Riemannian manifold (Figure 3, left). This was
expected since the dataset contains (i) triplicates of
toxicological experiments (rows with identical inputs but
different outcomes) and (ii) rows where the only feature
varying is the exposure dose or the assay. UMAP places related
experiments near to one another with the color differentiating
the 3D experimental space based on cellular viability-scaled

values. The gaps between the points signify the experiments
that could have been hypothetically performed.
Data are projected into a two low-dimensional simplicial

complex with the Mapper algorithm inclosing clusters varying
by color and size containing cubes (Figure 3, right). The color
indicates the value of the function at a representative point
(cell viability), and the size indicates the number of dots in the
set (experiments), providing information about the nature of
the output.68 Each dot belongs to a rule/criteria (cube) and
finding the input’s association of the cubes within the cluster
provides the output.
The pairwise correlation among the features based on

Spearman’s ρ for the numeric features and based on Cramer’s
V for the categorial relationships is shown in Figure 4.

Figure 3. UMAP for dimension reduction (left) and topological network representing the dataset (right). The axes coordinates of UMAP are
dimensionless representing an Euclidean space with points distributed so that the low dimensional representation has a similar topological structure
to the original data. 3D visualizations of the dataset with respect to viability are colored by a scaled order of viability.

Figure 4. Inter-relationship correlations of input variables and between the inputs and output.
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The output (viability expressed either as % or multiclass)
shows no correlation with input features. The NFs (ERM
identifiers) which are utilized during missing value imputation
with the lightgbm algorithm shows high correlation with nearly
half of the features in the dataset. Thus, including it during the
imputation helped the algorithm to efficiently allocate missing
values. Crystallinity is correlated with the C 1s atomic
concentration, while Ag 3d atomic concentration is correlated
with the core size, coating, and surface area of NFs. The
average crystallite sizes are correlated with the coating along
with other features such as the C 1s atomic concentration. This
information is useful for the reasoning construction of the BN
structure since some correlation among features is required.
Negative linear correlation is shown among O 1s with Ag 3d
and C 1s atomic concentrations (see Supporting Information
Figure S1: Pearson r correlation). The cell line is highly
correlated with the organ, multiwell, assay, and the hydro-
dynamic size at t24. Thus, we kept only the cell line as a final
feature to be used in the modeling part since it encapsulates
the information regarding the organ. Such input features would
be valuable in case of diverse targeted organs to reveal any
target-specific toxicities. Assay is kept which includes
information of the multiwell used. Regarding the correlation
of the above-mentioned features with hydrodynamic size at t24,
correlation does not signify causation, and this information is
not deemed redundant in our case. In BNs, determining the
conditional dependencies among the features goes beyond the
correlation concept revealing the causal effect probabilities
among the features (Pearl’s ladder of causation).82

Table 2 shows the final modeling features along with their
skewness and the transformed bins for the BN training, which
also represent the applicability domain of the QSAR model.
Skewness quantifies distribution asymmetry, and values
between −2 and +2 are acceptable to demonstrate a normal
univariate distribution.83 All features show good skewness
except hydrodynamic size at t24. However, the feature is
included since it contributes greatly to the information gain
analysis of the dataset (see Supporting Information Table S1:
attribute selection). All the experiments refer to a 24 h acute in
vitro toxicological screening, thus from the exposure
conditions, only the exposure dose was considered. Na 1s
and N 1s atomic concentrations were not considered for the
modeling due to redundant zero vales and the fact that those
features are related to the synthesis process and precursors
utilized and have no causal effect to hazard effects.
3.3. QSAR Development and Validation. 3.3.1. ML

Exploration. QSAR models trained either as regression or
classification ML tasks are able to predict cellular viability with
satisfactory results. Table 3 shows the top three regressor and
classifier algorithm’s external performance metrics. Random
forest regressor (rf) slightly outperforms the other regressors
achieving R2 = 0.7, MAE = 12.77, and RMSE = 19.55. Extra
trees classifier (et) faintly outperforms rf, reaching a balanced
accuracy of 85%, a F1 score (a harmonized metric including
precision and recall) of ≈85%, and a MCC of 77%. Additional
algorithms with their internal 10-fold cross-validation, hyper-
parameterization, and external performance metrics can be
found in the Supporting Information (Tables S2−S5: addi-
tional algorithms’ validation metrics).
3.3.2. BNs and Rules Extraction. For the development of

the constrained reasoned structured network, expert judgment
was applied to conditional dependencies. Some alterations of
arcs include polydispersity index t24 and hydrodynamic size t0,

where t24 features were parents to exposure dose in the
unconstrained structure (see Supporting Information Figure
S2: unconstrained BN structure); however, such a dependency
is not realistic; that is, the external exposure dose cannot be

Table 2. Features in the Final Dataset for Modeling
Purposesa

input features metric skewness bins [for the BN structure training]

O 1s_Atomic % 0.78 “low”: [14.16 → 14.54], “medium”:
[14.54 → 34.02], “high”: ≥34.02

Ag 3d_Atomic % −0.21 “low”: [0.08 → 0.19], “medium”:
[0.19 → 15.53], “high”: ≥15.53

C 1s_Atomic % −0.19 “low”: [54.23 → 60.61], “medium”:
[60.61→ 61.83], “high”: ≥61.83

core size nm 0.60 “low”: [7.0 → 17.8], “medium”:
[17.8 → 20.00], “high”: ≥20.00

spherical surface
area

N m2 1.03 “low”: [3981.53 → 3981.59],
“medium”: [3981.59→ 5023.55],
“high”: ≥5023.55

crystallinity % 1.61 “low”: [22.9 → 60.0], “medium”:
[60.0 → 61.0], “high”: ≥61.0

av crystallite
sizes

nm 0.35 “low”: [46.0 → 98.0], “medium”:
[98.0 → 117.0], “high”: ≥117.0

coating HEC, PVP, CUR, none (one hot
encoded)

hydrodynamic
size t0

nm 1.79 “low”: [55.91 → 209.97], “medium”:
[209.97 → 363.31], “high”:
≥363.31

hydrodynamic
size t24

nm 2.67 “low”: [63.74 → 149.34], “medium”:
[149.34→ 266.90], “high”: ≥266.90

pol index t0 −0.72 “low”: [0.18 → 0.47], “medium”:
[0.47 → 0.59], “high”: ≥0.59

pol index t24 0.31 “low”: [0.04 → 0.28], “medium”:
[0.28 → 0.49], “high”: ≥0.49

cell line A549, HCT-116 (one hot encoded)
exposure dose ppm 0.32 “low”: [0.0 → 20.0], “medium”:

[20.0→ 58.35], “high”: ≥58.35
assay WST-1, MTT, Alamar blue (one hot

encoded)
output feature metric skewness bins [for the BNs structure training]
cellular viability % −0.28 very toxic [0 → 30.0%], toxic

[30.0 → 70.0%], safe >70%
a900 rows transformed into the final dataset of 1682 rows through
SMOTE implementation for the classification modeling and BNs. The
bins also demonstrate the applicability domain of the QSAR model
based on BN algorithm in which the model makes predictions with a
given reliability.

Table 3. Performance Metrics (External Validation/
Predictivity with 20% of the Dataset) for the Top Three
Regressors and Classifiers

performance metrics

task models MAE RMSE R2

regression rfr random forest
regressor

12.77 19.55 0.70

lightgbm light gradient
boosting
machine

12.91 19.71 0.70

gbr gradient
boosting
regressor

14.17 20.18 0.68

ACC F1 MCC
classification et extra trees

classifier
0.85 0.85 0.77

rf random forest
classifier

0.84 0.84 0.77

lightgbm light gradient
boosting
machine

0.84 0.83 0.76
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determined by the hydrodynamic size; however, the exposure
dose did fed the cell viability node, which is kept in the
constrained structure, eliminating the other relationships. The
exposure dose was forced to act as an independent global
parameter84 (see Figure 5, node: exposure dose, color gray).
The same reasoning was applied for the assay, which affects the
output to be predicted. Coating is fed by the core size in the
unconstrained structure, but knowing the coating has no effect
on predicting the core size; instead, the coating feature
determines the surface area and the Ag 3d atomic

concentration in the case of uncoated AgNFs. Polydispersity
index at t0 appeared at the end of the structure with
hydrodynamic size at t0 and the cell line feeding it. Thus,
one constrain included in the structure was that the output
should be the only feature receiving prior knowledge at the
terminate point. Core size fed many nodes in the uncon-
strained structure, and the pattern was kept in the constrain as
well. Features measured at t0 should act like parents to features
at t24 and not vice versa (see Figure 5, system media
dependent, color blue). The constrained structure follows a

Figure 5. Graphical structure of the constrained BN representing the variables (input features and toxicological attributes) along with the
conditional probabilities. Arcs represent the conditional dependencies between the features. The different color represents the categories of the
input features containing system-dependent and system-independent pchem properties measured with different protocols, biological attributes (in
vitro characteristics), and exposure conditions.

Figure 6. External validation metrics containing precision (PREC), recall (REC), and F1 score and balanced accuracy (ACC) per class label of the
constrained structure (A) and the unconstrained structure (B).
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reasoning pathway of scale information starting from a higher
level such as coating to → structure level → to atomic system-
independent properties, while the system-dependent features
are fed by medium information encapsulated within the cell
line. With the above manipulations of the conditional
dependencies based on expert judgment, the constrained
model displayed slightly higher predictive capacity for some
classes, but most importantly, the structure has reasoning, in
order for the rules to make sense.
Exploring the Weka software for automated BN construction

(estimator: simple, a = 0.5, search algorithm: local hill climber,
six parents limit configuration), the unconstrained structure
also demonstrated the exposure dose, hydrodynamic size at t24,
core size, and assay being connected to the outcome,
reinforcing the reasoning on some arcs (see Supporting
Information Figure S3: unconstrained Bayesian structure
derived from WEKA software).
Figure 6 demonstrates the external validation results of the

QSAR BN-based model tested with the 20% test set. The
metrics are quite similar for both structures. However, we
demonstrate that even with constrains, the predictability of the
BNs is slightly increased (MCC for unconstrained: 62% vs
constrained 67%, data not shown in figure since MCC
considers all classes into a single metric).
The focus on the validation was to surpass the performance

for the very toxic instances from the structure learned with no
reasoning. The constrain model has higher performance
metrics for the very toxic instances. This is significant
especially in the case of the high recall (REC: 85% constrained
vs 81% unconstrained), meaning a false negative instance (safe
or toxic) rarely gets predicted instead of very toxic. The BN
performed better also for safe instances (PREC: 77%
constrained vs 73% unconstrained). Regarding the toxic
instances, the constrained BN scores 69% ACC (vs 61%
unconstrained).
3.3.2.1. Rules Extraction. The extraction of the interpretable

rules related to the quantitative intrinsic hazard properties of
AgNFs was filtered down to the cases where the hazard class
was present and with the highest CF as an example. For the
theoretical scenarios where the input ranges fall outside those
given rules (or the ones provided in the Supporting
Information, Section 4: extra rules), Bayesian inference (or
the regressors/classifiers) can be used to determine the hazard
class with a given CF. The higher the CF, the higher the
posterior probability of that statement/rule to be true. Infinite
confidence probabilities, an instance that occurs due to a
divide-by-zero runtime exception when comparing the like-
lihood of events with no counterexamples, were discarded.
The following rules are mentioned based on the BN

structure’s CPTs solely as examples, where L denotes low, M
medium, H high values in the representative bins (see Table
2), and ̂ the logical symbol for and:
(1) Quantitative intrinsic hazard criteria for lung cells

(under MTT assay)
IF (crystallinity) = M(60 → 61)ĉore size = M(18 →

20)ŝpherical surface area = M(3982 → 5026)Âg 3d at. % =
M(0.2 → 15)ĥydrodynamic size t24 = L(64 → 149) THEN
AgNFs are toxic if tested under low (0.0 → 58) dose with an
average 0.82 probability.
IF (crystallinity) = H(>61)ĉore size = L(7 → 18)ŝpherical

surface area = L(3981.53 → 3981.59)Âg 3d at. % = L(0.08 →
0.2)ĥydrodynamic size t24 = L(64 → 149) THEN AgNFs are

safe if tested under low (0.0 → 58) dose with an average 0.81
probability.
(2) Quantitative intrinsic hazard criteria for lung cells

(under Alamar blue assay)
IF (crystallinity) = L(23 → 60)ĉore size = L(7 →

18)ŝpherical surface area = M(3982 → 5026)Âg 3d at. % =
L(0.08 → 0.2)ĥydrodynamic size t24 = M(149 → 267) OR.
IF (crystallinity) = H(>61)ĉore size = L(7 → 18)ŝpherical

surface area = L(3981.53 → 3981.59)Âg 3d at. % = L(0.08 →
0.2)ĥydrodynamic size t24 = L(64 → 149) THEN AgNFs are
very toxic if tested under low dose (0 → 20) or medium dose
(20 → 58), respectively, with a 0.87 probability (CF = 6.7).
(3) Quantitative intrinsic hazard criteria for intestinal cells

(under WST-1 assay)
IF (crystallinity) = L(23 → 60)ĉore size = L(7 →

18)ŝpherical surface area = M(3982 → 5026)Âg 3d at. % =
L(0.08 → 0.2)ĥydrodynamic size t24 = M(149 → 267) THEN
AgNFs are safe if tested under any exposure range with an
average 0.87 probability (CF = 35).
The rules mentioned are only a sub-part of all the rules and

serve as an technical extract example of the model that can be
used as a formula, ad hoc. The structure of the BN contains the
decision structure and the rules within�a total of rules
extracted from this case is ∼150.

4. DISCUSSION
4.1. Data. For the moment, a great amount of information

produced by H2020 projects is stored online in private servers,
locked to external users, making the data re-usability
unfeasible, hindering progress and data integration, especially
for modeling purposes.85 Commmission4 remarks that research
and innovation are needed in open platforms to ensure access
and data integration from different databases enabling
exchanges between different stakeholders in line with data
governance acts, meaning an overarching level.1 Metadata
capturing is not frequently promoted in regular academic
practice, despite its importance. This is due to a lack of data
management training. This FAIR challenge requires the active
involvement, participation, and collaboration of participants
with different expertise. In this work, we used data captured by
the data shepherd,8 which demonstrates that this role is
essential in a project where data are generated, modeled, and
used.85 The role of the shepherd is to capture data, protocols,
and instrumentations and to help with data reporting, merging,
and harmonization. The most important part of this role is the
implementation of the FAIRification process with multiple
stakeholders who are unaccustomed with the notion of
FAIRification process.8−10 It is outside of the scope of this
manuscript to provide details regarding the FAIR initiatives
and the efforts in place in the EU. The reader can refer to the
following footnotesl,m to get an appreciation of the current
initiatives regarding FAIR data.
The size of the dataset used in this study is not remarkable

(in comparison to common experimental computer science
fields), but in comparison to the dataset sizes used in the
nanocomputational domain literature, the data size is
sufficiently large.16 To tackle this sparsity, the approach in
this work is twofold, the data is augmented by a standard
method to oversample sparse data with SMOTE leading to
1682 data points and by applying BN ML algorithm, which is a
robust learning paradigm in the sparse data regime. In
addition, the interoperability of data is high due to the
annotation with ontological identifiers from eNanoMapper and
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with ERM identifiers which ensure that internal project
documentation can later be linked to released data for specific
NFs.35 The dataset contains harmonized features derived from
different laboratories; for example, the system-dependent
properties reported in the toxicological datasets were similar
across the two partners, greatly facilitating the merging. By
capturing the measurements at two time points, we were able
to account for variations that might occur to the size when
dispersed and once when in contact with cellular medium.47 By
incorporating the polydispersity index, we increases the quality
of the measurements and consequently the modeling.45 The
data is targeting cellular viability, which is the majority of the
re-usable data that exist in the literature and databases,27,85

implying a potentiality of further merging. Also, exposure
conditions and in vitro characteristics are commonly
considered as input features.59 The exposure aspects are not
part of step 1�hazard assessment of the SSbD framework.3 In
this work, we go a step further considering, besides the system
and non-system-dependent properties, also the in vitro
characteristics and exposure conditions to better represent
how those properties are altered depending on the dose and
the cellular target. We argue that inherently safer NFs should
be cell line (organ)-target specific; that is, NFs safe for skin
cells could be harmful for lung cells. Taking into account in
vitro features for the hazard criteria, we capture the dynamic
and complex nature of NFs when surrounded by a biological
environment.43 In addition, from a toxicological point a view,
dose should be considered at each dimension. Including
exposure conditions increase the performance as this
information is always reported in in vitro studies but could
also reduce the biological accuracy by grouping this
information in a node of exposure features not readily
comparable; for example, exposure doses for different tissues
cannot be grouped. However, the nodes were included as
exposure criterion, which is a crucial variable in the hazard
notion.
4.2. Data Pre-processing. Commission4 mentions the

need of improved methods to address missing data such as
ML-based methods. In this study, an iterative sequential
imputation process was executed via regression with the
lightgbm algorithm. Other techniques have been proposed
such as a hybrid missing data imputation method incorporating
records similarity using the global correlation structure by
using k-nearest neighbors and iterative imputation algorithms86

or by merits integration of decision trees and fuzzy clustering
into an iterative learning approach.87

A quantile-based discretization function was performed in
this study to discretize features into bins. For this step,
alternative methods have been proposed, for example,88

introduced a dynamic programming search strategy and a
Bayesian score for the evaluation and the discretization of
variables.
UMAP places related experiments (each row of the dataset)

near to one another. Such an approach could hypothetically be
helpful to identify the experimentations that should be
prioritized during a project, in a data gap filling manner,
supporting the application of QSAR modeling. Since the axes
in UMAP are non-dimensional, input features could be used to
predict x, y, z values. On a second step, a SHapley Additive
exPlanations (SHAP) analysis could reveal the most important
features determining the space and were experimentations
should focus.89 In addition, the dimensionality reduction
algorithms could be more interpretable only for some cases

due to complexity.19 However, this field is under research, with
hyperparameter choice appearing to play an important role.
4.3. NAMs. QSAR models based on random forest (rf) and

extra tress (et) algorithms showed good validation metrics in
our study. Throughout the literature, rf has been shown to
surpass other algorithms.90−92 Et algorithm generates a large
number of unpruned decision trees from the dataset and then
combines the predictions. Et similarly to rf randomly samples
the features at each split point. However, et splits the nodes by
selecting cut points randomly, in comparison to rf, and fits
each decision tree to the entire training dataset whose
structures are independent of the output values.93

The theoretical framework from ref 3 and the recent report
by ref 4 both mention NAM approaches as helpful tools in the
implementation and validation of the SSbD approach, without
providing instructions. This study is a contribution of an
iterative consolidation of modeling and experimental domain
expertise. We demonstrate how experimentalists in conduc-
tions with modelers can act in a complementary manner,
accelerating the progress in the nanosafety domain. Bringing
the gaps between the three fields (toxicology, material
designers, and modelers) demanded strong communication,
interaction, while transferring experimental domain knowledge,
adopting a multidisciplinary approach.94 In this work, we
demonstrated in a detailed manner how QSAR tools based on
BNs coupled with expert judgment can be used for the
definition and extraction of quantitative intrinsic hazard
criteria. The same approach can be used in datasets targeting
different outputs.
The modeling approach is unique in some points: (i) the

BN model is crafted by expert reasoning integrating system-
dependent and -independent nanodescriptors in combination
with in vitro experimental conditions derived from a FAIR
process to predict a biological effect, (ii) the data refer to NFs
that have the same chemical identity but a unique fingerprint
that allows a NF-dependent differentiation among the same
substance, (iii) the interpretable rules can guide material
developers into synthesizing (re-synthesizing) inherently safer
NFs, and (iv) the models (BN, regressors, and classifiers) can
enable the fast and cost-efficient in silico toxicological
screening of previously synthesized NFs and hypothetical
scenarios of yet-to be synthesized NFs. It is worth noting that
the methodology strongly improves given variables that
material designers have the most control over modifying in
the laboratory. For the development of the BN structure and
the CPTs, we utilized an open source ML package
pomegranate.76 Other packages for the implementation of
BN are documented.95

In the nanosafety, there are no clear understandings of causal
relations among nanodescriptors and hazardous attributes,
only statistical relevance information. Such relevance is
insufficient to fully capture causal relations. This means that
any explanation proven wrong may have to be prohibited
within the structure.78 The BNs can perform an incremental
learning, meaning, as more data become available in the
nanosafety domain, the existing structure can remain the same,
or updated to novel modifications of parameters (inclusion of
additional nanodescriptors or hazard endpoints), and even a
new structure, to fit the new data.22 The BN can also perform
with multiple outcomes, rendering it an optimum solution in
the case of multiple hazard criteria96 while also providing a
robust learning paradigm in the sparse data regime.97 The
extraction of the rules from the CPTs is performed with the
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aim to extract quantitative intrinsic hazard design criteria that
can be used in SSbD paradigms. The interpretable rules can act
in a hierarchic manner, meaning that the last descriptors have
to be measured only if the previous IF statements are met.
Identifying quantitative criteria to address the SSbD multi-
criteria decision problem is one of the most significant goals
where collective robust efforts are currently placed. The rules
are followed with CFs, which is the likelihood ratio for and
against an outcome when presented with evidence, as a means
of expressing domain knowledge and creating expert systems
that can take into account quantitative uncertainties. The
quantifiable CFs for each rule deliver a convenient system to
manage uncertainties in a criteria-based framework. As a result,
such a rule-based system will have practical ways to elicit
expert knowledge and clearly communicate the reasoning
process. This methodology proposed entails a flexible,
nuanced, and promising approach applicable at each SSbD
dimension with a goal to extract a set of quantitative criteria in
a data-driven manner.

5. CONCLUSIONS
Collaborative efforts are required among data shepherds,
experimentalists, experts, and modelers to merge information
in an iterative manner that can reveal valuable information for
each SSbD dimension. BNs are promising probabilistic ML
tools helpful to (i) derive interpretable rules from FAIR data,
(ii) capable and flexible in updating their conditional
dependencies from new data while (iii) allowing the
quantification of the uncertainties. In addition, they present
graphical structures developed from expert reasoning in
combination with automated inference. In this work, utilizing
system (i.e., hydrodynamic size and polydispersity index) and
non-system (i.e., elemental composition and core size)-
dependent nanodescriptors in combination with biological in
vitro attributes and experimental conditions, we demonstrate
how such a methodology can be used for extracting
quantitative intrinsic hazard criteria for silver NFs, synthesized
with the intend of antimicrobial/antiviral functional textiles
and antimicrobial creams or lotions (cosmetics) applications,
which can guide materials designers toward intrinsically safer
materials while saving time, effort, and money for the
toxicologists.
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