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S1. SUPPLEMENTARY METHOD

SA. Display calibration

The general model of display calibration is shown in Fig-
ure S1. We measure the spectral emission of the screen

Fig. S1. Display calibration. This calibration is meant
to create a three-dimensional Euclidean space which
serves as the basis for determining the radiance of light
functions emitted from the screen. We associate to the
triplet of digital values DV a triplet of gain via a re-
versible nonlinear function Γ. From the vector of gain,
we predict the spectral radiance of the light produced
by the display. We map orthogonal functions Q1Q2Q3
to the RGB primaries of the display. A direct conversion
from the orthogonal space to the space of gains is set
up which allows through Γ−1 to find numerical DV val-
ues corresponding to any point in the orthogonal space
Q1Q2Q3.

with the Konika-Minolta CS2000 which returns spectral
values in Watt in the range [λm = 380, λM = 780] with
a step of 1nm. We convert these values into 1/683 Watt
by multiplying by 683. This allows luminance calculation
in candela per meter square as a direct scalar product be-
tween a light spectrum and V(λ), without normalisation
constant. Fifty-two levels of digital values ranging from
0 to 1 with a step of 5/255 are measured for the colors
red (R), green (G), blue (B), gray (R+G+B), yellow (R+G),
magenta (R+B) and cyan (G+B). We use only the RGB data
to define the model and verify with the other data (Cyan,
Magenta, Yellow, Gray) that the model is accurate enough
to predict any radiance spectrum |m〉 produced by the
screen. The model writes:

|m〉 = |P〉g + |p0〉 (S1)

The matrix |P〉 = [|R〉, |G〉, |B〉] is a N × 3 (N = 401)
matrix containing the prototypical functions |R〉, |G〉 and
|B〉 of the screen phosphor, corresponding to the emission
spectra for DV = (1, 0, 0), DV = (0, 1, 0) and DV =
(0, 0, 1). The vector |p0〉 is the black level of the screen,
i.e. the spectral emission for DV = (0, 0, 0). The vector
g contains the gain value per channel (between 0 and 1)
that weights the prototypical functions according to g =
Γ(DV), where DV = (DVR, DVG, DVB) is a vector that
represents the digital values for the RGB channels. The
vector function Γ is a piecewise nonlinear vector function
of DV defined by :
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Γ : DV ∈ [0, 1]3 → g ∈ [0, 1]3

DV 7→ g = Γ(DV) =


ΓR(DVR)

ΓG(DVG)

ΓB(DVB)

 (S2)

Γc(DVc) = {ac,i + bc,ixγc,i , xc,i−1 ≤ x ≤ xc,i}i=1..M

c ∈ {R, G, B}, ac,1 = 0, bc,M = 1, xc,0 = 0, xc,M = 1

We use M = 5 branches for piecewise Γ functions. By
constraining the branches to connect at the point xc,i and
having a right derivative equal to the left derivative at
the branch connection points, the parameters ac,i and bc,i
are constrained. We use nonlinear least squares estima-
tion to compute the other four parameters xc,i and the
five parameters γc,i for each color channel c, resulting in
three times nine parameters. The prototype phosphor

(a) (b)

(c)

Fig. S2. Euclidean model of the display. (a) Measured
emission spectra for the three phosphors of the display
expressed in (1/683) Watt, along with relative spectral
efficiency of the eye V(λ). (b) Associated orthogonal
functions Qi(λ). (c) Evaluation of the model in CIE1931-
xy chromaticity diagram. Crosses are measured values
and circles are model predictions; they overlap.

functions included in the |P〉 matrix are not orthogonal
functions for the scalar product defined in Equation (4).
Contrary to what is described in Equation (5), we use
Gram-Schmidt orthogonalization on Matlab [2] to derive
the orthogonal functions |Q〉 = [|Q1〉 |Q2〉 |Q3〉] from |P〉.
For convenience, we impose |Q2〉 to be collinear with the
phosphor |G〉. The transformation of the functions |P〉
into functions |Q〉 is given by the 3× 3 matrix T = 〈Q|P〉

with |Q〉 = |P〉T−1.
According to the equation S1, the light spectrum |m〉

emitted by the computer screen corresponds to the point
x = 〈Q|m〉 = Tg + t0 with t0 = 〈Q|p0〉 in the system
of coordinates spanned by |Q〉, isomorphic to R3. Con-
versely, for a point x in the color space of the screen,
we can calculate the corresponding numerical value by
DV = Γ−1(T−1(x− t0)).

Figure S2 shows the measured functions |P〉, the or-
thogonal primaries |Q〉 and the evaluation of the screen
model in the CIE1931-xy chromaticity diagram.

SB. Adaptive procedure for estimating the angle of the
subjective assessment of no motion

The goal of the modified minimum motion experiment
is to measure the angle at which the stimulus no longer
produces a reliable perception of leftward or rightward
motion. The point of subjective evaluation of minimum
motion can only be determined statistically. We set-up an
adaptive procedure for estimating the angle of minimum
motion. We fixed the number of trial in a particular con-
dition (chosen point and plane) to thirty trials. We used
vector Vλ and its projection onto planes P1 and P2 as a
prior for angle estimation which corresponds to observer
angle equal to zero relative to V(λ).

(a) (b)

Fig. S3. Adaptive procedure for minimum motion
angle estimation. (a) Representation of trials and ob-
server’s response in plane P2 with coordinate system
(p, i, j). The green and red markers represent the ob-
server responses, right or left depending on the sign of
the variable d coding for motion direction in the equa-
tion of the stimulus (See article section 3B). The green
line indicates the estimated direction of the luminous
vector. The blue line indicates the direction of the pro-
jection of Vλ (or equivalently its normalized version vn)
in the plane P2. (b) The progression of intervals of draw
along trials (cyan segments) and the adaptive procedure.
The green and red markers corresponds to those in fig-
ure (a). The two types of crosses + and × correspond to
d = 1 and d = −1. Black crosses represent the current
estimate of µ along trials.

The Figure S3(a) shows a typical minimum motion ses-
sion in the P2 plane. The Figure S3(b) shows the session in
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the angle-response diagram. We begin the experiment by
choosing the first four trials randomly in two fixed inter-
vals far away from angle zero to ensure that the observer
will see motion. This also fixes the interval in which the
subjective assessment of the angle falls. The adaptive
procedure begins after the first four trials. The set of
available responses (θ, resp) where θ is the test angle and
resp ∈ [0, 1] is the observer’s response (left is zero and
right is one if the direction of the stimulus is d = 1, and the
reverse if d = −1, see section 3B for definition of d) used
to determine a fit by a sigmoid psychometric function
of the type resp = 1/(1 + e−(θ−µ)/σ) using lsqcurvefit in
@MATLAB (µ is the current estimate of the angle). Cur-
rent estimate along trials of θ is shown by black cross and
psychometric fit by red curve in Figure S3(b).

The size of the draw intervals is driven by σ which is
the variance parameter in the psychometric function. The
position of the intervals is proportionally moved closer
together until they touch for the last thirtieth trial. The
trial angle is chosen in the left or right interval based on
the past number of trials to the left or right to adjust the
number of trials below or above the current estimate of
µ. On the thirtieth trial, the angle of subjective equality
is given by the parameter µ in the psychometric function
above.

SC. Estimation of observer’s parameters A and a0

Measurements for one observer result in two matrices X
and V of size 3×N containing coordinates of the different
points p and the corresponding vector coordinates v for
the N color points p.

SC.1. Affine model V = 2AX + x0

The affine model is calculated by first adding a homoge-
neous variable equal to one per point and vector. We call
those matrix X and V given by:

X =


p11 . . . p1N

p21 . . . p2N

p31 . . . p3N

1 . . . 1

 V =


v11 . . . v1N

v21 . . . v2N

v31 . . . v3N

1 . . . 1

 (S3)

Affine model V = MX is given for:

M = VXt
(

XXt
)−1

=


2B a0

0 0 0 1

 (S4)

The vector field estimated by the model is given by
Ṽ = MX or equivalently Ṽ = 2BX + a0 by removing
the homogeneous variable. The resulting matrix B is non-
symmetric because we did not choose the points p around
the symmetry axis of the metric which was unknown. A

symmetric matrix can be obtained by considering the ma-
trix A = (B + Bt)/2. The matrix A is not a model for the
vector field but produces the same surface as the matrix
B [1].

The mean square error displayed in Table 1 is given by

the mean square error mse1 = E
{∥∥∥Ṽ −V

∥∥∥2
}

.

SC.2. Linear model V = 2AX

We test the second model V = 2AX without the shift in
origin. We compute the matrix A by the pseudo inverse,
A = VXt(XXt)−1/2. Estimated vectors by the model are
given by V = 2AX. Mean square error is calculated as

mse2 = E
{∥∥∥Ṽ −V

∥∥∥2
}

.

SC.3. Constant model V = ra0

The third model is a constant model calculated as the
average of vectors divided by the radius of the sphere,
a0 = E{V/r}. Estimated vectors by the model is
V = ra0. Mean square error is calculated as mse3 =

E
{∥∥∥Ṽ −V

∥∥∥2
}

.

We have tested the three alternative models for predict-
ing V from X. Comparing the three models using paired
samples t-test we found that the mean mse over subject
for the affine model (M=1.08E-6; SD=1.36E-6) was smaller
than that of the linear model (M=1.86E-6; SD=1.96E-6);
[t(23) = -4.6, p < 0.001]. The linear model was also better
than the constant model (M=18.86E-6; SD=18.7E-6); [t(23)
= -4.58, p < 0.001]. Consequentially, the affine model is
also better than the constant model.

SD. Surface from orthogonal vector field
The general equation of a quadratic surface f (x1, x2, x3)
in R3 is given by the set of points of coordinates x =
(x1, x2, x3) such that:

f (x1, x2, x3) = ax2
1 + bx2

2 + cx2
3 + 2dx2x3 + 2ex1x3

+ 2 f x1x2 + gx1 + hx2 + ix3 − j = 0 (S5)

which writes in matrix-vector form:

[
x1 x2 x3

] 
a f e

f b d

e d c


︸ ︷︷ ︸

A


x1

x2

x3



+
[

x1 x2 x3

] 
g

h

i


︸︷︷︸

a0

−j = 0

⇔ xt Ax + xta0 − j = 0 (S6)
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Coordinates of orthogonal vectors to any point of coor-
dinates x = (x1, x2, x3) of the surface are given by the
gradient of f (x1, x2, x3) which from Equation S5 writes:

∇ f (x1, x2, x3) =


∂ f (x1,x2,x3)

∂x1
∂ f (x1,x2,x3)

∂x2
∂ f (x1,x2,x3)

∂x3



= 2


ax1 + f x2 + ex3

f x1 + bx2 + dx3

ex1 + dx2 + cx3

+


g

h

i


= 2Ax + a0 (S7)

Thus, from the affine model of the orthogonal vector
field, v = 2Ax + a0, the surface is completely defined by
xt Ax + xta0 = j.

S2. SUPPLEMENTARY RESULTS

SA. Supplementary results on Weber ratio
Weber ratios are calculated along each projective line by
the ratio between the norm of the luminous vector ‖vobs‖
at a point p of coordinate x divided by the radius r of the
sphere on which the point is taken (or equivalently the
Euclidiean norm of x, ‖x|), WR(r) = ‖vobs‖

/
r. As shown

in Figure S4, the Weber ratio changes with the color of the
projective line.

Corrected Weber ratios are calculated using the hyper-
bolic norm of the point p, |x| =

√
(x− x0)tH(x− x0),

with x0 and H are the observer’s hyperbolic model, by the
following equation:

WRc(r) = µ
WR(r)

aEr{|x|}+ b
(S8)

where Er{|x|} is the average over the radius r of the hy-
perbolic norm of x. a and b are the parameters of the
order one polynomial fit between average Weber ratio
and average hyperbolic norm of x across radius. And µ is
a factor for having the same average for Weber ratio and
corrected Weber ratio. The corrected Weber ratio has a
lower standard deviation along the different colors than
the Weber ratio.

We compute the average ratio along projective lines
between the standard deviation of the Weber ratio and
the standard deviation of the corrected Weber ratio. This
ratio is called f . This can be understood as a factor of
consistency of the corrected Weber ratio along projective
lines. A larger factor of consistency f means that the
correction with hyperbolic norm had better improved the
consistency of the corrected Weber ratio along colors. The
table S1 shows the factor of consistency for all observers
along with their estimated parameters.

In column five of Table S1 it is shown that corrected
Weber ratios are more consistent for all observers since the

Fig. S4. Change of the Weber ratio with the color of
the projective line. Top: Weber ratio is estimated for
each projective line as the norm of the luminous vec-
tor divided by the radius of the sphere on which the
corresponding point is taken. Depending on the color
of the projective line, the Weber ratio changes. Bottom:
Corrected Weber ratio by the hyperbolic norm.

Table S1. Parameters for correction (µ, a, b) and consis-
tency f

Obs µ a b f

1 0.77 12.78 0.38 1.70

2 0.59 12.82 0.28 3.21

3 0.27 18.97 0.16 3.07

4 0.41 15.22 0.28 4.62

5 0.55 11.39 0.24 2.68

6 0.90 12.10 0.47 3.57

7 1.20 10.52 0.36 5.15

8 0.50 13.35 0.13 3.99

9 0.69 11.74 0.19 3.06

10 1.43 12.97 0.66 5.86

11 0.95 16.80 0.51 3.61

12 0.89 12.98 0.33 3.33

Obs µ a b f

13 0.83 14.34 0.43 4.47

14 0.50 12.03 0.14 2.04

15 0.34 15.69 0.20 3.47

16 0.81 13.30 0.32 4.27

17 0.92 17.94 0.61 3.86

18 0.30 16.24 0.17 2.62

19 0.58 16.36 0.31 4.78

20 0.47 10.62 0.23 2.10

21 0.42 13.27 0.17 3.76

22 0.42 17.00 0.31 1.79

23 0.55 13.51 0.21 1.64

24 0.37 15.10 0.20 6.25

value is always greater than one. The average consistency
factor is 3.54 which supports the idea that the hyperbolic
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norm of the point |x| can regulate Weber’s law across
projection lines.
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