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Abstract. In this paper we propose models of the axioms for linear and cyclic 
orders. First, we describe explicitly the relations between linear and cyclic models, 
from a logical point of view. The second part of the paper is concerned with 
qualitative constraints: we study the cyclic point algebra. This formalism is based 
on ternary relations which allow to express cyclic orientations. We give some 
results of complexity about the consistency problem in this formalism. The last 
part of the paper is devoted to conceptual spaces. The notion of a conceptual 
space is related to the complexity properties of temporal and spatial qualitative 
formalisms, including the cyclic point algebra.

1 Introduction

Much attention in the domain of qualitative temporal and spatial reasoning has been 
devoted to the study of spaces which are ultimately based on some version of a Euclidean 
space: Allen’s calculus [1] is the qualitative study of pairs of points in the 1-D Euclidean 
space, the real line; the Cardinal Direction calculus [8,20], the n-point calculus [4], the 
rectangle calculus [3], the n-block calculus [5], the line segments calculus [22], refer 
to entities in (Cartesian products of the real line), which is an unbounded, dense linear 
ordering.

There are however good reasons for considering spaces which are not based on linear 
orderings. The set of directions around a reference points has a cyclic, rather than a linear 
structure. Schlieder’s concepts of orientation and panoramas [25,26] are examples of 
proposals for reasoning about cyclic situations. Such is Röhrig’s theory CycOrd [24] 
and work of Sogo et al. [28]. More recently, Cohn and Isli [12] have considered points 
on a circle and the ternary relations between them, obtaining substantial results about the 
complexity of the corresponding calculi. Finally, the binary relations between intervals 
on a circle have been considered [7]. If we think of the particular field of applications to 
reasoning about geographical or cartographic entities, it is clear that many applications 
may need to consider cycles such as parallels or meridians on the Earth’s surface.

When studying spaces with a cyclic structure, it seems quite reasonable not to con-
sider the cyclic case as a tabula rasa. After all, from a topological point of view, a circle 
is easily derivable from a segment (or a line) by identifying the end-points. Conversely, 
cutting a circle makes it into a line. This is the intuition behind the work presented in 
this paper: The idea is to exploit, as much a possible, the relationships between linear



and cyclic models. Technically, this will also involve the relationships between binary
relations between points on a line, which are enough to characterize the “qualitative”
relation between them, and ternary relations between three points on a circle, which are
necessary for the analogous characterization.

The structure of the paper is as follows: Firstly, we describe explicitly the relations
between linear and cyclic models, from a logical point of view. The main result is that,
in the same way as there is basically one countable model of an unbounded, dense
and linear ordering (Cantor’s theorem), a similar result obtains for suitable well chosen
axioms involving one “betweenness” ternary relation between points on a circle (the
main condition here is to have at least two points, plus density). Then, we consider six
possible ternary relations between three points on a circle, which are jointly exhaustive
and pairwise disjoint (JEPD) relations, and develop a qualitative calculus, and examine
the problem of determining consistency for the corresponding constraint networks. We
describe various subsets where we can prove either tractability or NP-completeness.
Finally, in a last section, we consider the problem of extending the known complexity
results for the linear calculi to the cyclic cases. Although the initial results (about Allen’s
algebra) were first proved using logical tools, it appears that most of them can also be
expressed in geometric and topological terms, which can be also understood as particular
cases of conceptual spaces introduced by Gärdenfors. We present the basic notions of
the framework of conceptual spaces,in relation to the characterization of tractable sub-
classes. We then speculate on the possibility of extending the geometric and topological
characterizations of tractable classes to the cyclic case.

2 Models of Axioms for Linear and Cyclic Orders

This section is devoted to the semantical analysis of the relationship between linear
orders and cyclic orders.

2.1 Linear Orders

A linear order is a structure of the formM = (T , <) where T is a set of points and < is
a binary relation on T subject to the following universal conditions for all x, y, z ∈ T :

• Not x < x;
• If x < y and y < z then x < z;
• Either x = y or x < y or y < x.

A linear orderM = (T , <) is dense if it satisfies the following principle:

• For all x, y ∈ T , if x < y then there is z ∈ T such that x < z and z < y.

A linear orderM = (T , <) is unbounded if it satisfies the following principles:

• For all x ∈ T , there is y ∈ T such that y < x;
• For all x ∈ T , there is y ∈ T such that x < y.

Before turning to cyclic orders and to a detailed investigation of their relationship with
linear orders, let us remind the reader of the following result.



Proposition 1. Let M1 = (T1, <1) and M2 = (T2, <2) be two countable linear
orders. IfM1 andM2 are dense and unbounded then they are isomorphic.

Proof. By Cantor’s well known zig-zag argument. �

In technical terminology, the set of all dense and unbounded linear orders is countably
categorical. Hence as far as countable structures are concerned, there is only one dense
and unbounded linear order, the structure (Q, <) of the rational numbers.

2.2 Cyclic Orders

A cyclic order is a structure of the form M = (T ,≺) where T is a nonempty set of
points and ≺ is a ternary relation on T subject to the following universal conditions for
all x, y, z, t ∈ T :

• Not ≺ (x, y, y);
• If ≺ (x, y, z) and ≺ (x, z, t) then ≺ (x, y, t);
• If x �= y and x �= z then either y = z or ≺ (x, y, z) or ≺ (x, z, y);
• ≺ (x, y, z) iff ≺ (y, z, x) iff ≺ (z, x, y).

A cyclic orderM = (T ,≺) is standard if it satisfies the following principles:

• For all x, y ∈ T , if x �= y then there is z ∈ T such that ≺ (x, z, y);
• For all x, y ∈ T , if x �= y then there is z ∈ T such that ≺ (x, y, z).

Referring to propositions 1, 4 and 6, we easily obtain a proof of the following result.

Proposition 2. LetM1 = (T1,≺1) andM2 = (T2,≺2) be two countable cyclic orders.
IfM1 andM2 are standard then they are isomorphic.

Proof. Assume thatM1 = (T1,≺1) andM2 = (T2,≺2) are standard. Let ∞1 be a
point such that∞1 ∈ T1 and∞2 be a point such that∞2 ∈ T2. LetM′
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In this way, the set of all standard cyclic orders is countably categorical. Consequently
as far as countable structures are concerned, there is only one standard cyclic order, the
structure (Q ∪ {∞},≺) obtained from the structure (Q, <) of the rational numbers by
the construction of section 2.3.

2.3 From Linear Orders to Cyclic Orders

LetM = (T , <) be a linear order and∞ be a point such that∞ �∈ T . LetM′ = (T ′,≺′)
be the structure where T ′ = T ∪ {∞} and ≺′ is the ternary relation on T ′ defined as
follows for all x, y, z ∈ T ′:



• ≺′ (x, y, z) iff either (x, y, z ∈ T and x < y < z) or (x, y, z ∈ T and y < z < x)
or (x, y, z ∈ T and z < x < y) or (x = ∞, y, z ∈ T and y < z) or (y = ∞,
x, z ∈ T and z < x) or (z =∞, x, y ∈ T and x < y).

M′ = (T ′,≺′) is called cyclic order onM = (T , <) and∞. The reader may easily
verify the following result.

Proposition 3. LetM = (T , <) be a linear order and∞ be a point such that∞ �∈ T .
The cyclic orderM′ = (T ′,≺′) onM = (T , <) and∞ is a cyclic order. Moreover, if
M = (T , <) is dense and unbounded thenM′ = (T ′,≺′) is standard.

2.4 From Cyclic Orders to Linear Orders

LetM = (T ,≺)be a cyclic order and∞be a point such that∞ ∈ T . LetM′ = (T ′, <′)
be the structure where T ′ = T \ {∞} and <′ is the binary relation on T ′ defined as
follows for all x, y ∈ T ′:

• x <′ y iff ≺ (x, y,∞).

M′ = (T ′, <′) is called linear order onM = (T ,≺) and ∞. The reader may easily
verify the following result.

Proposition 4. LetM = (T ,≺) be a cyclic order and∞ be a point such that∞ ∈ T .
The linear orderM′ = (T ′, <′) onM = (T ,≺) and∞ is a linear order. Moreover, if
M = (T ,≺) is standard thenM′ = (T ′, <′) is dense and unbounded.

2.5 An Equivalence Result

We now prove that the two constructions defined above yield an equivalence result
between the two classes of models. Let M = (T , <) be a countable linear order, ∞
be a point such that∞ �∈ T ,M′ = (T ′,≺′) be the cyclic order onM = (T , <) and
∞; let ∞′ be a point such that ∞′ ∈ T ′ andM′′ = (T ′′, <′′) be the linear order on
M′ = (T ′,≺′) and∞′. Let us assume thatM = (T , <) is dense and unbounded. If
∞ =∞′ then it is easily seen that the function f with domain T and range T ′′ defined
as follows for all x ∈ T :

• f(x) = x;

is an isomorphism fromM = (T , <) toM′′ = (T ′′, <′′). If∞ �= ∞′ then the sub-
models M− = (T −, <−) and M+ = (T +, <+) where T − = {x: x < ∞′} and
T − = {x:∞′ < x} are dense and unbounded. By proposition 1,M− = (T −, <−) and
M+ = (T +, <+) are isomorphic. Hence there is a function f∓ with domain T − and
range T + such that f∓ is an isomorphism fromM− = (T −, <−) toM+ = (T +, <+)
and there is a function f± with domainT + and rangeT − such that f± is an isomorphism
fromM+ = (T +, <+) toM− = (T −, <−). Therefore it is easily seen that the function
f with domain T and range T ′′ defined as follows for all x ∈ T :

• If x =∞′ then f(x) =∞;
• If x <∞′ then f(x) = f∓(x);



• If∞′ < x then f(x) = f±(x);

is an isomorphism fromM = (T , <) toM′′ = (T ′′, <′′). Hence the following result.

Proposition 5. LetM = (T , <) be a countable linear order,∞ be a point such that
∞ �∈ T ,M′ = (T ′,≺′) be the cyclic order onM = (T , <) and∞; let∞′ be a point
such that ∞′ ∈ T ′ andM′′ = (T ′′, <′′) be the linear order onM′ = (T ′,≺′) and
∞′. IfM = (T , <) is dense and unbounded thenM = (T , <) andM′′ = (T ′′, <′′)
are isomorphic.

Let M = (T ,≺) be a cyclic order, ∞ be a point such that ∞ ∈ T , M′ = (T ′, <′)
be the linear order on M = (T ,≺) and ∞, ∞′ be a point such that ∞′ �∈ T ′ and
M′′ = (T ′′,≺′′) be the cyclic order onM′ = (T ′, <′) and∞′. It is easily seen that
the function f with domain T and range T ′′ defined as follows for all x ∈ T :

• If x �=∞ then f(x) = x;
• If x =∞ then f(x) =∞′;

is an isomorphism fromM = (T ,≺) toM′′ = (T ′′,≺′′). Hence the following result.

Proposition 6. Let M = (T ,≺) be a cyclic order, ∞ be a point such that ∞ ∈ T ,
M′ = (T ′, <′) be the linear order on M = (T ,≺) and ∞, ∞′ be a point such
that ∞′ �∈ T ′ and M′′ = (T ′′,≺′′) be the cyclic order on M′ = (T ′, <′) and ∞′.
M = (T ,≺) andM′′ = (T ′′,≺′′) are isomorphic.

2.6 Elimination of Quantifiers

Let Ll be the first-order language consisting of the binary predicate < and the binary
predicate =. The theory Δl of dense and unbounded linear orders has 6 axioms:

• (∀x)(x �< x);
• (∀xyz)(x < y ∧ y < z → x < z);
• (∀xy)(x = y ∨ x < y ∨ y < x);
• (∀xy)(x < y → (∃z)(x < z ∧ z < y));
• (∀x)(∃y)(y < x);
• (∀x)(∃y)(x < y).

By the Löwenheim-Skolem theorem, every Δl-consistent sentence φ in Ll has a count-
able model. By proposition 1, this model is isomorphic to the structure (Q, <) of the
rational numbers. Hence for every sentence φ in Ll, either φ is a consequence of Δl

or ¬φ is a consequence of Δl. Consequently the set of consequences of Δl is maximal
consistent and Δl is a complete theory. The method of elimination of quantifiers applies
to Δl and gives a way of deciding whether or not a sentence φ in Ll is a consequence of
Δl, see Langford [14]. It consists of proving the following result.

Proposition 7. For every formula φ in Ll with free variables in {x, y1, . . . , yI}, the
formula (∃x)φ is Δl-equivalent to a Boolean combination of atomic formulas inLl with
free variables in {y1, . . . , yI}.



Our aim is to define a similar method for the theory Δc of standard cyclic orders. Let Lc

be the first-order language consisting of the ternary predicate≺ and the binary predicate
=. The theory Δc of standard cyclic orders has 6 axioms:

• (∀xy)(�≺ (x, y, y));
• (∀xyzt)(≺ (x, y, z)∧ ≺ (x, z, t)→≺ (x, y, t));
• (∀xyz)(x �= y ∧ x �= z → y = z∨ ≺ (x, y, z)∨ ≺ (x, z, y));
• (∀xyz)(≺ (x, y, z)↔ (y, z, x)↔ (z, x, y));
• (∀xy)(x �= y → (∃z) ≺ (x, z, y));
• (∀xy)(x �= y → (∃z) ≺ (x, z, y)).

Following the line of reasoning suggested above within the framework of dense linear
orders, the reader may easily verify the following results:

• Every Δc-consistent sentence φ in Lc has a countable model;
• This model is isomorphic to the structure (Q∪{∞},≺) obtained from the structure

(Q, <) of the rational numbers by the construction of section 2.3;
• For every sentence φ in Lc, either φ is a consequence of Δc or ¬φ is a consequence

of Δc;
• The set of consequences of Δc is maximal consistent;
• Δc is a complete theory.

We now come to the method of elimination of quantifiers applied to the theory Δc. For
our purpose, it suffices to prove that for every conjunction φ of the form≺ (x, y1, z1)∧
. . .∧ ≺ (x, yI , zI)∧ �≺ (x, t1, u1)∧ . . .∧ �≺ (x, tJ , uJ)∧x = v1∧ . . .∧x = vK ∧x �=
w1 ∧ . . . ∧ x �= wL, the formula (∃x)φ is Δc-equivalent to a Boolean combination of
atomic formulas with free variables in{y1, . . . , yI , z1, . . . , zI , t1, . . . , tJ , u1, . . . , uJ , v1,
. . . , vK , w1, . . . , wL}. Firstly, it is easy to show that for every i, i′ ∈ {1, . . . , I}, the for-
mula ≺ (x, yi, zi)∧ ≺ (x, yi′ , zi′) is Δc-equivalent to a disjunction of formulas of the
form ≺ (x, y, z) ∧ φ′′ where y, z ∈ {yi, yi′ , zi, zi′} and φ′′ is a Boolean combination
of atomic formulas in Lc with free variables in {yi, yi′ , zi, zi′}. Hence we may consider
that I = 0 or I = 1. Secondly, we observe that for every j ∈ {1, . . . , J}, the formu-
las �≺ (x, tj , uj) and x = tj ∨ x = uj ∨ tj = uj∨ ≺ (x, uj , tj) are Δc-equivalent.
Consequently we may consider that J = 0. Thirdly, it should be clear that if K ≥ 1
then the formula (∃x)φ is Δc-equivalent to ≺ (v1, y1, z1) ∧ . . .∧ ≺ (v1, yI , zI)∧ �≺
(v1, t1, u1)∧ . . .∧ �≺ (v1, tJ , uJ)∧v1 = v2∧ . . .∧v1 = vK∧v1 �= w1∧ . . .∧v1 �= wL.
Therefore let us assume that K = 0. Fourthly, the reader may check that for every
l, l′ ∈ {1, . . . , L}, the formulas x �= wl ∧ x �= wl′ and (wl = wl′ ∧ x �= wl) ∨ (wl =
wl′ ∧ x �= wl′)∨ ≺ (x, wl, wl′)∨ ≺ (x, wl′ , wl) are Δc-equivalent. Thus we may
consider that L = 0 or L = 1. Since:

• the formulas (∃x)(≺ (x, y1, z1) ∧ x �= w1) and y1 �= z1 are Δc-equivalent;
• the formulas (∃x)(≺ (x, y1, z1)) and y1 �= z1 are Δc-equivalent;
• the formulas (∃x)(x �= w1) and � are Δc-equivalent;

our proof of the following result is complete.

Proposition 8. For every formula φ in Lc with free variables in {x, y1, . . . , yI}, the
formula (∃x)φ is Δc-equivalent to a Boolean combination of atomic formulas in Lc

with free variables in {y1, . . . , yI}.



3 The Cyclic Point Algebra

3.1 Entities and Relations

Let C be an oriented circle. The entities we consider are the points of this circle; we will
denote them by v, w, x, etc. , and we will call them the cyclic points. Sometimes we will
use a rational number belonging to the interval [0, 360[ to define a point of C. Such a
rational number expresses the angle from the horizontal line to the line passing through
the center of C and intersecting the point of C. Given two points x, y ∈ C, [x, y] denotes
the set of the points found onto C by going from x to y by following the orientation of C.
The atomic relations considered between points of C are the six ternary relations defined
in the following way :

Babc = {(x, y, z) ∈ C3 : x �= y, x �= z, y �= z and y ∈ [x, z]},
Bacb = {(x, y, z) ∈ C3 : x �= y, x �= z, y �= z and z ∈ [x, y]},

Baab = {(x, x, y) ∈ C3 : x �= y},
Bbaa = {(y, x, x) ∈ C3 : x �= y},
Baba = {(x, y, x) ∈ C3 : x �= y},

Baaa = {(x, x, x) ∈ C3}.

These six relations are illustrated in Fig. 3.1. We denote the set of these atomic relations
by BC and in the sequel we will use a, b, c, etc to designate them. We note that these
atomic relations are complete and mutually exclusive, i.e. three cyclic points satisfy one,
and only one, atomic relation of this set of qualitative relations. Babc and Bacb correspond
to both atomic relations satisfied in the cases where the three points are distinct points.
Baab, Baab and Baba are concerned with the cases where two of the three points are
the same. The atomic relation Baaa corresponds to the case in which the three points
are equal. From the atomic relations of BC we define the set of the complex relations of

+y

z x

+y

x z

+

z x
y

Babc(x, y, z) Bacb(x, y, z) Baab(x, y, z)

+

z
y

x

+

zy
x

+

x
y z

Bbaa(x, y, z) Baba(x, y, z) Baaa(x, y, z)

Fig. 1. Atomic relations of BC .



the cyclic point algebra by taking the subsets of BC , i.e. 2BC . In the sequel we will say
relation for complex relation. α, β, γ, etc., will denote the relations. We have a set of
26 = 64 relations with two particular relations : the empty relation {} (also denoted by
∅) and the total relation {Baaa,Baab,Bbaa,Baba, Babc,Bacb} (also improperly denoted
by 2BC ). Given a relation α ∈ 2BC and three cyclic points x, y, z, we have α(x, y, z)
if, and only if, there exists a ∈ α such that a(x, y, z). Such a relation α can be seen as
the disjunction of its atomic relations. With relations of BC we can represent incomplete
information about relative positions of cyclic points.

3.2 Basic Operations

The binary operations of intersection∩, union∪ and the unary operation of complement
are defined onto 2BC in the following way :

∀x, y, z ∈ C,∀α, β ∈ 2BC ,
(α ∪ β)(x, y, z)↔ α(x, y, z) or β(x, y, z),
(α ∩ β)(x, y, z)↔ α(x, y, z) and β(x, y, z),
α(x, y, z)↔ not α(x, y, z).

These operations can be seen as the usual set operations since we have :

∀a ∈ BC , ∀α, β ∈ 2BC ,
a ∈ (α ∪ β)↔ a ∈ α or a ∈ β,
a ∈ (α ∩ β)↔ a ∈ α and a ∈ β,
a ∈ α↔ a �∈ α.

We also define the unary operations of permutation (denoted by �) and of rotation
(denoted by �) in the following way:

Let a ∈ BC ,
∀x, y, z a�(x, z, y)↔ a(x, y, z),
∀x, y, z a�(y, z, x)↔ a(x, y, z).

Table 1. Permutations and rotations of the atomic relations of BC .

a Baaa Baab Bbaa Baba Babc Bacb

a� Baaa Baba Bbaa Baab Bacb Babc

a� Baaa Baba Baab Bbaa Babc Bacb

Table 1 gives the permutation and the rotation of each atomic relation. We extend these
operations to the relations of 2BC . The permutation (resp. the rotation) of α ∈ 2BC ,
denoted by α� (resp. by α�), is the union of the permutations (resp. the rotations) of its
atomic relations. Given four cyclic points w, x, y, z, from the atomic relation a satisfied
by w, x, y and the atomic relation b satisfied by x, y, z, we can deduce the possible atomic
relations of BC satisfied by w, x, z. This set of atomic relations is given by the binary



operation of composition, which is denoted by ◦. More formally, a ◦ b is the relation of
2BC defined by:

a ◦ b = {c ∈ BC : ∃ w, x, y, z a(w, x, y) & b(x, y, z) & c(w, x, z)}.

The composition of two relations α and β of 2BC is defined by α◦β =
⋃

a∈α,b∈β a◦b. In
the sequel we will suppose that the unary operations have priority. Knowing the relations
α and β satisfied respectively by three cyclic points w, x, y and the three points x, y, z,
with the operation of composition we can deduce the possible atomic relations satisfied
by w, x, z. Let us note that with the operations of composition, permutation and rotation
we can also find the set of atomic relations which can be satisfied by w, y, z. This set of
atomic relations corresponds to the relation α� ◦ β��.

Table 2. Table of composition for the atomic relations of BC .

◦ � Baaa Baab Bbaa Baba Babc Bacb

Baaa {Baaa} {Baab} ∅ ∅ ∅ ∅
Baab ∅ ∅ {Baab} {Baaa} {Baab} {Baab}
Bbaa {Bbaa} {Baba, Babc, Bacb} ∅ ∅ ∅ ∅
Baba ∅ ∅ {Baba} {Bbaa} {Bacb} {Babc}
Babc ∅ ∅ {Babc} {Bbaa} {Baba, Babc, Bacb} {Babc}
Bacb ∅ ∅ {Bacb} {Bbaa} {Bacb} {Baba, Babc, Bacb}

3.3 Constraint Networks of Cyclic Points

To represent spatial information about cyclic points we use particular ternary constraint
networks which we call constraint networks of cyclic points, CNCP in short. Each
variable of a CNCP represents a cyclic point and each ternary constraint is defined by
a relation of 2BC . This relation respresents all allowed relative positions satisfied by the
three points represented by the three concerned variables. More formally, a CNCP is
defined in the following way.

Definition 9. A CNCP is a pair N = (V, C), where:

– V is a nonempty set of n ordered variables {V1, . . . , Vn} representing n cyclic
points.

– D is a mapping from (V × V × V ) to 2BC defining the constraints onto V . In the
sequel, usually we will denote C(Vi, Vj , Vk) by Cijk or Cvivjvk

.

With no loss of generality, we may suppose that each CNCP satisfies the following
properties:

(a) for all i, j, k ∈ {1, . . . , n}, Cijk = C�

kij = C�
ikj .

(b) For all i, j ∈ {1, . . . , n}, Ciij ⊆ {Baab,Baaa},
(c) For all i ∈ {1, . . . , n}, Ciii ⊆ {Baaa}.



Intuitively, the requirement (a) stipulates that constraints between three variables must
be coherent. Consequently, giving the constraints Cijk for all i, j, k ∈ {1, . . . , n} with
i ≤ j ≤ k is sufficient to define a CNCP. Concerning conditions (b) and (c), let us note
that for convenience reasons we allow the empty relation for Ciij and Ciii. The second
and third conditions contain necessary atomic relations allowing one or many equalities
of cyclic points.
Given a CNCP, an important issue is to determine its consistency, i.e. whether there
exists a set of cyclic points satisfying its constraints. More formally, given a CNCP
N = (V, C), we have the following definitions:

– An instantiation m of N is a function from V to C associating with each variable
Vi ∈ V a cyclic point m(Vi) (with i ∈ {1, . . . , |V |}). In what follows, m(Vi)
will be sometimes denoted by mi, or mVi . mijk (equally denoted by mViVjVk

or
m(Vi, Vj , Vk)) is the atomic relation of BC satisfied by the points mi, mj and mk

with i, j, k ∈ {1, . . . , n} (n = |V |).
– An instantiation m of N is consistent iff for all i, j, k ∈ {1, . . . , n}, mijk ⊆ Cijk

(n = |V |). we will say that m is a solution of N .
– A partial instantiation m of N is a mapping from V ′ to C, with V ′ ⊆ V , which

associates with each variable of V ′ a cyclic point. m is a partial solution ofN iff the
points associated with the variables of V ′ satisfy the ternary constraints uniquely
concerning by the variables of V ′.

– N is consistent iif it admits a consistent instantiation.

To solve the consistency problem of a qualitative binary constraint network, the path-
consistency method is usually used. This method consists of obtaining a constraint
network equivalent to the initial network (a network with exactly the same solutions) by
deleting some atomic relations which do not participate in any solution. This method
uses the operations of composition, inverse and intersection. The obtained network is
3-consistent, i.e. we can always extend a partial solution concerning two variables to
a partial solution concerning a third variable in addition to the first ones. In a similar
way, we can use the operations of composition, intersection, rotation and permutation to
remove impossible atomic relations in the constraints of a CNPC. In particular we can
apply the following operations onto a CNPC N = (V, C):

Cijk ← Cijk ∩ (Cijl ◦ Cjlk),
Cjki ← C�

ijk, Ckij ← C�

jki,

Cikj ← C�
ijk, Cjik ← C�

jki, Ckji ← C�
kij .

onto all each 4-tuple i, j, k, l ∈ {1, . . . , |V |} until a fixed point is reached. This method
is accomplished in polynomial time, we will call it the composition closure method. The
obtained CNCP admits the same solutions as the initial CNCP. Moreover this constraint
network is closed for composition: we say that a CNCP N = (V, C) is closed for the
operation of composition iff

∀i, j, k, l ∈ {1, . . . , |V |}, Cijk ⊆ Cijl ◦ Cjlk.

To close this subsection let us note that for all i, j, k, l ∈ {1, . . . , |V |}, if Cijk ⊆
Cijl ◦Cjlk then the inclusion Cjki ⊆ Cjkl ◦Ckli and the inclusion Cikj ⊆ Cikl ◦Cklj

are not always satisfied.



3.4 Tractability Results about CNCP

In the sequel we will prove that the consistency problem for the CNCP, which we will
denote C-CNCP, is NP-complete in the general case. This subsection is devoted to the def-
initions of tractable cases and intractable cases. These cases will be parametrized by two
nonempty sets B and T , where B is the union of {∅} and zero or several sets among the
following ones : {{Baaa}}, {{Baab}, {Baba}, {Bbaa}}, {{Baaa, Baab}, {Baaa,Baba},
{Baaa, Bbaa}}, and where T is a subset of 2BC containing the empty relation. B con-
tains the possible constraints between two distinct variables, whereas T contains the
possible constraints between three distinct variables. In other words, B corresponds to
the relations Ciij and T to the relations Cijk, with i, j, k three distinct integers. T must
be closed for the operations of permutation and composition. CNCP(B,T ) will denote
the set of the CNCP N = (V, C) such that for all i, j ∈ {1, . . . , n} (with n = |V |) if
i �= j then Ciij ∈ B and for all i, j, k ∈ {1, . . . , n} if i, j, k are pairwise distinct then
Cijk ∈ T . C-CNCP(B,T ) will denote the consistency problem restricted to the networks
of CNCP(B,T ).

Table 3. The sets B0, B1, B2 and B3.

∅ {Baaa} {Baab},{Baba},{Bbaa} {Baaa, Baab}, {Baaa, Baba}, {Baaa, Bbaa}
B0 • •
B1 • •
B2 • • •
B3 • • • •
B4 • • •

Let us note that we have eight possible different sets B. The sets considered for B in
the sequel are given in Table 3 and those for T are defined in Table 5. Firstly we define
tractable cases and secondly, we give some intractable cases. Let us start our study with
an easy case.

Proposition 10. C-CNCP(B0,T ) is a polynomial problem.

Proof. Let N = (V, C) ∈ CNCP(B0,T ). N is a consistent network iff for all i, j, k ∈
{1, . . . , |V |}, Baaa ∈ Cijk. This test can be established in time O(n3) with n = |V |. �

Proposition 11. Let B be a set of relations such that B1 ⊆ B and let T be a set closed for
the operation of intersection (in addition to the closure for the operations of permutation
and rotation). Let T ′ = (T \B3) ∪ {∅} and B′ = (B \B0) ∪ {∅}. C-CNCP(B,T ) is a
polynomial problem (resp. a NP-complete problem) iff C-CNCP(B′,T ′) is a polynomial
problem (resp. a NP-complete problem).

Proof. Trivially, since B′ ⊆ B and T ′ ⊆ T if C-CNCP(B,T ) is a polynomial problem
then C-CNCP(B′,T ′) is also a polynomial problem and if C-CNCP(B′,T ′) is a NP-
complete complete then C-CNCP(B,T ) is equally a NP-complete problem. Now, let
us define a polynomial transformation from C-CNCP(B,T ) to C-CNCP(B′,T ′). Let



N = (V, C) be a CNCP belonging to CNCP(B,T ). FromN we define a CNCPN ′′ by
making the following steps.

Step 1. We initialize N ′ = (V ′, C ′) by N .
Step 2. We define the binary graph G = (S, E) in the following way : for each
variable V ′

i ∈ V ′ there is an associated node si ∈ S and (si, sj) belongs to the set
of edges E iff C ′

ijk ⊆ {Baaa,Baab} for some k ∈ {1, . . . , |V ′|}. Let C1, . . . , Cp

be the strongly connected components of G.
Step 3. We define the CNCP N ′′ = (V ′′, C ′′) by:
• with each component Ci is associated a variable V ′′

i for each i ∈ {1, . . . , p}.
• C ′′

ijk =
⋂

sr∈Ci,ss∈Cj ,st∈Ck
C ′

rst for each i, j, k ∈ {1, . . . , p}.
Step 4. IfN ′ andN ′′ are identical then we stop. If not we setN ′ toN ′′ and we go
back to Step 2.

From the construction ofN ′′ we note thatN ′′ is consistent iffN is consistent. Since T
is closed for the operation of intersection we know that C ′′

ijk belongs to T for all distinct
integers i, j, k. Since the relations of B contain at most two atomic relations and B1 ⊆ B
it follows that C ′′

iij ∈ B ∪ {Baaa}. Moreover, by construction C ′′
ijk cannot belong to

the set B3 \ {∅} and C ′′
iij cannot be {Baaa}. It follows that N ′′ ∈ CNCP(B′,T ′). The

construction of N ′′ is realized in polynomial time. It follows that if C-CNCP(B′,T ′)
is a polynomial problem then C-CNCP(B,T ) is also a polynomial problem and if C-
CNCP(B,T ) is a NP-complete problem then C-CNCP(B′,T ′) is also a NP-complete
problem. �

Lemma 12. The composition closure method solves C-CNCP(B2,{{Babc}, {Bacb}, ∅}).

Proof. Let N ′ = (V, C ′) ∈ C-CNCP(B2,{{Babc}, {Bacb}, ∅} and let N = (V, C)
be the network obtained by applying the composition closure method on N ′. Let us
show that N ′ ∈ CNCP(B1,{{Babc}, {Bacb}, ∅}). Let i, j ∈ {1, . . . , n} with n = |V |
and i �= j. We will suppose that n > 3 since the case n ≤ 3 is trivial. We now prove
that Ciij �= {Baaa} and Ciij �= {Baaa,Baab}. Let us suppose the contrary; since N
is closed for composition it follows that Ciij ⊆ Ciik ◦ Cikj for all k ∈ {1, . . . , n}. In
the case where k is distinct from i and j we have Cijk = {Babc} or Cijk = {Bacb}. It
follows that Ciij ⊆ {Baaa,Baab}◦{Bacb,Babc}. Consequently, Ciij ⊆ {Baab}, which
is a contradiction. We can conclude that N ∈ CNCP(B1,{{Babc}, {Bacb}}).
Let us suppose that N does not contain the empty relation. We are going to construct a
consistent instantiation m forN in which two distinct variables are associated with two
distinct cyclic points. It is always possible to instantiate the first three variables. Now,
let us suppose that we have a partial solution m1, . . . , mq−1 with q > 3 and q ≤ n,
such that mi �= mj for all i, j ∈ {1, . . . , q − 1}. Let us show that we can extend this
partial solution to the variable Vq by a cyclic point different from the other cyclic points
used. Firstly, we renumber the variables V1, . . . , Vq−1 such that mi(i+1)(i+2) = Babc

for each i ∈ {1, . . . , q − 3} and m(q−2)(q−1)1 = Babc. Let l ∈ {1, . . . , q − 1} be
such that Clq(lmod(q−1)+1) = {Babc}. Let us show the existence of l. Let us suppose
that l does not exist. Hence we have for each l ∈ {1, . . . , q − 2}, Clq(l+1) = {Bacb}
and C(q−1)q1 = {Bacb}. Since N is closed for the operation of composition we have



C1q3 ⊆ C1q2◦Cq23. Consequently, C1q3 ⊆ {Bacb}◦{Babc}. Since this last composition
equals {Bacb} we can deduce that C1q3 = {Bacb}. By propagation and by using the
more general fact that C1qi ⊆ C1q(i−1) ◦ Cq(i−1)i for each i ∈ {3, . . . , q − 1} we
obtain the following equality: C1q(q−1) = {Bacb}, hence by permutation we obtain
C1(q−1)q = {Babc}. By rotation we have C(q−1)q1 = {Babc}, which is a contradiction.
We can conclude that there exists an integer l satisfying the given conditions. By defining
mq by a cyclic point such that mlq(lmod(q−1)+1) is Babc (i.e. any intermediate cyclic
point between ml and mlmod(q−1)+1 by following the circle orientation we extend m
to a partial instantiation such that the valuations are pairwise distinct. Let us show
that m is always a partial solution. In order to do that, let us suppose that there exists
i, j ∈ {1, . . . , q − 1} such that mijq �∈ Cijq. i, j, q must be pairwise distinct. With no
loss of generality we may suppose that i < j; then three cases are possible:

– i < j ≤ l. We have mijq = Babc, consequently Cijq = {Bacb}. If j = l then
Cilq = {Bacb}. In the contrary case, since Cliq ⊆ Clij ◦ Cijq, it follows that
Cliq ⊆ {Babc} ◦ {Bacb} and hence Cliq = {Babc}. Consequently Cilq = {Bacb}.
If i = 1 and l = q − 1 then Clqi = {Babc} and hence Cilq = {Babc}, which is a
contradiction. In the contrary case Cilq ⊆ Cil(lmod(q−1)+1) ◦Cl(lmod(q−1)+1)q with
Cil(lmod(q−1)+1) ◦ Cl(lmod(q−1)+1)q = {Babc} ◦ {Bacb} = {Babc}. Consequently
Cilq = {Babc}, which is a contradiction.

– l ≤ i < j.
• Let us consider the case where j = l + 1. It follows that i = l. Hence

mijq = Bacb and by consequence Cijq = {Babc}. This is a contradiction
since Cl(l+1)q = {Babc}.
• Let us consider the case where i = l + 1. It follows that mijq = Babc and then

Cijq = {Bacb}. It follows that C(l+1)jq = {Bacb}. We know that Cj(l+1)l ⊆
Cj(l+1)q◦C(l+1)ql. Hence, Cj(l+1)l ⊆ {Babc}◦{Bacb} and Cj(l+1)l = {Babc}.
This is a contradiction since mj(l+1)l = Bacb.

• Let us consider the case where i �= l + 1 and j �= l + 1. By propagating
the fact that Cq(l+1)(q−m−2) ⊆ Cq(l+1)(q−m−1) ◦ C(l+1)(q−m−1)(q−m−2) for
m ∈ {0, . . . , q − 2 − j}. We obtain Cq(l+1)(q−m−2) ⊆ {Babc} ◦ {Bacb} and
hence Cq(l+1)(q−m−2) ⊆ {Babc}, for m ∈ {1, . . . , q − 2 − j}. It follows that
Cq(l+1)j = {Babc}. Since Cqji ⊆ Cqj(l+1) ◦ Cj(l+1)i. It results that Cqji ⊆
{Babc} ◦ {Bacb} and thus Cqji = {Babc}, which is a contradiction.

– i < l < j. Consequently we have mijq = Bacb and then Cijq = {Babc}. Since
Ci(l+1)q ⊆ Ci(l+1)l ◦ C(l+1)lq . we obtain Ci(l+1)q ⊆ {Bacb} ◦ {Babc} and thus
Ci(l+1)q = {Bacb}. If j = l + 1 then we get a contradiction. Let us suppose that
j �= (l+1). As Cqij ⊆ Cqi(l+1)◦Ci(l+1)j it follows that Cqij ⊆ {Bacb}◦{Babc} and
thus Cqij = {Bacb}. By rotation we have Cijq = {Bacb}, which is a contradiction.

�

Proposition 13. Let T0 be the set B3 ∪ {{Babc}, {Bacb}, ∅}}. C-CNCP(B3,T0) is a
polynomial problem.

Proof. From Lemma 12 it follows that C-CNCP(B2,{{Babc}, {Bacb}, ∅}) is a polyno-
mial problem. From Proposition 11 we can conclude that C-CNCP(B2 ∪ B0,{{Babc},



{Bacb}∪B3), i.e. C-CNCP(B3,T0), is also a polynomial problem since T0 is closed for
the operation of intersection. �

Proposition 14. Let T1 be a set composed of all relations minus the relations containing
both atomic relations {Babc} and {Bacb}. C-CNCP(B4,T1) is a polynomial problem.

Proof. The set T1 is closed for the operation of intersection and B1 is a subset of B4,
from Proposition 11 it follows that C-CNCP(B4,T1) is a polynomial problem if, and only
if, C-CNCP(B1,T1 \ B3) is a polynomial problem. Let N = (V, C) ∈ CNCP(B1,T1 \
B3) and a solution m de N . For all i, j, k ∈ {1, . . . , n} pairwise distinct, we have
mijk ∈ {Babc, Bacb} (because of the possible constraints allowed by the set B1). It
follows that N = (V, C) admits the same solutions that the CNCP (V, C ′) defined
by C ′

ijk = Cijk \ {Baaa, Baba,Bbaa,Baab} if i, j, k are pairwise distinct integers,
C ′

ijk = Cijk else, for i, j, k ∈ {1, . . . , n}. (V, C ′) ∈ CNCP(B1,{Babc,Bacb}). As C-
CNCP(B1,{Babc,Bacb}) is a polynomial problem (Lemma 12) we can conclude that
C-CNCP(B1,T1) is also a polynomial problem. �

Lemma 15. LetT be the set{{Babc}, {Bacb}, {Baaa}, {Babc,Baaa}, {Bacb,Baaa}, ∅}.
C-CNCP(B3,T ) is a polynomial problem.

Proof. Let be N ′ = (V, C ′) ∈ RCPC(B3,T ). By applying the method of composition
closure onN ′ we obtainN = (V, C) belonging also to C-CNCP(B3,T ). Let us suppose
that N does not contain the empty constraint. Let us show that N is consistent. Let
i, j, k, l be four pairwise distinct integers belonging to the set {1, . . . , n} with n = |V |.
Let us suppose that Cijk contains the atomic relation Baaa. Since that Cijk ⊆ Cijl◦Cjlk

and Cjik ⊆ Cjil ◦Cilk we can deduce that Baaa ∈ Cijl, Baaa ∈ Cjlk, Baaa ∈ Cjil and
Baaa ∈ Cilk. Consequently, a constraint on three distinct variables contains the atomic
relation Baaa if, and only if, every constraint on three distinct variables contains the
atomic relation Baaa. Let us suppose that for two distinct integers i, j ∈ {1, . . . , n},
Ciij does not contain the atomic relation Baaa, i.e. Ciij = {Baab}. Let k ∈ {1, . . . , n}
different from i and j. Let k be an integer different from i and j. We have Cijk ⊆
Ciji◦Cjik. Hence Cijk ⊆ {Baba}◦{Baaa,Babc,Bacb} and hence Cijk ⊆ {Babc,Bacb}.
It follows that Cijk does not contain the atomic relation Baaa. We can conclude that either
all constraints of N contain the atomic relation Baaa, in which case N is consistent,
or that N belongs RCPC(B3,T0) and consequently deciding consistency is polynomial
(Proposition 13).

�

Proposition 16. Let T3 be the set composed of the relations of B3 and the relations of the
set {{Babc}, {Bacb}, {Babc,Baaa}, {Bacb,Baaa}}. C-CNCP(B3,T3) is a polynomial
problem.

Proof. T3 is closed for the operation of intersection and moreover B0 ⊆ B3. It follows
that C-CNCP(B3,T3) is a polynomial problem iff C-CNCP(B2,(T1 \ B3) ∪ {∅}) is a
polynomial problem. This is actually the case by Lemma 15. �



Proposition 17. Let T2 be the set composed of the relations of B3 and all the relations
including the relation {Babc,Bacb}. C-CNCP(B3,T2) is a polynomial problem.

Proof. T2 is a set closed for the operation of intersection, moreover B0 ⊆ B3. It follows
that C-CNCP(B3,T2) is a polynomial problem iff C-CNCP(B2,(T2 \ B3) ∪ {∅}) is a
polynomial problem. Let us show that C-CNCP(B2,T2 \ B3) is a polynomial problem.
LetN ∈CNCP(B2,T2\B3). By giving to the variables pairwise distinct values we obtain
a solution for N since {Babc, Bacb} ⊆ Cijk for all i, j, k pairwise distinct integers and
no constraint belonging to B2 implies the equality of two variables. �

Proposition 18. C-CNCP(B3,T4) is a polynomial problem.

Proof. Let N be a CNCP belonging to CNCP(B3,T4). Each consistent instantiation
m of N uses only one or two distinct cyclic points. Consequently, we can reduce the
domain of the variables to two distinct cyclic points u and v. From this fact we can
define a polynomial transformation from CNCP(B3,T4) to the 2-SAT problem in the
following way. Let N = (V, C) be a CNCP belonging to CNCP(B3,T4). We note |V |
by n. Let L = {l1, . . . , ln} be a set of literals. For each i ∈ {1, . . . , n}, the variable Vi

is associated with the literal li. Intuitively, li is true will correspond to the assignation u
to Vi and li is false will correspond to the assignation v to Vi. We define a set of clauses
C over L by adding to C a set of clauses sijk for each i, j, k ∈ {1, . . . , n} in accordance
with the values of Cijk. This translation is given by Table 4.

Table 4. Translation of the cyclic constraints with clauses

the constraint Cijk the clause cijk

{Baaa} (li ∨ lj) ∧ (li ∨ lk) ∧ (lj ∨ li) ∧ (lj ∨ lk) ∧ (lk ∨ li) ∧ (lk ∨ lj)
{Baab} (li ∨ lj) ∧ (li ∨ lk) ∧ (li ∨ lj) ∧ (lj ∨ lk) ∧ (li ∨ lk) ∧ (lj ∨ lk)
{Baba} cikj

{Bbaa} cjki

{Baaa, Baab} (li ∨ lj) ∧ (li ∨ lj)
{Baaa, Baba} cikj

{Baaa, Bbaa} ckji

{Baaa, Baab, Baba, Bbaa} ∅

Given m a solution ofN = (V, C) we define the following interpretation I onto L : for
each li ∈ L, I(li) = true iff m(Vi) = u. The reader can verify that I is a model of all
sets of clauses sijk. Now, from a model I of all sets of clauses sijk, a solution ofN can
be obtained by taking m(Vi) = u iff li ∈ L, I(li) = true, else m(Vi) = v, for each
Vi ∈ V . It can be verified that m is a solution of N . �

Let us note that the relations {Baaa, Baab,Baba}, {Baaa,Baba,Bbaa} and {Baaa, Baab,
Baba} can be expressed with clauses containing three literals and cannot be expressed
with clauses containing only two literals. Despite this fact, we cannot assert that adding
these relations implies NP-completeness.

Lemma 19. Let T be a set containing both relations {Babc}, {Bacb} and any relation
α including {Babc, Bacb}. C-CNCP(B1,T ) is a NP-complete problem.



Proof. We give a polynomial transformation from the cyclic ordering problem – a
NP-complete referenced in [10] – to C-CNCP(B1,T ). The cyclic ordering problem is as
follows: given a set A and a set Tr of 3-tuples (e, f, g) with e, f, g three distinct elements
belonging to A, answer the following question: is there a one-to-one function F which
associates an integer belonging to {1, . . . , |A|} with each element of A such that, for
each 3-tuple (e, d, f) ∈ Tr we have F(e) < F(f) < F(g) or F(g) < F(e) < F(f)
or F(f) < F(g) < F(e).
Let (A, Tr) be an instance of the cyclic ordering problem. LetN = (V, C) be a CNCP
defined in the following way:

– V is a set of |A| variables. To each of these variables corresponds an element
belonging to A (to two distinct variables corresponds two distinct elements). We
denote by Ve the variable associated with the element e ∈ A.

– The constraints of C are defined as follows: given e, f, g ∈ A which are pairwise
distinct, if (e, f, g) or (f, g, e) or (g, e, f) ∈ Tr then C(Ve, Vf , Vg) = {Babc},
else if (f, e, g) or (e, g, f) or (g, f, e) ∈ Tr then C(Ve, Vf , Vg) = {Bacb}, else
C(Ve, Vf , Vg) = α. C(Ve, Ve, Vf ) = {Baab} and C(Ve, Ve, Ve) = {Baaa}

Let us prove that there exists a one-to-one mapping F solution of (A, T ) if, and only if,
there exists a solution m of N .

– Let F be a solution of (A, T ). Let P denote a cyclic point and O the center of the
circle. We define an instantiation m of N by for each e ∈ A: m(Ve) is the cyclic
point such that the angle (OP, Om(Ve)) equals (F(e) − 1) × (360/|A|) degrees.
Then m is a solution ofN . Indeed, we note that if a 3-tuple (e, f, g) belongs to Tr
then F(e) < F(f) < F(g) or F(g) < F(e) < F(f) or F(f) < F(g) < F(e).
Consequently, by moving along the circle starting from P we first meet m(Ve), then
m(Vf ) and finally m(Vg) or m(Vg), then m(Ve) and finally m(Vf ) or m(Vf ), then
m(Vg) and finally m(Ve). It follows that Babc(m(Ve), m(Vf ), m(Vg)).

– Let us consider a consistent instantiation m of N . Let us define the one-to-one
function F from A to {1, . . . , |A|} in the following way. Because of the constraints
in C the cyclic points associated with the variables are pairwise distinct. Let P be a
cyclic point. Let e ∈ A;F(e) is the cardinal of the set{v ∈ V : m(v) ∈ [P, m(Ve)]}.
F is a one-to-one function, moreover F is a solution for (A, T ). Indeed, let us
suppose that (e, f, g) ∈ T ; it follows that C(Ve, Vf , Vg) = {Babc}. Consequently,
by moving along the circle starting from P we first meet m(Ve), then m(Vf ) and
finally m(Vg), or m(Vf ), then m(Vg) and finally m(Ve) or m(Vg), then m(Ve) and
finally m(Vf ). It follows that F(e) < F(f) < F(g) or F(g) < F(e) < F(f) or
F(f) < F(g) < F(e). Hence F is a solution.

�

From the previous proposition we can deduce that in the general case C-CNCP(B2,2BC )
is a NP-complete problem.

4 Complexity and Conceptual Spaces

For a whole family of temporal and spatial calculi based on linear orderings, the com-
plexity properties are closely related to geometrical and topological properties of the



Table 5. A listing of Ti sets.

Relations \ Sets T0 T1 T2 T3 T4

∅ • • • • •
{Baaa} • • • • •
{Baab} • • • • •
{Baba} • • • • •
{Bbaa} • • • • •
{Babc} • • •
{Bacb} • • •
{Baaa, Baab} • • • • •
{Baaa, Baba} • • • • •
{Baaa, Bbaa} • • • • •
{Baaa, Babc} • •
{Baaa, Bacb} • •
{Baab, Baba} • •
{Baab, Bbaa} • •
{Baab, Babc} • •
{Baab, Bacb} •
{Baba, Bbaa} • •
{Baba, Babc} •
{Baba, Bacb} •
{Bbaa, Babc} •
{Bbaa, Bacb} •
{Babc, Bacb} •
{Baaa, Baab, Baba} •
{Baaa, Baab, Bbaa} •
{Baaa, Baab, Babc} •
{Baaa, Baab, Bacb} •
{Baaa, Baba, Bbaa} •
{Baaa, Baba, Babc} •
{Baaa, Baba, Bacb} •

Relations \ Sets T0 T1 T2 T3 T4

{Baaa, Bbaa, Babc} •
{Baaa, Bbaa, Bacb} •
{Baaa, Babc, Bacb} •
{Baab, Baba, Bbaa} •
{Baab, Baba, Babc} •
{Baab, Baba, Bacb} •
{Baab, Bbaa, Babc} •
{Baab, Bbaa, Bacb} •
{Baab, Babc, Bacb} •
{Baba, Bbaa, Babc} •
{Baba, Bbaa, Bacb} •
{Baba, Babc, Bacb} •
{Bbaa, Babc, Bacb} •
{Baaa, Baab, Baba, Bbaa} • •
{Baaa, Baab, Baba, Babc} •
{Baaa, Baab, Baba, Bacb} •
{Baaa, Baba, Bbaa, Babc} •
{Baaa, Baba, Bbaa, Bacb} •
{Baaa, Bbaa, Babc, Bacb} •
{Baab, Baba, Bbaa, Babc} •
{Baab, Baba, Bbaa, Bacb} •
{Baab, Bbaa, Babc, Bacb} •
{Baba, Bbaa, Babc, Bacb} •
{Baaa, Baab, Baba, Bbaa, Babc} •
{Baaa, Baab, Baba, Bbaa, Bacb} •
{Baaa, Baba, Bbaa, Babc, Bacb} •
{Baab, Baba, Bbaa, Babc, Bacb} •
{Baaa, Baab, Baba, Bbaa, Babc, Bacb} •

relations. In this section, we give a quick survey of the results of that kind, relating them
to the concept of conceptual space introduced by Gärdenfors [9]. We then examine the
question of interpreting the preceding results about points on a circle in that context.

4.1 Conceptual Spaces

Conceptual spaces are based on domains. A typical example of a domain is the color
domain as represented by the Swedish natural color system (NCS) [11] which is a
perceptual model of color perception. It describes the phenomenal structure of colors,
that is, colors as we perceive them, using three dimensions: hue, chromaticness (or
saturation), and brightness.

The first dimension, hue, is represented by the color circle. Colors lying opposite
to each other are complementary colors: for example, green is complementary to red,
orange to blue.



The second dimension, chromaticness, ranges from zero color intensity to increas-
ingly greater intensities. It is modelled by a segment. Hence hue and chromaticness taken
together are modelled by a disk, where colors can be distinguished on the periphery, and
become more and more blurred as one comes closer to the center.

The third dimension is brightness which varies from white to black, and is conse-
quently also represented by a segment. Brightness and chromaticness do not vary inde-
pendently: variations in chromaticness decrease in range when brightness approaches
black or white. Hence, for a given hue, the space of possible pairs (chromaticness,
brightness) describes a triangle.

GREEN

RED

PURPLE

ORANGE

YELLOW

BLUE

RED

YELLOW

GREEN

BLUE

WHITE

BLACK

Hue and chromaticness The three dimensional model

Fig. 2. The NCS model of colors.

Globally, then the model is called the NCS color spindle [27]. Gärdenfors gives a
detailed discussion of the use of the model for explaining linguistic phenomena (such
as the use of color terms), based on the assumption that terms referring to “natural”
properties, that is in particular properties which can be named, correspond to convex
subsets of the model.

The color model example is only a particular instance of the general hypothesis about
natural properties: they should correspond to convex regions in some suitable conceptual
model. The interested reader should refer to [9].

The NCS model is an example of a phenomenal conceptual space. Other conceptual
spaces are theoretical conceptual spaces: For instance, the conceptual model of space in
Newtonian physics is a 3-dimensional Euclidean space, time being an independent (in
Gärdenfors’ terminology, separable) dimension. By contrast, the temporal dimension in
relativistic physics is an integral dimension of the 4-dimensional Minkowski space.

4.2 The Conceptual Space of Allen’s Relations

As a first, and typical case of a conceptual space in the domain of qualitative temporal
reasoning, we consider the case of the Allen calculus [1]. Since an interval on the real
line is characterized by a (strictly) increasing pair of real numbers, a model of the set



of all intervals is the open half-plane delimited by the first bisector in the (X, Y )-plane.
This half-plane is defined by the equation Y > X . Given a fixed interval (a, b), with
a < b, the basic Allen relations correspond to 13 regions in the half-plane, as shown in
Fig. 3.
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Fig. 3. The conceptual space of atomic relations in Allen’s algebra

The conceptual space of Allen’s relations has a much richer structure than the mere
algebra. In particular, each relation has a dimension (the dimension of the corresponding
region, which corresponds to the number of degrees of freedom of the relation). The
incidence structure of the set of regions is a graph whose vertices correspond to the
atomic relations, where there is an arc from r1 to r2 if r2 belongs to the boundary
of r1. This incidence structure can be deduced from the conceptual space, cf. Fig. 4. It
contains enough topological information to encode the closure properties of the relations.
In particular, the closure of any relation can be read from this graph.
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Fig. 4. The incidence graph of Allen’s relations
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Fig. 5. The lattice of Allen’s relations

Closely related to the incidence structure is the lattice of atomic relations represented
in Fig. 5, which summarizes the order properties of the relations.

A basic problem in studying the complexity of reasoning with Allen’s relations is the
problem of determining whether a given constraint network is consistent. The general
class of networks using any disjunction of atomic relations is known to be NP-complete.
It is a remarkable fact that tractable subclasses of relations can be characterized in
geometrical terms, as shown in [17] and subsequent papers [18,20].

Basic relations (as regions in the half-plane) are convex relations. In fact, they have
a stronger property: they are also saturated (with respect to projections on the axes), in
the sense that for such a region R, R = pr1(R)× pr2(R), where pr1 and pr2 are the X
and Y projections respectively.

Convex relations are those unions of atomic relations which are both convex and
saturated. In the lattice representation, this is equivalent to relations which are intervals
in the lattice. More generally, pre-convex relations are those relations whose topological
closure is a convex relation. Although they are neither convex nor saturated in general,
they differ from the smallest convex closure by only “small” pieces, in the sense that
the difference contains only relations whose dimension is strictly smaller. An argument
based on this fact, together with the known fact that convex relations are tractable implies
that the class of pre-convex relations is tractable [18]. In fact, it is the unique maximal
tractable subclass containing all atomic relations [19].

Those results also can be obtained with purely syntactic methods: pre-convex rela-
tions coincide with ORD-Horn relations in the sense of [23], and their tractability is a
consequence of the properties of Horn theories.

4.3 Conceptual Spaces and Complexity in Calculi Based on Linear Orderings

Allen’s calculus fits into a larger family of calculi based on linear orderings:

– Generalized interval calculi [15,16,20] which consider finite strictly increasing se-
quences of points (in this context, Allen’s calculus is the particular case of two
points);



– The n-point calculus [4] where the basic objects are points in a n-D Euclidean space
(the time point calculus is the case where n = 1). The case where n = 2 has been
considered in [20] under the name of Cardinal Direction Calculus.

– The n-block calculus [5,2], whose basic objects are blocks (products of intervals)
in a n-D Euclidean space (Allen’s calculus is the case where n = 1).

Conceptual spaces are easily derived using the same method as for Allen’s calculus
in each particular case:

– In the case of generalized interval calculi, the conceptual space associated to (p, q)-
relations, that is, relations from one p-interval to one q-interval (p, q ≥ 1) is defined
as follows:

Consider in the Euclidean q-space the cone Cq defined by:

X1 < X2 < . . . < Xq

Fix a point (a1, . . . , aq) in Cq

The set of atomic (p, q)-relations Πp,q is the set of non-decreasing sequences of
length p of integers between 0 and 2q, where no odd integer occurs more than once.
Each (p, q)-relation is associated with a region in Cq, and, globally, these regions
constitute a partition of Cq.
The explicit definition of the region associated to a given (p, q)-relation (b1, . . . , bp)
is intricate but straightforward: if bi = 2ni + 1, then we consider the equation
Xi = ani ; if bi = 2ni, then we consider the inequations ani < Xi < ani+1. The
region is defined by the conjunctions of equations and inequations associated to
each bi, for 1 ≤ i ≤ p.
Clearly, since it is defined by a Cartesian product of points or open intervals, (the
region associated to ) each atomic relation is convex and saturated.
Quite analogously to the case of Allen’s relations, convex relations can be defined,
e.g. as intervals in the lattice Πp,q. They are convex and saturated. Pre-convex
relations are those relations which have a convex topological closure. The same
kinds of considerations as in Allen’s case show that pre-convex relations, or more
precisely the subclass of pre-convex relations, called strongly pre-convex relations
[6] is tractable.

– For the n-point calculus, the conceptual space associated to basic relations of the
n-point calculus (which are sequences of length n of point relations) is a partition
of the Euclidean n-space:

Consider any point a1, . . . , an in the n-space.

A basic relation is a n-tuple b1, . . . , bn, where bi ∈ {<,=, >}.

The region associated to such a basic relation is defined by the conjunction of the
equations or inequations:

Xi = ai if bi is =, Xi < ai if bi is <, and Xi > ai if bi is >.



Clearly again, these regions are convex and saturated. Convex, pre-convex, and
strongly pre-convex relations can be defined, and tractability results obtained for
strongly pre-convex relations [4].

– Finally, for the n-block calculus, the basic relations are sequences of Allen’s rela-
tions. The corresponding conceptual space is a product of copies of the space for
Allen’s relations, and again, similar results obtain for pre-convex relations.

It must be mentioned, moreover, that in all three classes of calculi, strongly pre-
convex relations coincide with ORD-Horn relations, which gives an independent motiva-
tion for their tractability, and constitutes a nice point of agreement between geometrically
and syntactically motivated notions [6].

4.4 Points on a Circle

For all calculi based on linear orderings by taking sequences or products, the geometric
structure of the basic relations, as represented in the corresponding conceptual space
and in the lattice and incidence graph representations, are closely related to tractability
properties. In line with the general considerations in Gärdenfors’ framework, convexity
and the stronger property of convexity plus saturation, play a crucial role.

The sad fact is that this does not seem to be the case any longer if we consider relations
in the cyclic case. For the ternary relations between points considered in this paper, the
incidence graph of the basic relations is easily obtained: starting from the relation where
all three points coincide, that is, relation Baaa, one gets, by separating either x, y, or z,
one of the three relations Bbaa, Baba, Baab. Going further and separating the remaining
two points leads either to Babc or to Bacb. Hence we get the graph in Fig. 4.4.

However, it is not at all clear how the (partial) complexity results we have obtained
in this paper relate to geometric properties of this graph. This negative phenomenon
may be related to the fact that, for the binary qualitative relations between intervals on a
circle, path-consistent atomic networks may be inconsistent [7], or, in other terms, that
weak-representations in the sense of [15,21] may well be inconsistent.

B

abcB

acbB

baa

B aba B aab
B aaa

Fig. 6. The incidence graph of the cyclic point relations.



5 Conclusion

In a first part we described the relations between linear and cyclic models. Then, we
considered six possible ternary relations between three points on a circle, which are
jointly exhaustive and pairwise disjoint (JEPD) relations, and developped a qualitative
calculus called the cyclic point algebra. We examined the consistency problem of the
cyclic point networks. We have characterized several tractable and untractable cases for
this problem.

The continuation of this work will be the complete characterization of all the tractable
cases in the cyclic point algebra. Because of the small size of the set of relations of the
cyclic point algebra, this goal seems to be reasonable.

Another perpsective will be considering cyclic arcs instead of cyclic points. The
relations considered will be those characterized by Balbiani and Osmani in [7]. A first
task will consist in defining an axiom system for these relations. To this end, we can
use the axiom system of the cyclic orders (see [13] for a similar work). Concerning the
constraint aspects, our study of cyclic point networks can be certainly used to characterize
new tractable cases for the consistency problem of the cyclic arc networks.

We presented the basic notions of the framework of conceptual spaces, in relation to
the characterization of tractable subclasses for formalisms such as the Interval Algebra.
An open question is: is there a geometric and topological characterization of tractable
classes in the cyclic cases? It appears that finding a suitable conceptual space is more
difficult (less natural) that in the linear case.
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M. G. Singh, editors, Proceedings of the III IMACS International Workshop on Qualitative
Reasoning and Decision Technologies—QUARDET’93—, pages 523–532, Barcelona, June
1993. CIMNE.

26. C. Schlieder. Reasoning about ordering. In Proc. of COSIT’95, 1995.
27. L. Sivik and C. Taft. Color naming: a mapping in the NCS of common color terms. Scandi-

navian Journal of Psychology, (35):144–164, 1994.
28. T. Sogo, H. Ishiguro, and T Ishida. Acquisition of qualitative spatial representation by visual

observation. In Proceedings IJCAI-99, pages 1054 – 1060, 1999.


