

A bypass transition in the Lamb-Oseen vortex

Luigi Bisanti, Pierre Brancher, Christophe Airiau

▶ To cite this version:

Luigi Bisanti, Pierre Brancher, Christophe Airiau. A bypass transition in the Lamb-Oseen vortex. 65th Annual Meeting of the American Physical Society's Division of Fluid Dynamics (DFD), Nov 2012, San Diego, United States. pp.0. hal-04003377

HAL Id: hal-04003377

https://hal.science/hal-04003377

Submitted on 24 Feb 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

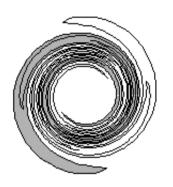
This is an author-deposited version published in : http://oatao.univ-toulouse.fr/

Eprints ID: 10496

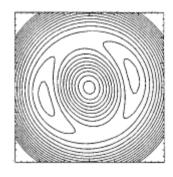
To cite this version: Bisanti, Luigi and Brancher, Pierre and Airiau, Christophe A bypass transition in the Lamb-Oseen vortex. (2012) In: 65th Annual Meeting of the American Physical Society's Division of Fluid Dynamics (DFD), 18 November 2012 - 20 November 2012 (San Diego, United States)

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr

A bypass transition in the Lamb-Oseen vortex


Luigi Bisanti, Pierre Brancher, Christophe Airiau

Institut de Mécanique des Fluides de Toulouse Université de Toulouse, France


Outline

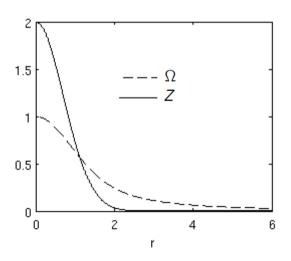
Observation of high energy transient amplifications in the Lamb-Oseen vortex by means of the Linear Optimal Perturbation approach

a) Nonlinear Optimal Perturbation analysis?

Axisymmetrization process in the Lamb-Oseen monopole: a generic process?

Rossi et al. 1997

Emergence of tripole vortex observation in numerical simulations


b) Nonlinear Optimal Perturbation: a potential path to a nonlinear bypass transition?

The Lamb-Oseen vortex

Reynolds number $Re = \Omega_0 R_0 / \nu$

Axial vorticity $Z(r, t) = 2 \exp(-r^2/(1 + 4t/Re))/(1 + 4t/Re)$

Angular velocity $\Omega(r,t) = [1 - \exp(-r^2/(1 + 4t/Re))]/r^2$

Linear stability analysis: one-signed vorticity gradient distribution is **linearly stable** at large times solution.

Shear-diffusion mechanism drives the axysimmetrization process (on the $Re^{1/3}$ time scale for large Reynolds number flows - Bernoff and Lingevitch, 1994).

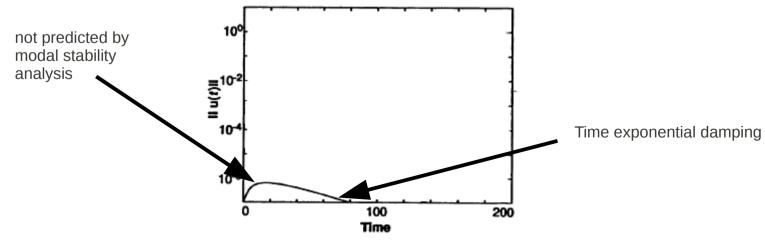
Why?

Classical stability analysis:

• small perturbations in the base flow

$$\phi(r,\theta,z,t) = \Phi(r,\theta,z) + \phi'(r,\theta,z,t) \qquad \phi'/\Phi << 1;$$

• **linearization** around the base state + modal decomposition


$$\phi'(r, \theta, z, t) = \hat{\phi}(r) \exp \{i (kz + m\theta - \omega t)\};$$

· eigenvalue analysis.

If all eigenvalues are in the stable complex half-plane,

The flow is linearly stable.

But.. transient energy amplifications are possible if the governing system is not normal.

Trefethen et al. 1993

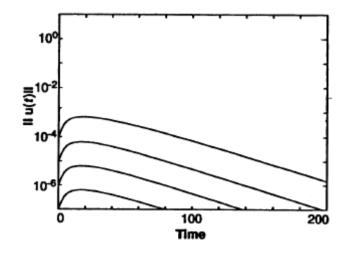
Why?

Classical stability analysis:

• small perturbations in the base flow

$$\phi(r,\theta,z,t) = \Phi(r,\theta,z) + \phi'(r,\theta,z,t) \qquad \phi'/\Phi << 1;$$

• linearization around the base state + modal decomposition


$$\phi'(r, \theta, z, t) = \hat{\phi}(r) \exp \{i (kz + m\theta - \omega t)\};$$

· eigenvalue analysis.

If all eigenvalues are in the stable complex half-plane,

The flow is linearly stable.

But.. transient energy amplifications are possible if the governing system is not normal.

Trefethen et al. 1993

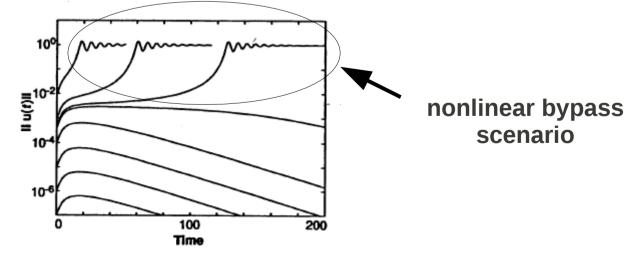
Why?

Classical stability analysis:

• small perturbations in the base flow

$$\phi(r,\theta,z,t) = \Phi(r,\theta,z) + \phi'(r,\theta,z,t) \qquad \phi'/\Phi << 1;$$

• linearization around the base state + modal decomposition


$$\phi'(r, \theta, z, t) = \hat{\phi}(r) \exp \{i (kz + m\theta - \omega t)\};$$

· eigenvalue analysis.

If all eigenvalues are in the stable complex half-plane,

The flow is linearly stable.

But.. transient energy amplifications are possible if the governing system is not normal.

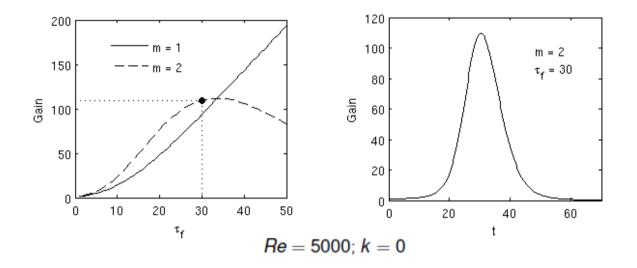
Trefethen et al. 1993

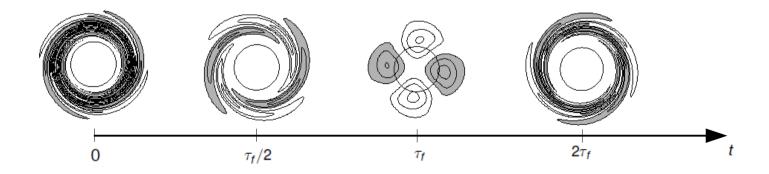
The Optimal Perturbation approach

Analytical background

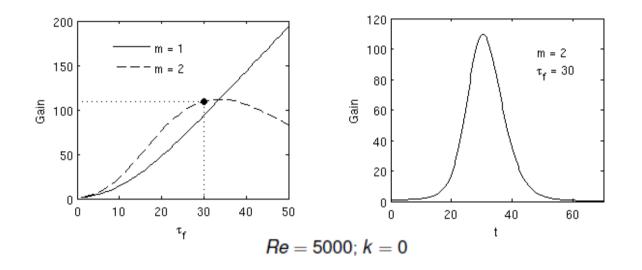
The "optimal perturbation" maximizes the gain at a given time (Farrell 1988).

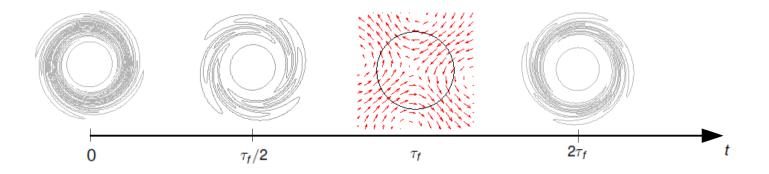
Lagrangian multiplier technique to find Nonlinear Optimal Perturbation (Pringle & Kerswell 2010).

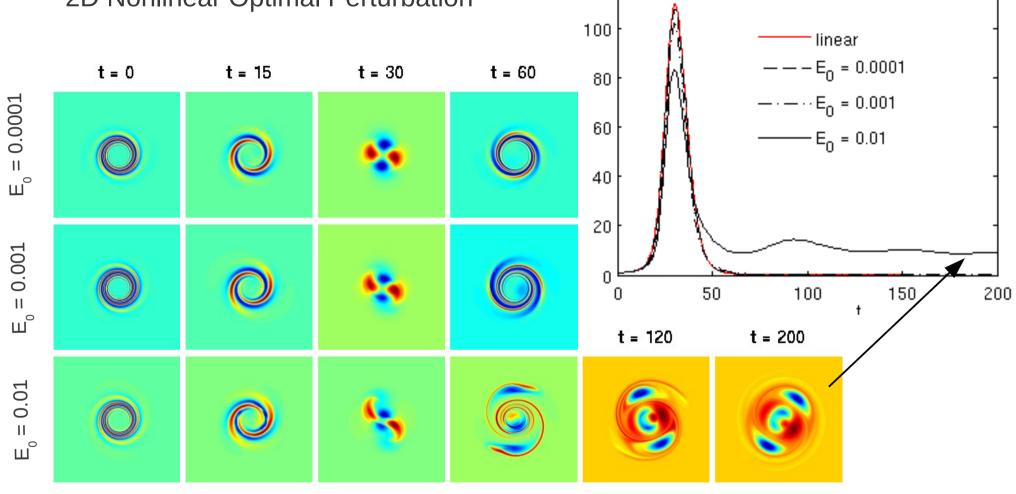

$$\mathcal{L} = E(\tau) - \langle \mathcal{F}(u), a \rangle - \lambda (E(0) - E_0)$$


$$\frac{\partial \mathcal{L}}{\partial \epsilon} \delta \epsilon = 0$$

- Navier Stokes equations + b.c.
- Adjoint equations + b.c.
- compatibility conditions


... and a pseudo-spectral code!


2D Linear Optimal Perturbation



2D Linear Optimal Perturbation

2D Nonlinear Optimal Perturbation

120

Transient energy growth 120 2D Nonlinear Optimal Perturbation 100 linear $-E_0 = 0.0001$ t = 0t = 15t = 30t = 6080 $- \cdot \cdot E_0 = 0.001$ 60 $E_0 = 0.01$ 40 20 50 100 150 200 t = 120t = 200t = 0t = 15t = 30t = 60t = 120t = 200

 $E_0 = 0.0001$

 $E_0 = 0.001$

 $E_0 = 0.01$

Conclusions

- Nonlinear optimal perturbations: remarkable differences with respect to the linear case;
- Axisymmetrization is a systematic process only in the linear approach;
- High-energy tripole generation as a nonlinear bypass transition induced by a nonlinear transient growth mechanism revealed by a nonlinear optimal perturbation analysis;
- \bar{E}_0 'threshold' as (Re, τ) function (in Rossi & al, 1997 and Barba & Leonard, 2007 but differences...);
- Kinematic energy gain: the most effective objective function to induce transition?