Measurement of Individual Color Space using Luminous Vector Field ICVS 26th Symposium, July, 1-5, 2022

David Alleysson & David Meary

Laboratoire de Psychologie et NeuroCognition LPNC-UMR 5105 CNRS - INSB Université Grenoble Alpes, Sciences humaine et sociale

July, 2, 2022

つひひ

Geometry of color vision

An observer watching a computer screen

- Display's color space is a cube defined by RGB.
- **Observer's color** space is defined by LMS.
- **•** Origin of observer's color space is not necessarily the origin of display's color space.

4 0 8

 $2Q$

Display color space

An orthognal space where each point is a light the display can produce

- We set up an orthogonal coordinate system $Q_1Q_2Q_3$ with $Q_2 = G$.
- Light spectra produced by the display is a point p.
- A point p has coordinates (q_1, q_2, q_3) , i.e. $p(\lambda) = q_1 Q_1(\lambda) + q_2 Q_2(\lambda) + q_3 Q_3(\lambda).$
- In Q-space the integral 683.002 $\int_{\lambda} a(\lambda) b(\lambda) d\lambda = a.b$ is equal to $\frac{1}{\sqrt{\lambda}}$ and $\frac{1}{\sqrt{\lambda}}$ and vectors a and b.
- Q-space is Euclidean space where orthogonality and norm (radiometric) are well defined

Achromatic measurement of display's light

Any point p of display's color space, is attached to a luminous vector v_{obs}

- Spectral efficiency function of the eve $V(\lambda)$ is the vector v in Q-space of norm $||v|| = \sqrt{v \cdot v} = 62cd$ for our display.
- Luminance of p is the affix of the intersection ℓ between the plane orthogonal to v passing through p and vector v.
- Another vector v_{obs} represents observer's luminous vector defined by a direction and a magnitude.
- The local portion of plane orthogonal to the vector v_{obs} at point p is the local iso-luminous surface.

◂**◻▸ ◂╓▸**

Heterochromatic photometry

Minimum Motion stimulus for measuring equi-luminosity

Minimum motion stimulus produces a motion when the two colors (Red and Green) composing the heterochromatic frames are not of the same luminosity for the observer.

- Anstis, S., & Cavanagh, P. (1983). A minimum motion technique for judging equiluminance. Color vision : Physiology and psychophysics/Ed. by JD Mollon, LT Sharpe. p.156-166.
- Moreland, J. D. (1982). Spectral sensitivity measured by motion photometry. Documenta Ophthalmologica Proceedings Series.
- 0 Cavanagh, P., MacLeod, D. I., & Anstis, S. M. (1987). Equiluminance : spatial and temporal factors and the contribution of blue-sensitive cones. JOSA A, 4(8), 1428-1438.
- Webster, M. A., & Mollon, J. D. (1997). Motion minima for different directions in color space. Vision Research, 37(11), 1479-1498.

4 0 8

Measurement of luminous vector

Two successive sessions of minimum motion around p define v_{obs}

4日)

Hypotheses on iso-luminous surfaces

Iso-luminous surfaces passing through a point can be plane, ellipsoid or hyperboloid

We limit iso-luminous surfaces to be quadratic of constant curvature. To any point x of the surface, one associate a vector v orthogonal to the surface at that point. The set of couples (x,v) is the vector field.

- \bullet If the surface is plane (grey), orthogonal vector field is constant (colorimetric situation $V(\lambda)$).
- \bullet If the surface is ellipsoidal (red), orthogonal vector field is divergent.
- If the surface is hyperboloidal (blue), orthogonal vector field is convergent.

Projective surfaces

Iso-luminous surfaces are supposed proportionals toward (visual) zero Vector field is completely defined for the whole display's color space using proportionality

Divergent vector field Iso-luminous Ellipsoids

Projective stack of **Hyperboloids**

Convergent vector field Iso-luminous **Hyperboloids**

Placement of points for vector field measurement

15 \times 5 points for authors, 6 \times 2 for naïve observers

The two authors did 15 points on 5 different spheres, whereas 20 observers did 6 points on 2 different spheres.

 $75 \times 2 \times 30$ trials ∼ 5 hours on three

Points are chosen such that they lie on a sphere of constant radiometric norm of radius $r \in [1, 2, 3, 4, 5]$ and are related by a projective line from zero. We measure the length of the vectors as the minimal contrast needed to detect the homochromatic frame, using a contrast [ad](#page-7-0)j[us](#page-9-0)[t](#page-7-0)[me](#page-8-0)[n](#page-9-0)[t](#page-7-0) [p](#page-8-0)[r](#page-12-0)[o](#page-13-0)[c](#page-7-0)[e](#page-8-0)[d](#page-12-0)[u](#page-13-0)[r](#page-0-0)[e.](#page-14-0)

Results

Measured vector field, observer's parameters estimate

T_{ABLE} – Analysis of A and mse

Because one or two eigenvalues are negatives, iso-luminous surface is hyperboloid

We also check for the two authors that the length $||v||$ along each projective line follows a Weber law.

4 0 8 4

 $2Q$

Observer's color space seen a computer screen

Three axis, two orthogonal to L+M+S and a metric surface

(LPNC - CNRS/UGA) **[Individual Color Space](#page-0-0) July, 2, 2022** 12/15

About the method

Advantages

- Few measurements for the whole color space. Origin and metric.
- Minimum motion is a simple task.
- Method precise enough to show, hyperbolic metric and observer's variability.

Further works

- Dependencies between the two successive minimum motion ?
- Interpretation of second positive eigenvalue?
- Observer's color space is defined only for the display's primaries
- Check the reliability of the observer parameters for different points in display color space

- Assuming iso-luminous surfaces are proportional and quadratic, we measured those surfaces for an observer using two minimum motion in two different planes.
- Estimated surfaces for several observers indicate for all a hyperbolic geometry of iso-luminous surface.
- We can use several displays for constructing the whole observer function.
- What about adaptation ? Adaptation may explain why we found spectral cone with large aperture.
Adaptation around two different points

つひひ

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ [君] # 19 9 0 0

Display calibration

Two intervals that join along trials

After thirty trials PSE is estimated which corresponds to a rotation angle from the initial v.

4 O

 α

Estimation of observer's data A and a_0

From matrices
$$
X = \begin{bmatrix} x_{11} & x_{1N} \\ x_{21} & \dots & x_{2N} \\ x_{31} & x_{3N} \end{bmatrix}
$$
 and $V = \begin{bmatrix} v_{11} & v_{1N} \\ v_{21} & \dots & v_{2N} \\ v_{31} & v_{3N} \end{bmatrix}$ we defined new
matrices $\overline{X} = \begin{bmatrix} x_{11} & \dots & x_{1N} \\ x_{21} & \dots & x_{2N} \\ x_{31} & \dots & x_{3N} \\ 1 & \dots & 1 \end{bmatrix}$ and $\overline{V} = \begin{bmatrix} v_{11} & \dots & v_{1N} \\ v_{21} & \dots & v_{2N} \\ v_{31} & \dots & v_{3N} \\ 1 & \dots & 1 \end{bmatrix}$.
The model is $\overline{V} = 2BX + a_0$ which with new variables writes $\overline{V} = M\overline{X}$.
with $M = \begin{bmatrix} 2B & a_0 \\ 0 & 0 & 1 \end{bmatrix} = \overline{V}\overline{X}^t (\overline{X}\overline{X}^t)^{-1}$. Resulting matrix *B* is not symmetric.

Another symmetric matrix $A = (B + B^t)/2$ produce the same surface but not the same vector field.

→ 唐 × → 唐 ×

 QQQ

Vector field from surface

General equation of a quadratic surface in \mathbb{R}^3 is given for $x = (x_1, x_2, x_3)$ by :

$$
f(x_1, x_2, x_3) = ax_1^2 + bx_2^2 + cx_3^2 + 2dx_2x_3 + 2ex_1x_3 + 2fx_1x_2 + gx_1 + hx_2 + ix_3 + j = 0
$$

which writes in matrix-vector form :

$$
\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} a & f & e \\ f & b & d \\ e & d & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \underbrace{\begin{bmatrix} g \\ h \\ i \end{bmatrix}}_{a_0} + j = 0 \Leftrightarrow x^t A x + x^t a_0 + j = 0
$$

Coordinates of orthogonal vector v to any point of the surface is given by the gradient of $f(x_1, x_2, x_3)$ which writes :

$$
v = \nabla f(x_1, x_2, x_3) = \begin{bmatrix} \frac{\partial f(x_1, x_2, x_3)}{\partial x_1} \\ \frac{\partial f(x_1, x_2, x_3)}{\partial x_2} \\ \frac{\partial f(x_1, x_2, x_3)}{\partial x_3} \end{bmatrix} = 2 \begin{bmatrix} ax_1 + fx_2 + ex_3 \\ fx_1 + Dx_2 + dx_3 \\ ex_1 + dx_2 + cx_3 \end{bmatrix} + \begin{bmatrix} g \\ h \\ i \end{bmatrix} = 2Ax + a_0
$$

Thus, from the affine model of the orthogonal vector field, $v = 2Ax + a_0$ surface is completely defined by $x^tAx + x^t a_0 = -j$. $E|E = \Omega Q$

Surfaces from A and a_0 .

The set of surfaces that follow the metric A (symmetric by $A \rightarrow (A + A^t)/2)$ and shift of the origin a_0 are given by :

$$
x^t A x + x^t a_0 = k^2
$$

which can be written :

$$
x^t A x + x^t a_0 = k^2 \Leftrightarrow \left(x - \frac{1}{2} A^{-1} a_0\right)^t A \left(x - \frac{1}{2} A^{-1} a_0\right) = k^2 + \frac{1}{4} a_0 A^{-1} a_0
$$

Posing $x_0 = \frac{1}{2}A^{-1}a_0$, $A = USU^t$, $\rho^2 = k^2 + \frac{1}{4}a_0A^{-1}a_0$ we have :

$$
(x - x_0)^t H(x - x_0) = 1
$$

with $H = U^t$ $\frac{\sqrt{|S|}}{\rho} \mathcal{J} \frac{\sqrt{|S|}}{\rho} U$ with $\mathcal{J} = \frac{1}{2}$ $[-1 \ 0 \ 0]$ $\overline{\mathsf{l}}$ $0 -1 0$ 0 0 2 1 $\overline{}$ is the surface metric and x_0 the origin of the visual space. With variable $z =$ $\frac{\sqrt{|S|}}{\rho}$ U(x – x₀), surface writes

 $z^{t} \mathcal{J} z = 1$ is the canonical hyperboloid.