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Transitions flows have been studied too: transition between bubbly and slug flow, and transition between slug and annular flow
or frothy slug-annular flow. The determination of these transitions is of importance because the wall friction and wall heat
transfer are very sensitive to the flow pattern. Colin et al. (1991) and Dukler et al. (1988) drew a map based on void fraction
transition criteria to predict patterns in liquid-gas flows. These patterns were also observed in boiling convective for heat transfer
smaller than the critical heat flux by Ohta (2003), Lebaigue et al. (1998), Reinarts (1993) and more recently by Celata and
Zummo (2009). The transition between bubbly and slug flows occurs from coalescence mechanisms. Coalescence can be
promoted or inhibited depending of the value of the Ohnesorge number. A general flow pattern map for bubbly and slug flows
based on the value of the Oh number was proposed by Colin et al (1996) for air-water flow and also boiling refrigerants. The
transition between slug and annular flow has also been investigated by several authors, who proposed criteria based on transition
void fraction value (Dukler at al., 1988), critical value of a vapour Weber number (Zhao and Rezkallah, 1993), balance between
gas inertia and surface tension (Reinarts, 1993; Zhao and Hu, 2000).

The estimation of void-fraction or averaged gas velocity is a key-point for the calculation of wall and interfacial frictions.
Different methods have been used to determine the cross-sectional averaged void fraction a: capacitance probes (Elkow and
Rezkallah, 1997), conductance probes (Colin et al., 1991; Colin and Fabre, 1995; Bousman and Dukler, 1994) or flow
visualisations (Lebaigue et al., 1998). It has been shown that the mean gas velocity U, = j,/a is well predicted by a drift flux
model Ug= Cy. j for bubbly and slug flow (Colin et al., 1991), j being the mixture velocity and Cj a coefficient depending on the
local void fraction and gas velocity distributions.

Concerning the measurements of the wall shear stress, most of the studies performed under microgravity conditions concern
gas-liquid flow without phase change (Bousman and McQuillen, 1994; Zhao and Rezkallah, 1995; Colin et al., 1996). Some
results also exist for liquid-vapour flow (Chen et al., 1991), but in an adiabatic test section. The frictional pressure drop has been
compared (Zhao & Rezkallah, 1995; Chen et al., 1991) to different empirical models (homogeneous model, Lockhart and
Martinelli (1949)). Recently, Awad and Musychka (2010) proposed a modified correlation of Lockhart and Martinelli and found
a good agreement with the experimental data. Very few studies reported data on the interfacial shear stress in annular flow
(Dukler et al., 1988). This can be explained by the fact that such a measurement is based on pressure drop and liquid film
thickness measurements which remains a difficult task.

Few researches on flow boiling heat transfer have been conducted, mainly because of the restrictive experimental conditions.
Lui et al. (1994) carried out heat transfer experiments in subcooled flow boiling with R//3 through a tubular tests section (12
mm internal diameter, 914.4 mm length). Heat transfer coefficients were approximately 5 to 20 % higher in microgravity,
generally increasing with higher qualities, which was believed to be caused by the greater movement of vapour bubbles on the
heater surface. Ohta et al. (1995, 1997, and 2003) studied flow boiling of F'C-72 and R113 in vertical transparent tubes (4,6 and
8 mm internal diameters), internally coated with a gold film, both on ground and during parabolic flight campaigns, and for a
future experiment in the ISS. Authors examined various patterns and the influence of gravity levels on heat transfer coefficients
for two-phase forced-convection heat transfer regime. It was noticed that the influence of gravity is not evident for high mass
fluxes (G superior to 250 kg.s’.m?). This observation was also made by Baltis, Celata and Zummo (2009) who performed
subcooled flow boiling experiments with FC-72 in Pyrex tubes (2, 4 and 6 mm internal diameters). It was shown that the heat
transfer coefficient decreases by up to 30-40% in microgravity in comparison with terrestrial gravity and that an increase of mass
or heat flux seems to reduce the influence of gravity. A new technique for the measurement of heat transfer distributions has also
been developed: Kim and al. (2012) used an IR camera to determine the temperature distribution within a multilayer consisting
of a silicon substrate coated with a thin insulator. Work has still to be done to confirm and give coherence to the previous results
of the literature on flow boiling and to compare the data sets obtained by the different authors.

Objectives

In this work, the authors intend to collect, analyse and compare flow boiling data in normal gravity or under microgravity
conditions, thanks to a parabolic flight campaign. The working fluid is the HFE-7000 which circulates in a heated test section
made up of a 6 mm inner diameter sapphire tube with a conductive transparent /70 coating. Flow patterns, void fraction, film
thickness, wall friction and heat transfer are studied.

This paper presents the preliminary results of the measurement campaigns within three major sections. The first section
describes the experimental apparatus and the measurement techniques and accuracy. The data reduction to obtain the mass
quality, gas velocity, heat transfer coefficient and wall shear stress is described in a second section. Finally the experimental
results obtained in p-g and 1-g experiments are presented and discussed.

EXPERIMENTAL TEST SETUP

Experimental apparatus

The experimental set-up mainly consists of a hydraulic loop which is represented in Figure 1. In this pressurized circuit, the
working fluid is the refrigerant 1-methoxyheptafluoropropane (C;F,O0CHj;), which will be referred as HFE-7000. It is first
pumped at liquid state by an Iwaki gear pump while the liquid flow rate is measured by a Micromotion Coriolis flowmeter. The
fluid is heated to its boiling point and partially vaporized in two serial heaters. Then it enters a stainless steel tube of 6 mm
diameter and 22 cm length just upstream the test section. In the test section, the HFE-7000 is further vaporized in a 6 mm
diameter sapphire tube heated through an outside /70 coating (ascending flow). The fluid is then condensed and cooled down
10°C below its boiling point into four cold plates including Peltier modules and fans before it enters the pump again. The
pressure is adjusted in the circuit via a volume compensator, whose bellow can be pressurized by air.



























Flow boiling heat transfer rate at low mass fluxes under microgravity conditions can be either increased
or reduced up to 30% but the lack of experimental points does not enable to conclude about gravity effect.
Additional experiments at lower mass fluxes should be conducted in order to highlight a trend.

Another parabolic flight campaign will be the opportunity to perform new experiments in microgravity.
Future test matrix plans to conduct runs at lower mass fluxes by adapting the hydraulic loop and to
improve the accuracy on the temperature measurement for the calculation of the vapour quality and the
reduction of void fraction data and flow visualizations.
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NOMENCLATURE
Symbols

Cp heat capacity, J. K" kg™

D tube diameter, m

g gravitational acceleration, m.s ™

G mass flux, kg.m'z.s'1

h heat transfer coefficient, W.m 2K

Ahy,  enthalpy of vaporization, J kg™

J volumetric flux or superficial velocity, m.s™
Nu Nusselt number, —

P pressure, bar

q heat flux, W.m ™

R radius, m

Re Reynolds number, —
T temperature, °C
x vapour quality, —
AT subcooling, °C
Greek Symbols
o void fraction, —
€ permittivit;l, -
p density, m’/kg ™!
T shear stress, Pa
Subscripts
environment
internal
inlet conditions
liquid phase
outer
t outlet conditions
sat saturation conditions
sub subcooled conditions

co—~pg~o
g =

v vapour phase
w wall
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