
HAL Id: hal-04003608
https://hal.science/hal-04003608

Submitted on 24 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Organization based access control
Anas Abou El Kalam, Rania El Baida, Philippe Balbiani, Salem Benferhat,

Frederic Cuppens, Yves Deswarte, Alexandre Miege, Claire Saurel, Gilles
Trouessin

To cite this version:
Anas Abou El Kalam, Rania El Baida, Philippe Balbiani, Salem Benferhat, Frederic Cuppens, et al..
Organization based access control. 4th International Workshop on Policies for Distributed Systems
and Networks (POLICY 2003), IEEE, Jun 2003, Lake Como, Italy. pp.120–131, �10.1109/POL-
ICY.2003.1206966�. �hal-04003608�

https://hal.science/hal-04003608
https://hal.archives-ouvertes.fr


Organization based access control

Anas Abou El Kalam¶ Rania El Baida§ Philippe Balbiani§∗

Salem Benferhat† Frédéric Cuppens§∗ Yves Deswarte¶

Alexandre Miège‖ Claire Saurel‖ Gilles Trouessin‡

Cril† Ernst & Young Audit‡ Irit§ Laas¶ Onera‖

Abstract

None of the classical access control models such as
DAC, MAC, RBAC, TBAC or TMAC is fully satisfac-
tory to model security policies that are not restricted
to static permissions but also include contextual rules
related to permissions, prohibitions, obligations and
recommendations. This is typically the case of se-
curity policies that apply to the health care domain.
In this paper, we suggest a new model that provides
solutions to specify such contextual security policies.
This model, called Organization based access control,
is presented using a formal language based on first-
order logic.

1 Introduction

Several access control models have been proposed:
DAC[1], MAC[2, 3], RBAC[4, 5, 6], TBAC[7] or
TMAC[8]. None of these models is fully satisfactory,
seeing that they are difficult to apply to organizations
that use security policies including:

1. Rules that specify contextual permissions or pro-
hibitions. There are many examples of rules
that apply only to specific circumstances. For
instance, in the health care domain, physicians

∗Corresponding authors: balbiani@irit.fr and cup-
pens@irit.fr.

†Cril-CNRS, Centre de recherche en informatique de Lens,
Université d’Artois, Rue Jean Souvraz, SP18, 62307 Lens
Cedex.

‡Ernst & Young Audit, 1 place Alphonse Jourdain, 31000
Toulouse.

§Irit-CNRS, Institut de recherche en Informatique de
Toulouse, Université Paul Sabatier, 118 route de Narbonne,
31062 Toulouse Cedex 4.

¶Laas-CNRS, Laboratoire d’analyse et d’architecture des
systèmes, 7 avenue du Colonel Roche, 31077 Toulouse Cedex
4.

‖Office national d’études et de recherches aérospatiales, Cen-
tre de Toulouse, BP 4025, 31055 Toulouse Cedex 4.

have special permissions in specific contexts,
such as the context of urgency (see section 5).

2. Rules that specify obligations or recommenda-
tions. Classical access control models are gen-
erally restricted to permissions. Some of them
include prohibitions. More recently, including
obligations in the security policy specification
was also suggested[9, 10]. As far as we know, rec-
ommendations have never been considered pre-
viously.

3. Rules that are specific to the organization. In
particular, the organization may be structured
into several sub-organizations having their own
security policy. The model should provide
means to specify the different security policies
within a unique framework.

This paper suggests a model that attempts to solve
these problems. The concept of organization is central
in this model. The specification of the security pol-
icy is completely parameterized by the organization so
that it is possible to handle simultaneously several se-
curity policies associated with different organizations.
The model is not restricted to permissions, but also
includes the possibility to specify prohibitions, obliga-
tions and recommendations.

The remainder of this paper is organized as follows.
Sections 2 and 3 present basic models for discretionary
access control and role based access control. Section 4
presents our new model, the “Organization based ac-
cess control” (ORBAC). Section 5 defines a language
based on first-order logic that will be used to spec-
ify an ORBAC security policy. Section 6 develops an
example of security policy in this language. Section
7 shows how to specify various constraints. Finally
section 8 concludes the paper.

This work is supported by the RNRT project MP6.



2 Discretionary access control

Harrisson, Ruzzo and Ullman[11] define a security pol-
icy model, the HRU model, that applies to subjects,
objects and actions. Intuitively, a subject is an ac-
tive entity. In the context of an information system,
it includes the users of this system and, generally, the
processes that run on behalf of these users. The set of
objects contains the set of all active entities. It also in-
cludes non-active entities. For instance, in an informa-
tion system, files and directories are objects. Actions
enable the subject to have direct access to objects.
They generally correspond to elementary actions such
as reading a file or writing a file. In this model, the
security policy is limited to the specification of permis-
sions, i.e. relationships between subjects, objects and
actions. These relationships are generally represented
by a matrix A of permissions. If s is a subject and o
is an object then A(s, o) represents the set of actions
α that subject s is permitted to execute on object
o. In the HRU model, it is necessary to enumerate,
through a matrix of permissions, all the triples 〈s, o, α〉
that correspond to a permission granted by the secu-
rity policy. When new subjects, new objects or new
actions are introduced in the system, it is necessary
to update the security policy in order to record the
permissions granted to these new entities. As a result,
the updating of security policies specified according to
this model become quite complicated. Another limit
of the HRU model is that it only enables the admin-
istrator to specify permissions. Neither prohibitions,
obligations nor recommendations are included.

3 Role based access control

In the Role based access control model, the RBAC
model, the security policy does not directly grants per-
missions to users but to roles[5]. A given user will ob-
tain permissions by playing roles, in which case this
user will inherit all the permissions associated with
these roles. It is possible to refine this model by includ-
ing the concepts of session and role hierarchy. Within
a session, a user is not obliged to activate all his/her
roles but only the subset of his/her roles that are nec-
essary to perform a given task. The role hierarchy is
useful because permissions are inherited through this
hierarchy. This simplifies the security policy specifi-
cation. In the complete model, it is also possible to
specify constraints. For instance, we may specify that
there is no user that can play both roles anaesthetist
and surgeon.

The RBAC model has the following drawbacks.

First, the concept of permission is primitive. When
specifying the security policy of a given application,
the RBAC model must be refined to make explicit
the structure of permissions. It is argued that this is
because this structure might depend on the applica-
tion. We consider that it would be better to include
a generic structure of permissions in the model. In
our model, permissions as well as prohibitions, obli-
gations and recommendations are represented by re-
lationships. Second, the concept of role hierarchy is
not free of ambiguity. In particular, it is generally
incorrect to consider that it corresponds to an orga-
nizational hierarchy. For instance, the director of an
hospital is the head of the physicians of this hospi-
tal. However, director is an administrative position
and it is not required to be a physician to hold this
position. Therefore, it would be incorrect to consider
that the role director inherits all the permissions of
the role physician. This has been acknowledged by
other authors, including the possible need to maintain
different hierarchies. Third, the distinction between
the concepts of role and group is not clear. Group is
a concept that was used before the definition of the
RBAC model and there were many discussions about
the difference between access control models based on
user groups and RBAC. The ORBAC model suggested
in section 4 attempts to clarify this point.

In other respect, it is not possible, in the RBAC
model, to specify a permission that depends on a
given context. More precisely, if a given permission
is granted to a given role, then all users that play this
role will inherit the given permission. Therefore, it is
not possible to specify that a physician is permitted
to have a direct access to the patient records, unless
he/she is one of the physician’s patient[12, 13]. More-
over, as mentioned in the previous section, another
limit of the RBAC model is that it only enables the
administrator to specify permissions. Finally, addi-
tional limits appear when the RBAC model is used to
specify the security policy of a system that includes
several organizations.

4 Organization based access
control

To overcome their limitations, several authors have
recently proposed improved versions of these access
control models. Some models include temporal con-
straints and support the periodic activation of roles
[14, 15]. Other models considers that each organiza-
tion has to define its own internal security policy while



respecting the constraints imposed by the global secu-
rity policy [16]. And finally there are models based
on the notion of coalitions, i.e., sets of organizations
that collaborate together to fulfil their missions [17].
In this paper, we try to overcome the limitations of
these access control models by considering the con-
cept of organization together with the concept of con-
text. In this section, we present our ORBAC model
using a diagrammatic language based on the entity-
relationship model. A presentation of our ORBAC
model using a formal language based on first-order
logic will be proposed in section 5. In accordance with
the entity-relationship model, the entities and the re-
lationships of our ORBAC model may be associated
with attributes. Since these attributes are generally
specific to a particular application, we do not include
them in the diagrammatic presentation.

4.1 Organizations

The most important entity in our model is the en-
tity Organization. In the health care domain, we
can take the following organizations: “Languedoc pri-
vate clinic”, the “casualty department of Purpan hos-
pital”, the “intensive care unit of Rangueil hospital”,
etc. Roughly speaking, an organization can be seen
as an organized group of active entities, i.e. subjects,
playing some role or other. Notice that a group of
subjects does not necessarily correspond to an orga-
nization. More precisely, the fact that each subject
plays a role in the organization corresponds to some
agreement between the subjects to form an organiza-
tion.

4.2 Subjects and roles

The entity Subject is used differently from one secu-
rity model to another. In our ORBAC model, a sub-
ject will be either an active entity, i.e. a user, or an
organization. Examples of subjects therefore include
users such as “John”, “Mary”, “Peter”, etc, or organi-
zations such as the “accounts department of Langue-
doc private clinic”, the “casualty department of Pur-
pan hospital”, the “intensive care unit of Rangueil
hospital”, etc. In our model, the entity Role is used
to structure the link between subjects and organiza-
tions. In the health care domain, the roles “cardi-
ologist”, “nurse”, “physician”, etc, will be played by
users whereas the roles “casualty department”, “res-
cue team”, “intensive care unit”, etc, will be played by
organizations. Seeing that subjects play roles in orga-
nizations, we need a relationship that joins up these

entities together: the relationship Employ (see fig-
ure 1). If org is an organization, s a subject and r a
role, then Employ(org, s, r) means that org employs
subject s in role r. Unlike the TMAC model or the

0,n
Subject

0,n
Role

0,n

Organization

Employ

Figure 1: The Employ relationship

RBAC model which consider binary relations between
organizations and subjects or between subjects and
roles, notice that our model consider a ternary rela-
tion between organizations, subjects and roles. Again,
let us remark that subjects might be users as well as
organizations. To illustrate the truth of this, one has
only to mention the examples:

• Employ(Purpan, John, cardiologist): “the
Purpan hospital employs John as a cardiolo-
gist” and

• Employ(Rangueil, ICU31, intensive−care−
unit): “the Rangueil hospital employs ICU31
as an intensive care unit”.

4.3 Objects and views

In our model, the entity Object will mainly cover in-
active entities such as data files, emails, printed forms,
etc. In the health care domain, we will also have to
consider objects like administrative records, medical
records and surgical records of patients. By means
of the entity Role, we will be able to structure the
subjects and to update easily security policies when
new subjects are added to the system. Seeing that
we will also have to structure the objects and to add
new objects to the system, we believe that a similar
entity regarding objects is needed: the entity V iew.
Roughly speaking, as in relational databases, a view
corresponds to a set of objects that satisfy a common
property. For instance, in a file management system,
the view “administrative record” corresponds to the
administrative records of patients whereas the view
“medical record” corresponds to the medical records
of patients. Seeing that views characterize the ways



objects are used in organizations, we need a relation-
ship that links together these entities: the relationship
Use (see figure 2). If org is an organization, o is an ob-
ject and v is a view, then Use(org, o, v) means that org
uses object o in view v. We wish to focus the attention

0,n
Object

0,n
View

0,n

Organization

Use

Figure 2: The Use relationship

on the fact that our model considers a ternary relation
between organizations, objects and views. Our aim is
to make ourselves able to characterize organizations
that give different definitions to the same view. Take
the case of the view “medical record” defined in Pur-
pan hospital as a set of Word documents and defined
in Rangueil hospital as a set of Latex documents:

• Use(Purpan, F31.doc, medical−record): “the
Purpan hospital uses F31.doc as a medical
record” and

• Use(Rangueil, F32.tex, medical−record): “the
Rangueil hospital uses F32.tex as a medical
record”.

4.4 Actions and activities

Security policies specify the authorized accesses to in-
active entities by active entities and regulate the ac-
tions carried out in the system. In our model, the
entity Action will mainly contain computer actions
such as “read”, “write”, “send”, etc. Following the
line of reasoning suggested in sections 4.2 and 4.3
where subjects and objects were abstracted by means
of roles and views, a new entity will also be used
to abstract actions: the entity Activity. Seeing that
roles associate subjects that fulfil the same functions
and views correspond to sets of objects that satisfy
a common property, activities will join actions that
partake of the same principles. In our model, ac-
tivities like “reading”, “writing”, “consulting”, etc,
will be of the utmost interest. Since different or-
ganizations may decide that one and the same ac-
tion comes under distinct activities, the relationship

Consider (see figure 3) will be used to join up the en-
tities Organization, Action and Activity. More pre-
cisely, if org is an organization, α is an action and a is
an activity, then Consider(org, α, a) means that org
considers that action α falls within the activity a. Let

0,n
Action

0,n
Activity

0,n

Organization

Consider

Figure 3: The Consider relationship

us remark again that Consider is a ternary relation
between organizations, actions and activities. What
we have in mind is to be able to characterize organi-
zations that differently structure the same activities.
We should consider, for instance, that activity “con-
sulting” corresponds, in Purpan hospital, to an action
“read” that can be ran on data files whereas it corre-
sponds, in Rangueil hospital, to action “select” that
can be performed on relational databases:

• Consider(Purpan, read, consulting): “the Pur-
pan hospital considers read as a consulting” and

• Consider(Rangueil, select, consulting): “the
Rangueil hospital considers select as a consult-
ing”.

4.5 Security policy (first definition)

Using the entities and the relationships introduced
in the previous sections, we are now in a posi-
tion to define security policies applying to such or
such organization. A security policy specifies the
authorized accesses of a system through a set of
permissions, prohibitions, obligations and recom-
mendations. In the following discussion, we consider
only the concept of permission, given that similar
arguments can be developed regarding the concepts of
prohibition, obligation and recommendation. What
we have in mind is to extend our model with a
relationship Permission for the purpose of being
able to join together organizations, roles, views and
activities. More precisely, if org is an organization,
r is a role, v is a view and a is an activity, then



Permission(org, r, v, a) means that organization org
grants role r permission to perform activity a on view
v. For example, take the case of Purpan hospital
granting role “medical secretary” permission to
perform activity “creation” on view “administrative
record”, a security requirement expressed by the fol-
lowing fact Permission(Purpan, medical−secretary,
administrative−record, creation). However, the se-
curity requirement expressed by Permission(Purpan,
physician, medical−record, consulting) says that
Purpan Hospital grants role “physician” permission
to perform activity “consulting” on view “medical
record”. It is highly likely that this security require-
ment is not exactly what Purpan hospital wants
to specify: in normal circumstances, a physician
is permitted to consult the contents of only those
patient medical records for which he is the attending
physician. The truth of the matter is that the OR-
BAC model described above simply cannot cope with
such security requirement: given an organization,
users inherit permissions from the roles they play in
that organization. To solve this problem, we propose
to extend our model with a new entity.

4.6 Contexts

Roughly speaking, contexts will be used to specify
the concrete circumstances where organizations
grant roles permissions to perform activities on
views. In the health care domain, our new entity
Context will cover circumstances such as “urgency”,
“industrial medicine”, “attending physician”, etc.
Every context can be seen as a ternary relation
between subjects, objects and actions defined within
such or such some organization. Therefore, entities
Organization, Subject, Object, Action and Context
are linked together by the relationship Define (see
figure 4): if org is an organization, s is a subject,
o is an object, α is an action and c a context, then
Define(org, s, o, α, c) means that within organization
org, context c is true between subject s, object o and
action α. The conditions required for a given context
to be linked, within a given organization, to subjects,
objects and actions will be formally specified by
logical rules. This issue will be addressed in section 5.
In the meantime, let us consider the following facts:
Define(Purpan, John, F31.doc, read, urgency)
and Define(Rangueil, Mary, F32.tex, read,
attending−physician). If the former fact is true
then there is no need for John to be the attending
physician of the patient concerned by medical record
F31.doc: in circumstances such as “urgency”, physi-
cians have a direct access to medical records. If the

0,n
Subject

0,n
Object

0,n

Organization

0,n

0,n

Define

Action

Context

Figure 4: The Define relationship

latter fact is true then Mary must be the attending
physician of the patient concerned by medical record
F32.tex: in normal contexts such as “attending
physician”, physicians are permitted to consult the
contents of only those patient medical records for
which they are the attending physician.

4.7 Security policy (final definition)

In view of our new entity Context, we can now
give the final definition of security policies applying
to such or such organization. The relationship
Permission now corresponds to a relation be-
tween organizations, roles, views, activities and
contexts. The relationships Prohibition, Obligation
and Recommendation are defined similarly (see
figure 5). If org is an organization, r is a role, v
is a view, a is an activity and c a context then
Permission(org, r, v, a, c) means that organization
org grants role r permission to perform activity a on
view v within context c. For instance, the security
policy of Purpan hospital may include the facts
Permission(Purpan, physician, medical−record,
consulting, urgency) “Purpan hospital grants
physicians permission to consult medical
records within the context urgency” and
Permission(Purpan, physician, medical−record,
consulting, attending−physician) “Purpan hospital
grants physicians permission to consult medical
records within the context attending physician”.



0,n
0,n

0,n

0,n

Role
0,n

0,n

0,n

0,n

View

0,n
0,n

0,n
0,n

Organization

0,n

0,n

Permission

0,n

0,n
0,n

Activity

0,n
0,n

0,n

Context

Prohibition

Obligation

Recommendation

Figure 5: The Permission, Prohibition, Obligation
and Recommendation relationships

4.8 Concrete authorization

The relationship Permission enables a given organi-
zation to specify permissions granted in a given con-
text. Such permissions correspond to a ternary re-
lation between roles, views and activities. However,
down-to-earth access control must provide a frame-
work for describing the concrete actions that may
be performed by subjects on objects. For the pur-
pose of modelling concrete permission, we introduce
in our model the relationship Is−permitted as a re-
lationship between subjects, objects and actions, i.e.
if s is a subject, o is an object and α is an ac-
tion then Is permitted(s, o, α) means that subject s
is permitted to perform action α on object o. Re-
lationships such as Is−prohibited, Is−obliged and
Is−recommended could be defined in the same way.
Our relationship Is−permitted is similar to the no-
tion of permission suggested in the model HRU. There
is, however, a difference of major importance. In the
original model HRU, each authorized triple 〈s, o, α〉
must be explicitly stated, although more expressive
discretionary access control models where permissions
are logically derived have been proposed. In our
model, triples that are instances of the relationship
Is−permitted are logically derived from permissions
granted to roles, views and activities by the relation-
ship Permission. This is modelled by a general rule
that will be presented in section 5. Explicit instances
of the relationship Is−permitted may be viewed as
exceptions to the general security policy specified by
the relationship Permission.

Figure 6 resumes our security model. It contains 8
entities (Organization, Subject, Role, Object, V iew,

Action, Activity and Context) and 12 relationships
(Employ, Use, Consider, Permission, Prohibition,
Obligation, Recommendation, Is−permitted,
Is−prohibited, Is−obliged, Is−recommended and
Define).

0,n
0,n

0,n
0,n

0,n

Role
0,n

0,n

0,n

0,n

0,n

View

0,n
0,n

0,n
0,n

0,n

0,n
0,n

0,n

Organization

0,n

0,n

Permission

0,n

0,n
0,n

0,n

Activity

0,n
0,n

0,n

0,n

Context

Prohibition

Obligation

Recommendation

0,n

Employ

0,n

Use

0,n

0,n
0,n

0,n

0,n

Subject
0,n

0,n
0,n

0,n

0,n

Object

0,n

0,n
0,n

0,n

0,n

0,n

Action

Is_permitted

Is_prohibited

Is_obliged

Is_recommended

ConsiderDefine

Figure 6: The ORBAC model

5 Language and axiomatical

presentation

The purpose of this section is to present a logical
framework that provides a means of representation
and reasoning about permissions, prohibitions, obli-
gations and recommandations in a given universe of
entities. What we have in mind is to associate a first-
order language L to the entity-relationship diagram
described above. Our first-order language will pro-
vide a syntax capable of expressing precise statements
about the relationships holding between entities. Each
expression of L will contain symbols from a particular
limited vocabulary separated into four groups: con-
stant symbols, individual variables, relation symbols
and function symbols.

The constant symbols will correspond to the in-
stances of the entities of our diagram. As a
result, there will be as many types θ of con-
stant symbols as there are entities in our dia-
gram, i.e. 8: Organization, Subject, Object,
Action, Role, V iew, Activity and Context. For
instance, we will have: constant symbols of type
Organization like Purpan, Rangueil, ICU31, etc,



constant symbols of type Subject like Jean, Mary,
ICU31, etc, constant symbols of type Object like
F31.doc, F32.doc, F33.tex, etc, constant symbols
of type Action like read, write, consult, etc, con-
stant symbols of type Role like physician, nurse,
intensive−care−unit, etc, constant symbols of type
V iew like administrative−record, medical−record,
surgical−record, etc, constant symbols of type
Activity like reading, writing, consulting, etc. Con-
stant symbols will be denoted by lower case Latin let-
ters like a, b, c, etc.

Similarly, there will be individual variables for each
type θ. They will be denoted by lower case Latin let-
ters like x, y, z, etc. For all types θ, constant symbols
of type θ and individual variables of type θ will also
be called θ-terms.

As for the relation symbols of L, denoted by
capital Latin letters P , Q, R, etc, they will cor-
respond to the 12 relationships of our diagram.
Each relation symbol P of L is assumed to be a
typed relation. More precisely: Employ is a relation
symbol of type (Organization, Subject, Role),
Use is a relation symbol of type
(Organization, Object, V iew), Consider is a relation
symbol of type (Organization, Action, Activity),
Permission, Prohibition, Obligation and
Recommendation are relation symbols of type
(Organization, Role, V iew, Activity, Context),
Is−Permitted, Is−Prohibited, Is−Obliged
and Is−Recommanded are relation sym-
bols of type (Subject, Object, Action) and
Define is a relation symbol of type
(Organization, Subject, Object, Action, Context).

Using terms and relations, we can introduce
the atomic formulas of L as follows: if t1 is a
θ1-term, . . ., tn is a θn-term and P is a rela-
tion symbol of type (θ1, . . . , θn) then P (t1, . . . , tn)
is an atomic formula. Examples of atomic for-
mulas are Employ(Purpan, John, physician)
and Permission(Rangueil, medical−secretary,
administrative−record, creation, normal).

At this point, our language is not expressive enough
to capture the possibility to compare entities. In many
applications, we are given a universe of entities and we
wish to derive information about some of their prop-
erties. From a formal point of view, function symbols
will be of use to us for describing or defining these en-
tities. Function symbols will be denoted by lower case
Latin letters like f , g, h, etc. Each function symbol
f corresponds to some attribute, hence it is a typed
function and it has an associated range Vf . The type
and the range of a function symbol depend on the na-

ture of the attribute it corresponds to. If a function
symbol corresponds to the attribute Name, then it is
of type Subject and its range is a set of names. Simi-
larly, a function symbol corresponding to the attribute
Age will be of type Subject and its range will be the
set of all positive integers. Take another example: if
a function symbol must correspond to the attribute
Blood−group, then it is of type Subject and its range
is {A, AB, B, O}. Since there might exist nameless
subjects or subjects the blood group of which is not
known, then the function symbols of L will only repre-
sent partial mappings between entities and associated
ranges. In many real situations, we are not able to as-
sign a single value of an attribute to an entity. To deal
with such situations on a conceptual level, we will use
unary function symbols the associated ranges of which
are power sets. To illustrate the truth of this, one has
only to mention the attribute Attending−physician:
the associated function symbol is of type Subject and
the associated range is a set of finite sets of names.

In order to draw conclusions from the partial in-
formation represented by function symbols, we need
to introduce concrete binary relations, denoted by σ,
τ , μ, etc, between domains. The type of a concrete
binary relation is the pair consisting of the domains
it corresponds to. Equality is probably the simplest
concrete binary relation we will have to consider. We
should consider the following examples:

• If t and u are terms of type Subject,
then Attending−physician(t) =
Attending−physician(u) means that subjects t
and u have the same attending physicians,

• If t and u are terms of type Subject, then
Age(t) = Age(u) means that subjects t and u
have the same age and

• If t and u are terms of type Subject, then
Blood−group(t) = Blood−group(u) means that
subjects t and u have the same blood group.

Obviously, there are cases where other concrete binary
relations must be considered. For instance:

• If t and u are terms of type
Subject, then Attending−physician(t) ∩
Attending−physician(u) �= ∅ means that sub-
jects t u have a common attending physician,

• If t and u are terms of type Subject, then
Age(t) < Age(u) means that subject t is younger
than subject u and



• If t and u are terms of type Subject, then
Blood−group(t) ∼ Blood−group(u) means that
the blood groups of t and u are compatible.

Such kind of formulas will also be considered as atomic
formulas. Finally the formulas of L are defined as
follows:

• an atomic formula is a formula,

• if A is a formula then ¬A “not A” is a formula,

• if A and B are formulas then (A ∧ B) “A and
B” and (A ∨ B) “A or B” are formulas and

• if A is a formula and x is an individual variable
then ∀xA “for all possible values of variable x,
A” and ∃xA “there exists possible values of vari-
able x such that A” are formulas.

We shall use in our expressions the shorthands → and
↔ as in Boolean logic: (A → B) is (¬A ∨ B), and
(A ↔ B) is ((A → B) ∧ (B → A)). We shall also
omit parentheses when there is no risk of ambiguity.
Examples of formulas are:

• ∀s(Employ(Rangueil, s, Physician) →
Employ(Rangueil, s, T reating−staff)) “every
physician in the Rangueil hospital is also
employed as a treating staff” and

• ∀r∀v∀a(Permission(Rangueil, r, v, a,
attending−physician) →
Permission(Rangueil, r, v, a, urgency)) “if
Rangueil hospital grants role r permission
to perform activity a on view v in the con-
text attending physician then it grants the
corresponding permission within the context
urgency”.

The truth value of a formula is determined by the val-
ues of its subformulas in a given model. The models
for our language consists, first, of 8 nonempty sets
corresponding to the 8 entities of our diagram and,
second, of 12 relations corresponding to the 12 rela-
tionships of our diagram. We shall assume that the
precise formulation of the key definition of a formula
being true in a model is already quite familiar to the
reader.

Axioms of a first-order theory are usually subdi-
vided into logical axioms and nonlogical axioms. The
logical axioms provide a basis for proving all theorems
of first-order classical logic, whereas the nonlogical ax-
ioms deal with some specific subject matter. Apart
from the logical axioms, all security policies will be
based on the following list of nonlogical axioms for all
organizations org:

1. ∀s∀o∀α∀r∀v∀a∀c
Permission(org, r, v, a, c)∧
Employ(org, s, r)∧
Use(org, o, v)∧
Consider(org, α, a)∧
Define(org, s, o, α, c) → Is−permitted(s, o, α):
if organization org, within the context c, grants
role r permission to perform activity a on view
v, if org employs subject s in role r, if org uses
object o in view v, if org considers that action α
falls within the activity a and if, within org, the
context c is true between s, o and α then s has
permission to perform α on o,

2. ∀r∀v∀a∀c(Obligation(org, r, v, a, c) →
Recommendation(org, r, v, a, c): every obli-
gation is also a recommendation,

3. ∀r∀v∀a∀c(Recommendation(org, r, v, a, c) →
Permission(org, r, v, a, c): every recommenda-
tion is also a permission and

4. ∀r∀v∀a∀c(Permission(org, r, v, a, c) →
¬Prohibition(org, r, v, a, c): no permission
is a prohibition.

Axiom 1 describes how abstract permissions between
roles, views and activities can be transformed into con-
crete permissions between subjects, objects and ac-
tions. Similarly, axioms for obligation, recommenda-
tion and prohibition are defined.

6 Example of a security policy

In this section, we show how a simple security policy
can be expressed in our first-order language.

6.1 Subjects and roles

We consider only one organization: Purpan hospital
(see figure 7). Purpan hospital employs several sub-
jects: John as a director, Mary as an administrative
assistant, ST1 as a surgical team and RT2 as a radi-
ological team. In our language, this is represented by
the following instances of the Employ relationship:

• Employ(Purpan, John, director),

• Employ(Purpan, Mary, administrative−assistant),

• Employ(Purpan, ST 1, surgical−team) and

• Employ(Purpan, RT 2, radiological−team).



Purpan_hospital
(hospital)

John
(director)

Mary
(admin_assistant)

Red_team
(surgical_team)

White_team
(radiology_team)

Jane
(head_surgeon)

Paul
(surgeon)

Peter
(nurse)

Max
(anesthetist)

Dick
(radiologist)

Fred
(radiologist_assistant)

Peter
(radiologist_assistant)

Lucy
(medical_secretary)

Figure 7: A simple organization

In these facts, director, administrative−assistant,
surgical−team and radiological−team are roles. We
can similarly specify that the sub-organization ST 1
employs other subjects: Jane as the head of the surgi-
cal team, Paul as a surgeon, Peter as a nurse and Max
as an anaesthetist. In our language, this is represented
by other instances of the relationship Employs such
as:

• Employ(ST 1, Jane, head−surgeon),

• Employ(ST 1, Paul, surgeon),

• Employ(ST 1, P eter, nurse) and

• Employ(ST 1, Max, anaesthetist).

Various subjects employed by the radiological team
would be similarly represented. In the sequel, we shall
consider that the entity Subject is associated with an
attribute Patient that provides the set of patients
of any given subject. Therefore, our language in-
cludes a partial function Patient with domain Subject
and range a set of finite sets of names. For instance
Patient(Purpan) and Patient(Dick) provide the sets
of patients associated to Purpan hospital and Dick re-
spectively.

6.2 Objects and views

We consider objects that belong to the following views:

• administrative−record: objects belonging to
this view provide various administrative data
about patients such as their name, their address,
their age, etc,

• medical−record: this corresponds to the patient
medical records and

• surgical−record: this corresponds to private
records managed by the surgical team.

We consider that objects belonging to these views have
an attribute, called Name. If F31.doc is a record be-
longing to one of these views, then Name(F31.doc)
provides the name of the patient who is associated
with record F31.doc. We also assume that various
records are directly managed by Purpan hospital, for
instance in a relational database. In our model, this
means that various facts have the following forms:

• Use(Purpan, F31.doc, administrative−record),

• Use(Purpan, F32.doc, medical−record) and

• Use(Purpan, F33.tex, surgical−record).

ST1, the surgical team, and RT2, the radiological
team, actually share the database managed by Pur-
pan hospital. This means that they use the same ob-
jects in the same view as the hospital. This can be
expressed by the following rules:

• ∀o∀v(Use(Purpan, o, v) → Use(ST 1, o, v) and

• ∀o∀v(Use(Purpan, o, v) → Use(RT 2, o, v).

We can define a fourth view, called patient−record
with three attributes Administrative−record,
Medical−record and Surgical−record as follows:

• ∀o(Use(Purpan, o, patient−record) ↔
∃o1∃o2∃o3Use(Purpan, o1, admin−record) ∧
Use(Purpan, o2, medical record) ∧
Use(Purpan, o3, surgical record) ∧
Administrative−record(o) =
o1 ∧ Medical−record(o) = o2 ∧
Surgical−record(o) = o3 ∧ Name(o1) =
Name(o2) = Name(o3)).

The view patient−record corresponds to the com-
plete patient’s record. In a relational database,
this would be obtained by joining the views
administrative−record, medical−record and
surgical−record, considered as relations, through
attribute Name.

6.3 Actions and activities

We only consider activities that perform a direct
access to the records, namely creation, consulting,
writing, etc. If we assume that the records are man-
aged through a relational database, these activities
will respectively correspond to actions such as insert,
select, update, etc. This is specified by rules such as:



• Consider(Purpan, select, creation),

• Consider(Purpan, select, consulting) and

• Consider(Purpan, update, writing).

6.4 Context

We shall only model two different contexts in our ex-
ample: “attending physician” and “attending team”.
The context “attending physician” is defined within
ST1, the surgical team, as follows:

• ∀s∀o∀α(define(ST 1, s, o, α, attending−
physician) ↔ Name(o) ∈ Patient(s)) that is,
in ST1, the context “attending physician” is
true between subject s, object o and action α
if and only if o is a record corresponding to a
patient of subject s.

The context “attending team” is defined as follows:

• ∀s∀o∀α(define(ST 1, s, o, α, attending−team) ↔
∃r(Employ(ST 1, s, r) ∧ Name(o) ∈
patients(ST 1)) that is, in ST1, the con-
text “attending team” is true between subject
s, object o and action α if and only if s plays
some role in ST1 and o is a record corresponding
to one of the patients treated by ST1.

As for the context urgency, it may be defined as fol-
lows within ST1:

• ∀s∀o∀α(define(ST 1, s, o, α, urgency) ↔ true)
that is, in ST1, the context “urgency” is always
true between subjects, objects and actions.

6.5 Security policy

We have no room in this paper to develop a complete
specification of a security policy that applies to an hos-
pital. We shall only present few examples to illustrate
the capabilities of our model. So let us consider the
following permissions:

• Permission(RT 1, physician, medical−record,
consulting, attending−physician),

• Permission(RT 2, physician, medical−record,
consulting, attending−team) and

• Permission(RT 2, physician, surgical−record,
consulting, attending−team).

First permission specifies that RT1 permits physicians
to consult a medical record if this medical record cor-
responds to a patient of these physicians. Second and

third permissions specify that RT2 permits physicians
to consult a medical or a surgical record if this record
corresponds to a patient of RT2. As one may notice,
the permissions associated with the role physician can
change from one organization to another and the re-
spective context may be also different. In our example,
this is especially useful since the circumstances where
a physician will consult a medical record may be dif-
ferent in a surgical team or a radiology team.

6.6 Hierarchies

Up to now, we do not discuss the notion of role hierar-
chy in our model. This notion was first introduced in
the RBAC model [6] so that permissions are inherited
through this hierarchy. In our approach, role hierar-
chy is not modelled as a basic concept. Inheritance
of permissions, within ST1 between a role r1, for in-
stance physician, and role r2, for instance surgeon, is
specified by the following rule:

• ∀v∀a∀c(Permission(ST 1, r1, v, a, c) →
Permission(ST 1, r2, v, a, c).

So, we may insert a relation Sub−role(ST 1, r1, r2) in
our language but instances of this relation would be
simply defined as equivalent to the above rule. No-
tice however that, in our model, we can specify that
inheritance between two given roles only applies to a
given organization and would be false in another one.
For instance, we can specify that, in Purpan hospital,
the role director inherits the permissions of the role
physician. This would be expressed by the following
rule:

• ∀v∀va∀c(Permission(Purpan, physician, v, a, c)
→ Permission(Purpan, director, v, a, c).

But of course, this rule might not be available if we
change Purpan into another hospital in which it would
be possible to be director without being physician. In
our model, it is also possible to specify that inheri-
tance between roles applies to prohibition, obligation
or recommendation. It is also useful to specify a hi-
erarchy between views and to consider that permis-
sions are inherited through this hierarchy, and simi-
larly for a hierarchy between activities. For instance,
we may consider that views administrative−record,
medical−recod and surgical−record are sub-views of
view patient−record, so that a given role who is per-
mitted to perform an activity on view Patient−record
would also be permitted to perform the same activity
on the sub-views. In our language, this would be ex-
pressed by the following rule:



• ∀r∀a∀c(Permission(Purpan, r, patient−record,
a, c) → Permission(Purpan, r, administrative−
record, a, c)

and similarly for the views medical−record and
surgical−record.

7 Constraints

Constraints were introduced in the RBAC model [6].
In our model, constraints are expressed by rules that
apply to various relations. We shall only give few ex-
amples:

• ∀s(Employ(Purpan, s, surgical−team) →
(∃s1Employ(s, s1, surgeon) ∧
∃s2Employ(s, s2, anaesthetist) ∧
∃s3Employ(s, s3, nurse)): this rule says
that, if Purpan hospital employs s as a surgical
team, then s employs a surgeon, an anaesthetist
and a nurse,

• ∀s¬(Employ(Purpan, s, surgeon) ∧
Employ(Purpan, s, anaesthetist)): this rule
says that, in Purpan hospital, no subject s
can be employed both as a surgeon and an
anaesthetist and

• ∀s∀s′(Employ(Purpan, s, director) ∧
Employ(Purpan, s′, director) → s = s′:
this rule says, in Purpan hospital, there is only
one user who is playing the role director.

We can similarly express other constraints
that apply to the relationships Use, Consider,
Define, Permission, Obligation, Prohibition or
Recommendation.

8 Conclusion

This paper has presented a new security policy model
that aims to solve several limits of previous models.
This model, called ORBAC, is centered on the con-
cept Organization. All other concepts that are used
to define a security policy depend on a given organi-
zation:

• how this organization is employing subject, this
is modelled through the concept Role,

• how this organization is using objects, this is
modelled through the concept V iew,

• how this organization is performing actions, this
is modelled through the concept Activity and

• how this organization is defining contexts that
apply to users who are performing actions on ob-
jects, this is modelled through the relationship
Define.

Using these concepts, a security policy that applies
to a given organization is defined as a collection of
permissions, prohibitions, obligations and recommen-
dations. A permission corresponds to a fact having
the form Permission(org, r, v, a, c) to be read, in or-
ganization org, within context c, role r is permitted to
perform activity a on view v. Prohibition, Obligation
and Recommendation are similarly interpreted. We
also have shown how to derive concrete permissions,
prohibitions, obligations and recommendations that
apply to subjects, objects and actions. Several prob-
lems have not been addressed in this paper. First, it
may happen that the security policy is conflicting. For
instance, for a given subject, a given object and a given
action, we have to detect and solve situations where
it is possible to derive both a concrete permission and
a concrete prohibition. Several proposals have been
suggested to deal with this problem[18, 19, 20]. The
approach we suggest to solve this problem is based
on possibilistic logic which enables us to automati-
cally derive priority between facts that represent the
security policy[21]. Due to space limitation, we do
not address the problem of administrating a secu-
rity policy defined in our model. A complete model
should clearly include such an administration model.
For instance, [22] suggests the ARBAC model to ad-
ministrate RBAC security policy. The administration
model for ORBAC will be presented in a forthcoming
paper. Finally, we have also to show how to specify
security properties in the ORBAC model. In partic-
ular, we have to include means to specify when the
security policy is violated, and what happens in this
case, for instance when an obligation is not enforced.
This represents further work that remains to be done.

References

[1] B. Lampson, “Protection,” in 5th Princeton Sym-
posium on Information Sciences and Systems,,
March 1971, pp. 437–443.

[2] D. E. Bell and L. J. LaPadula, “Secure computer
systems: Unified exposition and multics interpre-
tation,” Tech. Rep. ESD-TR-73-306, The MITRE
Corporation, March 1976.

[3] K. J. Biba, “Integrity consideration for secure
computer systems,” Tech. Rep. MTR-3153, The
MITRE Corporation, June 1975.



[4] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D.R.
Kuhn, and R. Chandramouli, “Proposed NIST
Standard for Role-Based Access Control,” ACM
Transactions on Information and System Secu-
rity, vol. 4, no. 3, pp. 222–274, August 2001.

[5] S. I. Gavrila and J. F. Barkley, “Formal Specifica-
tion for Role Based Access Control User/Role and
Role/Role Relationship Management,” in Third
ACM Workshop on Role-Based Access Control,
october 22–23 1996, pp. 81–90.

[6] R. Sandhu, E. J. Coyne, H. L. Feinstein, and
C.E. Youman, “Role-based access control mod-
els,” IEEE Computer, vol. 29, no. 2, pp. 38–47,
1996.

[7] R. Thomas and R. Sandhu, “Task-based Autho-
rization Controls (TBAC): A Family of Models
for Active and Enterprise-oriented Authorization
Management,” in 11 th IFIP Working Confer-
ence on Database Security, Lake Tahoe, Califor-
nia, USA, 1997.

[8] Roshan K. Thomas, “TMAC: A primitive for
Applying RBAC in collaborative environment,”
in 2nd ACM, Workshop on RBAC, FairFax, Vir-
ginia, USA, November 6–7 1997, pp. 13–19.

[9] C. Bettini, S. Jajodia, X. S. Wang, and D. Wije-
sekera, “Obligation Monitoring in Policy Man-
agement,” in International Workshop, Poli-
cies for Distributed Systems and Neworks (Policy
2002), Monterey CA, June 5–7 2002.

[10] N. Damianou, N. Dulay, E. Lupu, and M. Sloman,
“The Ponder Policy Specification Language,” in
International Workshop, Policies for Distributed
Systems and Neworks (Policy 2001), Bristol, UK,
2001, pp. January 29–31.

[11] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman,
“Protection in Operating Systems,” Communi-
cation of the ACM, vol. 19, no. 8, pp. 461–471,
August 1976.

[12] J. Barkley, K. Beznosoz, and J. Uppal, “Sup-
porting Relationships in Access Control Usiong
Role Based Access Control,” in Proceeding for
the ACM workshop on RBAC, Fairfax, Virginia,
USA, October 28–29 1999.

[13] E. C. Cheng, “An Object-Oriented Organiza-
tional Model to Support Dynamic Role-based

Access Control in Electronic Commerce Ap-
plications,” in 32nd Annual Hawaii Interna-
tional Conference on System Sciences (HICSS-
32), Maui, Hawaii, January 5–8 1999.

[14] E. Bertino, P.A. Bonatti, and E. Ferrari, “TBAC:
A Temporal Role-Based Access Control for the
world wide web,” in Fifth ACM Workshop
on Role-Based Access Control, Berlin, Germany,
July 2000.

[15] J.B.D. Joshi, E. Bertino, and A. Ghafoor, “Tem-
poral Hierarchies and Inheritance Semantics for
GTRBAC,” in Seventh ACM Symposium on Ac-
cess Control Models and Technologies (SACMAT
02), Monterey, California, USA, June 2002.

[16] R. Viviani, “A Type/Domain Security Policy for
Internet Trasmission Sharing and Archiving of
Medical and Biological Data,” in International
Workshop, Policies for Distriuted Systems and
Networks (Policy 01), Bristol, UK, January 2001.

[17] E. Kohen, R. K. Thomas, W. Winsborough, and
D. Shands, “Models for Coalition-Based Ac-
cess Control (CBAC),” in Seventh ACM Sympo-
sium on Access Control Models and Technologies
(SACMAT 02), Monterey, California, USA, June
2002.

[18] E. Bertino, S. Jajodia, and P. Samarati, “Sup-
porting Multiple Access Control Policies in
Database Systems,” in IEEE Symposium on Se-
curity and Privacy, Oakland, USA, 1996.

[19] G. Dinolt, L. Benzinger, and M. Yatabe, “Com-
bining Components and Policies,” in Proc. of the
Computer Security Foundations Workshop VII,
Franconia, USA, 1994.

[20] F. Cuppens, L. Cholvy, C. Saurel, and J. Carrère,
“Merging Regulations: analysis of a practical ex-
ample,” International Journal of Intelligent Sys-
tems, vol. 16, no. 11, November 2001.

[21] S. Benferhat, R. El Baida, and F. Cuppens,
“Modlisation des politiques de scurit dans le
cadre de la thorie des possibilits,” in Rencontres
Francophones de la Logique Floue et ses Applica-
tions, Montpellier, France, October 2002.

[22] Ravi Sandhu, Bhamidipati, and Qamar Mu-
nawer, “The ARBAC97 Model for Role-Based
Administration of Roles,” ACM Transactions on
Information and System Security, vol. 2, no. 1,
February 1999.


