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DEGREE BOUNDS FOR PUTINAR’S POSITIVSTELLENSATZ

ON THE HYPERCUBE

LORENZO BALDI* AND LUCAS SLOT†

Abstract. The Positivstellensätze of Putinar and Schmüdgen show that any

polynomial f positive on a compact semialgebraic set can be represented using
sums of squares. Recently, there has been large interest in proving effective

versions of these results, namely to show bounds on the required degree of the

sums of squares in such representations. These effective Positivstellensätze
have direct implications for the convergence rate of the celebrated moment-

SOS hierarchy in polynomial optimization. In this paper, we restrict to the

fundamental case of the hypercube Bn = [−1, 1]n. We show an upper degree
bound for Putinar-type representations on Bn of the order O(fmax/fmin),

where fmax, fmin are the maximum and minimum of f on Bn, respectively.

Previously, specialized results of this kind were available only for Schmüdgen-
type representations and not for Putinar-type ones. Complementing this upper

degree bound, we show a lower degree bound in Ω( 8
√

fmax/fmin). This is the

first lower bound for Putinar-type representations on a semialgebraic set with
nonempty interior described by a standard set of inequalities.
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1. Introduction

Let S(g) ⊆ Rn be a (basic, closed) semialgebraic set, defined in terms of the
tuple of polynomials g = (g1, g2, . . . , gm) as:

S(g) = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}.

Consider the problem of determining whether a given polynomial f belongs to the
cone P≥0(S(g)) of polynomials nonnegative on S(g). In general, this is a hard prob-
lem. In the unconstrained case, a straightforward way of certifying nonnegativity
of f on Rn is to write

f(x) = p1(x)2 + p2(x)2 + . . . + pℓ(x)2,

i.e., to write f as a sum of squares of polynomials. Indeed, the cone Σ[x] of such
polynomials is clearly contained in P≥0(Rn). This idea extends to the constrained
case by considering the quadratic module Q(g) and preordering T (g) of g, given
respectively by:

Q(g) =
{ m∑

i=0

σigi : σi ∈ Σ[x], i = 0, 1, . . . ,m
}
, (1)

T (g) =
{ ∑

I⊆[m]

σIgI : σI ∈ Σ[x], I ⊆ [m]
}
. (2)

Here, gI :=
∏

i∈I gi for I ⊆ [m] = {1, 2, . . . ,m}, and we have adopted the conven-
tion that g0 = g∅ = 1. Note that the quadratic module generated by g is contained
in the preordering, and that they are both contained in P≥0(S(g)). General rep-
resentations for nonnegative polynomials on semialgebraic sets have been provided
by Krivine [9] and Stengle [36]: these representations use ratios of polynomials in
the preordering, and extend Artin’s solution to Hilbert’s seventeenth problem [1].

A natural question is then whether all nonnegative polynomials on S(g) admit
a denominator-free representation, i.e., whether they lie in T (g) or even in Q(g).
While this is not true in general, the Positivstellensätze of Putinar (under mild
conditions on g) and Schmüdgen show that this is the case if one restricts to the
cone P>0(S(g)) of strictly positive polynomials on a compact semialgebraic set
S(g).

Theorem 1 (Schmüdgen’s Positivstellensatz [31]). Assume that S(g) ⊆ Rn is
compact. We then have:

P>0(S(g)) ⊆ T (g).

Theorem 2 (Putinar’s Positivstellensatz [25]). Assume that Q(g) is Archimedean,
i.e, that R− x2

1 − . . .− x2
n ∈ Q(g) for some R ≥ 0. We then have:

P>0(S(g)) ⊆ Q(g).

Clearly, semialgebraic sets associated with Archimedean quadratic modules are
compact, but this condition is not equivalent to compactness: there exist non-
Archimedean quadratic modules that define compact semialgebraic sets, see e.g.
[24, Ex. 6.3.1]. On the other hand, Theorem 1 shows that a preordering T (g) is
Archimedean if and only if the semialgebraic set S(g) is compact.

Recently, there has been a substantial interest in proving effective versions of
the theorems above. This means to show bounds on the minimum degree r so that
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a positive polynomial f lies in the truncated quadratic module or preordering, that
are defined, using the convention that g0 = g∅ = 1, as:

Q(g)r =
{ m∑

i=0

σigi : σi ∈ Σ[x], deg(σigi) ≤ r, i = 0, 1, . . . ,m
}
, (3)

T (g)r =
{ ∑

I⊆[m]

σIgI : σI ∈ Σ[x], deg(σIgI) ≤ r, I ⊆ [m]
}
. (4)

Such bounds have immediate implications for the convergence rate of the celebrated
moment-SOS hierarchy [12, 22] for polynomial optimization (see also Section 2.5).
The Putinar-type representations are of particular interest, as their correspond-
ing hierarchy leads to bounds which may be computed by solving a semidefinite
program of polynomial size in the number of variables n and the number of con-
traints m.

1.1. Our contributions. In this paper, we consider the fundamental special case
of the hypercube [−1, 1]n, which can be defined as a semialgebraic set by the in-
equalities gi(x) = 1 − x2

i ≥ 0, i = 1, 2, . . . , n. The associated quadratic module
Q(g) = Q(1 − x2

1, . . . , 1 − x2
n) is Archimedean, as it contains n − x2

1 − · · · − x2
n,

and Putinar’s Positivstellensatz thus applies in this setting. In this paper we prove
an upper bound and a lower bound on the degree required for representations of
positive polynomials on the hypercube as elements of the quadratic module Q(g).

Theorem 3 (Upper degree bound). Let f ∈ P>0([−1, 1]n) be a polynomial of
degree d. Denote by fmax, fmin the maximum and the minimum of f on [−1, 1]n,
respectively. Then there exists an absolute constant c > 0 such that:

f ∈ Q(1 − x2
1, . . . , 1 − x2

n)rn whenever r ≥ 4c · d2(log n) · fmax

fmin
+ O

(
fmax

fmin

)1/2

.

We give a precise expression for the term O(
√
fmax/fmin) in Theorem 11. See

also Section 6 for a related discussion.

Theorem 4 (Lower degree bound). Let n ≥ 2. For any ε > 0 and r ∈ N, we have:

(1 − x2
1)(1 − x2

2) + ε ∈ Q(1 − x2
1, . . . , 1 − x2

n)r =⇒ r = Ω(1/ 8
√
ε).

Note that the function f(x) = (1 − x2
1)(1 − x2

2) + ε satisfies fmin = ε and

fmax = 1 + ε. We could therefore replace Ω(1/ 8
√
ε) in Theorem 4 by Ω( 8

√
fmax/fmin).

The same asymptotic results of Theorem 3 and Theorem 4 hold if we use 1±xi,
i = 1, . . . , n (another set of standard inequalities defining [−1, 1]n) instead of 1−x2

i ,
see Section 6.

Outline. The paper is structured as follows. In Section 2, we discuss the exist-
ing literature on effective Archimedean Positivstellensätze and their applications
to polynomial optimization. We give detailed versions of our main results and
explain their relations to prior works. In Section 3, we cover some preliminaries,
particularly on approximation theory. In Section 4, we prove our upper degree
bound, Theorem 3. In Section 5, we prove the lower degree bound, Theorem 4. We
conclude in Section 6 by discussing possible future research directions. Finally, Ap-
pendix A is dedicated to the presentation of explicit polynomial identities exploited
in Section 4.
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2. Related works and applications

In this section, we explain the relation of our main results to the existing
literature and their applications. In particular, we focus on existing effective
Archimedean Positivstellensätze, for general g and specific for the hypercube. De-
gree bounds for these theorems are usually stated in terms of a parameter of the
form ∥f∥/fmin,S(g), whose inverse intuitively measures how close f is to having a
zero on S(g). Here, fmin,S(g) = minx∈S(g) f(x), and ∥ · ∥ is a norm on R[x]≤d.
Common choices include the supremum norm on S(g) (or on a compact domain
containing S(g)), denoted fmax,S(g), and the coefficient norm ∥ · ∥coef , defined in

terms of the monomial expansion f(x) =
∑

α fαx
α as ∥f∥coef = maxα |fα| ·

∏
i(αi!)

(
∑

i αi)!
.

For fixed number of variables n and degree d of f , these choices are equivalent.

2.1. General effective Positivstellensätze. For general constraints g that de-
fine a compact semialgebraic set S(g), Schweighofer [32] showed in a seminal work
that any positive polynomial on S(g) has a representation in the preordering T (g)r
truncated at degree

r ≥ O

(
∥f∥coef
fmin,S(g)

)c

,

where c > 0 is a (possibly large) constant depending on g. For the quadratic
module, Nie & Schweighofer [20] showed a degree bound for Archimedean Q(g) with
exponential dependence on ∥f∥coef/fmin. This result was only recently improved
in [3, 4] to match Schweighofer’s polynomial bound for the preordering (although
the exponent c may differ).

Theorem 5 ([4, Cor. 3.3]). Let Q(g) be an Archimedean quadratic module, and let
f be a polynomial of degree d positive on S(g). Then we have, for fixed n and d,

f ∈ Q(g)r for r ≥ O

(
fmax,D

fmin,S(g)

)7 L+3

where D is a scaled simplex containing S(g) and  L =  L(g) is a constant (called
 Lojasiewicz exponent) depending only on g.

The  Lojasiewicz exponent can be large even when the number of variables n and
the degrees deg g1, . . . ,deg gm of the constraints are fixed, see [3, 4]. However, in
regular cases, namely when the constraints g satisfy the Constraint Qualification
Conditions (CQC), one has  L = 1.

Definition 6 (CQC). We say that a tuple of polynomials g satisfies the constraint
qualification conditions if, for every x ∈ S(g), the gradients of the active constraints
at x:

{∇g(x) : g ∈ g, g(x) = 0}
are linearly independent (in particular, nonzero).

Corollary 7 ([3, Thm. 2.11], [4, Thm. 2.10 and Cor. 3.4]). Let Q(g) be an
Archimedean quadratic module, and let f be a polynomial of degree d positive
on S(g). Assume that g satisfies the CQC. Then we can take  L = 1 in Theo-
rem 5, and thus, for fixed n and d,

f ∈ Q(g)r for r ≥ O

(
fmax,D

fmin,S(g)

)10
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where D is a scaled simplex containing S(g).

2.2. Specialized effective Positivstellensätze. If we restrict to certain funda-
mental special cases, stronger bounds are known. When S(g) is the hypersphere [7],
the hypercube [15], the unit ball [35], or the standard simplex [35], we have rep-
resentations of degree r = O(

√
fmax,S(g)/fmin,S(g)) in the preordering. For the

hypersphere and unit ball, this bound carries over to the quadratic module (which,
in those cases, is equal to the preordering). However, despite the research effort
(see, e.g. Theorem 10 below), no specialized bounds on the minimum degree re-
quired for a representation in the quadratic module are known for the hypercube
and the standard simplex. In this paper we start filling this gap, providing the first
dedicated analysis for the quadratic module of the hypercube.

2.3. Effective Positivstellensätze for the hypercube. The unit hypercube
Bn := [−1, 1]n is a compact semialgebraic set that is naturally defined as:

Bn = {x ∈ Rn : gi(x) ≥ 0, 1 ≤ i ≤ n}, gi(x) := 1 − x2
i . (5)

Throughout the article, we abuse notation and refer to the quadratic module and
preordering generated by 1 − x2

1, . . . , 1 − x2
n as:

Q(Bn) := Q(1 − x2
1, . . . 1 − x2

n),

T (Bn) := T (1 − x2
1, . . . 1 − x2

n),

and we denote their truncations (see (3) and (4)) as Q(Bn)r and T (Bn)r, respec-
tively.

Despite its simplicity, the best available effective version of Putinar’s Positivstel-
lensatz for Bn is the general result of [4]. Indeed, since the constraints g in (5)
satisfy the CQC, Corollary 7 gives a degree bound of the order O((fmax/fmin)10).
On the contrary, for Schmüdgen Positivstellensatz, specialized results are available,
and a much stronger bound of the order O(

√
fmax/fmin) is known.

Theorem 8 ([15, Cor. 3]). Let f ∈ P>0(Bn) be a polynomial of degree d, and let
fmin, fmax > 0 be the minimum and maximum of f on Bn, respectively. Then:

f ∈ T (Bn)(r+1)n, for r ≥ max

{(
C(n, d) · fmax

fmin

)1/2

, πd
√

2n

}
.

Here, C(n, d) is a constant depending polynomially on n (for fixed d), and polyno-
mially on d (for fixed n).

For ease of exposition, we stated the bound in Theorem 8 in a (slightly) weaker
form than the one of [15, Cor. 3]. Theorem 8 improves upon an earlier analysis due
to de Klerk & Laurent [6], who established a bound in O(fmax/fmin).

In the same work1, the authors propose the following conjecture (which remains
open):

Conjecture 9 (de Klerk & Laurent, 2010). For n ∈ N even, we have:

(1 − x2
1)(1 − x2

2) . . . (1 − x2
n) +

1

n(n + 2)
∈ Q(Bn)n.

1In fact, they consider there the cube [0, 1]n defined by the constraints xi ≥ 0, 1 − xi ≥ 0,
i ∈ [n], but all statements carry over after a change of variables. See also Section 6.
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Assuming Conjecture 9, one may prove effective versions of Putinar’s Positivstel-
lensatz for Bn starting from an effective version of Schmüdgen’s Positivstellensatz.
In the original paper [6], de Klerk & Laurent do so only for d = 2. Magron [16]
performs an analysis in the general case.

Theorem 10 ([16, Thm. 4]). Let f ∈ P>0(Bn) be a polynomial of degree d.
Assuming Conjecture 9 holds, we have:

f ∈ Q(Bn)r, for r ≥ exp

(
d2nd+1 · ∥f∥coef

fmin

)
,

where, writing f(x) =
∑

α fαx
α, we set ∥f∥coef := maxα |fα| ·

∏
i(αi!)

(
∑

i αi)!
.

We note that the bound of Theorem 10 is asymptotically weaker than the general
result of Baldi & Mourrain (Theorem 5), but it predates it, and its dependence on
n, d is more explicit.

Our main result improves exponentially upon Magron’s bound, with explicit
constants, and without assuming Conjecture 9. Compared to Corollary 7, it im-
proves the dependence on fmax/fmin by a power of 10. With respect to Theorem 8,
the degree bound is quadratically weaker, but it applies to representations in the
quadratic module rather than the preordering.

Theorem 11 (Theorem 3 with explicit constants). Let f ∈ P>0(Bn) be a polyno-
mial of degree d and denote fmax, fmin the maximum and the minimum of f on Bn,
respectively. Then we have f ∈ Q(Bn)rn whenever

r ≥ 4c · d2(log n) · fmax

fmin
+ max

{
πd

√
2n,

(
2c · fmax

fmin
· C(n, d)

)1/2
}
,

where c > 0 is the absolute constant given in Lemma 21 and C(n, d) is the constant
of Theorem 8.

2.4. Lower degree bounds. To contextualize the positive results on the strength
of sum-of-squares representations discussed above, it would be nice to have com-
plementing negative results, i.e, lower bounds on the degree r required to represent
positive polynomials. Remarkably, such results are rather rare in the literature2

For non-finite semialgebraic sets, the authors are only aware of the following result
of Stengle [37], which shows a lower degree bound already in the case n = 1 if one
uses a nonstandard representation of the interval B1 = [−1, 1] ⊆ R.

Theorem 12 ([37, Thm. 4]). For any ε > 0 and r ∈ N, we have:

(1 − x2) + ε ∈ T
(
(1 − x2)3

)
r

=⇒ r = Ω(1/
√
ε).

Notably, the lower bound of Theorem 12 matches the best-known upper bound of
Theorem 8 for the preordering of Bn (with the standard description). In Section 5,
we prove the following lower degree bound for the quadratic module:

Proposition 13. For any ε > 0 and r ∈ N, we have

(1 − x2)(1 − y2) + ε ∈ Q(B2)r =⇒ r = Ω(1/ 8
√
ε).

2The exception is the case where S(g) ⊆ Rn is a finite set, in which case every nonnegative

polynomial on S(g) has a representation in Q(g)N for some fixed N = N(g) ∈ N. There is a large
body of research in that setting, particularly when S(g) ⊆ {−1, 1}n, see, e.g., [11] and references

therein.
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Proposition 13 differs from Stengle’s result in three important ways. First, it
applies to a standard description of the hypercube Bn, while Theorem 12 does not
(see Section 6 for a more detailed discussion). In particular, this description meets
the constraint qualification conditions, see Definition 6, while the description that
Stengle uses does not. Second, our result not only separates the quadratic module
from the cone of positive polynomials, but also from the preordering. As far as
we are aware, this is the first result quantifying the asymptotic gap between the
quadratic module and the preordering. Third, the bound shown in our result is
much weaker than Stengle’s bound (it is of the order 1/ 8

√
ε compared to 1/

√
ε).

In fact, Stengle [37] shows his bound is best-possible up to log-factors, whereas we
have no reason to believe our bound is close to optimal asymptotically (the upper
bound of Theorem 3 is of the order 1/ε).

Proposition 13 generalizes to the setting n > 2 in a straightforward way, yielding
an immediate implication for Conjecture 9:

Corollary 14. Let n ∈ N. For any ε > 0 and r ∈ N, we have:

(1 − x2
1)(1 − x2

2) . . . (1 − x2
n) + ε ∈ Q(Bn)r =⇒ r = Ω(1/ 8

√
ε).

In particular, we have:

(1 − x2
1)(1 − x2

2) . . . (1 − x2
n) + ε ∈ Q(Bn)n =⇒ ε = Ω(1/n8),

for every n ∈ N.

Proof. Suppose that n ≥ 2 and we have a representation:
n∏

i=1

(1 − x2
i ) + ε = σ0(x) +

n∑
i=1

(1 − x2
i )σi(x) ∈ Q(Bn)r.

Then setting xi = 0 for all i > 2 yields a representation:∏
i=1,2

(1 − x2
i ) + ε = σ0(x) +

∑
i=1,2

(1 − x2
i )σi(x1, x2,0) +

n∑
i=3

σi(x1, x2,0) ∈ Q(B2)r,

and so the lower bound r = Ω(1/ 8
√
ε) of Proposition 13 applies here as well. □

In a more abstract direction, the existence of lower degree bounds for Putinar’s
and Schmüdgen’s Positivstellensätze is deeply related to the non-stability property
for Q(g) and T (g). This connection is hardly found in the literature (with the
exception of [28]). In Section 6, we therefore recall the notion of stability, give an
overview of the related results and propose some research directions.

2.5. Applications to polynomial optimization. A polynomial optimization
problem (POP) asks to minimize a given polynomial p over a (compact) semi-
algebraic set S(g), that is, to compute:

pmin := min
x∈S(g)

p(x). (POP)

Problems of the form (POP) are generally hard and have broad applications [13, 14].
The simple case of the minimization of a polynomial on the unit hypercube is of
particular interest. For example, the stability number of a graph G = (V,E) equals
(see for instance [21, Eq. (17)])

α(G) = min
x∈[−1,1]V

1

2

∑
i∈V

(1 − xi) −
1

4

∑
{i,j}∈E

(1 − xi)(1 − xj).
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The moment-SOS hierarchy [12, 22] provides a series of tractable lower bounds
on pmin. Namely, for r ∈ N, we set:

p(r) := max
λ∈R

{
λ : p− λ ∈ Q(g)r

}
≤ pmin. (6)

For fixed r ∈ N, the bound p(r) may be computed by solving a semidefinite program
of size polynomial in the number of variables n and the number of constraints m
defining S(g). If Q(g) is Archimedean, Putinar’s Positivstellensatz tells us that
limr→∞ p(r) = pmin, i.e., that the hierarchy converges. In this light, effective ver-
sions of Putinar’s Positivstellensatz can be thought of as bounds on the rate of this
convergence. In this direction, our upper bound Theorem 3 and our lower bound
Theorem 4 imply the following.

Corollary 15. Let p ∈ R[x] be a polynomial to be minimized over the hypercube Bn,
defined by gi = 1−x2

i for i = 1, . . . , n, and let p(r) ≤ pmin be the lower bound of (6).
Then we have:

pmin − p(r) = O(1/r) (r → ∞).

Corollary 16. For each 2 ≤ n ∈ N, there exists a polynomial p of degree 4 to
be minimized over the hypercube Bn, defined by gi = 1 − x2

i for i = 1, . . . , n, with
pmin = 0, pmax = 1, and for which the bound of (6) satisfies:

pmin − p(r) = Ω(1/r8) (r → ∞).

In principle, one could define a (tighter) lower bound of the form (6) using the
preordering T (g) instead of the quadratic module Q(g). The analysis with the
preordering is performed in [15] (see also Theorem 8) where the authors deduce
a convergence rate of O(1/r2). On the other hand, Corollary 15 shows weaker a
degree bound in O(1/r) for case of the quadratic module. But computing the bound
using the preordering would require solving a semidefinite program that is not of
polynomial size in the number of constraints m, while the bound using the quadratic
module has linear size in m. For this reason, the bound of Corollary 15 in O(1/r)
is more relevant in practice, and its implications for polynomial optimization are
arguably greater.

We notice also that the same asymptotic bounds hold true if we describe the
hypercube Bn using the other standard set of inequalities, namely 1±xi for i ∈ [n],
as explained in Section 6.

3. Preliminaries

3.1. Notations. Throughout the article:

• [n] = {1, 2, . . . , n} for n ∈ N;
• x, t ∈ R and x = (x1, . . . , xn) ∈ Rn denote real variables;
• R[x] = R[x1, . . . , xn] denotes the polynomial ring in n variables;
• Σ[x] ⊆ R[x] denotes the convex cone of sums of squares;
• Q(Bn)r = Q(1 − x2

1, . . . 1 − x2
n)r denotes the truncated quadratic module

at degree r associated to the unit hypercube Bn = S(1 − x2
1, . . . , 1 − x2

n);
• f ∈ R[x] is a polynomial of degree d;
• fmin, fmax are the minimum and maximum of f on Bn, respectively;

• for k ∈ N and x ∈ Rn, ∥x∥k =
(∑n

i=1 x
k
i

)1/k
denotes the Lk-norm of x,

and ∥x∥∞ = maxi=1,...,n |xi| denotes its L∞-norm.
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3.2. The Markov Brothers’ inequality. A key technical tool in the proofs of
Section 4 and Section 5 is the Markov Brothers’ inequality [17, 18], see [33] for a
modern account. In its general form, it bounds the norm of (higher-order) deriva-
tives of a polynomial of given degree in terms of its supremum norm on an appro-
priate unit ball. It is applied by Stengle [37] in his proof of Theorem 12. To state
the theorem, we first need to introduce Chebyshev polynomials.

Definition 17 (see, e.g., [38]). For d ∈ N, the Chebyshev polynomial Td ∈ R[x] of
degree d is defined as:

Td(x) =

cos(d arccosx) |x| ≤ 1,

1
2

((
x +

√
x2 − 1

)d
+
(
x−

√
x2 − 1

)d) |x| ≥ 1.
(7)

We recall that |Td(x)| ≤ Td(1) = 1 for x ∈ [−1, 1], that Td(x) = (−1)d · Td(−x)
for all x ∈ R, and finally that Td(x) is monotonely increasing in x for x ≥ 1.

Theorem 18 (special case of [34, Thm. 2], see also [8, Thm. 1]). Let ∥ · ∥ be
any norm on Rn. Let p ∈ R[x] be a polynomial of degree d, and write ∥p∥∞ =
max∥x∥≤1 |p(x)|. Then for all k ≥ 0 and y ∈ Rn with ∥y∥ ≤ 1, we have:∣∣∣∣ dk

dtk
p(x + ty)

∣∣∣
t=0

∣∣∣∣ ≤
{
∥p∥∞ · T (k)

d (1) ∥x∥ ≤ 1,

∥p∥∞ · T (k)
d (∥x∥) ∥x∥ ≥ 1.

(8)

In particular, setting k = 0, we have:

|p(x)| ≤ ∥p∥∞ · Td(∥x∥) for ∥x∥ ≥ 1. (9)

We will apply Theorem 18 for the norm ∥x∥∞ = maxi=1,...,n |xi|, whose unit ball
{x ∈ Rn : ∥x∥∞ ≤ 1} is the hypercube Bn. The following lemma allows us to relate
the supremum norm of polynomials on scaled unit balls (i.e., scaled hypercubes),
which will be convenient in the proofs of our main results.

Lemma 19 (cf. [37, Eq. (3)]). Let ∥ · ∥ be any norm on Rn, and let p ∈ R[x] be a
polynomial of degree d. Then for any δ ∈ (0, 1), we have:

max
∥x∥2≤ 1

1−δ

|p(x)| ≤ Td

( 1

1 − δ

)
· max
∥x∥2≤1−δ

|p(x)|.

Proof. Using (9), we find that:

max
∥x∥2≤ 1

1−δ

|p(x)| = max
∥y∥≤ 1

1−δ

∣∣p(y ·
√

1 − δ
)∣∣

≤ Td

( 1

1 − δ

)
· max
∥y∥≤1

∣∣p(y ·
√

1 − δ
)∣∣

= Td

( 1

1 − δ

)
· max
∥x∥2≤1−δ

|p(x)|.

To obtain the first equality, we simply change variables y = x/
√

1 − δ. Then, to
get the inequality, we apply (9) to the polynomial y → p(y ·

√
1 − δ), noting that

max|x|≤ 1
1−δ

Td(x) = T
(

1
1−δ

)
. Finally, we change variables again to conclude. □

In order to apply the inequalities stated above, we need the following facts on
Chebyshev polynomials. These are known in the literature, but we restate them
for ease of reference and completeness.
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Lemma 20 (see e.g. [33]). For any x ∈ R, and k ≥ 0, we have:

|T (k)
d (x)| ≤ d2(d2 − 12) . . . (d2 − (k − 1)2)

1 · 3 · . . . · (2k − 1)
· |Td(x)| ≤ d2k · |Td(x)|.

Lemma 21 (cf. [37, pf. of Thm. 4]). Let 1 > δ > 0. Then if d = O(1/
√
δ), we

have:

1 ≤ Td

( 1

1 − δ

)
= O(1) (δ → 0).

Furthermore, there exists an absolute constant 1 ≤ c ≤ e5 such that for any d ≥ 2
and δ ≤ 1/d2, we have Td

(
1

1−δ

)
≤ c.

Proof. From (7), we find that for any x ≥ 1:

Td(x) ≤
(
x +

√
x2 − 1

)d
. (10)

As 1
1−δ = 1 + δ + O(δ2), we may use (10) to get:

Td(
1

1 − δ
) ≤

(
1 + δ + O(δ2) +

√
1 + 2δ + O(δ2) − 1

)d
≤
(
1 + O(

√
δ)
)d
.

It follows that Td( 1
1−δ ) = O(1) if d = O(1/

√
δ). Now, if d ≥ 2 and δ ≤ 1/d2, we

have 1
1−δ ≤ 1 + 2δ, and so by (10) we get:

Td(
1

1 − δ
) ≤

(
1 + 2δ +

√
(1 + 2δ)2 − 1

)d
.

≤
(
1 + 2δ +

√
4δ + 4δ2

)d
≤
(
1 + 5

√
δ
)d ≤ (1 + 5/d)d ≤ e5. □

3.3. Schmüdgen’s Positivstellensatz for scaled hypercubes. For our argu-
ments in Section 4, we need an effective version of Schmüdgen’s Positivstellensatz
for scaled hypercubes [−η, η]n, with η > 0. Theorem 8 carries over to this setting
in a straightforward way.

Corollary 22. For η > 0, write D = [−η, η]n. Let f ∈ R[x] be a polynomial of
degree d, and let fmin,D, fmax,D > 0 be the minimum and maximum of f on D,
respectively. Then we have:

f ∈ T (η2−x2
1, . . . , η

2−x2
n)(r+1)n, for r ≥ max

{(
C(n, d) · fmax,D

fmin,D

)1/2

, πd
√

2n

}
.

Here, the constant C(n, d) is the same as in Theorem 8.

Proof. Consider the polynomial g(x) = f(ηx), which is of degree d, and satisfies
gmin,[−1,1]n = fmin,[−η,η]n and gmax,[−1,1]n = fmax,[−η,η]n . We can apply Theorem 8
to write

f(ηx) = g(x) =
∑
I⊆[n]

σI(x)
∏
i∈I

(1 − x2
i )
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with appropriate degree bounds on the sums of squares σI . But then,

f(x) =
∑
I⊆[n]

σI(x/η)
∏
i∈I

(1 − (xi/η)2)

=
∑
I⊆[n]

σI(x/η)
∏
i∈I

1

η2
(η2 − x2

i )

=
∑
I⊆[n]

η−2|I| · σI(x/η)
∏
i∈I

(η2 − x2
i ),

which is a decomposition of f in T (η2 − x2
1, . . . , η

2 − x2
n) of the desired degree. □

4. Proof of the upper degree bound

This section is dedicated to the proof of Theorem 3 and Theorem 11.
We start by recalling the technique used to prove general effective versions of

Putinar’s Positivstellensatz in [20] and [3, 4]. There, the authors reduce the question
of representing a strictly positive polynomial f on a general compact semialgebraic
set S(g), to the question of representing strictly positive polynomials on a simpler
compact domain D = S(h) ⊇ S(g). More precisely, they construct a polynomial
p ∈ Q(g) in such a way that f−p > 0 on D. As an effective version of Schmüdgen’s
Positivstellensatz is available for the set D, they then deduce that f−p ∈ T (h) (with
an appropriate degree bound). Using the Archimedean hypothesis, we have T (h) ⊆
Q(g), which gives the final representation f = (f−p)+p ∈ Q(g). The construction
of the polynomial p ∈ Q(g) and the effective Schmüdgen’s Positivstellensatz on D
are the key parts of the proof: the different constructions in [20] and [3, 4] lead to
an exponential and polynomial degree bound for the representation of f ∈ Q(g),
respectively. We refer to [3] for a more detailed list of references where this technique
has been exploited.

4.1. Overview of the proof. Compared with the general effective Putinar’s Pos-
itivstellensatz, for the investigation of the special case S(g) = Bn we make an
important change of perspective: we consider a domain D that depends on f .
Namely, we choose D to be a close enough outer approximation of Bn, so that f is
not only strictly positive on Bn, say f ≥ fmin > 0 on Bn, but also f ≥ 1

2fmin > 0
on D. In this way we can avoid using the perturbation polynomial p, and apply
directly the representation results on the outer approximation D. Concretely, we
proceed as follows (see also Figure 1).

a. Selecting the outer domain. We choose D = [−η, η]n to be a scaled hyper-
cube containing Bn, where η > 1 will be chosen in such a way that:

min
x∈D

f(x) ≥ 1

2
min
x∈Bn

f(x) > 0,

see Lemma 28.

b. Obtaining a Schmüdgen-type representation We then apply Corollary 22,
a scaled version of Theorem 8 on D = S(η2 − x2

1, . . . , η
2 − x2

n), to represent f as an
element of the preordering T (η2−x2

1, . . . , η
2−x2

n), with appropriate degree bounds.

c. Lifting the representation Finally, we lift the representation of f from the
preordering T (η2 −x2

1, . . . , η
2 −x2

n) to the quadratic module Q(1−x2
1, . . . , 1−x2

n).
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Figure 1. Example of the key regions involved in the proof of
Theorem 3 for n = 2 and q = 1, 2 (on the left, right, respectively).
The shaded regions depict the sets:

Bn = [−1, 1]n ⊆ S(n− ∥x∥2q2q) ⊆ [−η, η]n = D.

For this purpose, we make use of the metric balls:

{x ∈ Rn : n− ∥x∥2q2q ≥ 0}, where ∥x∥2q2q = x2q
1 + . . . + x2q

n (q ∈ N).

Choosing q ∈ N large enough so that η ≥ 2q
√
n, we show in Lemma 26 and Theo-

rem 27 that:

T (η2 − x2
1, . . . , η

2 − x2
n) ⊆ T (n− ∥x∥2q2q)

= Q(n− ∥x∥2q2q)

⊆ Q(1 − x2
1, . . . , 1 − x2

n) = Q(Bn)

with appropriate degree bounds for the truncated versions. Using the Schmüdgen-
type representation obtained in the previous step, this will give us a Putinar-type
representation with appropriate degree bounds:

f ∈ T (η2 − x2
1, . . . , η

2 − x2
n) ⊆ Q(Bn).

4.2. Proof of Theorem 3. To present and describe our proof in a compact way,
we introduce the following definition.

Definition 23. Let Q(g) be a (finitely generated) quadratic module. We say that
a tuple of polynomials h = (h1, . . . , hs) ⊆ Q(g) has degree shift ℓ with respect to g
if hi ∈ Q(g)deg hi+ℓ for all i ∈ [s].

We will make use of the following elementary lemma, that we state in general
for future reference.
Lemma 24 (Degree shift). Let h = (h1, . . . , hs) ⊆ Q(g) be a tuple of polynomials
with degree shift ℓ w.r.t. g. Then, for all d ∈ N,

(i) Q(h)d ⊆ Q(g)d+ℓ;
(ii) T (h)d ⊆ Q(g1)d+sℓ if g = (g1) consists of a single polynomial.
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Proof. We set h0 = g0 = 1 for notational convenience, and we start by proving
the first part. Let hi =

∑m
j=0 σi,jgj ∈ Q(g)deg hi+ℓ, and let q =

∑r
k=0 σkhk ∈

Q(h)d. Notice that, by definition, deg(σi,jgj) = deg σi,j + deg gj ≤ deg hi + ℓ and
deg(σkhk) = σk + deg hk ≤ d for all i, j, k. Therefore:

deg(σkσk,jgj) = deg σk + deg σk,j + deg gj ≤ d + ℓ

and finally

q =

r∑
k=0

σkhk =

m∑
j=0

(
r∑

k=0

σkσk,j

)
gj ∈ Q(g)d+ℓ

concluding the proof of the first part.
For the second part, we proceed in a similar way. Let hi = σ0,i + σ1,ig1 ∈

Q(g1)deg hi+ℓ, and let p =
∑

I⊆[m] σIhI ∈ T (h)d. We want to show that p ∈
T (g1)d+sℓ. Notice that, by definition, deg σI ≤ d− deg hI and∏

i∈I

(σ0,i + σ1,ig1) ∈ T (g1)∑
i∈I(deg hi+ℓ) = T (g1)deg hI+|I|ℓ ⊂ T (g1)deg hI+sℓ.

Therefore,

σI

∏
i∈I

(σ0,i + σ1,ig1) ∈ T (g)deg hI+sℓ+deg σI
⊆ T (g1)deg hI+sℓ+d−deg hI

= T (g1)d+sℓ

and finally:

p =
∑
I⊆[r]

σIhI =
∑
I⊆[r]

σI

∏
i∈I

hi =
∑
I⊆[r]

σI

∏
i∈I

(σ0,i + σ1,ig1) ∈ T (g1)d+sℓ. □

In the following, we will apply Lemma 24 two times. First, to lift the represen-
tation of f from T (η2 − x2

1, . . . , η
2 − x2

n) to T (n− ∥x∥2q2q) = Q(n− ∥x∥2q2q). There,

we apply the second part of Lemma 24 with g1 = n − ∥x∥2q2q and hi = η2 − x2
i for

i ∈ [n], see Lemma 26.

Second, to lift the representation of f from Q(n−∥x∥2q2q) to Q(1−x2
1, . . . , 1−x2

n).

Here, we use the first part of Lemma 24 with h = h1 = n− ∥x∥2q2q and gi = 1 − x2
i

for i ∈ [n], see the proof of Theorem 27.
For these applications, we will need to determine two numbers (degree shifts)

ℓ1, ℓ2 ∈ N depending on η > 0 such that:

η2 − x2
1, . . . , η

2 − x2
n ∈ T (n− ∥x∥2q2q)2+ℓ1 , (11)

n− ∥x∥2q2q ∈ Q(1 − x2
1, . . . , 1 − x2

n)2q+ℓ2 . (12)

To determine these degree shifts, we start by investigating the univariate case.

Lemma 25. For all q ∈ N, the degree shift of 1−x2 with respect to 1−x2q is equal
to 2q − 2, i.e. 1 − x2 ∈ Q(1 − x2q)2q.

Proof. For all 1 ≤ q ∈ N, consider the identity:

1 − x2 =
(q − 1) − qx2 + x2q

q
+

1 − x2q

q
(13)

Notice that (q−1)−qx2+x2q ∈ P≥0(R), since the polynomial has minimum equal to
0 attained at ±1. Moreover, sums of squares and nonnegative polynomials coincide
in one variable, and thus (q− 1)− qx2 + x2q ∈ Σ[x]2q. Therefore, (13) implies that
1 − x2 ∈ Σ[x]2q + R≥0(1 − x2q) = Q(1 − x2q)2q, concluding the proof. □
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We refer to Appendix A, and in particular to (27), for a more detailed discussion
of Lemma 25 and (13).

We turn our attention to the multivariate case. We investigate the degree shift
of η2 −x2

1, . . . , η
2 −x2

n, i.e. the polynomials defining a scaled hypercube containing

Bn for η ≥ 1, with respect to n− ∥x∥2q2q, the polynomial defining the L2q unit ball.
Recall that the parameter η will be chosen in such a way f ≥ fmin > 0 on Bn

implies f ≥ 1
2fmin > 0 on [−η, η]n = S(η2 − x2

1, . . . , η
2 − x2

n), see Lemma 28.

We prove that the degree shift of η2 − x2
1, . . . , η

2 − x2
n w.r.t. n−∥x∥2q2q coincides

with the one of Lemma 25.

Lemma 26. Let η = 2q
√
n. Then the degree shift of η2−x2

1, . . . , η
2−x2

n with respect

to n− ∥x∥2q2q is 2q − 2. In other words, η2 − x2
i ∈ Q(n− ∥x∥2q2q)2q for all i ∈ [n].

Proof. First, notice that

1 − x2q
i =

∑
j ̸=i

x2q
j + 1 − ∥x∥2q2q ∈ Q(1 − ∥x∥2q2q)2q

and thus from Lemma 25 we deduce that

1 − x2
i ∈ Q(1 − ∥x∥2q2q)2q

for all i.
Now let η = 2q

√
n. If we substitute xi 7→ xi/η in 1 − x2

i we obtain
η2−x2

i

η2 , while

if we substitute in 1 − ∥x∥2q2q we obtain
n−∥x∥2q

2q

n . Making these substitutions in the

expression 1 − x2
i ∈ Q(1 − ∥x∥2q2q)2m we therefore see that

η2 − x2
i ∈ Q(n− ∥x∥2q2q)2q

concluding the proof. □

We refer to Appendix A and in particular to (26) for a more detailed discussion
of Lemma 26. We are now ready to show one of the main results of this section.

Theorem 27. Let η = 2q
√
n. Then for all k ∈ N:

T (η2 − x2
1, . . . , η

2 − x2
n)k ⊆ Q(1 − x2

1, . . . , 1 − x2
n)k+n(2q−2)

Proof. We start moving from T (η2 − x2
1, . . . , η

2 − x2
i ) to Q(n − ∥x∥2q2q). From

Lemma 26, the degree shift is ℓ1 = 2q − 2, and from Lemma 24(ii) we have

T (η2 − x2
1, . . . , η

2 − x2
i )k ⊆ Q(n− ∥x∥2q2q)k+nℓ1

We now move from Q(n − ∥x∥2q2q) to Q(1 − x2
1, . . . , 1 − x2

n). Notice that, since

1 − x2q
i = (1 − x2

i )(1 + x2
i + · · · + x2q−2

i ), we have:

n− ∥x∥2q2q =

n∑
i=1

1 − x2q
i ∈ Q(1 − x2

1, . . . , 1 − x2
n)2q

and thus the degree shift of n−∥x∥2q2q with respect to 1− x2
1, . . . , 1− x2

n is equal to

ℓ2 = 0. From Lemma 24(i) we then deduce that

Q(n− ∥x∥2q2q)k+nℓ1 ⊆ Q(1 − x2
1, . . . , 1 − x2

n)k+nℓ1 .

We therefore have the chain of inclusions:

T (η2 − x2
1, . . . , η

2 − x2
i )k ⊆ Q(n− ∥x∥2q2q)k+nℓ1 ⊆ Q(1 − x2

1, . . . , 1 − x2
n)k+nℓ1 ,

where l1 = 2q − 2, concluding the proof. □
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Theorem 27 allows to shift the representation of a polynomial in the preorder-
ing of [−η, η]n to a representation in the quadratic module of Bn. We refer to
Appendix A and in particular (28) for explicit expressions leading to this inclusion.

We now write η = 1 + ε and bound ε in such a way f ≥ fmin > 0 on Bn implies
f ≥ 1

2fmin > 0 on [−1 − ε, 1 + ε]n = [−η, η]n.

Lemma 28. Let f ≥ fmin > 0 on Bn be a polynomial of degree d. Let c ≥ 1 be the
absolute constant of Lemma 21. Then f ≥ 1

2fmin on [−1 − ε, 1 + ε]n whenever

ε ≤ fmin

2c · d2 · fmax
. (14)

Proof. Assume that ε is as in (14) and let z ∈ [−1 − ε, 1 + ε]n be such that f(z) =
fmin,[−1−ε,1+ε]n ≤ fmin is minimal. If z ∈ Bn, then f(z) = fmin ≥ 1

2fmin and there
is nothing to prove. So assume z /∈ Bn and let ẑ ∈ Bn be a point in Bn with
0 < ∥z− ẑ∥∞ ≤ ε. Consider the univariate polynomial F given by:

F (u) := f(ẑ + u · v), where v :=
(z− ẑ)

∥z− ẑ∥∞
.

Note that F (0) = f(ẑ) and F (∥z − ẑ∥∞) = f(z). We now bound the derivative
F ′(u) of F for all 0 ≤ u ≤ ∥z− ẑ∥∞, so that we can obtain a bound on the difference
|f(z) − f(ẑ)|. First, notice that

F ′(u) =
d

dt
f
(
(ẑ + u · v) + t · v

)
|t=0. (15)

As ∥v∥∞ ≤ 1, we can apply (8) to the polynomial f , with x = ẑ+ u · v and y = v,
to get

|F ′(u)| =

∣∣∣∣ d

dt
f
(
(ẑ + u · v) + t · v

)
|t=0

∣∣∣∣ ≤ T ′
d(∥ẑ + u · v∥∞) · max

∥x∥∞≤1
|f(x)|.

Notice that, since 0 ≤ u ≤ ∥z− ẑ∥∞ ≤ ε, we have

∥ẑ + u · v∥∞ ≤ 1 + u ≤ 1 + ε.

Now, using Lemma 20 and monotonicity of Td we get

T ′
d(∥ẑ + u · v∥∞) ≤ d2 · Td(∥ẑ + u · v∥∞) ≤ d2 · Td(1 + u) ≤ d2 · Td(1 + ε).

Finally, noting that max∥x∥∞≤1 |f(x)| = fmax, we may conclude that:

|F ′(u)| ≤ d2 · Td(1 + ε) · fmax (0 ≤ u ≤ ∥z− ẑ∥∞). (16)

Assuming (14), we have ε ≤ 1/d2 and thus Td(1 + ε) ≤ Td( 1
1−ε ) ≤ c, where c ≥ 1

is the absolute constant of Lemma 21. Using (16) and the fact that ∥z− ẑ∥∞ ≤ ε,
we thus have:

|f(z) − f(ẑ)| = |F (0) − F (∥z− ẑ∥∞)|
≤ ∥z− ẑ∥∞ · max

0≤u≤∥z−ẑ∥∞
|F ′(u)|

≤ ε · d2 · Td(1 + ε) · fmax ≤ ε · d2 · c · fmax.

In conclusion, if we choose ε as in (14), we have:

fmin,[−1−ε,1+ε]n = f(z) ≥ f(ẑ) − c · ε · d2 · fmax ≥ fmin − 1

2
fmin =

1

2
fmin. □

We are ready to prove our main result.
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Theorem 11 (Theorem 3 with explicit constants). Let f ∈ P>0(Bn) be a polyno-
mial of degree d and denote fmax, fmin the maximum and the minimum of f on Bn,
respectively. Then we have f ∈ Q(Bn)rn whenever

r ≥ 4c · d2(log n) · fmax

fmin
+ max

{
πd

√
2n,

(
2c · fmax

fmin
· C(n, d)

)1/2
}
,

where c > 0 is the absolute constant given in Lemma 21 and C(n, d) is the constant
of Theorem 8.

Proof of Theorem 3 and Theorem 11. Let 0 < ε = fmin

2c·d2·fmax
be as in (14), and let

q ∈ N be the smallest integer such that:

2q ≥ 2 log n

ε
= 4c · (log n) · d2 · fmax

fmin
. (17)

Then, as ε ≤ 1, we have log(1 + ε) ≥ ε− 1
2ε

2 ≥ 1
2ε, and thus

2q · log(1 + ε)

log n
≥ 1,

or in other words, we have 2q
√
n ≤ 1 + ε. Therefore, if we set η = 2q

√
n ≤ 1 + ε,

we can deduce from Lemma 28 that f ≥ 1
2fmin on [−η, η]n. From Corollary 22, we

have a representation f ∈ T (η2−x2
1, . . . , η

2−x2
n)(ℓ+1)n if ℓ is any integer such that

ℓ ≥ max

{
πd

√
2n,

(
fmax,[−η,η]n

fmin,[−η,η]n
· C(n, d)

)1/2
}

We want to express the above bound using fmax

fmin
instead of

fmax,[−η,η]n

fmin,[−η,η]n
. For this,

recall first that fmin,[−η,η]n ≥ 1
2fmin by construction. Second, since ε ≤ 1/d2, we

have Td(η) ≤ Td(1 + ε) ≤ Td( 1
1−ε ) ≤ c by Lemma 21 and we can use (9) to get:

fmax,[−η,η]n ≤ Td(η) · fmax ≤ c · fmax.

Therefore, we have:(
fmax,[−η,η]n

fmin,[−η,η]n
· C(n, d)

)1/2

≤
(

2c · fmax

fmin
· C(n, d)

)1/2

, (18)

and we can thus choose ℓ as the smallest integer such that:

ℓ ≥ max

{
πd

√
2n,

(
2c · fmax

fmin
· C(n, d)

)1/2
}
.

To conclude the proof, we apply Theorem 27 and deduce that:

f ∈ T (η2 − x2
1, . . . , η

2 − x2
n)(ℓ+1)n ⊆ Q(1 − x2

1, . . . , 1 − x2
n)n(ℓ+1)+n(2q−2)

= Q(1 − x2
1, . . . , 1 − x2

n)n(2q+ℓ−1).

Since q is the smallest integer satisfying (17), we have f ∈ Q(1 − x2
1, . . . , 1 − x2

n)rn
whenever

r ≥ 4c · (log n) · d2 · fmax

fmin
+ ℓ ≥ 2q + ℓ− 1. □
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5. Proof of the lower degree bound

In this section, we prove our lower degree bound, Theorem 4. We consider the
bivariate polynomial:

f(x, y) = (1 − x2)(1 − y2).

Clearly, f is nonnegative on B2 and f ∈ T (B2)4. On the other hand, f ̸∈ Q(B2).
This is well known, but we give an analytical argument for this fact as a warmup
to the proof of Proposition 13.

Proposition 29. We have f(x, y) = (1 − x2)(1 − y2) ̸∈ Q(B2).

Proof. Suppose that f ∈ Q(B2). Then f can be written as:

f(x, y) = σ0(x, y) + (1 − x2)σ1(x, y) + (1 − y2)σ2(x, y), (19)

where the σi ∈ Σ[x, y] are sums of squares (in particular globally nonnegative).
Note that f(1, 1) = 0. We can conclude immediately that σ0(1, 1) = 0. In fact,
we have that σi(1, 1) = 0 for all i ∈ {0, 1, 2}. Indeed, suppose for instance that
σ1(1, 1) > 0. Then there exists an 1 ≥ ε > 0 such that σ1(

√
1 − ε, 1) > 0 by

continuity. But this leads to the contradiction:

0 = f(
√

1 − ε, 1) ≥ ε · σ1(
√

1 − ε, 1) > 0.

To finish the argument, note that from the definition of f ,

d2

dt2
f(1 + t, 1 − t)|t=0 < 0. (20)

As σ0, σ1, σ2 are globally nonnegative, and since σi(1, 1) = 0, we have that:

d

dt
σi(1 + t, 1 − t)|t=0 = 0,

d2

dt2
σi(1 + t, 1 − t)|t=0 ≥ 0.

By (19), this would imply that d2

dt2 f(1 + t, 1 − t)|t=0 ≥ 0, contradicting (20). □

The idea for the proof of Proposition 13 (and thus of Theorem 4) is to trans-
form the proof above into a quantitative result. This resembles the argument of
Stengle [37].

Proposition 13. For any ε > 0 and r ∈ N, we have

(1 − x2)(1 − y2) + ε ∈ Q(B2)r =⇒ r = Ω(1/ 8
√
ε).

Proof. Let f(x, y) = (1− x2)(1− y2), and suppose that f + ε ∈ Q(g)r, i.e. that we
have a decomposition:

(1 − x2)(1 − y2) + ε = σ0(x, y) + (1 − x2)σ1(x, y) + (1 − y2)σ2(x, y), (21)

where σ0, σ1, σ2 are sums of squares of polynomials of degree deg(σi) ≤ r (more
precisely, we have deg(σi) ≤ r − 2 for i = 1, 2, but this will not be important).
We consider the situation locally around the point (1, 1) ∈ B2. We can deduce the
following facts.

Fact 1. We have σ1(1, 1) ≤ 1
2εr

2.



PUTINAR’S POSITIVSTELLENSATZ ON THE HYPERCUBE 18

Proof. Consider the univariate polynomial p(x) = (1−x2)σ1(x, 1). By (21), we have
0 ≤ p(x) ≤ ε for x ∈ [−1, 1]. By Theorem 18 and Lemma 20, we find |p′(x)| ≤ εr2

for x ∈ [−1, 1]. Setting x = 1, we thus have:

εr2 ≥ |p′(1)| = 2σ1(1, 1). □

Fact 2. For any 1 > δ ≥ ε, we have:

σ1(x, y) ≤ 2 · Tr

( 1

1 − δ

)
for x2 ≤ 1

1 − δ
, y2 ≤ 1

1 − δ
.

In particular,

max
x,y∈[−1,1]

σ1(x, y) ≤ 2 · Tr

( 1

1 − δ

)
. (22)

Proof. From (21), we have:

(1 − x2)σ1(x, y) ≤ (1 − x2)(1 − y2) + ε for x, y ∈ [−1, 1].

As δ ≥ ε, we thus get:

σ1(x, y) ≤ (1 − y2) +
ε

1 − x2
≤ 1 + 1 = 2 for x2 ≤ 1 − δ, y2 ≤ 1 − δ.

In other words, we have max∥(x,y)∥2
∞≤1−δ |σ1(x, y)| ≤ 2. We may therefore apply

Lemma 19 to σ1 to obtain the fact. □

Fact 3. Let g(t) = σ1(1 + t, 1 − t). Then for any 1 > δ ≥ ε, and any u ∈ [−δ, δ],
we have:

1

2
|g′′(u)| ≤ r4 · Tr

( 1

1 − δ

)2
.

Proof. Assume w.l.o.g. that u ≥ 0. Note that 1
1−δ ≥ 1 + δ ≥ 1 +u. Using (8), (22),

and Lemma 20, we therefore have that:

|g′′(u)| =
d2

dt2
(
σ1(1 + u + t, 1 − u− t)

)∣∣
t=0

≤ T (2)
r (1 + u) · max

x,y∈[−1,1]
σ1(x, y)

≤ r4 · Tr

( 1

1 − δ

)
· 2Tr

( 1

1 − δ

)
. □

Fact 4. Let g(t) = σ1(1 + t, 1 − t). Then for any 1 > δ ≥ ε, we have:

g′(0) ≤ ε

2δ
r2 + δr4 · Tr

( 1

1 − δ

)2
.

Proof. Assume g′(0) ≥ 0 (otherwise the statement is trivial). Note that g(t) ≥ 0
for all t ∈ R. By Taylor’s theorem, there exists u ∈ [−δ, 0] such that:

0 ≤ g(−δ) = g(0) − g′(0) · δ +
1

2
g′′(u) · δ2,

=⇒ g′(0) ≤ g(0)

δ
+

1

2
|g′′(u)| · δ ≤ εr2

2δ
+

1

2
|g′′(u)| · δ,

where we have used that g(0) = σ1(1, 1) ≤ 1
2εr

2 by Fact 1. Now apply Fact 3 to
conclude the proof. □
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We are ready to conclude the argument. Let g(t) = σ1(1 + t, 1 − t). By Taylor’s
theorem, there exists a u ∈ [0, δ] such that:

g(δ) = g(0) + g′(0) · δ +
1

2
g′′(u) · δ2

≤ 1

2
εr2 +

(
1

2
εr2 + δ2r4 · Tr

( 1

1 − δ

)2)
+ δ2r4 · Tr

( 1

1 − δ

)2
= εr2 + 2δ2r4 · Tr

( 1

1 − δ

)2
, (23)

where we have used Fact 1, Fact 3 and Fact 4 to get the inequality. Now set
δ =

√
ε ≥ ε. In light of (21), and since δ ≤ 1, we have

−3δ · g(δ) ≤ (1 − (1 + δ)2) · g(δ) ≤ f(1 + δ, 1 − δ) + ε ≤ −4δ2 + δ4 + ε ≤ −2ε,

=⇒ g(
√
ε) = g(δ) ≥ 2

3

√
ε.

Using (23), we thus find that:

2

3

√
ε ≤ εr2 + 2εr4 · Tr

( 1

1 −
√
ε

)2
, =⇒ 1

3
√
ε
≤ 1

2
r2 + r4 · Tr

( 1

1 −
√
ε

)2
. (24)

We may assume that r = O(1/ 4
√
ε) (otherwise there is nothing to prove), in which

case Lemma 21 tells us that Tr

(
1

1−
√
ε

)2
= O(1). But then (24) implies that:

r = Ω(1/ 8
√
ε). □

Proof of Theorem 4. It remains to see that Proposition 13 implies Theorem 4,
which is rather straightforward. Indeed, any decomposition of (1 − x2

1)(1 − x2
2) + ε

in Q(Bn)r, n ≥ 3, immediately gives a decomposition of (1 − x2
1)(1 − x2

2) + ε in
Q(B2)r by setting x3 = . . . = xn = 0 (see also the proof of Corollary 16). □

6. Discussion

We have proven an upper bound on the required degree of a Putinar-type repre-
sentation of a positive polynomial on Bn = [−1, 1]n, described using the inequalities
1−x2

1, . . . , 1−x2
n, of the order O(fmax/fmin), see Theorem 3. This result improves

upon the previously best known bound of O((fmax/fmin)10), obtained from the
general result Corollary 7. Complementing this upper bound, we have exhibited a
family of polynomials f = fε of degree 4 with fmax = 1+ε, fmin = ε whose Putinar-
type representations are necessarily of degree at least Ω( 8

√
fmax/fmin) = Ω(1/ 8

√
ε),

see Theorem 4. These results have direct application in polynomial optimization,
see Corollary 15 and Corollary 16.

We remark that the same asymptotic results hold true if we describe Bn using
the inequalities 1 ± xi for i = 1, . . . n instead of 1 − x2

i . This follows from the
identities:

1 ± xi =
1

2

(
(1 ± xi)

2 + 1 − x2
i

)
1 − x2

i =
1

2

(
(1 − xi)

2(1 + xi) + (1 + xi)
2(1 − xi)

)
Hereafter we describe more connections of these results with existing literature

and propose some possible future research directions.
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Stability and lower degree bounds for the Positivstellensätze. Recall that a
quadratic module Q(g) is Archimedean if there exists an R ∈ R such that R−∥x∥22 ∈
Q(g). Clearly, Q(Bn) is Archimedean, since n− x2

1 − . . .− x2
n ∈ Q(Bn). Putinar’s

Positivstellensatz tells us that if Q(g) is Archimedean and f > 0 on S(g), then
f ∈ Q(g). As we have shown in Theorem 4 and Section 5 the degree needed for
the representation f ∈ Q(Bn) may go to infinity as fmax/fmin goes to infinity for
n ≥ 2, even if the degree of f is fixed.

A strictly related concept is stability, introduced in [23]. We say that the qua-
dratic module Q(g) is stable if for all d ∈ N there exists a d ≤ k ∈ N such
that Q(g) ∩ R[x]≤d ⊆ Q(g)k. Theorem 4 (through Proposition 13) shows that
Q(Bn) is non-stable for n ≥ 2: indeed, the degree needed for the representation of
(1−x2

1)(1−x2
2) + ε ∈ Q(Bn) depends on ε and not only on the degree d = 4 and n.

We can regard Theorem 4, Proposition 13 and the result of Stengle [37] as quanti-
tative versions of the non-stability property. Even if clearly connected, the stability
and non-stability properties have not received great attention from the community
working on the effective Archimedean Positivstellensätze. Therefore, hereafter we
give an overview of results relating Archimedean and stability properties, proposing
directions for future investigations.

We start with the one dimensional case, i.e. quadradic modules and preorder-
ings that are subsets of R[x] (for the more general case of quadratic modules and
preorderings defining semialgebraic sets on real curves, see [26, 28, 30]). Recall that
in R[x] every finitely generated quadratic module defining a compact semialgebraic
set is an Archimedean preordering, see [27]. The result of Stengle [37] shows that
there are compact, one dimensional subsets of the real line which are defined by
a (finitely generated) preordering that is non-stable. This is also an example of
an Archimedean quadratic module that is non-stable. This happens because the
choice for the generator of the preordering is not the natural one, see [10, 19]. The
generator also does not satisfy the constraint qualification conditions. Indeed, if
the preordering defining the compact set contains the natural generators, then the
preordering is stable. This follows from a direct computation as in [19, Prop. 2.7.3]
or applying [28, Cor. 3.18]. The converse is not true in general: the preordering
T (−x2) is stable (and Archimedean) but it does not contain the natural generators
±x of the origin. See [19, Thm. 9.3.3] for a generalization of the idea of natural
generators.

We turn our attention to the two dimensional case. Every Archimedean preorder-
ing defining a semialgebraic subset of R2 with nonempty interior is non-stable, see
[28, Thm. 5.4] and also [28, Ex. 5.1]. Notice that in [28, Ex. 5.1], a family of strictly
positive polynomials and an interior point of the semialgebraic set is used to prove
non-stability, while in Proposition 13 we use a boundary point. In particular, the
results in [28] apply to both Q(B2) and T (B2), which are therefore non-stable. We
recall also that, despite being non-stable, T (B2) is saturated, i.e. T (B2) = P≥0(B2)
(see [29] or [19, Thm. 9.4.5]). On the contrary, Q(B2) ⊊ P≥0(B2). This is an
important difference and it is exploited in Proposition 13 to prove the lower bound
for the representation in Q(Bn). We do not know if a quantitative version of [28,
Ex. 5.1], that applies also to the preordering T (B2), would give better or worse
bounds compared to the bound of Proposition 13. In general, quantitatively com-
paring Proposition 13 and [28, Ex. 5.1] could be the first step to understand if the
lower degree bounds for representations in T (g) and Q(g) are significantly different.
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Finally, for g defining a compact semialgebraic set S(g) of dimension ≥ 3, the
preordering T (g) is non-stable [28] and it is not saturated, i.e. T (g) ⊊ P≥0(S(g)).
The same results hold true for Archimedean quadratic modules Q(g).

Constraint qualification conditions. It is a natural question to ask whether
the techniques used in Proposition 13 generalize to other semialgebraic sets. In the
proof, we mostly work locally around the point (1, 1), where the zero-sets of the
constraints 1−x2, 1−y2 intersect, and we implicitly consider the Taylor expansion
for (1 − x2)(1 − y2) + ε at (1, 1).

In algebraic terms, working locally around (1, 1) with Taylor expansions means
working in the formal power series ring RJ1 − x, 1 − yK that contains such Taylor
expansions. This ring is the completion of R[x, y] at the maximal ideal ⟨1−x, 1−y⟩:
RJ1 − x, 1 − yK ∼= ̂R[x, y]⟨1−x,1−y⟩.

To generalize this situation, notice that the CQC for g, see Definition 6, imply
that, in first order approximation, the local geometry of boundary points is similar
to that of the hypercube Bn. In this case at each boundary point ξ ∈ S(g), the
active constraints {g1, . . . , gℓ} at ξ (i.e., those with gi(ξ) = 0) can be chosen as
local coordinate functions. Algebraically, this means that {g1, . . . , gℓ} are part of

a system of uniformizing parameters at ξ. In this way RJt1, . . . , tnK ∼= R̂[x]mξ
with

ti = gi for i = 1, . . . , ℓ (see e.g. [39, Cor. 2 p. 137] or [19, Thm. 12.2.2]). For
these reasons, we conjecture that Proposition 13 can be extended essentially to all
g satisfying the CQC.

Separating the convex cones Q(Bn)r, T (Bn)r and P≥0(Bn)r. In Proposi-
tion 29, we use the linear functional

L : f 7→
d2f

(
(1, 1) + t(1,−1)

)
dt2

∣∣
t=0

to show that (1 − x2)(1 − y2) /∈ Q(B2); namely, we show that L(p) ≥ 0 for any
p ∈ Q(B2), whereas L

(
(1 − x2)(1 − y2)

)
< 0. The functional L thus separates

the quadratic module Q(B2) from a polynomial in the preordering T (B2). The
same idea is exploited in the proof of Proposition 13, but in a quantitative way.
This allows us to deduce bounds on ε > 0, depending on r, in such a way that
(1 − x2)(1 − y2) + ε /∈ Q(B2)r.

This idea also works if we replace the direction (1,−1) with any other direction
pointing in the second or fourth quadrant, or if we replace the base point (1, 1)
with another vertex of B2. We may therefore define families of linear functionals
that separate polynomials in the convex cones T (B2)r ⊂ P≥0(B2)r from the convex
cone Q(B2)r.

We conjecture that it is possible to exploit these linear functionals to give bounds
on the ratio of volumes of compact sections of Q(B2)r and T (B2)r (or Q(B2)r and
P≥0(B2)r). More generally, a similar technique could be exploited for Bn, n ≥ 2.
In the spirit of [5], the limit for n → ∞ of the ratio of volumes of these sections
could also be investigated.

Improving the upper degree bound. In the proof of Theorem 3, we use an
effective Schmüdgen’s Positivstellensatz on a scaled hypercube [−η, η]n; namely

Corollary 22. This corollary is responsible for the term of order O(
√

fmax/fmin)
in our result. Corollary 22 could be replaced with any other effective Schmüdgen’s
Positivstellensatz on [−η, η]n with sufficiently good rate of convergence, and this
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could lead to improvements of the final result. In particular, the dependence on n, d
of the constant C(n, d) appearing in Corollary 22 is quite bad (see [15, Eq. (18)]),
especially compared to the constant d2(log n) we introduce in our proof of The-
orem 3. Combing the proof of Theorem 3 with a better effective Schmüdgen’s
Positivstellensatz on [−η, η]n would lead to an effective Putinar’s Positivstellensatz
on Bn that is asymptotically interesting also for n, d → ∞.

Logarithmic degree bounds. In their recent work, Bach & Rudi [2] give an alter-
native proof of Theorem 8, working from the perspective of trigonometric polyno-
mials. Furthermore, they show bounds with logarithmic dependence in fmax/fmin

on the required degree r in a Schmüdgen-type representation for a class of positive
polynomials on Bn satisfying a strict local optimality condition.

It would be interesting to see if such assumptions might lead to better de-
gree bounds for the quadratic module as well. We remark that the polynomials∏n

i=1 (1 − x2
i ) + ε featured in Proposition 13 (n = 2) and in Conjecture 9 (n ≥ 2)

do not satisfy this condition. In fact, Proposition 13 shows that it is not possible
to achieve logarithmic degree bounds for representations of general polynomials in
the quadratic module. It is an open question whether a similar lower bound for
general polynomials (not satisfying the strict local optimality condition) holds for
the preordering as well.
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Appendix A. Explicit expressions for degree shifts

In this appendix we discuss (13):

1 − x2 =
(q − 1) − qx2 + x2q

q
+

1 − x2q

q

that is a key ingredient for the proof of the upper bound. Hereafter we provide
some related explicit formulae and their consequences in the proof of Theorem 27.

Despite its simplicity, it is difficult to derive this kind of expressions. Indeed,
this is a representation for 1− x2 ∈ Q(1− x2q) (see (27) below for an explicit sum-
of-squares expression of (q − 1) − qx2 + x2q). Obtaining exact representations for
polynomials in quadratic modules is challenging, even in the univariate case, and
to the authors’ best knowledge there is currently no software available to solve the
problem in general.

We therefore discuss in more detail how (13) was obtained, and provide explicit
expressions for Lemma 25 and Lemma 26.

Consider the equation:

1 − x =
1

2

(
(1 − x)2 + 1 − x2

)
∈ Q(1 − x2)2

If we substitute x = x2 we obtain

1 − x2 =
1

2

(
(1 − x2)2 + 1 − x4

)
∈ Q(1 − x4)4

More generally, substituting x = x2m−1

, we have:

1 − x2m−1

=
1

2

(
(1 − x2m−1

)2 + 1 − x2m
)
∈ Q(1 − x2m)2m

It is then possible to obtain the explicit formula:

1 − x2 =

m−1∑
i=1

(
1

2i
(1 − x2i)2

)
+

1

2m−1
(1 − x2m) ∈ Q(1 − x2m)2m (25)

which is equivalent to (13) with 2q = 2m.
Using (25), we can deduce also the explicit expression for η2 − x2

k ∈ Q(n −
∥x∥2m2m)2m in Lemma 26 :

η2 − x2
k = η2

m−1∑
i=1

 1

2i

(
1 −

(
xk

η2

)2i
)2
+

η2

2m−1n

∑
j ̸=k

x2m

j + n− ∥x∥2
m

2m

 (26)

We have therefore seen that for 2q = 2m the necessary representations can be
derived easily. It is then possible to make an educated guess to avoid the power of

2, writing 1−x2 = fq + 1−x2q

q . We then obtain the polynomial fq = (q−1)−qx2+x2q

q ,

that is nonnegative and thus a sums of squares. An explicit way to note this is by
writing: {

f1 = 0

fq+1 = q
q+1x

2fq + q
q+1 (1 − x2)2

or more directly:

fq =

q−1∑
i=1

q − i

q
x2(i−1)(1 − x2)2 (27)
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Therefore the final explicit expression for 1 − x2 ∈ Q(1 − x2q)2q in Lemma 25 is:

1 − x2 =

(
q−1∑
i=1

q − i

q
x2(i−1)(1 − x2)2

)
+

1 − x2q

q
∈ Q(1 − x2q)2q

We can deduce also an explicit expression for Lemma 26, i.e. for η2 − x2
i ∈

Q(n− ∥x∥2q2q)2q:

η2 − x2
i = η2fq

(
xi

η

)
+

η2

qn

∑
j ̸=i

x2q
j + n− ∥x∥2q2q

 (28)

with fq as in (27). The equations (28) and (27) give also explicit expressions for
the inclusion

T (η2 − x2
1, . . . , η

2 − x2
n)k ⊆ Q(1 − x2

1, . . . , 1 − x2
n)k+n(2q−2)

in Theorem 27.
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