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Abstract: Silver nanoparticles (Ag NPs) are among the most widely used metal-based nanomaterials
(NMs) and their applications in different products, also as antibacterial additives, are increasing. In
the present manuscript, according to an adverse outcome pathway (AOP) approach, we tested two
safe-by-design (SbD) newly developed Ag NPs coated with hydroxyethyl cellulose (HEC), namely
AgHEC powder and AgHEC solution. These novel Ag NPs were compared to two reference Ag NPs
(naked and coated with polyvinylpyrrolidone—PVP). Cell viability, inflammatory response, reactive
oxygen species, oxidative DNA damage, cell cycle, and cell–particle interactions were analyzed in
the alveolar in vitro model, A549 cells. The results show a different toxicity pattern of the novel Ag
NPs compared to reference NPs and that between the two novel NPs, the AgHEC solution is the one
with the lower toxicity and to be further developed within the SbD framework.

Keywords: nano-enabled products; adverse outcomes pathway; safe-by-design; in vitro lung cells;
nanotoxicity; silver nanoparticle hazard

1. Introduction

Silver nanoparticles (Ag NPs) are among the most widely used metal-based nano-
materials (NMs) for several applications (e.g., for food packaging, cosmetics, textiles, and
health care). Such important use is mainly due to their antimicrobial properties [1]. In fact,
thanks to their antibacterial capability [1], Ag NPs are nowadays used in several fields, from
the textile industry to biomedical application [2,3]. Moreover, their use as antimicrobial
materials is gaining relevance for their capability to combat pathogens causing infections
in vitro and in vivo [4].

Ag NPs are present in different products, health care and fitness, cleaning, food
packaging, household equipment, electronic devices and even toys [5,6]. These widespread
uses inevitably increase the possibility of accidental release of these NPs to the environment,
with a consequent increase in the exposure of humans and other organisms [7]. The various
routes of exposure to Ag NPs for humans are therefore multiple: ingestion, inhalation,
dermal contact and, at times, directly in systemic circulation via intravenous injection.

Although the detailed anti-pathogenic mechanism of Ag NPs remains to be fully
clarified, nano-enabled products (NEPs) based on Ag NPs are of interest for their capability
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to exert antimicrobial functions through microbial membrane and microbial subcellular
structure damages (i.e., mitochondria, ribosomes, and vacuoles), caused by the release of
free Ag+ ions and consequent formation of reactive oxygen species (ROS) [8]. The ROS
production is therefore a key feature of the antibacterial properties of Ag NPs, but this
may pose a hazard to human and other organisms, if cell damage occurs in unwanted
species. When considering human health, several mechanisms have been proposed to
explain how Ag NPs exert their toxicity. NMs may cause inflammatory response or reactive
oxygen species (ROS) production; these are processes that can alter the cell membrane
and damage organelles [9]. It has been observed [10] that Ag NPs induce ROS production
and cell apoptosis through a caspase-dependent intracellular pathway in liver hepatocel-
lular adenocarcinoma cell line (HepG2). Other authors also observed the induction of
ROS production and a reduction in glutathione (GH) after Ag NP exposure due to the
release of free Ag+ ions. The increase in ROS caused adverse effects on cell viability and
cell membrane integrity in several cell lines, both human and murine [11]. Therapeutic
synthesized Ag NP exposure showed a dose- and time-dependent inhibition of cell viability,
cell proliferation and cell morphology in A549 cells because of the increased oxidative
stress [12]. The increase in ROS and subsequent cell death in Ag NP-exposed cells was
also related to the formation of autophagosomes and autolysosomes and to a decrease in
mitochondrial transmembrane potential (MTP) [13].

Noteworthy, after entering in contact with cells, NPs can undergo different possible
transformations in terms of their pristine physico-chemical (p-chem) properties; for several
metal oxide NPs, dissolution has been reported as a major process, and agglomeration and
other surface modifications are reported to play a key role in NP effects [14].

Although these are possible drawbacks, NPs and nano-enabled products (NEPs, i.e.,
new products in which NPs are intentionally added to improve specific properties of
the product or to substitute materials of fossil origin) are gaining relevance in everyday
life. In light of this, to reduce the uncertainty of the potential adverse impact of NPs
or NEPs on human health and the environment, already starting from the first steps of
nanomaterial (NM) conceptualization and production and onwards, the application of the
safe-by-design (SbD) strategy has been proposed and applied [15]. As reported by the
authors, among the different toxicological tests suggested for a SbD approach, viability (by
MTT, XTT, MTS and WST or Alamar Blue or neutral red) and the generation of reactive
oxygen species (such as using 2′-7′-dichloro-fluorescin—DCFH) should be considered. In
addition to this, the authors suggest considering additional biological endpoints, such as
inflammation, and the stability of the NM itself. In this context, and in view of the 3Rs
principle, in vitro studies are gaining prominent relevance to collect significant data to
sustain the lack or reduce the unwanted and undesired intrinsic hazards of NPs and NEPs,
in a life cycle-oriented approach.

In this study, four different Ag NPs were selected to investigate how their p-chem
properties might modulate the interactions with cells in a simple in vitro system (human
alveolar adenocarcinoma A549 cells in monoculture). The particles selected have a similar
nominal diameter but different surface coating agents. Two Ag NPs, namely the NPs
coated with hydroxyethyl cellulose (HEC), were developed ex novo while two other NPs
are commercially available, namely the naked Ag (used here as reference Ag NPs) and
the NPs coated with polyvinylpyrrolidone (PVP). The novel AgHEC were synthetized in
solution (AgHECs) and dried as a powder (AgHECp). The novel NPs were thoroughly
characterized with different analytical methods to provide their relevant chemical and
physical properties; all the Ag NPs were characterized, prior the toxicological exposures,
in terms of size, shape, surface charge and agglomeration state to provide a common
characterization, useful for understanding the biological effects. The acute toxic effects and
the influence of Ag NP properties on A549 responses (cell viability, cell death, inflammatory
response, ROS production and bio-interactions between cells and Ag NPs) after 24 h of
exposure were evaluated. The biological endpoints were selected according to the adverse
outcome pathway (AOP) 173 (https://aopwiki.org/aops/173 accessed on 9 January 2023)
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being a molecular-initiating event (MIE) or a key event (KE) determining the final adverse
outcome (AO) of the AOP, that is lung fibrosis. Indeed, this AOP was recently reported
to appropriately describe the toxicological impact of some NMs that interact with cell
membrane components (e.g., receptors and lipids) (MIE) and lead to lung fibrosis, such as
carbon nanotubes or cerium oxide nanoparticles [16–19]. This AOP would also possibly
describe the toxicological pathways of Ag NPs, which have been reported to induce lung
fibrosis [20]. In addition to these endpoints, DNA damage (assessed by γH2AX) and
cell cycle alteration were considered as outcomes of interest for further assessing the
possible adverse effects of Ag NPs on lung epithelial cells, and because DNA damage is a
consequence of oxidative stress and inflammation while cell cycle arrest is a consequence
of DNA damage.

2. Materials and Methods
2.1. Chemicals and Reagents

All chemicals and reagents were purchased from Sigma Aldrich (Milano, Italy) if
not stated elsewhere. In the framework of the ASINA European project, we selected
different Ag NPs. Ag naked (#484059, AgNKD) and Ag with PVP surface coating (#576832,
AgPVP) were purchased from Sigma Aldrich (Milano, Italy) as benchmark materials for
toxicological profiles comparison against the ASINA produced NMs, namely Ag with
HEC doping obtained in suspension or in powder form (hereinafter defined as AgHECs
and AgHECp, respectively). These two NPs were kindly provided by the Italian National
Research Council (ISSMC-CNR, former ISTEC-CNR, Faenza, Italy). Briefly, a solution
of AgNO3 0.05 M (Sigma-Aldrich, Milan, Italy) was mixed and stirred for five minutes
with a solution of hydroxyethyl cellulose (Dow Chemical, Midland, MI, USA) to a final
molar ratio Ag/HEC of 5.5. The hydrogel was formed by adding a 1 M solution of NaOH
(Sigma-Aldrich, Milan, Italy). The final nanosol dispersion was obtained after 24 h from
hydrogel formation by adding MilliQ water. The Ag HEC nanosol was in case granulated,
by means of spray freeze drying, dehydrated to also obtain the AgHEC powder sample.
More details on AgHEC NP preparation are reported in [21–25]. Reference NPs AgNKD
and AgPVP were obtained according to [25].

2.2. NP Suspension Preparation

Ag NP suspensions for characterization and treatments were prepared in MilliQ water
to reach an initial stock suspension of 1 mg/mL of Ag NPs (considering the same mass
of Ag content for all the tested NPs). For AgNKD and AgPVP NPs in powder form, the
following sonication method was followed: NP suspensions, prepared in sterile glass vials
or a 50 mL falcon tube, were put in an insulation box filled with ice and sonicated by means
of an ultra-sonicator (Sonopuls HD3100, Bandelin, Berlin, Germany) equipped with a 2 mm
probe. NP suspensions were sonicated by applying in total 40 W for 10 min (1 s pulse, 1 s
pause cycle). AgHECs, after vortexing the stock suspension for 30–60 s with an angle of
45◦, were directly diluted in MilliQ water to reach the desired concentration. AgHECp,
after being weighed, were pre-wet NPs with a few mL (0.5–1 mL) of ultrapure MilliQ water,
vortex for 30–60 s with an angle of 45◦ and left to set for at least 30 min (better overnight),
then the desired amount of MilliQ water was added to reach the concentration of 1 mg/mL.
No sonication was applied for these two NPs. All NP stock suspensions were characterized
for their stability over time and kept at 4 ◦C. For NP characterization in MilliQ water or in
cell culture medium, stock suspensions (up to 1 moth old) were vortexed and diluted to
obtain the desired concentrations.

2.3. Ag NP Characterization

The novel Ag NPs, namely AgHECs and AgHECp, were submitted prior to their use
in toxicological experiments to a set of analytical characterizations. Morphology, crystalline
structure, and particle size were characterized by transmission electron (TEM) analyses
using a FEI (Hillsboro, OR, USA) Tecnai F20 microscope operating at 200 keV. AgHECp
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was dispersed in isopropyl alcohol and sonicated for 15 min. AgHECs is sonicated for
15 min. The obtained suspensions are deposited on a perforated carbon film supported by
a gold grid. The preparation was then dried at 40 ◦C. Phase contrast images were recorded
to evaluate the morphology of the nanoparticles. High resolution (HR-TEM) and selected
area electron diffraction (SAED) were used to study the crystalline domains. The electron
microscope was also equipped with the STEM accessory, these pictures were recorded
using a high-angle annular dark-field (HAADF) detector and then they were used for the
size distribution analysis.

X-rays diffraction (XRD) was performed with a with Bruker (Billerica, MA, USA) D8
Advance (Cu Kα 1.5406 Å), working conditions: 2θ interval 10–80◦, step 0.04◦, step time
0.5 s. Few droplets of AgHECs suspension (500 mg/L) were deposited on a glass substrate
and dried at 80 ◦C, the procedure was repeated to obtain a homogenous layer. AgHECp
was directly pressed into the sample holder.

UV–Vis absorption properties of the AgHEC NPs were recorded by a Perkin Elmer
(Waltham, MA, USA) Lambda 750 spectrophotometer. AgHECs was diluted to 6 mg/L
with MilliQ while AgHECp was dispersed in MilliQ at the concentration of 6 mg/L. The
solutions were placed in a quartz cuvette and directly submitted to analysis.

Finally, Fourier transform infrared spectroscopy (FTIR) spectra were acquired by a
Thermo Scientific (Waltham, MA, USA) Nicolet iS5 equipped with iD7 an attenuated total
reflectance (ATR, with a diamond window) by directly using the AgHECs and AgHECp
in their pristine forms, i.e., as particles solution (5000 mg/L) or as powder. The following
parameters were considered during the FTIR analysis: scan range 4000–420 cm−1, resolution
0.121 cm−1 and twenty-four scans per sample acquisition.

Ag NP suspensions for toxicological analyses were characterized in terms of size,
shape, surface charges (ζ-potential), agglomeration state and dispersion by Dynamic Light
Scattering (DLS) analysis using the Zetasizer Nano ZS90 (Malvern Ltd., Warwickshire, UK)
and by transmission electron Microscopy (TEM) by a Jeol JEM (Jeol Ltd., Tokio, Japan). Ag
NPs were prepared in MilliQ water or cell culture medium (DMEM supplemented with 10%
v/v of fetal bovine serum, FBS) also considering two different working temperatures, RT for
samples in MilliQ and 37 ◦C for sample in DMEM. For DLS analysis, Ag NP suspensions
were prepared at the concentration of 10 and 100 µg/mL. All the suspensions were analyzed
at time 0, just after preparation, and after 24 h of incubation at RT to assess NP stability
in solution. Regarding TEM analysis, Ag NP suspensions were prepared in MilliQ water
at the concentration of 100 µg/mL; 5 µL of suspension were deposited on a TEM grid
(Formvar-carbon support film, 200 mesh, copper) and let dry overnight. All the samples
were observed under the Jeol Jem 2100 Plus TEM Microscope (Jeol Ltd., Tokio, Japan).

2.4. Cell Culture

Human alveolar epithelial cells (A549 cell line, ATCC® CCL-185, American Type
Culture Collection, Manassas, VA, USA) were cultivated (passages between 9 and 25)
in DMEM medium (Sigma Aldrich, Milano, Italy) supplemented with 10% fetal bovine
serum (FBS; Gibco Life Technologies, Monza, Italy) and antibiotics (penicillin/streptomycin,
100 U/mL; Euroclone, Pero, Italy). Cells were maintained in an incubator at 37 ◦C and
5% CO2. Cells were treated with different concentrations of Ag NPs (0.1–1–10–20–50–
100 µg/mL) in submerged condition for 24 h and then processed for further analysis.
Untreated cells were considered as negative control. Routinely mycoplasma detection was
performed as reported in Appendix A and Figure A7.

2.5. Viability Assay

The viability of the cells was assessed through the Alamar Blue assay (Invitrogen
Life Technologies, Monza, Italy) and MTT assay (described in Appendix A) (although
its limitation with Ag NPs reported in [26]. Cells were seeded on a 6 multiwell plate
(2.5 × 105 cell/well); after 24 h, cells were treated with different concentrations of Ag NPs
(0.1–1–10–20–50–100 µg/mL, in DMEM medium with 1% serum content) for 24 and 48 h
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and untreated cells were considered as Negative Control. After the exposure to NPs, cell
medium was removed, and cells were washed with PBS. 800 µL of cell culture medium with
10% of the Alamar Blue test solution were added to each well. Cells were then incubated
at 37 ◦C and 5% CO2 for 2 h to allow the viable cells to reduce resazurin in resorufin.
Then, 200 µL from each well were pipetted in triplicate in a 96-well black plate and the
fluorescence was measured at an excitation wavelength of 560 nm and a gain of 82 with
a TECAN Infinite M200 Pro microplate reader (TECAN, Männedorf, Switzerland). The
emission at 590 nm was recorded and the viability expressed as relative variation over
the control ratio. To evaluate specific cell death pathways, namely necrosis and apoptosis,
A549 cells were seeded on 6 multiwell plate (2.5 × 105 cell/well) and treated for 24 h with
different concentrations of Ag NPs (10–20–50 µg/mL); untreated cells were considered as
negative control. At the end of the exposure, cells were rinsed with phosphate buffered
saline (PBS), detached by gently trypsinization and stained with Annexin V and Propidium
Iodide (PI). Cytofluorimetric analysis (CytoFLEX, Beckman Coulter, Cassina de Pecchi,
Italy) was then performed on cell pellets by analyzing the green (FITC channel) and red
fluorescence (ECD channel) of 10.000 cells per sample.

2.6. Inflammatory Response

Cells were seeded on 6 multiwell plates at the density of 2.5 × 105 cell/well and
after 24 h they were treated with different concentrations of Ag NPs (0.1–1–10–20–50–
100 µg/mL). The release of Interleukin 8 (IL-8) was evaluated in the supernatants collected
after 24 h of exposure, centrifuged at 1200 rpm for 6 min and then stored at −80 ◦C until
analysis. The quantification of released IL-8 was performed with IL-8 ELISA matched anti-
body pair kit (Invitrogen, Life Technologies, Monza, Italy) according to the manufacturer’s
instruction. The sample absorbance was measured by a multiplate reader (Infinite 200
Pro, TECAN, Männedorf, Switzerland) at the wavelength of 450 nm; the concentration of
interleukins was calculated based on standard curves and data were shown as p g/mL.
Untreated cells were considered as negative control.

2.7. Intracellular ROS

The intracellular ROS level was measured using 2′,7′-dichlorodihydrofluorescein
diacetate (H2DCFDA, Thermo Fisher Invitrogen, Waltham, MA, USA) probe. A549 cells
were seeded (2.5× 105 cell/well) in a 6 multi-well cell culture plate and incubated overnight.
Cells were treated with 20 and 50 µg/mL of Ag NPs for 90 min and 24 h. We exposed
two wells for each concentration to evaluate the background fluorescence in absence of
the probe. H2O2 0.03% was used as positive control. When the treatment was removed,
cells were washed with PBS. Depending on the well, they were loaded with PBS alone or
containing 10 µM of probe for 20 min in the dark at 37 ◦C. When the solution was removed,
cells were washed with PBS twice, detached using trypsin and collected by centrifugation
(1200 rpm, 6 min). Fluorescence was measured immediately with a CytoFlex (Beckman
Coulter, Cassina de Pecchi Italy) using an excitation wavelength of 488 nm and an emission
wavelength of 525 nm and measuring 10,000 events for each sample. The fluorescence
intensity of cells not treated with the probe was subtracted to the respective treated cells to
have the real fluorescence emission.

2.8. DNA Damage

γH2AX was evaluated as a marker for DNA double-strand breaks (DDS). The phos-
phorylation of the histone H2AX is in fact related to the formation of DDS in response to
several toxicant, oxidative stress and after cell cycle arrest [27,28] and γH2AX has been
proposed as the most informative marker of double-strand breaks [29]. A549 cells were
seeded (2.5 × 105 cells/well) in a 6-well cell culture plate and incubated overnight. Cells
were treated with 20 or 50 µg/mL of silver NPs for 24 h or with etoposide (1.65 µM) as
a positive control. At the end of the treatment, cells were washed with PBS, collected by
centrifugation, fixed using 4% PFA for 15 min and permeabilized with ice-cold 90/10%
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methanol/PBS for 10 min. The samples were stained using Phospho-Histone H2A.X
(Ser139) (20E3) Rabbit mAb (Alexa Fluor® 488 Conjugate) (Cell Signaling Technology, Dan-
vers, MA, USA) following the manufacturer instructions. γH2AX fluorescence intensity
was measured using flow cytometry (CytoFlex, Beckman Coulter, Cassina de Pecchi, Italy).
Fluorescence was measured immediately using an excitation wavelength of 488 nm and an
emission wavelength of 525 nm and measuring 10,000 events for each sample.

2.9. The Cell Cycle

Cell cycle analysis was performed by staining the DNA with PI followed by flow
cytometry. A549 cells were seeded (2.5 × 105 cells/well) in a 6-well cell culture plate
and incubated overnight. Cells were treated with 20 and 50 µg/mL of Ag NPs for 24 h.
Etoposide (1.65 µM) was used as a positive control. Then, the suspension was removed, cells
were washed with PBS, collected by centrifugation, and suspended in ice-cold ethanol/PBS
solution (90%/10% v/v). The cells were suspended in PBS containing 20 µg/mL of RNase
DNase-free inhibitor (Sigma-Aldrich, Milan, Italy) for 30 min at 37 ◦C. PI 10 µM was added
and the samples were analyzed using a CytoFlex (Beckman Coulter, Cassina de Pecchi,
Italy) with an excitation wavelength of 488 nm and an emission wavelength of 610 nm and
measuring 10,000 events per sample.

2.10. Cell–Particle Bio-Interaction

Quantitative analysis: Cells were seeded on 6 multiwell plates at the density of
2.5 × 105 cell/well and after 24 h, they were treated with different concentrations of Ag
NPs (1–10–20–50 µg/mL) for additional 24 h. At the end of the exposure, the cells were
recovered by trypsinization, and the samples were analyzed using a CytoFlex (Beckman
Coulter, Cassina de Pecchi, Italy) with an excitation wavelength of 488 nm. The side scatter
signal (SSC) of the gated cell population was recorded as proxy variable of the particle–cell
interaction (both at cell membrane and/or after internalization).

Qualitative analysis: A549 cells were seeded on coverslip in 6 well plates (3 × 105 cell/well).
After 24 h, cells were exposed with 20 µg/mL of AgHECp, and AgPVP for an additional
24 h. At the end of the exposure, cells were washed 2 times with sterile PBS and fixed in a
solution of 2.5% glutaraldehyde in phosphate buffer (pH 7.4) for 1 h. Then, after washings
in the same buffer, cells were post-fixed in 1% osmium tetroxide aqueous solution for 2 h
at 4 ◦C in the dark. Dehydration in ethanol (50, 70, 90, 96 and 100%) and infiltration in
epoxy resin were the following steps. Embedded samples were cut with an ultramicrotome
(Reichert-Jung Ultracut E) to obtain thin sections (60–70 nm) to be observed under the
transmission electron microscope (TEM). Before observation, the sections were stained for
30 min with an aqueous solution of Uranyl Acetate (1%).

2.11. Statistical Analysis

Data are expressed as the mean ± standard error (SE) of at least three biological
independent experiments (N > 3, if not otherwise stated). Fold change values were log2
transformed and reported and analyzed as such. Statistical analyses were performed using
R software [30], using one-way ANOVA test followed by Dunnett’s post hoc test if the
homogeneity of variance was confirmed by Levene’s test; conversely, the pairwise Wilcox
test was applied to determine statistical differences; values of p < 0.05 were considered
statistically significant.

3. Results
3.1. Novel AgHEC Particles Characterization

The novel AgHEC particles were specifically designed, and a series of different ana-
lytical approach were used to characterize their morphological and functional properties.
TEM analysis allowed to characterize the morphology and the crystalline structure of
the NPs (Figure 1). Both AgHECs and AgHECp have a rather narrow size distribution
(3–20 nm and 5–50 nm for AgHECs and AgHECp, respectively) and their diffraction pat-
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terns (HRTEM-SAED analysis) confirmed their crystalline structure, formed by twinned
domain’s structure.
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morphological characterization of the NPs, HRTEM were used to determine the diffraction patterns
of the novel particles while the HAADF-STEM to determine the size distribution of the particles.

The XRD results (Figure 2) show a typical XRD pattern of Ag NPs, the main peaks
detected can be indexed as a Face-Centered Cubic (FCC) structure (JCPDS, file no. 4-
0783). The patterns obtained show the presence of diffraction peaks at 38, 44, 64 and 77◦,
corresponding, respectively, to (111), (200), (220) and (311) Ag planes.
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Figure 2. X-ray diffraction and UV–Vis spectra of novel NPs. XRD peaks typical of Ag NPs are
reported together with other minor peaks related to the synthesis process. The UV–Vis absorption
spectra agree with the silver core nature of the novel NPs.

Crystallite size was determined using the Scherrer method on the main diffraction
peak (111). AgHECs has a crystallite size of 8.8 nm, and AgHECp of 9.1 nm. The two
samples show similar crystallite size and the AgHECs value is aligned with the TEM size
(9 nm), while TEM analysis for AgHECp showed a larger size (19 nm). This may be due to
the spray freeze-drying leading to an aggregation, but the low temperature does not allow
the recombination of crystal seeds.

Other diffraction peaks may be related to synthesis byproducts, mainly sodium chlo-
ride (NaCl), while the amorphous region at approximately 20◦, more evident for AgHECs,
is due to the amorphous glass substrate. UV–Vis absorption spectra showed the typical
Surface Plasmon Resonance peak of Ag NPs. In this case, the maximum absorption falls
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at 410 nm for AgHECs and at 397 nm for AgHECp, typical wavelengths of spheroidal Ag
NPs with a size of approximately 10–20 nm.

FTIR spectra confirmed the presence of the HEC shell around the NPs. The AgHECs
gave lower signals due the presence of the dispersant (water). Cleared peaks were recorded
for the AgHECp (Appendix B, Figure A1)

3.2. Ag NP Characterization for Toxicological Analyses

Ag NPs physical properties in the different solutions tested were comparable consider-
ing the two concentrations (10 and 100 µg/mL, Table 1). Ag NP hydrodynamic diameters
showed a general tendency to reduce over the time in both MilliQ and DMEM solutions;
among the different NPs, the AgHECs and AgHECp NPs showed a lower tendency to mod-
ify their hydrodynamic diameter over 24 h, when dispersed in aqueous solution compared
to the reference NPs (AgNKD) (Table 1).

Table 1. Ag NP characterization for cell exposure. Dynamic Light Scattering (DLS) analysis performed
for Ag NPs (AgNKD, AgPVP, AgHECs and AgHECp) in MilliQ water and cell culture medium (CCM).
The measurements were performed at two different time points, 0 and 24 h, and two concentrations
(10 and 100 µg/mL) were considered. In the table are also reported the values of z-average (nm) ± SD
and PDI ± SD. In addition, for each particle is indicated the value ζ-potential (mV) in MilliQ water at
the concentration of 100 µg/mL.

NPs Medium Time (h) µg/mL z-Average (nm) ± SD PdI ± SD

AgNKD
ζ-potential: −27.57
(100µg/mL in mQ)

mQ

0 10 266.29 ± 35.96 0.47 ± 0.01
24 10 142.52 ± 51.02 0.29 ± 0.05
0 100 270.76 ± 53.18 0.45 ± 0.04

24 100 109.35 ± 22.42 0.34 ± 0.08

DMEM 1% FBS

0 10 624.32 ± 106.24 0.75 ± 0.09
24 10 128.99 ± 15.32 0.24 ± 0.06
0 100 328.71 ± 76.9 0.37 ± 0.13

24 100 167.57 ± 7.55 0.33 ± 0.1

AgPVP
ζ-potential: −6.07

(100µg/mL in mQ)

mQ

0 10 1515.88 ± 928.18 0.92 ± 0.14
24 10 591.67 ± 192.93 0.81 ± 0.16
0 100 695.91 ± 617.49 0.7 ± 0.26

24 100 227.06 ± 159.62 0.45 ± 0.15

DMEM 1% FBS

0 10 545.96 ± 386.17 0.69 ± 0.26
24 10 165.92 ± 58.32 0.21 ± 0.15
0 100 361.4 ± 110.43 0.43 ± 0.06

24 100 185.11 ± 7.62 0.2 ± 0.14

AgHECs
ζ-potential: −4.71

(100µg/mL in mQ)

mQ

0 10 122.04 ± 10.16 0.14 ± 0.02
24 10 109.41 ± 8.36 0.15 ± 0.003
0 100 122.16 ± 5.89 0.14 ± 0.02

24 100 115.7 ± 5.37 0.15 ± 0.01

DMEM 1% FBS

0 10 72.57 ± 6.26 0.23 ± 0.04
24 10 77.82 ± 0.82 0.23 ± 0.03
0 100 80.37 ± 2.4 0.2 ± 0.02

24 100 75.23 ± 4.91 0.21 ± 0.05

AgHECp
ζ-potential: 9.92

(100µg/mL in mQ)

mQ

0 10 293.83 ± 6.76 0.41 ± 0.06
24 10 219.33 ± 5.13 0.4 ± 0.01
0 100 304.89 ± 34.89 0.37 ± 0.07

24 100 261.63 ± 26.86 0.36 ± 0.06

DMEM 1% FBS

0 10 62.72 ± 10.85 0.46 ± 0.02
24 10 148.66 ± 39.78 0.28 ± 0.03
0 100 150.29 ± 19.7 0.35 ± 0.06

24 100 88.63 ± 4.97 0.51 ± 0.01
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The ζ-potential resulted highly negative for AgNKD (−27.57 mV), slightly negative for
Ag-PVP and Ag-HECs (−6.07 mV and −4.71 mV, respectively) and positive for AgHECp
(+9.92 mV). This differential surface property of the different NPs is related to the different
coating—the naked particle being the most negative compared to the coated ones—and to
the coating procedure, the ζ-potential of HECs and HECp being different.

Ag NP suspensions, prepared in MilliQ water, were also analyzed by transmission
electron microscopy (TEM) to qualitatively evaluate their morphology and agglomeration
state (Figure 3). All the Ag NPs showed primary particles with a spherical shape in
the range of 20 to 30 nm. AgHECs and AgHECp resulted better dispersed compared to
AgNKD and AgPVP, which were characterized by agglomerates in the order of hundreds
of nm, as already observed by DLS analysis. This difference in agglomeration is a relevant
outcome of the different surface modifications which allow for a better dispersion during
manufacturing processes, such as spray coating of textile, at the same time, agglomeration
state greatly affects bio-interactions and effects in living cells.
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Figure 3. Transmission electron microscopy images of Ag NP suspensions. Ag NPs in MilliQ water
were analyzed by TEM. The images in the upper panel show how particle suspensions are dispersed
and in the lower panel is shown a detail of small agglomerates or single particles.

3.3. Cell Viability

To better assess cell viability, avoiding possible NP interference, Alamar Blue and MTT
assays were tested. Finally, the Alamar Blue method was selected as the best performing
assay (Figure 4, MTT data in Appendix B, Figure A2). Viability decreased concentration-
dependently for all the particles tested, but the AgHECs, with a clearer effect for the
AgHECp NPs. Similar results were obtained after 48 h of treatment, showing no additional
toxicity to exposed cells (Appendix B, Figure A3). Given the general low cytotoxicity
of the Ag NPs, the 24 h IC50 was correctly calculated only for AgHECp (IC50 equal to
57.05 µg/mL, with an upper and lower confidence values of 47.61 and 70.01 µg/mL) while
for the other Ag NPs we assume that the IC50 is higher than 100 µg/mL.

According to its higher cytotoxic effects, AgHECp (Appendix B, Figure A4) also in-
duced a concentration-dependent increase in annexin V/PI positive necrotic/late apoptotic
cells that was statistically significant at 20 and 50 µg/mL (5.7% and 7.2% versus 1.9% in
control cells) with a consequent reduction in viable cells (90.92% and 87.8% com-pared to
94.8% in control cells). Additionally, AgHECs and AgPVP induced a statistical increase in
necrotic/late apoptotic cells (3.4 and 3.7% at 20 and 50 µg/mL for AgHECs and 4.1% at
50 µg/mL for AgPVP) while the AgNKD showed no significant effect at the concentrations
we tested (Appendix B, Figure A4).



Toxics 2023, 11, 195 10 of 22Toxics 2023, 11, x FOR PEER REVIEW 11 of 24 
 

 

 
 

 

Figure 4 Cell viability. The graphs show the percentages of cell viability compared to the negative 
control, assessed by Alamar Blue assay after 24 h of treatment. Data are presented as the mean of at 
least three independent experiments ± SE. Statistical analysis: one-way ANOVA followed by Dun-
nett’s test. * p < 0.05 compared to control; ** p < 0.01 compared to control; *** p < 0.001 compared to 
control group. 

According to its higher cytotoxic effects, AgHECp (Appendix B, Figure A4) also in-
duced a concentration-dependent increase in annexin V/PI positive necrotic/late apoptotic 
cells that was statistically significant at 20 and 50 µg/mL (5.7% and 7.2% versus 1.9% in 
control cells) with a consequent reduction in viable cells (90.92% and 87.8% com-pared to 
94.8% in control cells). Additionally, AgHECs and AgPVP induced a statistical increase in 
necrotic/late apoptotic cells (3.4 and 3.7% at 20 and 50 µg/mL for AgHECs and 4.1% at 50 
µg/mL for AgPVP) while the AgNKD showed no significant effect at the concentrations 
we tested (Appendix B, Figure A4).  

3.4. Reactive Oxygen Species Formation 
Intracellular ROS formation was selected to investigate the capability of the NPs to 

increase the oxidative status in exposed A549 cells. H2DCFDA conversion to fluorescent 
DCFA was assessed by cytofluorimetric assay. After 90 min of treatment, AgNKD and 
AgPVP at the exposure concentration of 50 µg/mL induced a significant increase in intra-
cellular ROS. A non-significant increase was observed in AgHECp exposed cells, while 
absence of modulation was observed in AgHECs treatments (Figure 5). After 24 h of ex-
posure to Ag NPs, ROS were slightly but not statistical significantly modulated by all the 
NPs (Appendix B, Figure A5). 

Figure 4. Cell viability. The graphs show the percentages of cell viability compared to the negative
control, assessed by Alamar Blue assay after 24 h of treatment. Data are presented as the mean of
at least three independent experiments ± SE. Statistical analysis: one-way ANOVA followed by
Dunnett’s test. * p < 0.05 compared to control; ** p < 0.01 compared to control; *** p < 0.001 compared
to control group.

3.4. Reactive Oxygen Species Formation

Intracellular ROS formation was selected to investigate the capability of the NPs to
increase the oxidative status in exposed A549 cells. H2DCFDA conversion to fluorescent
DCFA was assessed by cytofluorimetric assay. After 90 min of treatment, AgNKD and
AgPVP at the exposure concentration of 50 µg/mL induced a significant increase in intra-
cellular ROS. A non-significant increase was observed in AgHECp exposed cells, while
absence of modulation was observed in AgHECs treatments (Figure 5). After 24 h of
exposure to Ag NPs, ROS were slightly but not statistical significantly modulated by all the
NPs (Appendix B, Figure A5).
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3.5. Inflammatory Response (IL-8 Release)

The release of the inflammatory mediator (IL-8) in A549 cells after 24 h of exposure to
Ag NPs was modulated differently by the different NPs (Figure 6). Although some increase
in the pg/mL of IL-8 in treated samples, statistically significant increases were observed
only for the higher concentrations of AgHECs (100 µg/mL) and at the concentration for
50 µg/mL of AgHECp. Among the different NPs, AgPVP was the least active in inducing
IL-8 modulation. After 48 h of exposure, the modulation of the inflammatory protein IL-8
was not significant at the concentrations tested (data not shown).
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Figure 6. The inflammatory response (IL-8 release). IL-8 protein concentration was differently
modulated by the NPs. Higher releases were observed at the higher exposure concentration of the
AgHEC NPs (ANOVA followed by Dunnett’s test) and at the concentration for 50 µg/mL AgHECp.
Data are presented as the mean of the pg/mL release by each sample (n = 3) ± SE of at least three
independent experiments. * p < 0.05 and *** p < 0.001 compared to control group.

3.6. Oxidative DNA Damage (γH2AX)

The DNA damaging effects of the Ag NPs was assessed by the quantification of the
phosphorylated protein H2AX (γH2AX). The increase in the fluorescent signal of γH2AX
(Figure 7) after A549 treatment with the different NPs was significant for all the NPs at the
concentrations tested (20 and 50 µg/mL). Compared with the other NPs, the AgHEC NPs
showed a high increase in H2AX phosphorylation after the exposure to 20 µg/mL.

3.7. Cell Cycle Alteration

Since damage at the DNA is a relevant endpoint in assessing the hazards of new
NPs, we also tested the capability of the different NPs to induce alteration in the cell cycle
progression (Figure 8). The cell cycle may be altered by different events, an increase in cells
stalled in the S phase is normally related to issues with the DNA replication machinery or
the presence of DNA damages that slow the replication process, while increases in cells in
the G2/M phase may be still related to the presence of DNA damages to be corrected prior
to mitosis or to alteration to the mitosis machinery. The results show that after treatment
with the different Ag NPs at the concentration of 50 µg/mL a significant increase in cells
blocked in G2/M was observed and coupled to an increase in S phase (except for the
AgPVP NPs). Again, the AgHECp NPs were able to induce cell cycle alterations at a
lower concentration.
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Figure 7. DNA damage (expressed as log2 FC of γH2AX) was determined by quantifying the increase
in the γH2AX protein. Control values are equivalent to the zero line, values above this value are
actual increases in the protein content while negative values are downregulation of the protein.
Increases in DNA damages in exposed cells were observed for all the Ag NPs at the concentration of
20 and 50 µg/mL. Data are presented as the mean of at least three independent experiments ± SE.
Statistical difference analyzed by one-way ANOVA and Dunnett’s test. * p < 0.05 compared to control;
** p < 0.01 compared to control, ANOVA with post hoc; *** p < 0.001 compared to control, ANOVA
with post hoc; # p < 0.05 compared to the 50 µg/mL exposure concentration.
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Figure 8. Cell cycle analysis. In the graph are reported the percentages of cells in the different cell
cycle phases: subG0, G1, S and G2M (n > 3). It is possible to observe a statistically significant increase
in cells in G2M phase after treatment with all the Ag NPs. Data are presented as the mean of at least
three independent experiments ± SE. Statistical analysis: one-way ANOVA followed by Dunnett’s
test; ** p-value = 0.01 compared to control.

3.8. Cell–Particle Bio-Interactions

To analyze the possible NP interactions and/or uptake of Ag NPs, monolayers of
A549 treated for 24 h were investigated by laser beam scattering and TEM imaging. The
SSC reported show (Figure 9) that A549 cells treated with AgNKD and AgPVP had the
lowest scattering values and were statistically different from the control only at the higher
concentration of exposure. On the contrary, cells treated with AgHECs and AgHECp
resulted in higher SSC values and therefore higher cell–particle interactions (significant
values different from the controls already at the concentration of 10 µg/mL (p < 0.001).
TEM imaging (Appendix B, Figure A6) supports these findings. AgPVP treated cells show
an ultrastructure well maintained, and different subcellular structures are recognizable.
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AgHECp cells on the contrary clearly show particles internalization and particle membrane
interactions. In the future, a more detailed investigation of the intracellular localization
of the NPs and possible modifications induced at ultrastructural levels may support the
AOP-oriented investigation strategy.
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trations of the different Ag NPs. Clear differences among the NPs are reported, with AgHEC NPs
showing higher SSC values compared to AgNKD and AgPVP treatments. Data are presented as the
mean of at least three independent experiments ± SE. Statistical analysis: one-way ANOVA followed
by Dunnett’s test; * p-value = 0.05; *** p-value = 0.001 compared to control.

4. Discussion

Safety of nanomaterials and nano-enabled products (NEPs) is a primary objective for
more sustainable and innovative goods given the intrinsic potential hazards of objects in
the nanometric scale [31,32]. The evaluation of the hazards of NPs of interest is usually
performed after a synthesis procedure is set up to shape the NP of interest for the specific
application it is intended for. Therefore, the toxicological evaluation has been usually
performed at the end of the production, application, and disposal cycle to confirm that the
particle or the product containing the particle does not pose a hazard to humans or the
environment. To overcome this a posteriori evaluation of the risk for the human health and
the environment of NPs or NEPs, safe-by-design (SbD) approaches have been proposed
during the last years [15,33]. The basic concept is to provide a priori evidence of the absence
of hazards in the new NP or NEP during their life cycle therefore minimizing or removing
unwanted or unpredicted risk after exposure. One of the key questions of SbD procedure is
to what extent they are predictive of potential chronic effects, given the absence of acute
toxicity. To address this question, methodological approaches have been proposed such
as in [33] to provide a standardized procedure to follow for different NMs with similar
intended application. On the other hand, the definition of the adverse outcome pathways
(AOPs) concept [34–36] provided a novel framework to support SbD approaches [15,16,37].
Within the framework of AOPs we identified AOP #173 related to lung fibrosis of substances
interacting with the membrane components (e.g., receptors and lipids) of lung cells leading
to fibrosis. In fact, the induction of lung fibrosis due to NP exposure has been proposed by
several authors [16–19]. In our experiments, we synthetized novel Ag NPs coated with a
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shell of HEC. The thorough characterization performed, confirmed the crystalline nature of
the novel NPs and the presence of the external layer of HEC. These novel particles were
analyzed in parallel for their toxicological properties according the AOP selected. This
AOP has, as a molecular-initiating event (MIE), the interaction of the substance with the cell
membrane. The data reported confirm the interaction of Ag NPs with the plasma membrane
of exposed cells and the internalization of clusters of NPs into membrane structures within
the cytoplasm, interestingly this was more evident for AgHECp. Internalization of NPs
is a relevant mechanism also for cytotoxicity. Indeed, the capability of some metal or
metal oxide NPs, especially Ag NPs, to exert their adverse effects through the intracellular
release of metal ions after internalization is largely reported [38–41]. Internalized NPs
might interact with cellular macromolecules according to their affinity or by generating
ROS [41,42]. The results here reported show a significant increase in ROS after 90 min
of exposure. According to the expected oxidative burst usually reported few hours after
exposure of in vitro or in vivo models to NPs [42–45]. We would like to speculate, that the
absence of positive results with the HEC coated NPs, may be related to a quenching effect or
a masking effect of the HEC over the fluorescent probe used to test ROS. In fact, according
to the short life of reactive species in cells, we observed, also in HEC coated Ag NPs, the
increase in γH2AX, a marker of oxidative damage of the DNA, that is in fact also related
to precedent ROS formation [46,47]. ROS formation may also be related to inflammatory
mediator release [48–51] and therefore contribute to the modulation of IL-8 we reported
here. The activation of the inflammatory response in exposed cells is another key event
(KE) in the AOP for lung fibrosis since chronic inflammation [52–54] is a trigger of changes
in the extra cellular matrix leading to fibrosis [55]. We also report here the capability of
Ag NPs to alter the cell cycle of the exposed epithelial cells, adding an additional event on
the path to lung fibrosis [56]. What are relevant in the SbD concept are the differences we
have observed between the differentially coated NPs (Appendix B, Table A1). Considering
AgNKD as a reference we report here that the AgPVP nanoparticles are likely the less active
in inducing adverse events related to the selected AOP. Interestingly, we report a clear
difference of Ag NPs coated with hydroxyethyl cellulose (HEC), the focus of our study,
considering two different conditions. The AgHECp was the most toxic, determining the
highest cytotoxicity and IL-8 modulation, while the DNA damaging potency and the cell
cycle alteration were similar between the two AgHEC NPs. The higher toxicity of AgHEC
NPs could be related to both their higher stability and lower agglomeration in toxicological
media, lower DLS hydrodynamic diameter and TEM images as compared to reference
Ag NPs [56–58] and the direct effect of the HEC coating in favoring the internalization of
the Ag NPs [57]. In the SbD framework and considering the AOP outcomes we reported
here, the HEC coating being the core of the newly developed Ag NPs, the production
and use of HEC coated Ag NPs should follow a wet production and use procedure rather
than drying the NPs for subsequent uses. The reason why AgHEC in powder form is
more hazardous than the original colloidal solution may be linked to the possible physico-
chemical transformations of the coating polymer during the processes. Further, considering
the methodology (freeze-drying) used to obtain AgHECp, very slight modifications of the
polymer structure are expected. How such possible minor modifications may influence the
biological reactivity is a fascinating aspect for future investigations.

5. Conclusions

In conclusion, novel NPs (AgHEC) were here synthetized, characterized and tested
in parallel for their hazards according to a SbD approach combined with relevant AOP
events (Figure 9). The combination of these two relevant frameworks showed efficacy in
characterizing the hazards of different Ag NPs and defining which production and use
procedure should be considered with lower expected risk. The doping of the surface of
Ag NPs seems to have a primary role in driving the toxicity of the newly synthetized
particles and the selection of coated NPs with lower intrinsic hazards should be favored
for subsequent testing and use in manufacturing procedure (Figure 10). Here, we show
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that HEC coating favors the dispersion of the Ag NPs in water-based media. This, from
a manufacturing point of view, is a benefit since well-dispersed NPs are less prone to
cloth and obstruct orifices needed for example during spraying. On the other hand, HEC
coating favors particle–cell membrane interaction and cytotoxicity. Our results allowed the
discrimination of the potential hazard of two different processes of AgHEC production
and use, the wet (AgHECs) and dry (AgHECp) approaches, considering the first the one to
favor for subsequent additional tests and manufacturing processes.
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Appendix A

• MTT assay

The viability of the cells was also assessed through the MTT assay. After the exposure
to nanoparticles, cell medium was removed, and cells were washed with PBS. MTT was
dissolved at 5 mg/mL in PBS, then a suspension containing 62.5 µL for each mL of cell
culture medium (DMEM supplemented with 10% of FBS) was prepared and 1 mL of it was
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added to each well. Cells were then incubated in the dark at 37 ◦C and 5% CO2 for 2 h to
allow the viable cells to reduce tetrazolium salt in formazan crystals. Then, supernatants
were removed, and the precipitated crystals were solubilized using 1 mL of DMSO for each
well. The plates were left for 10 min with continual shaking, then 200 µL from each well
were pipetted in triplicate in a 96-well transparent plate and the absorbance was measured
at 570 nm with a reference of 690 nm with a TECAN Infinite M200 Pro microplate reader.
The viability is expressed as percent control ratio.

• Mycoplasma detection

The possible contamination by mycoplasma strains of the cultured cells is performed
monthly according to [58]. Cells were seeded on a glass coverslip in 6 multiwell plate
(2.5 × 105 cell/well) and allowed to grow until reaching confluence. The medium is then
removed, and cells are washed with sterile PBS. The cells are then fixed with 1 mL of
paraformaldehyde fixative for 5 min, this procedure is repeated twice. Then, the fixative is
removed, and the coverslips are allowed to dry under a sterile hood. After drying, cells
are stained with Hoechst 33258 for 5 min. The stained cells are rinsed with sterile PBS and
then are mounted with Prolong mounting solution. Each coverslip is analyzed under an
AxioObserver.Z1 Cell imaging station (Zeiss, Jena, Germany), by an immersion oil 63x
objective to detect the presence into the cytoplasm of small Hoechst positive extranuclear
dots. At least 100 cells per coverslip are analyzed. Images are acquired by an AxioCam
MRm digital camera and elaborated with the ZEN2.3 Blue software (Zeiss). Figure 6 reports
representative pictures of A549 cells after Hoechst staining at two different passages of the
cell culture, passage 10 and passage 19.

Appendix B

Table A1. Summary of the toxicological outcomes and tentative ranking of the tested NPs from the
less to the most toxic. Scores (in terms of number of +) were assigned considering the statistical
significance of the effects, the dose response tendency of the effects and the first concentration of
exposure giving a significant effect.

NPs Cytotoxicity ROS (90 min) Inflammation DNA Damage Cell Cycle
Alteration

Final Rank from
Less to Most Toxic

AgNKD + + + + + 1
AgPVP ++ + + + 1

AgHECs ++ ++ ++ ++ 2
AgHECp +++ ++ ++ ++ 3
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at approximately 3500–3200 cm−1, which refers to stretching of hydroxyl group. Peaks at 2870 and
3010 cm−1 refer to C–H stretching. The band at approximately 1650–1580 cm−1 is related to the
amine N–H bending. Peaks at 1440 and 1350 cm−1 refer to C–H and O–H bending. The alcohol
C–O stretching peaks at 1110 and 1050 cm−1 are observed. Using this one as reference, it is possible
to observe that AgHECp follows well the relative intensity of the absorption peaks. The AgHECs
spectrum is influenced (very low signal intensity) by the water suspension.
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Figure A3. Cell viability assessed by Alamar Blue at 48 h. A significant reduction in cell viability was
observed after AgHECp and AgNKD. AgPVP and AgHECs particles were less effective. One-way
ANOVA followed by Dunnett’s test; * p < 0.05; *** p < 0.001 compared to control cells. N = 3.
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Figure A4. Cell death characterization after exposure to Ag NPs. The percentages of viable cells,
apoptotic cells (Annexin V positive), late apoptotic cells (Annexin V/PI—positive) and necrotic cells
(PI—positive). A549 cells after exposure for 24 h to 50 µg/mL to Ag NPs; each treatment is reported
with its relative negative control (unexposed cells). Statistical analysis: one-way ANOVA followed by
t-test; * p < 0.05; ** p < 0.01, *** p < 0.001 compared to control cells. N = 3.
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Figure A5. ROS levels in cells exposed to Ag NPs for 24 h. ROS expression was assessed using
H2DCFDA as indicator although some modulation statistically significant effects were not observed.
Data are presented as the mean ± SE. Statistical analysis: one-way ANOVA followed by t-test.



Toxics 2023, 11, 195 19 of 22Toxics 2023, 11, x FOR PEER REVIEW 21 of 24 
 

 

 
Figure A6. TEM picture of A549 exposed to AgPVP (B) or AgHECp (C,D) NPs. Increased membrane 
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mic staining confirm the absence of mycoplasma in the cultured A549 cells. Pictures are from two 

Figure A6. TEM picture of A549 exposed to AgPVP (B) or AgHECp (C,D) NPs. Increased membrane
localization of NPs is evident in AgHECp treated cells and intracellular localization in lamellar bodies
(C) in compared to AgPVP (B) and control cells (A). M = mitochondria, PM = plasma membrane,
LB = lamellar bodies, CS = cytoskeleton, and N = nucleus.
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Figure A7. Hoechst stained A549 for mycoplasma screening. The absence of extranuclear cyto-
plasmic staining confirm the absence of mycoplasma in the cultured A549 cells. Pictures are from two
different passages: passage 10 is reported in Figure A6 (A) (tones of grey channel) and (B) (Hoechst
channel), passage 19 is reported in Figure A6 (C) (tones of grey channel) and (D) (Hoechst channel).
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