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This study is intended to measure the geometry of the observer’s color space when viewing a computer
screen and to define individual variations from this data. A CIE photometric standard observer assumes
that the eye’s spectral efficiency function is constant, and photometry measurements correspond to vectors
with fixed directions. By definition, the standard observer decomposes color space into planar surfaces of
constant luminance. Using heterochromatic photometry with a minimum motion stimulus, we systemat-
ically measure the direction of luminous vectors for many observers and many color points. During the
measurement process, the background and stimulus modulation averages are fixed to the given points
in order to ensure that the observer is in a fixed adaptation mode. Our measurements result in a vector
field or set of vectors (x, v), where x is the point’s color space position, and v is the observer’s luminousity
vector. In order to estimate surfaces from vector fields, two mathematical hypotheses were used: (1) that
surfaces are quadratic or equivalently that the vector field model is affine, and (2) that the metric of sur-
faces is proportional to a visual origin. Across twenty-four observers, we found that vector fields are
convergent and the corresponding surfaces are hyperbolic. The equation of the surface in the display’s
color space coordinate system, and in particular the axis of symmetry, varied systematically from individ-
ual to individual. A hyperbolic geometry is compatible with studies that emphasize a modification of the
photometric vector with changing adaptations. © 2023 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Human color perception is mediated by three types of
retinal light-sensitive cells, the cone-photoreceptors called
L, M or S. In order to generate the input required for
luminance and motion perception, photoreceptor signals
are linearly combined [1]. There is a functional separation
between this input and the input for color perception at
the level of retinal ganglion cells [2]. Due to the linearity
of the luminance channel, it is anticipated that the human
eye will exhibit a unique spectral efficiency function.

The spectral efficiency functions of human observers
have been measured using heterochromatic flicker pho-
tometry [3] and correspond to a linear combination of L-
and M- cone spectral sensitivity only (without S-cone in-
put) at a fixed adaptation state [4]. There was agreement
among several observers that led to the establishment of a
standard by the commission internationale de l’éclairage
(CIE), CIEV(λ)-1924. These measures were confirmed by
different kinds of experiments including minimal distinct

border, minimum motion, or test of the additivity prin-
ciple known as Abney’s law, for which the luminance of
a compound light is equal to the sum of the luminances
of its composing lights [5, 6]. However, several studies
have suggested that the spectral efficiency function may
be modulated by an observer’s adaptation to the level of
light or to a particular chromatic direction in the color
space [4, 7].

In any given color space, such as a display’s color space,
the consistency of the efficiency function imposes a spe-
cific geometry on the standard observer. As will be demon-
strated in section 2, V(λ) can be represented by a vector in
the color space of a display. The vector defined by V(λ) is
the same at any color point. As a result, all the vectors are
parallel. The color points with equal luminance also lie on
an iso-luminance plane orthogonal to the vectors. From
a standard observer’s perspective, photometric measure-
ment by the visual system corresponds to the division of a
color space into a pile of iso-luminance planes. However,
because the spectral efficiency function may vary with

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Research Article Journal of the Optical Society of America A 2

the observer’s adaptation state, the iso-luminant surface
could have a different geometry.

We define a luminous [8] vector field as a set of (x, v)
pairs where x represents the coordinates of a color point p
in color space and v represents the coordinates of the local
luminous vector orthogonal to the iso-luminous surface at
that point. We designed an experiment to estimate the di-
rection and magnitude of the observer’s luminous vector
at several points in the display’s color space. Our goal was
to determine whether the direction of the observer’s lumi-
nous vector corresponded to the direction given by V(λ),
forming a field of parallel vectors. A deviation from V(λ)
would indicate broken linearity, as well as deformation of
the iso-luminous surface by the visual system.

The iso-luminous surface of an observer can be recon-
structed by predicting v from x using a vector field model.
In general, it is difficult to reconstruct the surface from the
vector field. To simplify our mathematical analysis, we
used an affine model of the form v = 2Ax + a0 that allows
only quadratic surfaces with constant curvature. Possi-
ble quadratic surfaces include planes (if degenerated),
ellipses, and hyperboloids.

The constant a0 represents the origin of the observer’s
visual system in the affine model. The application of pro-
portionality toward this visual origin enables a unique
correspondence between the measured vector field and
the observer’s iso-luminous surface for all points in color
space. When considering the proportionality between sur-
faces, the origin and a single surface define the color space
metric as a whole. Whatever type of iso-luminous surface
is used, be it planar Figure 1(a), elliptical Figure 1(b) or
hyperbolic Figure 1(c), they decompose color space into
slices of iso-luminous surfaces. The surface corresponds
to a plane when the vector field is constant (Figure 1(d)),
an ellipsoid if the vector field is divergent (Figure 1(e)), or
a hyperboloid if the vector field is convergent (Figure 1(f)).

In our experiment, we measured the luminous vector v
at several color points of coordinate x in order to estimate
the observer’s luminous vector field (i.e. a set of (x, v)
pairs). For the purpose of enabling orthogonality, we as-
sociated the display color space with a three-dimensional
Euclidean space. There is a need in our study for having
an orthogonal coordinate system for the display’s color
space. We will expressed observer’s model in the display’s
coordinate system. If it is not orthogonal, the metric of the
observer will be multiplied by the correlation metric of the
display. In addition, we will use orthogonality between
vectors or vectors to surfaces to design the minimum mo-
tion stimulus. This orthogonality will be simplified in
Euclidean space. A variation of the minimum motion ex-
periment [5] has been developed to estimate v at a fixed
point p of coordinate x. In this experiment, we constrain
the observer adaptation state to the given point p by cov-
ering the background of the display with the color p. The
three-dimensional coordinates of v at a given point were
then derived by using two sessions of minimum motion

(a) (b) (c)

(d) (e) (f)

Fig. 1. Projective geometry. The color space is decom-
posed by the visual system into a pile of iso-luminous
surfaces proportional to each other towards an origin. It
is possible to reconstruct the iso-luminous surface from
a vector field by measuring a set of couples (x, v), where
v represents the photometric luminous direction for the
observer at a particular point p of coordinate x under
the assumption of quadratic surfaces and proportional-
ity.

in two orthogonal planes. From the measured vector field
we reconstruct the iso-luminous surfaces corresponding
to the color space of the observer.

In the following section we will detail the geometry of
the standard photometric observer and demonstrate that
it engenders a decomposition of the color space into slices
of iso-luminant planes because the spectral efficiency func-
tion V(λ) is considered fixed. Then we describe the whole
procedure for conducting the experiment and analyzing
the data.

2. GEOMETRY OF THE STANDARD PHOTO-
METRIC OBSERVER

We call standard photometric observer, hypothetical ob-
server whose spectral efficiency function would be the one
defined by the standard CIEV(λ)-1924 and represented in
the color space by a vector Vλ. Standard observer photo-
metric measurements can be considered as the action of
the vector Vλ on points p [9]. This action results in measur-
ing the luminance value of the color point p. Luminance
value L of a light p produced by the display is defined by
the integral of the product between spectrum of light p(λ)
and relative spectral efficiency function of the standard
photometric observer Vλ, by the following formula [10]:

Luminance(p) =
∫ λM

λm
V(λ)p(λ)dλ = L ∈ R+, (1)

where [λm, λM] indicates the wavelength interval for visi-
ble light.

Several authors have shown that the spectral function
space of light corresponds to a real Hilbert space [11],
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which we call the L space. It is particularly true for the
set of possible lights emitted by a computer screen. This
is because they can be expressed as a linear combination
of the primaries of the display phosphors. The integral of
Equation 1 can be viewed as a scalar product in L. Taking
| f 〉 as the vector corresponding to the spectral functions
f (λ) [12], the real Hilbert space of spectral functions of
light L can be defined with [13]:

Linearity : a| f 〉+ b|g〉 = |a f + bg〉 (2)
a, b ∈ R, | f 〉, |g〉, |a f + bg〉 ∈ L

Duality : 〈 f | = | f 〉t, | f 〉 ∈ L, 〈 f | ∈ L∗ (3)

Scal. Prod. : 〈 f |g〉 =
∫

f (λ)g(λ)dλ ∈ R (4)

Eucl. Norm. : ‖| f 〉‖ =
√
〈 f | f 〉 ∈ R+ (5)

Luminance value of a light p with spectrum p(λ) is given
by the scalar product: Luminance(p) = 〈V|p〉, where 〈V|
is the dual vector corresponding to luminous efficiency of
the eye, V(λ).

Fig. 2. Standard photometric observer geometry. Dis-
play color space is defined as a parallelogram p0RGB
(p0 is the black level, not shown here, see supplementary
method S1-SA), mapped into a Euclidean space with ba-
sis OQ1Q2Q3. Using this color space, spectral efficiency
function of the eye V(λ) corresponds to a vector Vλ. A
point p’s luminance is determined by the intersection
of the plane orthogonal to Vλ passing through p with
the line (OVλ). A luminance value of p is defined as the
affix ` on the graduated line (OVλ). In the display we
use, ‖Vλ‖2 = 62 cd/m2. It is the plane orthogonal to Vλ

that represents the iso-luminance plane. The luminance
of all points located on this plane is the same as that of
p.

Geometry underlying standard photometric observer
is based on the scalar product in L. Call |P〉 the matrix
of size N × 3 containing the three display’s primary emis-
sion spectra for N uniformly sampled wavelengths in the
interval [λm, λM]. The orthogonal projection from spectral
vector |x〉 to point of coordinate x in three-dimensional
display’s color space is given by the linear map œ defined

by [14]:

œ: L → R3

|x〉 7→ x = œ(|x〉) = 〈P|(PtP)−
1
2 |x〉 = 〈Q|x〉 (6)

where Q is an orthogonal basis in which we may repre-
sent the primaries P by the vectors œ(|P〉). Basis of the
color space is given by œ(|Q〉) = 〈Q|Q〉 = 1. This is the
canonical basis of R3 (1 is the identity matrix of size 3× 3).
Scalar product in L corresponds to canonical Euclidean
scalar product in R3:

x.y def
= xty = œ(|x〉)tœ(|y〉) = (〈Q|x〉)t(〈Q|y〉)
= 〈x|Q〉〈Q|y〉 = 〈x|y〉 (7)

Linear application œ defines then an orthogonal projec-
tion from L to R3.

Vλ is defined by Vλ = œ(|V〉) and is a fixed vector for
the entire display’s color space. An iso-luminant surface is
a plane of level κ that is orthogonal to Vλ. An iso-luminant
plane passing through p of coordinate x is defined by a
set of points of coordinate y such that Vt

λy = Vt
λx. Co-

ordinates of the point `, intersection between the plane
orthogonal to Vλ passing through p, and the line (OV)
is given by ` = κVλ where κ = Vt

λx
/

Vt
λVλ = L

/
‖Vλ‖2

is a factor of luminance compared to Vλ (For our display
Vt

λVλ = ‖Vλ‖2 = 62 cd/m2). Figure 2 illustrates colori-
metric observer in the color space of our display.

Standard photometric observers do not adapt to the
overall condition of the scene. Real observers do. Adapta-
tion may result in a deformation of the vector field because
the luminous vector will not remain constant. By relaxing
the constraint of linearity for photometric measurements,
one can use any surface shape for an iso-luminous surface.
Restricting to proportional quadratic surfaces is a math-
ematical trick that allows the vector to be related to the
point more easily. By doing so a projective formulation
can be developed.

3. METHOD
The color space of the computer display was defined as
Euclidean. Euclidean space is required for the definition
of the observer’s iso-luminous surface equation and for
enabling orthogonality between vectors. For more infor-
mation, please refer to supplementary method S1-SA. In
this space, we are able to measure the luminous vector
field using a minimum motion stimulus and compute the
observer’s iso-luminous surface based on the vector field.

A. Measuring luminous vector by heterochromatic pho-
tometry

We used a modified version of the minimum motion stim-
ulus [5] in order to measure the luminous vector. Mini-
mum motion stimulus consists of a spatial and color con-
trast modulated in time to produce motion. Motion per-
ception occur when the two colors that compose the stimu-
lus are not of equal luminosity to the observer. Minimum
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motion takes place in a plane containing heterochromatic
modulation between the two colors and homochromatic
modulation in an orthogonal direction. Minimum motion
is intended to measure the difference in luminosity be-
tween two colors, but we have modified it to measure the
iso-luminous line on a plane for a single color. The vector
orthogonal to this line at the color point represents the
projection of the luminous vector onto the plane.

(a) (b)

(c) (d)

(e)

Fig. 3. Luminous vector estimation. (a) Our first step
in measuring the luminous vector at a point p is to de-
fine a plane P1 passing through p. In this plane, we con-
struct a local coordinate system (p, i, j). We rotate the
local coordinate system around the normal vector n to
the P1 plane to find the minimum motion angle for the
observer that corresponds to the vector vobs1. (b) The
minimum motion stimulus is designed within the local
coordinate system. (c) Illustration of the angular result
for a typical session. (d) We use an adaptive procedure
to estimate the angle for which motion is minimal to
the observer (See supplementary method S1-SB). (e) We
then define another plane P2 passing through p, orthog-
onal to P1 and collinear to the first estimate vobs1 in P1,
in which we estimate a second minimum motion angle
using another local coordinate system. As a result, the
vector vobs in the second plane represents the luminous
vector for the observer at point p.

Given a point p, we define a plane P1 passing through p,

collinear with the vector Q1 = (1, 0, 0) and vn = Vλ/‖Vλ‖
with Vλ = œ(|V〉) corresponding to the standard ob-
server’s luminous efficiency vector Vλ normalized to 1
(Figure 3(a)). The vector vn is an a priori for the observer’s
luminous vector. The angle difference between the ob-
server’s true luminous vector and vn is measured using
the minimum motion method. We defined an initial lo-
cal coordinate system (p, i, j) where i and j are unitary
orthogonal vectors (‖i‖ = 1, ‖j‖ = 1 and i.j = 0) such
that (i + j)/

√
2 equals vn. Homochromatic frames are

defined as modulations centered on p and in the direction
i + j, whereas heterochromatic frames are modulations in
the direction i− j (Figure 3(b)). The heterochromatic and
homochromatic modulations in plane P1 are respectively
red-green and light-dark yellow. During the test we rotate
the local coordinate system around the normal vector n to
the P1 plane (Figure 3(c)) depending on the observer’s re-
sponse to find the minimum motion angle for the observer.
The angle at which motion is minimum is estimated using
an adaptive procedure (Figure 3(d))(see Supplementary
Method S1-SB). The vector corresponding to this angle
is called vobs1, which is the observer’s luminous vector
estimated at a point p in the plane P1.

The minimum motion session is repeated for point
p in plane P2, orthogonal to P1 and collinear with vobs1
(Figure 3(e)). For heterochromatic and homochromatic
frames, respectively, the modulations are blue-yellow and
light-dark gray (the relative contribution of red and green
to the gray depends on vobs1 estimation in P1). Because
P2 is collinear to vobs1, the result of the luminous vec-
tor estimation in the second plane directly defines the
three-dimensional coordinates of the observer’s luminous
vector vobs at point p.

B. Stimulus
The minimum motion stimulus S(x, t) is defined by its
spatial position on the screen x = [0, . . . , X − 1] with
X = 192 being the pixels extent, and its temporal variable
t = [1, . . . , T] with T = 4 being the number of frames com-
posing the stimulus, according to the following equation:

S(x, t) = p

+ i
(

mΠ( fxx) sin(2π ftt)

−dRΠ( fxx + 1/4) cos(2π ftt)
)

+ j
(

mΠ( fxx) sin(2π ftt)

+dRΠ( fxx + 1/4) cos(2π ftt)
)

, (8)

with ft = 1/T, fx = Nb/X where Nb = 4 is the number
of bars of the same color in the stimulus. We used:

Π(x) = 2(mod(x, 1) < 1/2)− 1

to produce a spatial square wave of height bars.
In equation 8, (p, i, j) is the local coordinate system

around p. The variable d ∈ [−1, 1] changes the direction
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of motion to the left or right for all other parameters fixed.
The value of d was randomly changed so that the observer
wouldn’t associate the variation in luminosity with the
perceived direction of motion.

The variables m and R are the contrasts of the ho-
mochromatic and heterochromatic frames respectively.
The two contrasts are modified with the point p to ensure
that the stimulus is visible regardless of the luminance of
p. These contrasts were set empirically. The contrasts for
the reddest point p1 in the P1 plane is m1 = 1/100 and
R1 = 1/10. We set m1 = 1/120 and R1 = 1/12 in the P2
plane. For the other points, the contrasts are proportional
to the luminance of the reddest point, for i = [2, . . . , 15],
mi = m1Vt

λpi
/

Vt
λp1 and Ri = R1Vt

λpi
/

Vt
λp1. The correc-

tion is similar for plane P1 and P2.
The stimulus is masked by a circular mask surrounded

by a uniform background filled with the color of the point
p. At a distance of one meter the visual angle of the
stimulus is approximately 4.2 degrees. The head is left
free but observers are placed against a table to fix the
distance to the screen.

C. Procedure
We measure the luminous vectors around several points
p of coordinate x. The points may have been picked at
random in the Euclidean color space. In order to better un-
derstand the geometry of the visual system and compare it
to the Euclidean geometry of the display’s color space, we
select points from spheres of constant radiometric norm
(Figure 4). Spheres are defined by points p of coordi-
nate x such that xtx = r2. There were two experiments
conducted. In the long experiment, we measure fifteen
points on five spheres of various radii (r = 1, 2, 3, 4, 5),
for a total of seventy five points and vectors. In the short
experiment, we measure only six points on two spheres
(r = 2, 4) for a total of twelve points and vectors. The
fifteen or six selected points lie on projective lines across
radii (see dashed lines on Figure 4(a)(b)).

After choosing point p, we fill the entire screen with
the color corresponding to p during the two minimum
motion sessions in P1 and P2 without interruption. The
minimum motion stimulus is a slight modulation around
point p and has a spatial and temporal average equal to
point p. As a result, the observer’s visual system remains
fixed on p’s color throughout the measurement.

An experiment presentation frame with white letters
on a black background is presented before the first stimu-
lus. Any button can then be pressed to move to the first
point in the experiment. The duration of the stimulus is
set at two seconds and the observer is given an additional
one second to make a response before the next stimulus
is presented. Observers are asked to respond left or right
using the response box of the VSG2.5. When the observer
responds the next trial begins. In case of no reponses the
trial is not used for the estimation of the minimum mo-
tion angle. A measure of the minimum motion angle in
one plane includes thirty trials lasting approximately two

minutes. Two sessions (in P1 and then P2) are required
to measure one vector. After two sessions, the screen re-
turns to white writing on a black background, displaying
a pause suggestion. The observer is invited to relax and
close his eyes for a moment if desired. Any button can
then be pressed to move to the next point in the exper-
iment. For the short experiment, when all points on a
sphere are measured, the experiment ends. The observer
leaves the experiment room to ask the experimenter to
restart the experiment on the next sphere. Measurements
for the long experiment are divided into three parts.

After measuring the direction of the vector vobs at all
points p, we measured the vector length at all points. The
length of the vectors is given as the minimum contrast
m in the direction of the luminous vector, needed to de-
tect the homochromatic frame from the background. The
contrast on the heterochromatic frame R is set to zero. To
do so, we used a contrast adjustment procedure that uses
large and small, positive or negative, delta values.

D. Apparatus
To avoid reflections, all experiments were conducted in an
experimental box with opaque black tissue on the walls
and table. In order to ensure the stability of light during
calibration measurements or experiments, computers and
monitors were turned on at least an hour before the mea-
surement. In this period, we ran a warm-up procedure
displaying random colors.

This display consists of a 19-inch Trinitron CRT (DELL
D1626HT) connected with BNC cables and driven by a
Cambridge Research VSG 2.5 board with Windows 7. Dis-
play resolution is 1024x768@100Hz, and palette animation
is used to generate stimulus. The answer box is a Cam-
bridge Research six-button infrared response box con-
nected to the VSG board. The programs were developed
using the VSG-MATLAB API. 8.107 and VSG Library and
ToolBox ver. 1.217.

E. Participants
Two authors conducted an experiment with seventy five
vectors lasting five hours on three consecutive days. In
contrast, twenty four naive observers conducted the ex-
periment in less than one hour with twelve vectors. Two
naive observers were excluded from the final sample. The
first was due to a technical problem with the response box,
and the second was due to the absence of data measure-
ment for the vector length. Naive observers were recruited
from psychology students at the university. They received
one experimental point as a bonus for the final examina-
tion. Authors were forty nine years old at the time of
the experiment. They had normal vision or corrected to
normal. Naive observers are 14 males and 8 females, with
an average age of 26 years and with normal or corrected
to normal vision. None of the participants were dichro-
mat based on their self-report. Experiment procedure had
been approved by the ethical committee of the University
of Grenoble Alpes under the number IRB 00010290-2017.
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F. Surfaces from vector field
After two sessions of minimum motion by points, giving
the direction of the vector, and the adjustment procedure
giving the magnitude of the vector, we have N pairs of
points and vectors composing the vector field (x, v). We
write X and V as two matrices of size 3×N, which contain
respectively N points and vectors. The value of N = 75
for the two authors and N = 12 for twenty two observers.

A model of the visual system is a prediction of V from
X. We choose an affine model of the kind v = 2Bx +
a0 where the vector v is the ith member of the matrix
V and the vector x is the ith member of the matrix X
(See supplementary method S1-SC for more explanation).
The matrix B is not symmetric and is replaced by A =
(B + Bt)/2 [17]. The matrix A and the vector a0 are the
parameters of the observer’s model.

For a quadratic surface of level k passing through a
point p of coordinate x, we have xt Ax + xta0 = k2 (See
supplementary method S1-SD for more explanations).
This equation is also written as:

(x− x0)
tH(x− x0) = 1 (9)

with x0 = (1/2)A−1a0, H = U(
√
|S|/ρ)J (

√
|S|/ρ)Ut

with ρ2 = k2 + (1/4)at
0 A−1a0 and U and S are the eigen-

vectors and eigenvalues matrices of A, A = USUt. The
diagonal matrix J is the signature of A (containing in
its diagonal the sign of the eigenvalues of A). Depend-
ing on the sign of the diagonal matrix J , the surfaces
described by A are degenerate quadrics such as plane (if
one eigenvalue is zero), ellipsoids (if the signs of the three
eigenvalues are positive), or hyperboloids (if one or two
eigenvalues are negative).

By posing z = (
√
|S|/ρ)Ut(x− x0), we have ztJ z = 1

which is the equation of the canonical surface of signature
J . Thus the estimated surface for each observer can be
seen as a transformation T = (

√
|S|/ρ)Ut of the canonical

surface placed at the origin x0, (x− x0)tTtJ T(x− x0) =
1. The observer model is in this case defined by an origin
x0 and a coordinate transformation T of the canonical
projective space in z.

The matrix T represents the observer’s own color space
since it contains the eigenvalues and eigenvectors of A.
The columns of the observer’s T matrix represent the color
space axes for the observer. Using the variance of the
coordinates of these axes, we can estimate the variability
between observers.

4. RESULTS
Figure 4(a,b) shows the measured vectors for two ob-
servers. On the figure, the vector field is slightly con-
vergent (not clearly visible since points are chosen on
spheres). Thus, the iso-luminous surfaces of the observers
are proportional hyperboloids. Due to proportionality, the
pile of hyperboloid surfaces is included in a cone (the spec-
tral cone for the observer). Cone and unitary hyperboloid
estimates are shown in Figure 4 (c,d). Table 1 shows the

three ordered eigenvalues of A [18] and the mean square
error of the predicted Ṽ calculated using the affine model
Ṽ = 2AX + x0 compared to V. (See supplementary ma-
terial S1-SC and Dataset 1, Ref. [15], and Dataset 2, Ref.
[16], for more information).

(a) (b)

(c) (d)

Fig. 4. Results for two observers (a)(b) Resulting vec-
tors for two observers scaled for visibility. Two dashed
lines illustrate projective lines used to place points on
spheres of constant radiometric norm. See Dataset 1,
Ref. [15], and Dataset 2, [16], for underlying values. (c)
(d) Corresponding unitary hyperboloid (red) and cone
(violet).

The signature of A has two negative eigenvalues for all
observers we have tested so far, and for three observers,
only one eigenvalue is negative, as shown in Table 1.
To rule out the planar hypothesis we first checked that
the mean eigenvalues of A from Table 1 were different
from 0, on average, using t-test. The first (M=-0.156E-3;
SD=0.174E-3), t(23) = -4.38, p <0.001, second (M=-0.056E-3;
SD=0.045E-3), t(23) = -6.13, p <0.001, and third (M=4.6E-3;
SD=2.1E-3), t(23) = 10.77, p <0.001, eigenvalues were all
different from zero. Even though that could be implied
from the sign of the t-test statistics, we also tested the sign
of the eigenvalues using a sign rank test (using the ex-
act solution for the function signrank in @MATLAB). The
first and second eigenvalues in Table 1 were negatives and
the third was positive (all p < 0.001). Because the group
study indicates a negative value for the second column,
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we attribute the positive value for the three observers to
experimental noise. The eigenvector associated with the

Table 1. Analysis of A and MSE
OBS Eigenvalues of A ∗1E3 mse OBS Eigenvalues of A ∗1E3 mse

1 -0.134 -0.084 4.84 5.17e-06 13 -0.136 -0.098 5.98 3.79e-07

2 -0.101 -0.065 3.90 5.33e-07 14 -0.122 -0.052 2.87 1.40e-06

3 -0.060 -0.024 2.28 9.74e-08 15 -0.085 -0.060 2.58 1.46e-07

4 -0.095 -0.065 3.15 9.94e-08 16 -0.054 0.007 5.52 9.04e-07

5 -0.144 0.025 3.39 6.93e-07 17 -0.894 -0.120 7.50 1.45e-06

6 -0.414 -0.152 5.64 1.14e-06 18 -0.056 -0.025 2.50 1.57e-07

7 -0.088 -0.008 7.10 1.19e-06 19 -0.116 -0.082 4.55 3.79e-07

8 -0.068 -0.015 3.62 8.86e-07 20 -0.062 -0.028 3.24 5.89e-07

9 -0.105 -0.053 4.50 1.20e-06 21 -0.124 -0.066 2.97 2.50e-07

10 -0.189 -0.086 10.56 1.36e-06 22 -0.169 -0.101 3.30 4.55e-07

11 -0.188 -0.136 8.24 1.09e-06 23 -0.077 0.001 3.62 5.27e-06

12 -0.196 -0.038 6.41 1.22e-06 24 -0.068 -0.036 2.97 6.65e-08

third eigenvalue (third column of Table 1) is the axis of
symmetry of the observer cone and unitary hyperboloid.
Its direction is close to Vλ the spectral efficiency function
of the eye. In the observer’s color space, the direction of
the luminous vector is the most precise direction since
the third eigenvalue has a much higher absolute value
than the two others. The ratio of eigenvalues indicates
how precise an observer is for the other directions. Com-
pared to the luminous direction, these ratios average 331
for the Blue/Yellow direction and 40.5 for the Red/Green
direction.

The major differences between observers for the direc-
tion of the axis of symmetry are in the Blue-Yellow direc-
tion (Q3 direction) and not in the Red-Green direction (Q1
direction). The variance among observers of luminous
axis coordinates along Q3 direction is 2.7E-3, while it is
1.6E-3 in Q1 direction.

Table 2 presents, for observer number two, the Weber
ratio as the ratio WR(r) = ‖vobs‖/r between the length of
the luminous vector ‖vobs‖ and the radius of the sphere
r on which the corresponding point is taken. Along each
projective line, Weber ratio is consistent across the five
radii as shown by the relatively low standard deviation
compared to the mean (Compare columns M and SD of
Table 2). Projective lines can then be graduated by the
Weber/Fechner psychophysical law. However as shown
in Table 2, the Weber ratio changes with the color of the
point (see ratio differences across the lines in Table 2). The
observed variation corresponds to what was found in [19,
Figure 6], that compared achromatic Weber fraction for
different colors. Blue (line 15) has a smaller ratio than
red (line 1) and green (line 5) has a particularly large ra-
tio. A similar variation of Weber ratio across colors was
also found for all observers (See supplementary mate-
rial S2-SA). Our Weber ratio follows the same variation
as [19] however the value of the ratio is five times higher
in our study. It may be because we measured a contrast
at constant average luminosity, while they measured a

luminosity contrast.
Drösler [20] proposed that the constant parameters of

psychophysical laws are projective invariant. Using the
metric estimated for observer two, we checked if the ob-
served change in the Weber constant from color to color
could be adjusted on the basis of the observer’s projec-
tive hyperbolic space. The factor for each projective line
can be thought of as the hyperbolic norm of the point
p(x) that we write |x| =

√
(x− x0)tH(x− x0), where

x0 and H are the observer’s color space model. We ap-
ply a correction for each line of the table by calculating
WBc(r) = (12.8Er{|x|} + 0.28)−1WB(r). The two con-
stants are calculated as the best polynomial fit between
Er{|x|} and Er{WB(r)} and are observer’s dependent
(Er{} is the expectation over r). Corrected Weber ratio
are further normalized by a constant for having the same
average Weber ratio than non corrected Weber ratio. From
WBc(r) we compute a revised standard deviation SDc(r)
(Last line of Table 2). The value SDc(r) is 3.2 times lower
than non corrected SD. Also, the specific pattern of change
in blue, green, and red was no longer observed across
color points. This correction applies equally well to all
observers, even naive observers for whom only two ra-
tios per color point can be calculated (See supplementary
material S2-SA). According to this post-hoc analysis, the
psychophysical law constant for each projective line is
a consequence of the hyperbolic norm of the observer’s
color space.

Table 2. Percent Weber ratio
n° 100‖vobs‖/r M SD

r= 1 2 3 4 5

1 0.50 0.45 0.33 0.45 0.48 0.44 0.06

2 0.60 0.50 0.50 0.53 0.54 0.53 0.04

3 0.80 0.50 0.63 0.70 0.80 0.69 0.13

4 1.00 0.80 0.80 0.75 0.74 0.82 0.11

5 1.00 0.90 0.77 0.78 0.80 0.85 0.10

6 0.50 0.40 0.43 0.45 0.46 0.45 0.04

7 0.60 0.65 0.63 0.53 0.54 0.59 0.06

8 0.80 0.75 0.67 0.68 0.68 0.71 0.06

9 0.90 0.75 0.67 0.70 0.76 0.76 0.09

10 0.40 0.45 0.40 0.40 0.46 0.42 0.03

11 0.60 0.60 0.67 0.58 0.56 0.60 0.04

12 0.70 0.65 0.57 0.68 0.64 0.65 0.05

13 0.40 0.45 0.37 0.38 0.40 0.40 0.03

14 0.60 0.55 0.50 0.50 0.54 0.54 0.04

15 0.40 0.35 0.33 0.35 0.34 0.35 0.03

SD 0.21 0.16 0.15 0.14 0.15 0.16

SDc 0.05 0.06 0.06 0.03 0.04 0.02

5. CONCLUSION
We found that the color space of the observer has a hyper-
bolic geometry. Constant luminosity surfaces are hyper-
boloid surfaces, and color spaces are a pile of hyperboloid
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sheets with varying radius k that correspond to differ-
ent levels of luminosity. All of those hyperboloids are
included in a cone defined for k→ 0. This is the spectral
cone for the observer, or the locus of mostly saturated
lights (i.e. monochromatic lights). The chromaticity dia-
gram can be viewed as a hyperboloid surface rather than
a planar surface in this geometry.

According to literature, only the L- and M-cones input
to the achromatic/motion channel we call V. Thus, V =
aL + bM where a and b are the gains of the L and M
channels, respectively. If adaptation modifies the spectral
efficiency of the eye, it could be achieved by modifying
those gains. If we further suppose that the color stimulus
de-saturates the cone mechanism for which the stimulus
is closest to (say red may de-saturate L-cones), then we
can write those gains depending on the color position.
If a = (M + S) and b = (L + S), then the surface in
LMS color space has the equation: V = 2LM + LS + MS.
This is the equation of the hyperboloid of level V having
L, M and S vectors as basis. Following this geometry,
the luminosity of a color is given by a weighted linear
combination of L- and M-cone mechanisms for which the
weights are proportional to the sum of the two other cone
responses.

Surprisingly enough, the quadratic metric we found is
not inherited from the Hilbert scalar product (radiomet-
ric norm) but rather from a hyperbolic geometry that is
likely imposed by visual processing. The transformation
T and change of the origin x0 of the canonical unitary
hyperboloid into the unitary hyperboloid of the observer
represent the axes of the observer’s color space. While
LMS vectors lie on the envelope of the spectral cone, the
axes estimated in T are based on a coordinate system hav-
ing one component being the axis of symmetry of the
observer’s metric and the two others are orthogonal.

Weber’s law and the hyperbolic metric are separate.
The hyperbolic metric acts only as a factor in Weber’s law
from color to color. Colorfulness is the coordinate of a
point on the unitary hyperboloid or equivalently a point
on the Klein disk. It can be divided into saturation and
hue. Luminosity is the affix to the projective line. Bright-
ness is a monotonic function of luminosity and could be
associated with the hyperbolic norm of the point p.

Metrics of color space are usually derived from
color discrimination thresholds [21] showing a pseudo-
Riemannian [20, 22] or non-Riemannian [23] structure.
Our results support the pseudo-Riemannian hypothesis
because iso-luminous surfaces are hyperbolic. In our ex-
periment we fixed the adaptation state of the observer to
the point of measurement. This ensured a single point
of adaptation across the visual field of the observer. Our
result is thus based on several adaptation states and this
is probably the reason why we found a cone with a large
aperture. According to our interpretation, under a single
adaptation state, the surface of equal luminosity is already
a hyperboloid, but with a smaller aperture than the one
we measured. By aggregating several points of adaptation

we found a global cone with a larger aperture.
The luminous direction differs from the direction of the

white on the screen. Indeed, we found that the luminous
axis is close to Vλ, the direction of V(λ) in the color space
of the screen. In contrast, the manufacturer of the screen
defines the white with R = G = B, so the direction of
the white is closer to w = (1, 1, 1). Our measurements are
not related to color appearance but to color physiology
as we are taking heterochromatic photometry instead of
whiteness measurements. From physiological to percep-
tual space, there is probably a projective transformation.
We have shown that physiological color space has a hy-
perbolic metric. The perceptual space, which is probably
an isomorphism transformed space from physiology [24],
should also be hyperbolic.

There are individual variations between observers see-
ing the same points in the computer display color space.
Their hyperbolic metrics differ, as evidenced by the dif-
ference between the eigenvectors matrix U and the eigen-
value matrix S of matrix A. Differences in the observer’s
color space may be compensated for in displaying im-
ages. Here, we suggest compensation can offer a way to
reduce tiredness after spending long hours watching a
display. Additionally, it can be used to enhance virtual
reality immersion.
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